1.5-1条件概率
概率论与数理统计课件1.5
有三个箱子,分别编号为1,2,3,1号箱装有1个红 球4个白球,2号箱装有2红球3白球,3号箱装有3红 球. 某人从三箱中任取一箱,从中任意摸出一球, 发现是红球,求该球是取自1号箱的概率 .
?
1红4白
12 3
某人从任一箱中任意摸出一球,
?
发现是红球,求该球是取自1号
箱的概率.
1红4白
记 Ai={球取自i号箱}, i=1,2,3; B ={取得红球}
S( AB) S( ) S( A) S( )
P( AB) . P( A)
在古典概型和几何概型这两类等可能概率模型 中总有
P(B A) P( AB) . P( A)
条件概率的定义
设A、B是某随机试验中的两个事件,且 P A 0
称 P (B | A ) = —P —(A—B )
解 记 Ai={球取自i号箱}, i=1,2,3;
B ={取得红球}
12 3
其中 A1、A2、A3两两互斥 B发生总是伴随着A1,A2,A3 之一同时发生,
即 B= A1B+A2B+A3B,
且 A1B、A2B、A3B 两两互斥
运用加法公式得到
对求和中的每 一项运用乘法 公式得
P(B)=P( A1B)+P(A2B)+P(A3B)
多个事件的乘法公式
设 A1, A2, , An 为n个随机事件,且
PA1 A2 An1 0
则有
PA1 A2 An PA1 PA2 A1 PA3 A1 A2 P An A1 A2 An1
这就是n个事件的乘法公式.
例 3 乘法公式应用举例 (波里亚罐子模型)
AB Ω
1.5 条件概率、全概率公式与贝叶斯公式
因为 B A1 A2 A3 ,
所以 P(B) P( A1 A2 A3 ) P( A1)P( A2 A1)P( A3 A1 A2 )
(1 1)(1 7 )(1 9 ) 3 . 2 10 10 200
r ra t
ta .
r t r t a r t 2a r t 3a
此模型被波利亚用来作为描述传染病的数学模型.
三、全概率公式与贝叶斯公式
1. 样本空间的划分 (完备事件组)
定义 设 S 为试验E的样本空间, B1, B2 ,, Bn 为 E 的一组事件,若
(i) Bi Bj , i j, i, j 1,2,, n; (ii) B1 B2 Bn S, 则称 B1, B2 ,, Bn 为样本空间 S 的一个划分.
常用:
1、若AB=A,则A B; 若A B=A,则B A;
2、B A B A B AB,而AB B; 3、B S B,如:A B A (S B); 4、A AS A(B B) AB AB,
AB AB ; 5、AB BC B
6. P(B A) P(B A) P(B) P(AB) 对于任意事件A, B成立。
30 性质
不难验证,条件概率P( |A)复合概率定义中的三个条件
1°非负性: P(B | A) 0
2°规范性: P(S | A) 1
3°可列可加性:设B1 , B2 ,是两两互不相容的事
件,有 P( Bi | A) P(Bi | A)
i 1
i 1
从而,对概率所证明的重要结果都适用于条件概率。
以 (i, j) 表示第一次、 第二次分别取到第i 号、 第
概率论的基本概论
第一章概率论的基本概论确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。
由此产生的概念有:随机现象,随机事件,随机试验。
例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。
例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。
随机现象的结果(随机事件)的随机度如何解释或如何量化呢?这就要引入”概率”的概念。
概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。
§1.1随机试验以上试验的共同特点是:1.试验可以在相同的条件下重复进行;2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发生哪一个可能结果在试验之前不能预言。
我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。
我们把满足上述三个条件的试验叫随机试验,简称试验,记E。
§1.2样本空间与随机事件(一) 样本空间与基本事件E的一个可能结果称为E的一个基本事件,记为ω,e等。
E的基本事件全体构成的集,称为E的样本空间,记为S或Ω,即:S={ω|ω为E的基本事件},Ω={e}.注意:ω的完备性,互斥性特点。
例:§1.1中试验E1--- E7E1:S1={H,T}HTT,THT,TTH,TTT }E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0≥t }E 7:S 7={()y x ,10T y x T ≤≤≤}(二) 随机事件我们把试验 E 的全部可能结果中某一确定的部分称为随机事件。
概率论与数理统计1-5
例5 甲盒装有 1 个白球 2 个黑球 ,乙盒装有 3 个白
球 2 个黑球 ,丙盒装有 4 个白球 1 个黑球 . 采取掷一骰
子决定选盒 ,出现 1、 或 3 点选甲盒 , 4 、点选乙盒 , 2 5
6 点选丙盒 ,在选出的盒里随机摸出一个球 ,经过秘
密选盒摸球后 ,宣布摸得一个白球 ,求此球来自乙
B3
B1
A B4
B5
B6 B8
诸Bi是原因 A是结果
B2
B7
1.5.2 贝叶斯公式 再看一个例子: 某人从任一箱中任意摸 出一球,发现是红球,求该球 1红4白 是取自1号箱的概率. 或者问: 1 该球取自哪号箱的可能性 最大?
2
3
这一类问题是“已知结果求原因”. 在实际中 更为常见,它所求的是条件概率,是已知某结果 发生条件下,探求各原因发生可能性大小.
