北师大数学选修同步作业:第4章 导数应用 作业21 含解析

合集下载

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(含答案解析)(4)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(含答案解析)(4)

一、选择题1.已知函数23()2ln (0)xf x x x a a=-+>,若函数()f x 在[]1,2上单调递减,则a 的取值范围是( ) A .2,5⎡⎫+∞⎪⎢⎣⎭B .20,5⎛⎤ ⎥⎝⎦C .(0,1]D .[1,)+∞2.已知函数()22ln 3f x x ax x =+-在2x =处取得极小值,则()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值为( ) A .52-B .92ln 32-C .1-D .2ln 24-3.已知函数()()ln 1xxf x x e e -=-++,则使不等式()()12f x f x +<成立的x 的取值范围是( ) A .()(),11,-∞-+∞B .()2,1--C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭D .()(),21,-∞-⋃+∞4.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .25.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f << B .()()()623428f f f << C .()()()346229f f f <<D .()()()286234f f f <<6.已知定义在R 上的函数()f x 满足()()f x f x '<-,则下列式子成立的是( ) A .(2020)(2021)f ef > B .(2020)(2021)f ef < C .(2020)(2021)ef f >D .(2020)(2021)ef f <7.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π8.设函数()f x 为偶函数,且当0x ≥时,()cos x f x e x =-,则不等式(21)(2)0f x f x --->的解集为( )A .(1,1)-B .(,3)-∞-C .(3,)-+∞D .(1,)(,1)+∞⋃-∞-9.函数()()()()22ln 00x x x f x x e x -⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()()2240f x af x a a -+-=有四个不等的实数根,则实数a 的取值范围为( ) A .()0,4 B .()(),44,-∞⋃+∞C .(){}4,04- D .(){},44-∞-10.函数()212x f x x -=+的值域是( ) A .30,3⎡⎤⎢⎥⎣⎦B .33⎛⎫∞ ⎪ ⎪⎝⎭,+ C .()0,3D .)3,⎡+∞⎣11.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 12.已知函数()()()22ln 0f x a e x xa =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,则a =( ) A .eB .1e 2- C .1 D .2e e - 二、填空题13.已知函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值,则实数m 的取值范围是_________.14.已知函数2()ln 3mf x x x x x=+-+.若函数()f x 在[1,2]上单调递减,则实数m 的最小值为________.15.已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______.16.如图,两条距离为4的直线都与y 轴平行,它们与抛物线()22014y px p =-<<和圆()2249x y -+=分别交于A ,B 和C ,D ,且抛物线的准线与圆相切,则22AB CD ⋅的最大值为______.17.已知函数()21ln 2f x a x x bx =-+存在极小值,且对于b 的所有可能取值,()f x 的极小值恒大于0,则a 的最小值为__________.18.已知函数f (x )=2,(,0],(0,)xx x e x +∈-∞⎧⎨∈+∞⎩,若存在x 1,x 2(x 2>x 1)满足f (x 1)=f (x 2),则x 2﹣2x 1的取值范围为_____.19.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',且()()32xxf x f x x e'-=,()339f e =,则关于x 的方程()>f x e 的解集为_____________.20.已知随机变量X 的分布列为:随机变量X 的数学期望为E X ,则满足E X k <的最大正整数k 的值是_____. (参考数据:ln 20.6931≈,ln3 1.0986≈,ln5 1.6094≈)三、解答题21.已知函数()ln f x x x e =--. (1)求函数()f x 的单调区间;(2)若关于x 的不等式()xe f x mx ⋅在(0,)+∞上恒成立,求实数m 的取值范围.22.已知()()2log 1f x x =+.(1)若()()0121f x f x <--<,求x 的取值范围; (2)若关于x 的方程()40xf x m -+=有解,求实数m 的取值范围.23.设函数()(1)ln(1)f x x x x =-++ (1)若方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,求t 的取值范围; (2)证明:当0m n >>时,(1)(1)n mm n +<+.24.已知函数()ln(1)f x x a =++,()x a g x e -=,a R ∈.(1)若0a =,曲线()y f x =在点()()00,x f x 处的切线也是曲线()y g x =的切线,证明:()0001ln 1x x x ++=; (2)若()()1g x f x -≥,求a 的取值范围. 25.