(i=1,2,...,n), 则
P( Bi | A) P( A | Bi ) P( Bi )
n
, i 1, 2,.n. (1 12)
j
P( A | B ) P( B )
j j 1
(1-12)式称为贝叶斯(Bayes)公式. 该公式于1763年由贝叶斯给出. 它是在观察到 事件A已发生的条件下,寻找导致A发生的每个原因 的概率.Fra bibliotek一个发生.
定理1.5.1 设试验E的样本空间为Ω, A为E的事件,
B1,B2,...,Bn为Ω的一个划分, 且P(Bi)>0(i=1,2,...,n),
则
P ( A) P ( A | B1 ) P ( B1 ) P ( A | B2 ) P( B2 ) P ( A | Bn ) P ( Bn ) P( A | B j ) P( B j )
概率论的基本概念
概率论的基本概念1.1 随机试验1.随机现象在一定条件下具有多个可能的结果,个别几次观察中结果呈现出随机性(不确定性),在大量重复观察中结果又呈现出固有的客观规律性的自然现象称为随机现象.随机现象的三大特点:(1)在一定条件下具有多个可能的结果,所有可能的结果已知;(2)在一次观察中,结果呈现出随机性,不能确定哪一个结果将会出现;(3)在大量的重复观察(相同条件下的观察)中,结果的出现又呈现出固有的客观规律性.2.随机试验具有以下几个特点的实验称为随机实验,常用E 来表示1)可以在相同的条件下重复进行;2)试验的结果不止一个,并且能事先明确试验所有可能的结果;3)进行一次试验之前不能确定哪一个结果会出现.注:随机试验即可在相同条件下重复进行的针对随机现象的试验.1.2 样本空间与随机事件1. 样本空间与随机事件的概念1) 样本空间随机试验E的所有可能结果E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.样本空间依据样本点数可分为以下三类(1)有限样本空间:样本空间中样本点数是有限的;(2)无限可列样本空间:样本空间中具有可列无穷多个样本点;(3)无限不可列样本空间:样本空间中具有不可列无穷多个样本点.2) 随机事件一般,称随机试验E的样本空间S的任何一个子集为E的随机事件,简称为事件. 在一次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.注:(1):随机事件在一次试验中可能发生,也可能不发生;(2):由一个样本点构成的单点集,称为基本事件;(3):样本空间S是必然事件,空集 是不可能事件,它们两个发生与否不具有随机性,为了方便将它们两个也称为随机事件。
2. 事件之间的关系与运算 假设,,,,1,2,i i A B A B i =是随机事件,1) 包含关系 若事件B 发生必然导致事件A 发生,则称事件B 包含于事件A 或事件A 包含事件B ,记作B A ⊂.若A B ⊂,且B A ⊂,则称事件A 与事件B 相等,记作A B =. 2) 和事件 事件{|}A B x x A x B =∈∈或称为事件A 与事件B 的和事件,当且仅当事件,A B 中至少有一个发生(或者A 发生或者B 发生)时事件AB 发生.类似地,称1n i i A =为n 个事件12,,n A A A 的和事件;称1i i A ∞=为可列个事件12,,,n A A A 的和事件.3) 积事件 事件{|}A B x x A x B =∈∈且称为事件A 与事件B 的积事件,当且仅当事件,A B 同时发生(A 发生且B 发生)时事件AB 发生.类似地,称1n i i A =为n 个事件12,,n A A A 的积事件;称1i i A ∞=为可列个事件12,,,n A A A 的积事件.4) 差事件 事件{|}A B x x A x B -=∈∉且称为事件A 与事件B 的差事件.当且仅当事件A 发生且事件B 不发生时事件A B -发生.5) 互斥关系 若AB φ=,则称事件A 与事件B 是互斥的,或称为互不相容的.两个互不相容的事件不能同时发生.6) 对立关系 若A B S =且A B φ=,则称事件A 与事件B 互为对立事件,或互为逆事件.每次试验中互为对立的两个事件有且仅有一个发生.事件A 的对立事件一般记作A .图1.1 事件之间关系文氏图3. 事件的运算律 1) 交换律;A B BA AB BA ==.2) 结合律 ()();A B C A B C = ()()A B C A B C =. 3)分配律 ()()()AB C A B A C =;()()()A B C A B A C =.4)狄-摩根(De-Morgan )律 ;AB A B = A B A B =;11i i i i A A ∞∞===;11i i i i A A ∞∞===1.3 频率与概率2. 概率的概念及其性质1) 概率的统计定义:对于随机试验E ,当试验次数逐渐增大时,频率()n f A 将逐渐稳定与唯一确定的实数:()n f A 的稳定值,所以将此稳定值定义为随机事件A 的概率,记为()P A .它反映了随机事件A 在一次实验中发生可能性大小.1.4 等可能概型(古典概型)1. 古典概型的特点1)样本空间由有限个样本点构成12{,,}n S e e e =;2)每个样本点出现的可能性相等:12()()()1/n P e P e P e n ===.2. 古典概型中事件A 的概率计算公式()/P A m n =其中n 为样本空间中样本点的个数,m 为事件A 中样本点的个数.1.5 条件概率1. 条件概率1) 条件概率的定义:设,A B 是两事件,且()0P A >,则称()(|)()P AB P B A P A =为事件A 发生的条件下,事件B 发生的条件概率.条件概率也满足性质(1)非负性:对任一事件B ,(|)0P B A ≥; (2)规范性:(|)1P S A =;(3)可列可加性:设12,,B B 是一列两两互不相容的随机事件,则有()11||i i i i P B A P B A ∞∞==⎛⎫= ⎪⎝⎭∑注:条件概率也满足概率的上述三条基本性质,所以条件概率它也是概率:样本空缩小为事件A 的概率,因而它满足概率的所有性质.2. 乘法原理 乘法原理:设,A B是两个事件,且()0P A >,则有()(|)()P AB P B A P A =;一般,设12,,n A A A 是n 个事件,2n ≥,且121()0n P A A A ->,则有1211112211()(|)(|)(|)()n n n n n P A A A P A A A P A A A P A A P A ---=乘法原理是计算积事件的概率的基本公式.3. 全概率公式与贝叶斯公式1)样本空间的划分:设随机试验的样本空间是S ,12,,n B B B 为一组事件,如果满足(1),,,1,2,,i j B B i j i j n φ=≠=;(2)12n B B B S =.则称12{,,}n B B B 是样本空间S 的一个划分.2)全概率公式:设S 是试验E 的样本空间,12{,,}n B B B 是S的一个划分,且()0,1,2,i P B i n >=,对任一事件A ,则有1()(|)()ni i i P A P A B P B ==∑3)贝叶斯公式:设S 是试验E 的样本空间,12{,,}n B B B 是S的一个划分,A 是一个随机事件,且()0,1,2,i P B i n >=,()0P A >,则有1(|)()(|)1,2,(|)()i i i njjj P A B P B P B A i n P A B P B ===∑注:(1)一个复杂的随机事件往往有若干个互不相容的原因导致发生,求这一类随机事件的概率时就要用到全概率公式;而已知事件已经发生,求由某一个原因导致发生的概率时,用贝叶斯公式.(2) 用全概率公式和贝叶斯公式求事件概率时,样本空间划分的选取是关键.一般划分由导致事件发生的互不相容的所有原因组成,即由题设中给出的或隐含的所有条件概率的条件组成.1.6 事件的独立性1. 两个事件的独立性两个事件独立:设,A B 是两个事件,如果满足等式()()()P AB P A P B =则称随机事件A 与B 相互独立.(1)若,A B 是两个事件,()0P A >,则A 与B 独立等价于(|)()P B A P B =.(2) 若事件A 与B 相互独立,则事件A 与B ,A 与B ,A 与B 也相互独立.2. 多个事件的独立性1)两两独立:设,,A B C 是三个事件,若满足()()()()()()()()()P AB P A P B P AC P A P C P BC P B P C === 则称事件,,A B C 两两独立.一般,设12,,n A A A 是n 个事件,若对任意的,1,2,i j i j n ≠=,有()()()i j i jP A A P AP A =,则称12,,n A A A 两两独立.2)相互独立:设,,A B C 是三个事件,若满足()()()()()()()()()()()()()P AB P A P B P AC P A P C P BC P B P C P ABC P A P B P C ====则称事件,,A B C 相互独立.一般,设12,,n A A A 是n 个事件,从中任取(2)k k n ≤≤个事件12,,k i i i A A A ,总有1212(,,)()()()k k i i i i i i P A A A P A P A P A =成立,则称12,,n A A A 相互独立.。
概率论与数理统计
A
3)在应用上,那些不便直接求某一事件的概 B2
率时,先找到一个合适的划分,再用全概率公式计算
ቤተ መጻሕፍቲ ባይዱ
7/21
§1.5 条件概率
2.贝叶斯(Bayes)公式 (计算后验概率问题)
事件A的发生,iff构成S划分的事件B1,B2,…,Bn中的一个发生时才发 生,一般在实验之前仅知道Bi的先验概率,那么如果试验后事件A已经发 生了,Bi发生的概率又是多少呢?这种问题我们称他为后验概率问题,有 利于我们查找事件发生的原因。解决此类问题可采用贝叶斯(Bayes)公式
在实际应用 中,对于事 件的独立性 常常根据事 件的实际意 义来判断,
注意:仅满足前三个等式的三个事件称为两两相互独立 见习题33 如果两个事
当然,如果事件A,B,C相互独立
件关联很弱 也可以看作
则 A, B,C; A, B,C; ... ; A, B,C 也相互独立
是独立的。
推广到多个事件
由定义可以得到以下两点推论: 1.若事件A1, A2, … , An相互独立,n2,则其中任意k(2kn)个事件也是相互独立 的。 2.若n个事件A1, A2, … , An(n2)相互独立,则将A1, A2, … , An中任意多个事件换13/成21 他们的对立事件,所得的n个事件仍相互独立
§1.6 独立性
对样本空间适当分解的思想,有利于解决稍微复杂一点的概率问题
首先看一下关于划分的概念
定义:设S为试验E的样本空间,B1,B2,…,Bn为E的一组事件。若
(i) BiBj=Φ,i≠j,i,j=1,2,…,n; (ii) B1∪B2∪…∪Bn=S 则称B1,B2,…,Bn为S的一个划分。
※每次试验,事件B1,B2,…,Bn中有且仅有一个发生
第10讲 条件概率 (III) 全概率公式 贝叶斯公式
概率论与数理统计主讲:四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式1§1.5 条件概率四川大学第10讲条件概率(III): 全概率公式贝叶斯公式3第10讲条件概率(III)全概率公式贝叶斯公式四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式4四川大学第10讲条件概率(III): 全概率公式贝叶斯公式5在前面两讲,我们讲了条件概率和乘法公式。