已知函数()22ln f x x a x =-,其中a ∈R . (1)当1a =时,求函数()f x 在1,e e⎡⎤⎢⎥⎣⎦上的最值;(2)(i )讨论函数()f x 的单调性;(ii )若函数()f x 有两个零点,求a 的取值范围.26.设函数1()ln ,f x a x a x=+∈R .(Ⅰ)设l 是()y f x =图象的一条切线,求证:当0a =时,l 与坐标轴围成的三角形的面积与切点无关;(Ⅱ)若函数()()g x f x x =-在定义域上单调递减,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出()'f x 由()0f x '≤得314x a x ≤-,令1()4g x x x=-,判断出()g x 的单调性并利用单调性可得()g x 的最小值可得答案. 【详解】31()4(0)f x x x a x'=-+>,因为函数()f x 在[]1,2上单调递减, 所以3140x a x -+≤,即314x a x≤-, 令1()4g x x x =-,由于114,y x y x ==-在[]1,2都是增函数, 所以1()4g x x x=-在[]1,2单调递增,所以()(1)3g x g ≤=, 所以33a ≤,又0a >,解得1a ≥. 故选:D. 【点睛】本题考查了利用函数的单调性求参数的范围问题,关键点是令1()4g x x x=-并求出最小值,考查了学生分析问题、解决问题的能力.2.B解析:B 【分析】由()20f '=求出a 的值,然后利用导数可求得函数()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值.【详解】()22ln 3f x x ax x =+-,则()223f x ax x=+-', 由题意可得()2420f a '=-=,解得12a =,则()212ln 32f x x x x =+-, ()22323x x f x x x x-+'=+-=,令()0f x '=,可得1x =或2x =,列表如下:所以,函数()f x 的极大值为()12f =-,极小值为()22ln 24f =-, 又1112ln 228f ⎛⎫=-- ⎪⎝⎭,()932ln 32f =-,()()()95312ln 32ln 322ln 31022f f -=-+=-=->,则()()13f f <,所以,()()max 932ln 32f x f ==-. 故选:B. 【点睛】思路点睛:利用导数求函数()y f x =在[],a b 上的最大值和最小值的步骤如下: (1)求函数()y f x =在(),a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值()f a 、f b 比较,其中最大的一个是最大值,最小的一个是最小值.3.D解析:D 【分析】先判断函数的奇偶性和单调性,从而可得关于x 的不等式,求出其解后可得正确的选项. 【详解】()f x 的定义域为()(),11,-∞-+∞,且()()()ln 1x x f x x e e f x --=--++=,又当1x >时,()()ln 1xxf x x e e -=-++,()11001x x f x e e e x e-'=+->+->-,故()f x 在()1,+∞为增函数, 故()()12f x f x +<即为11211112121x xx x x x ⎧<+<⎪+-+⎨⎪-⎩或或,解得2x <-或1x >,故选:D. 【点睛】方法点睛:解函数不等式,往往需要考虑函数的奇偶性和单调性,前者依据定义,后者可利用导数,注意定义域的要求.4.A解析:A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥,利用导数判断()g x 的单调性求最小值即可. 【详解】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-, 整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.5.B解析:B 【分析】 构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论. 【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>, 所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<, 故选:B.6.A解析:A 【分析】构造函数()()xg x e f x =,求导判定函数单调性,根据单调性得(2020)(2021)g g >化简即可. 【详解】解:依题意()()0f x f x '+<,令()()xg x e f x =,则()(()())0xg x f x f x e ''=+<在R 上恒成立, 所以函数()()xg x e f x =在R 上单调递减, 所以(2020)(2021)g g >即20202021(2020)(2021)(2020)(2021)e e e f f f f >⇒>故选:A. 【点睛】四种常用导数构造法:(1)对于不等式()()0f x g x ''+> (或0<) ,构造函数()()()F x f x g x =+. (2)对于不等式()()0f x g x ''->(或0<) ,构造函数()()()F x f x g x =-.(3)对于不等式()()0f x f x '+>(或0<) ,构造函数()()xF x e f x =.(4)对于不等式()()0f x f x '->(或0<) ,构造函数()()xf x F x e =. 7.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r =代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=, 底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r rππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S rππ-'=<可得02r <<, 所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B 【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.8.D解析:D 【分析】利用导数判断函数在[)0,+∞的单调性,然后根据奇偶性判断()f x 在(],0-∞的单调性,再利用单调性与奇偶性结合求解不等式. 