现在来讲全概率公式和贝叶斯公式()()(|)P AB P A P B A =(()0)P A >(一)全概率公式四川大学第10讲条件概率(III): 全概率公式贝叶斯公式6A ()(|)B P A B1AB 2AB 3AB 4AB 5AB )B1AB2AB 3AB 4AB 5AB四川大学第10讲条件概率(III): 全概率公式贝叶斯公式11全概率公式的意义事件A 的发生有各种可能的原因B i (i =1,…,n )。
如果A 是由原因B i 引起,则A 发生的概率为()()(|)i i i P AB P B P A B 每一个原因都可能导致A 发生,故A 发生的概率是全部原因引起A 发生的概率的总和,即为全概率公式。
由此可以形象地把全概率公式看成是“由原因推结果”的公式,每个原因对结果的发生有一定的作用,结果发生的可能性与各种原因的作用大小有关,全概率公式就表达了它们之间的关系。
四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式12在很多实际问题中,P (A )不容易直接求得,但却容易找到S 的一个划分B 1, B 2,…, B n ,且P (B i )和P (A |B i )容易求得,那么就可以用全概率公式求出P (A )。
使用全概率公式的关键是作出S 的一个划分。
何时用全概率公式求A 的概率?四川大学1()()(|)ni i i P A P B P A B ==∑四川大学第10讲条件概率(III): 全概率公式贝叶斯公式16例2 有12个足球都是新球,每次比赛时取出3个,比赛后又放回去,求第三次比赛时取到的3 个足球都是新球的概率。
条件概率与概率的三个基本公式
球”, 则事件 A “第一次取到黑球”, 事件 B “第二次取到黑球”. (1)法一 已知第一次取到白球,那么袋中剩 4 个球,其中 2 个
白球, 2 个黑球,则已知第一次取到白球的条件下,第二次取到的是黑
球的概率为
P(B |
A)
2
1
.
42
法二 由古典概率知 P( A) 3 , P( AB) P31 P21 3 .
注意 ① P(B) 表示“事件 B 发生”的概率,计算时,是
在整个样本空间 上考察事件 B 发生的概率;②而 P(B | A)
为已知事件 A 发生的条件下,事件 B 发生的条件概率,计算 时,实际上仅限于在事件 A 发生的范围内,来考察事件 B 的 概率.一般地, P(B | A) P(B) .
§1.4 条件概率与概率的三个基本公式
条件概率是概率论的基本概念之一,同时又是计算概率 的重要工具.概率的三个基本公式(乘法公式、全概率公式
和贝叶斯 (Bayes) 公式)都建立在条件概率的概念之上.本
节重要学习以下内容: 一、条件概率
二、乘法公式
三、全概率公式
四、贝叶斯(Bayes)公式
第一章 随机事件与概率 1
3 这是因为事件 A 的发生,排除了 bb 发生的可能性,这时样本空间 也 随 之 缩 小 为 A , 而 在 A 中 事 件 B 只 含 2 个 样 本 点 , 故 P(B | A) 2 . 事实上,以上条件概率还可写成
3 P(B | A) 2 2 / 4 P( AB) . 3 3 / 4 P( A)
公式(1.5)和(1.6)都称为两个事件积的概率的乘法公式.这 两个乘法公式还可推广到有限个事件积的概率的情形:
设 A1, A2 , , An 是任意 n 个事件,且 P( A1A2 An ) 0 ,则 P( A1A2 An ) P( A1)P( A2 | A1)P( A3 | A1A2 ) . P( An | A1A2 An1)
条件概率
§1.4 条件概率本节包括条件概率的定义、加法公式、全概率公式和贝叶斯公式等内容,主要介绍条件概率的定义及其三大公式的计算和应用。
一、条件概率的定义条件概率要涉及两个事件A 与B ,在事件B 已经发生的条件下,事件A 再发生的概率称为条件概率,记为P (A |B )。
它与前面所讲的无条件概率是两个完全不同的概念。
例1.5.1 某温泉开发商通过网状管道向25个温泉浴场提供矿泉水,每个浴场要安装一个阀门,这25个阀门购自两家生产厂,其中部分还是有缺陷的,具体情况如下:A :“选出的阀门来自厂1”,B :“选出的阀门有缺陷” 则P (A )=15/25,P (B )=7/25,P (AB )=5/25。
那么P (A |B )=5/7=57/2525=()()P AB P B ; P (B |A )=5/15=1/3=515/2525=()()P AB P A 。
解释:按厂家和有无缺陷做树状图,很容易求得P (B |A )和P (A |B )。
例 1.4.1 考察有两个小孩的家庭,其样本空间是{,,,}bb bg gb gg Ω=,其中b 代表男孩,g 代表女孩,bg 代表大的是男孩小的是女孩,依次类推……。
讨论:A =“家中至少有一个女孩”, B =“家中至少有一个男孩” 计算:(),()P A P B(|),(|)P A B P B A定义1.4.1 设A ,B 是样本空间Ω中的两事件,若()0P B >,则称()(|)()P AB P A B P B = 为“在B 发生下A 的条件概率”,简称条件概率。
例1.4.2 设某样本空间Ω含有25个等可能的样本点,事件A 含有15个样本点,事件B 含有7个样本点,交事件AB 含有5个样本点计算:(),()P A P B ,()P AB(|),(|)P A B P B A概率的有关性质对条件概率是否成立? 如:(|)1(|)P A B P A B =-当12,A A 互不相容时,1212(|)(|)(|)P A A B P A B P A B =+ 实际上都是成立的。
《概率论》第1章§1.5 条件概率、全概率公式和贝叶斯公式
P( Bi ) 0, i 1, 2, , n
则称 {B1, B2, , Bn}为样本空间 S 的一个分划 将 P( A) 的计算分解到
B1, B2 , , Bn
B1 B2 B4 B3
A
Bn
上计算然后求和
第一章
事件与概率
§1.5 条件概率、全概率公式和贝叶斯公式
13/22
设 {B1, B2, , Bn} 为样本空间 S 的一个分划,即
S B1 B2 Bn
对任何事件 A 有
A AS AB1 AB2 ABn
于是
P( A) P( AB1 AB2 ABn ) P( AB1) P( AB2 ) P( ABn ) P( A | B1) P( B1) P( A | B2 ) P( B2 ) P( A | B n ) P( B n )
第一章
事件与概率
§1.5 条件概率、全概率公式和贝叶斯公式
P( | B)
P( A | B ) 0
3/22
设 P( B) 0, 有
对于任一事件 A有
对于必然事件 S 有
P( S | B) 1
设是 { Ak }两两不相容事件列,则有
P( Ak | B)
k 1 k 1
P( Ak | B)
条件概率是定义的,但条件概率的值通常是根 据实际问题中的具体意义确定的
第一章 事件与概率
§1.5 条件概率、全概率公式和贝叶斯公式
10/22
袋中有 1只红球、n 1只白球,依次将球一个个从 袋中取出. 求第 k 次 (k 1, 2, , n ) 取出红球的概率. 记 Ak { 第 k 次取到红球 } , ( k 1, 2, , n) 则所求概率为 pk P(( A1 是不是所求概率? P Ak ) Ak 1 Ak )
概率论与数理统计条件概率
C72 2 C10 1 2 C3 2 1 2 C10
《概率统计》 返回 下页 结束
例3.设某种动物由出生而活到20岁的概率为0.8,活到25岁的概率 为0.4,求现龄为20岁的这种动物活到25岁的概率? 解: 设A={活到20岁},B={活到25岁} 则所求概率为 P ( B | A) 由于 A
(2)如果 A、B 相互独立,则 A 与 B,A 与 B , A 与 B 也相互独立。
AB,所以有 证明: 因为A B=B-AB,且 B
P( AB) P(B AB) P(B) P( AB)
P( B) P( A) P( B)
P(B)[1 P( A)] P( A)P(B) ,
解: P(A∪B)=P(A)+ P(B)-P(AB) =P(A)+P(B)-P(A)P(B|A)=0.7。
《概率统计》
返回
下页
结束
例5.100个零件中有10次品,每次任取一件,取后不放回。 (1)连取两次,求两次都取得正品的概率; (2)连取三次,求第三次才取得正品的概率。
解:设Ai={第i次取得正品},i=1,2,3。
结束
二、多个事件的独立性
(1) 3个事件相互独立的定义
三个事件A、B、C,如果满足下面四个等式
P( AB) P( A) P( B) P( AC) P( A) P(C ) PBC P( B) P(C ) P( ABC) P( A) P( B) P(C )
解:设A={取出1个玻璃球},B={取出1个红球}. (1)P(A)=10/20=1/2
(2)P(B|A)=6/10
问题:条件概率P(B|A)与普通概率有何关系?
P ( B | A)
《概率论与统计原理》第1章
P (A ) P ( B A )
i
i 1
i
n
例13 两台车床加工同样的零件,第一台的废品率为 0.04,第二台的废品率为0.07,加工出来的零件混 放,并设第一台加工的零件是第二台加工零件的2 倍。现任取一零件,求它是的合格品的概率。
1.5.4 贝叶斯公式
设 Ai ( i =1,2,…,n)是样本空间的一个划分,且 P( Ai )>0,则对任意事件 B,有
例10 已知P(A)=P(B)=P(C)=1/4,P(AC) =P(BC)=1/16,P(AB)=0,求事件A,B,C都 不发生的概率。
§1.5
条件概率和事件的独立性
1.5.1 条件概率 在事件 B 发生的条件下,事件 A的条件概率为
P( AB) P( B A) P( A) 理解条件概率的意义
第一章 事件的概率
§1.1 随机事件和样本空间
1.1.1 随机现象与随机试验 1、确定性现象和随机现象
确定性现象是指在一定条件下必然会发生的现象
随机现象是指在一定条件可能发生也可能不发生的 现象,其出现的结果不确定 概率论研究的主要问题就是随机现象的规律性
2、随机试验
对随机现象的观察称为随机试验,简称为试验,用 字母E来表示 随机试验的特点: (1)可重复性 试验在相同的条件下可以重复进行
(2)可观测性 每次试验的可能结果不止一个,而且 事先能明确试验的所有可能结果
(3)随机性 在每次试验之前不能准确预知将会出现 的结果 一些随机试验的例子: E1:掷一颗均匀对称的骰子,观察出现的点数
E2:记录一段时间内某城市110报警次数 E3:从含有三件次品a1,a2,a3和三件正品b1,b2, b3的六件产品中,任取两件,观察出现正品和次品 的情况 E4:从一批电脑中任取一台,观察无故障运行的时 间 E5:设平面上有一簇间距为a的平行线,现反复用一 枚长度为l(l<a)的针投掷下去,投掷n次后,观察 针与平行线相交的数目 E6:向坐标平面区域D:x2 +y2≤100内随机投掷一点 (假设点必落在D内),观察落点M的坐标
概率论-1-5条件概率,乘法公式,全概率公式,贝叶斯公式
P ( B) P ( Ai )P ( B|Ai )
i 1
1 1 1 2 1 1 8 3 5 3 5 3 15
将此例中所用的方法推广到一般的情形,就 得到在概率计算中常用的全概率公式.