【详解】当0x ≥时,()cos x f x e x =-,所以()sin xf x e x '=+,因为0x ≥,所以1x e ≥,即()1sin 0f x x '≥+≥,所以函数()f x 在[)0,+∞上单调递增,又因为函数()f x 为R 上的偶函数,所以函数()f x 在(],0-∞上单调递减,在[)0,+∞上单调递增,则不等式(21)(2)0f x f x --->,等价于212x x ->-,所以1x <-或1x >.故选:D.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若()f x 为偶函数,则()()()f x f x f x -==. 9.C解析:C 【分析】作出函数()f x 的大致图象,令()t f x =,则原问题可转为关于t 的方程2240t at a a -+-=有2个不等实根1t 和2t ,结合()f x 的图象可确定1t 和2t 符合两种情形:10t =,24t =或()10,4t ∈,()()2,04,t ∈-∞+∞,最后分两类讨论即可求得a 的取值范围. 【详解】当0x ≥时,()22xf x x e-=,∴()()222xf x x xe-'=-,∴当02x <<时,()0f x '>,()f x 单调递增; 当2x >时,()0f x '<,()f x 单调递减, 函数()f x 的大致图象如图所示:令()t f x =, 当0t =或4时,方程()t f x =有2个实根; 当()(),04,t ∈-∞+∞,方程()t f x =有1个实根.当t ∈(0,4)时,方程t =f (x )有3个实根; 则关于x 的方程()()2240fx af x a a -+-=有四个不等的实数根可等价于关于t 的方程2240t at a a -+-=有2个不等实根1t 和2t .∴1t 和2t 可符合两种情形:10t =,24t =或1t ∈(0,4),()()2,04,t ∈-∞+∞.若10t =,24t =,则124a t t =+=; 若1t ∈(0,4),()()2,04,t ∈-∞+∞,设g (t )=t 2﹣at +4a ﹣a 2,则g (0)•g (4)<0,∴()()22416440a aa a a -⋅-+-<,解得40a .综上,实数a 的取值范围为(){}4,04-.故选:C .【点睛】本题考查方程根的问题,利用导数研究函数的单调性与最值,考查学生的数形结合思想、转化与化归思想、逻辑推理能力和运算能力,属于中档题.10.A解析:A 【分析】求出函数的定义域,然后求出导函数,确定单调性,得值域. 【详解】由21020x x ⎧-≥⎨+≠⎩得11x -≤≤, 22222(2)121()(2)1xx x x f x x x -⋅+---'==+-当112x -≤<-时,()0f x '>,()f x 递增,112x -<≤时,()0f x '<,()f x 递减, 所以12x =-时,max1134()322f x -==-+(1)(1)0f f -==, 所以()f x 的值域是30,3⎡⎢⎣⎦. 故选:A . 【点睛】本题考查用导数求函数的值域,解题方法是由导数确定函数的单调性,得出最大值和最小值,得值域.11.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1=,x 223a-+=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴123a-<2,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;12.D解析:D 【分析】求得导函数()'f x ,确定()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的单调性,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域,从而可得题中平面区域面积,解之可得a . 【详解】解:()()2222a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >,所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为()22,a e e a ⎡⎤+⎣⎦,因为所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,所以()221211a e e e e ⎛⎫---=-⎪⎝⎭, 解得2ea e =-, 故选:D . 【点睛】本题考查用导数求函数的值域,解题方法是求出导函数,用导数确定函数的单调性,求得值域区间,然后可计算出题设平面区域面积,得出结论.二、填空题13.【分析】利用导数求出函数的极大值点和极小值点由题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】则令可得列表如下: 极大值 极小值 所以函数的极大值点为 解析:()3,2--【分析】利用导数求出函数()f x 的极大值点和极小值点,由题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】()32133f x x x =++,则()()222f x x x x x '=+=+,令()0f x '=,可得12x =-,20x =,列表如下:所以,函数f x 的极大值点为2x =-,极小值点为0x =, 由于函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值, 所以,230m m <-⎧⎨+>⎩,解得32m -<<-.因此,实数m 的取值范围是()3,2--.故答案为:()3,2--. 【点睛】易错点点睛:已知极值点求参数的值,先计算()0f x '=,求得x 的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误.14.6【分析】求导函数令恒成立变量分离转化为求新函数的最大值【详解】可得令若函数在上单调递减即当时单调增所以函数在上单调递增所以故答案为:6【点睛】关键点睛:变量分离转化为不等式恒成立问题进而求又一函数解析:6 【分析】求导函数()f x ',令()0f x '≤恒成立,变量分离转化为求新函数的最大值. 