2. 样本空间的划分及全概率公式
定义 设S为试验E的样本空间, B1 B1, B2,, Bn 为E的一组事件,若
注意P(AB)与P(A | B)的区别! 请看下面的例子
例4 甲、乙两厂共同生产1000个零件,其中 300 件是乙厂生产的. 而在这300个零件中,有189个是标准 件,现从这1000个零件中任取一个,问这个零件是乙厂 生产的标准件的概率是多少?
解 设B={零件是乙厂生产}, A={是标准件}
PBi PA | Bi
i 1
当 n=2 时,划分 B1, B2 可写成划分 B, B ,于是 P( A) P(B)P( A | B) P(B)P( A | B))
3. 全概率公式的理解
n
PA PBi PA | Bi
i 1
全概率公式 .
全概率公式的基本思想 是把一个未知的复杂事 件
样本空间中的任一事件 A ,恒有
n
PA PBi PA | Bi
i 1
证明 因为 A AS AB1 B2 Bn
AB1 AB2 ABn
并且 ABi AB j , i j ,所以
PA PAB1 PAB2 PABn
P n
B1
P
A
|
B1
PBn PA | Bn
解 记 Ai={球取自i号箱}, i=1,2,3;
B ={取得红球}
12 3
其中 A1、A2、A3两两互斥 B发生总是伴随着A1,A2,A3 之一同时发生,
概率论与数理统计公式
概率论与数理统计公式1.概率公式:
1.1概率加法公式:
P(A∪B)=P(A)+P(B)-P(A∩B)
1.2条件概率公式:
P(A,B)=P(A∩B)/P(B)
P(B,A)=P(A∩B)/P(A)
1.3乘法公式:
P(A∩B)=P(A)*P(B,A)
P(A∩B)=P(B)*P(A,B)
1.4全概率公式:
P(A)=ΣP(A,B_i)*P(B_i)
1.5贝叶斯公式:
P(B,A)=P(A,B)*P(B)/P(A)
2.数理统计中的基本概念和公式:
2.1样本均值:
样本均值 = (x1 + x2 + ... + xn) / n
2.2总体均值:
总体均值=(样本均值*n-x)/(n-1)
2.3样本方差:
样本方差 = Σ(xi - x̄)² / (n-1)
2.4总体方差:
总体方差= Σ(xi - µ)² / N
2.5样本标准差:
样本标准差=√(样本方差)
2.6总体标准差:
总体标准差=√(总体方差)
2.7样本中位数:
样本中位数=(x[n/2]+x[(n+1)/2])/2(当n为偶数时)
2.8样本四分位数:
样本四分位数Q1=x[(n+3)/4]
样本四分位数Q3=x[(3n+1)/4]
2.9标准正态分布的累积分布函数的逆函数:
Zα=Φ^(-1)(α),其中Φ(z)表示标准正态分布的累积分布函数。
2.10卡方分布的累积分布函数的逆函数:
x^2α=χ^2^(-1)(α),其中χ^2(x)表示卡方分布的累积分布函数。
概率论与数理统计ppt课件
称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}
①
②
①
1 2 N
①
②
1 2 N
……
1-5 条件概率
1
2
3
如何求取得红球的概率??? 如何求取得红球的概率???
(2) 全概率公式
定理 设试验 E 的样本空间为 S , A 为 E 的事件 , B1 , B2 ,L , Bn为 S 的一个划分 , 且 P ( Bi ) > 0( i = 1, 2,L , n ), 则 P ( A ) = P ( A B1 ) P ( B1 ) + P ( A B2 ) P ( B2 ) + L + P ( A非负性 : P ( B A) ≥ 0; ( 2) 规范性 : P ( S B ) = 1, P (∅ B ) = 0;
(3) P( A1 U A2 B) = P( A1 B) + P( A2 B) − P( A1 A2 B);
(4) P ( A B ) = 1 − P ( A B ).
,
(1) 引例 将一枚硬币抛掷两次 ,观察其出现 观察其出现 正反两面的情况,设事件 为 正反两面的情况 设事件 A为 “至少有一次 为正面” 事件 事件B为 两次掷出同一面” 为正面”,事件 为“两次掷出同一面”. 现 在来求已知事件A 在来求已知事件 已经发生的条件下事件 B 发生的概率. 发生的概率
2. 乘法公式
设 P ( B ) > 0, 则有 P ( AB ) = P ( A B ) P ( B ).
推广1 : 设 A1 , A2 , A3为事件, 且 P ( A1 A2 ) > 0, 则有
P(A A A ) = P(A )P(A A )P(A A A ). 1 2 3 1 2 1 3 1 2
N ( AB) 6 2 P ( B | A) = = = ′) N (S 9 3
解法二(条件概率的定义法) 解法二(条件概率的定义法) 由于
第三讲 条件概率与独立事件
90 89 10 0.0826 100 99 98
许昌学院数学科学学院
12页
第三讲 条件概率与独立事件
例4:(罐子模型)设罐中有b个黑球,r个红球,每 次随机取出一个球,取出后将原球放回,还加进c 个同色球和d个异色球.记 Bi=“第i次取出的是 Rj 黑球”, =“第j次取出的是红球”.若连续从 罐中取出三个球,其中有两个红球,一个黑球, 则由乘法公式得
P( B1 R2 R3 ) P( B1 ) P( R2 B1 ) P ( R3 B1R2 )
b rd r d c b r b r c d b r 2c 2d
许昌学院数学科学学院
13页
第三讲 条件概率与独立事件
P( R1 B2 R3 ) P( R1 ) P( B2 R1 ) P ( R3 R1B2 )
许昌学院数学科学学院
20页
第三讲 条件概率与独立事件
由全概率公式可得 P(是)=P(白球)P(是1白球)+P(红球)P(是1红球) 由于 P(是)=已知 P(红球)=已知 P(白球)=已知 P(是1白球)=已知 故P(是1红球)可得。
许昌学院数学科学学院
21页
第三讲 条件概率与独立事件
1.4
性质4
贝叶斯公式
若事件B1, B2 , ··, Bn是样本空间的一个分割, ·· ·· 且P(A)>0, P(Bi)>0,则
P( Bi | A) P( Bi ) P( A | Bi )
P( B j ) P( A | B j ) j 1
许昌学院数学科学学院
n
条件概率条件分布条件期望
(2)无放回抽样
YX
01
02
2
77
12
1
7
7
二、连续型随机变量旳条件分布
条件分布函数 FX Y (x y)
条件分布是指在一个随 机变量取某个确定值 的条件下,另一个随机变量的分布 , 即 FX Y ( x y) P{ X x Y y} .
由于P{Y y}可能为零(连续型时一定为零 ).故直接 用条件概率来定义时 ,会出现分母为零 . 因此,在条件分布中,作为条件的随机变量的 取值是 确定的数.
y}.
定义 设二维随机变量 ( X ,Y ) 的概率密度为
f ( x, y),( X ,Y ) 关于 Y 的边缘概率密度为 fY ( y).若
对于固定的
y,
fY ( y) 0, 则称
f ( x, y) 为在Y fY ( y)
y
的条件下 X 的条件概率密度,记为
f (x, y)
f (x y)
.
XY
fY ( y)
条件分布函数与条件密度函数旳关系
x
x
FX Y ( x y)
fX Y ( x y)d x
[ f (x, y)
fY ( y)]d x.
y
y
FY X ( y x)
fY X ( y x)d y
[ f (x, y)
f X ( x)]d y.
阐明
联合分布、边沿分布、条件分布旳关系如下
联合分布
边沿分布 条件分布
联合分布
例3 设( X ,Y ) 在区域 x2 y2 1 上服从均匀分布,求 件概率密度 fX Y ( x y).
解 由题意知随机变量 ( X ,Y ) 的概率密度为
概率的乘法公式
1.5 概率的乘法公式1.5.1 条件概率【问题1】3张奖券中只有一张能抽奖,现分别由3名同学无放回的抽取,问最后一名同学抽到奖券的概率是否比其他同学小?若抽到中奖券的概率用“Y ”表示,没有抽到的用“Y ”表示,用n A ()表示事件A 中基本事件的个数,那么所有可能抽取情况为Ω=YYY YYY YYY {,,},用B 表示最后一名同学抽到中奖奖券的事件,则=B YYY {},由古典概型可知,最后一名同学抽到中奖奖券的概率为13==Ωn B p B n ()().() 【问题2】如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?因为已经知道第一名同学没有抽到中奖奖券,那么所有可能的抽取情况变为=A YYY YYY {,},由古典概型可知,最后一名同学抽到中奖奖券的概率为12=n B n A ()(),不妨记为P B A (|).显然,知道第一名同学的抽取结果,即知道了事件A 的发生,会影响事件B 发生的概率,从而导致了≠P B P B A ()(|). 【问题3】 对于上面的事件A 和B ,计算P B A (|)的一般想法是什么?既然已经知道了事件A 的必然发生,所以只需局限在A 发生的范围内考虑问题,在事件A 发生的情况下事件B 发生,等价于事件A 和事件B 同时发生,即AB 发生,对于古典概型,由于组成事件A 的各个基本事件发生的概率相等,因此其条件概率为=n AB P B A n A ()(|)(). ① 为了把条件概率推广到一般情形,我们对上述公式作如下变形:Ω===Ωn AB m AB n P AB P B A n A m A n P A ()()/()()(|).()()/()()因此有=P AB P B A P A ()(|).()这一式子已经不涉及古典概型,可以将它作为条件概率的推广定义.一般地,设A ,B 为两个事件,且0>p A (),称=P AB P B A P A ()(|)()② 为在事件A 发生的条件下,事件B 发生的条件概率(conditional probability). 一般地,把P B A (|)读作A 发生的条件下B 的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(ABC)=P(A)P(B|A)P(C|AB). 一般地,有下列公式: P(A1A2…An)=P(A1)P(A2|A1)...P(An|A1…An-1).
例6 有5个签中,3个写“有”,二个写“无”,
五人依次各抽一签,求各人抽到“有”的概率。
(1)若为放回抽样:
P(B)
1 2
1 2
1 2
1 2
C21
(
1 2
)1
(
1 2
)1
1 2
(2)若为不放回抽样:
P(B)
26 52
26 51
26 52
26 51
C216C216
/
C522
26 51
§1.5 条件概率
教学内容
(1)深刻理解条件概率的意义,掌握条 件概率的计算;
(2)了解概率的乘法定理在实际应用中 的重要性;掌握两个及多个事件乘积的 概率计算;
引例
袋中有十只球,其中九只白球,一只红球,十 人依次从袋中各取一球(不放回),问
第一个人取得红球的概率是多少? 第二 个人取得红球的概率是多少?
解: 设 Ai={ 第i人抽到“有” },i=1,2,3,4,5
3 P( A1) 5
A2 A1 A2 A1 A2
P( A2 ) P( A1A2 ) P( A1A2 )
利用乘 法公式
P( A1)P( A2 | A1) P( A1)P( A2 | A1)
3223 3 54 54 5
例2 一盒中混有100只新 ,旧乒乓球,各有红、 白两色,分 类如下表。从盒中随机取出一球 ,若取得的是一只红球,试求该红球是新球 的概率。
解:设A=“从盒中随机取到一只红球”。
B=“从盒中随机取到一只新球”。
红白
新 40 30
旧 20 10
解:nA 40, nAB 60
P(B | A) 40 2 60 3
是一等奖的概率
解:设A=“任取一张,中奖”,B=“任取一张,取到 一等奖”
(1)P(A) 2 1 10 5
(3)P(B | A) 1 2
(2)P( AB) 1 10
P(B | A) P(AB) P( A)
S A
B
显然,若事件A、B是古典概型的样本空间S中的 两个事件,其中A含有nA个样本点,AB含有nAB个 样本点,则
A={ 这人通过考核 },
A A1 A1 A2 A1 A2 A3
P( A) P( A1) P( A1A2 ) P( A1A2 A3)
P( A1) P( A1) P( A2 | A1) P( A1) P( A2 | A1)P( A3 | A1A2 )
0.60+0.40.8 0.40.20.9 0.992
例3 一盒子有4只产品,其中3只一等品,1只二等品,从 中不放回地抽取两只,设事件A为“第一次取到的是一等 品”,B为“第二次取到的也是一等品”,求P(B|A)。
解:法1
n P42 12 mA C31 C31 9
mAB C31 C21 6
P(A) 9 , P(AB) 6
解:设A={乌龟活到100岁},B={乌龟活到
60岁},因为 AB
所以
p(AB) p(A) 0.83
p{已活到60岁的乌龟再存活40年}=
p(A|B) p(AB) p(A) 0.83 0.93 p(B) p(B) 0.89
也可以理解为100只活到60岁的乌龟中大约有93只 能活到100岁.
例7:某行业进行专业劳动技能考核,一个月安排一 次,每人最多参加3次;某人第一次参加能通过的概率 为60%;如果第一次未通过就去参加第二次,这时能 通过的概率为80%;如果第二次再未通过,则去参加 第三次,此时能通过的概率为90%。求这人能通过考 核的概率。 解: 设 Ai={ 这人第i次通过考核 },i=1,2,3
若已知第一个人取到的是白球,则第二个人取到 红球的概率是多少?
已知事件A发生的条件下, 事件B发生的概率称为
A发生条件下件概率
例1 设有10张奖券,其中一张是一 等奖,一张二等奖,
(1)求任取一张,中奖的概率 (2)求任取一张,中一等奖的概率 (3)求任取一张,且已知中奖,则
P(B | A) nAB nA
nAB n
P( AB)
nA n
P( A)
一般地,设A、B是S中的两个事件,则
P(B | A) P( AB) P( A)
称为事件A发生的条件下事件B发生的条件概率
备注:
在A发生的条件下B发生当然是A发生且B发 生,即AB发生,但是,现在A发生成了前提 条件,因此应该以A做为整个样本空间,而 排除A以外的样本点,因此P(B|A)是 P(AB)与P(A)之比。
P(A) P(AB AB) P(AB) P(AB)
P(B) P(A | B) P(B) P(A | B)
0.30.2 0.70 6%
利用乘 法公式
另解:A B, A AB, P(A) P(AB) P(B)P(A B) 0.30.2 6%
12
12
P(B | A) P( AB) 2 P( A) 3
法2
设一等品编号为1,2,3,二等品为b,则 缩减的样本空间为
A={(1,2),(1,3),(2,1),(2,3), (3,1),(3,2),(1,b),(2,b),(3,b)}
P(B | A) 6 2 93
AB
例4:设一只乌龟能存活60年的概率为0.89,能存活 100年的概率为0.83,若现在这只乌龟已经60岁,则 它能再存活40年的概率是多少?
例6:某厂生产的产品能直接出厂的概率为70%,余下
的30%的产品要调试后再定,已知调试后有80%
的产品可以出厂,20%的产品要报废。求该厂产
品的报废率。 解:设 A={生产的产品要报废}
∵AB与 AB 不相容
B={生产的产品要调试}
已知P(B)=0.3,P(A|B)=0.2,P(A | B) 0
解:
设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}
A1 A2 与 A1 A2
不相容
P(B) P( A1A2 A1A2 )
利用乘 法公式
P( A1A2 ) P( A1A2 ) P( A1) P( A2 | A1) P( A1) P( A2 | A1)
条件概率的性质
1、P( | A) 0
2、P(B | A) 1 P(B | A)
3、P((B C) | A) P(B | A) P(C | A) P(BC | A)
4、B A P(B | A) P(C | A)
二、乘法公式
设A、B ,P(A)>0,则 P(AB)=P(A)P(B|A).
P( A2 | A1) 1 P( A2 | A1) 1 0.8 0.2
亦可:
P(A) 1 P(A) 1 P( A1A2 A3) 1 P( A1)P( A2 | A1)P( A3 | A1A2 )
1 0.40.20.1 0.992
例8:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。