【详解】21()23mf x x x x'=+--,()0f x '≤,可得3223m x x x ≥-+, 令()3223g x x x x =-+,若函数()f x 在[1,2]上单调递减,即()max m g x ≥ 当[1,2]x ∈时,()2661g x x x '=-+单调增,()()266110g x x x g ''=-+≥>,所以函数()g x 在[1,2]上单调递增()()max 26g x g ==,所以6m ≥.故答案为:6 【点睛】关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.15.【分析】由得根据的范围得利用导数得可得令将化为关于的二次函数根据二次函数知识可求得结果【详解】因为所以所以因为所以当时由得由得所以在上递减在上递增所以在处取得最小值所以所以令则所以所以当时取得最小值解析:24,0e ⎡⎤-⎣⎦【分析】由()()12f x f x =得2124x e x e x =-,根据1x 的范围得224x e e x ≤,利用导数得22x e e x ≥,可得224x e e e x ≤≤,令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识可求得结果. 【详解】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤, 当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x'--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭, 令22x e t x =,则4e t e ≤≤,所以()12x f x 24t et =-()2224t e e =--,所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦. 故答案为:24,0e ⎡⎤-⎣⎦ 【点睛】关键点点睛:令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识求解是解题关键.16.【分析】先设直线的方程为再利用直线与圆锥曲线的位置关系将用表示再利用导数求函数的最值即可得解【详解】解:由抛物线的准线与圆相切得或7又∴设直线的方程为则直线的方程为则设令得;令得即函数在为增函数在为解析:【分析】先设直线AB 的方程为()03x t t =-<<,再利用直线与圆锥曲线的位置关系将AB CD ⋅用t 表示,再利用导数求函数的最值即可得解. 【详解】解:由抛物线的准线与圆相切得12p=或7,又014p <<,∴2p =. 设直线AB 的方程为()03x t t =-<<,则直线CD 的方程为4x t =-,则)03AB CD t ⋅==<<.设()()()2903f t t tt =-<<,()2'93f t t=-,令()'0f t >,得0t <<()'0f t <3t <<.即函数()f t 在(为增函数,在)为减函数,故()maxf t f ==22AB CD ⋅的最大值为28⨯=故答案为: 【点睛】本题考查了利用导数求函数的最值,重点考查了运算能力,属中档题.17.【解析】因故有解即有解令取得极小值点为则则函数的极小值为将代入可得由题设可知令则由即当时函数取最小值即也即所以即应填答案点睛:本题是一道较为困难的试题求解思路是先确定极小值的极值点为则进而求出函数的解析:3min a e =-【解析】 因()a f x x b x -'=+,故()0af x x b x-+'==有解,即20x bx a --=有解.令取得极小值点为t ,则2bt t a =-,则函数的极小值为21()ln 2f t a t t bt =-+,将2bt t a =-代入可得21()ln 2f t a t t a =+-,由题设可知21ln 02a t t a +->,令21()ln 2h t a t t a =+-,则()a h t t t =+',由2()0ah t t t a t=+'=⇒=-,即当2t a =-时,函数21()ln 2h t a t t a =+-取最小值1()02h a a a =--≥,即3322a a ≥-⇒≤,也即13ln()ln()322a a -≤⇒-≤,所以33a e a e -≤⇒≥-,即3min a e =-,应填答案3min a e =-.点睛:本题是一道较为困难的试题.求解思路是先确定极小值的极值点为t ,则2bt t a =-,进而求出函数的极小值21()ln 2f t a t t bt =-+,通过代入消元将未知数b 消掉,然后求函数21()ln 2h t a t t a =+-的最小值为1()02h a a a =--≥,从而将问题转化为3322a a ≥-⇒≤,然后通过解不等式求出即3min a e =-.18.ln22)【分析】用表示出得出关于的函数根据的范围判断函数单调性得出值域即可【详解】显然由题意可知故由可得故设则在上单调递减又故答案为:【点睛】本题主要考查利用导数研究函数的单调性和最值意在考查学生解析:[ln 2,2) 【分析】用2x 表示出1x ,得出212x x -关于2x 的函数2()g x ,根据2x 的范围,判断函数单调性得出值域即可. 【详解】显然10x ,20x >,由题意可知212x x e +=,故212x x e =-,2212224x x x x e ∴-=-+,由2121x x e +=>可得110x -<,故2120x e -<-,202x ln ∴<, 设()24(02)x g x x e x ln =-+<,则()120x g x e '=-<,()g x ∴在(0,2]ln 上单调递减, 又(0)2g =,(2)2g ln ln =, 2()2ln g x ∴<.故答案为:[2ln ,2). 【点睛】本题主要考查利用导数研究函数的单调性和最值,意在考查学生对这些知识的理解掌握水平.19.【分析】由所给等式变形可得则令可求得c 从而求出的解析式利用导数研究函数的单调性利用函数单调性解不等式即可【详解】因为所以即所以因为所以解得则当时函数在上单调递增又所以的解集为故答案为:【点睛】本题考 解析:()1,+∞【分析】由所给等式变形可得()2[]x f x e x'=,则()2x f x e c x=+,令3x =可求得c 从而求出()f x 的解析式,利用导数研究函数()f x 的单调性,利用函数单调性解不等式即可. 【详解】因为()()32x xf x f x x e '-=,所以()()242xx f x xf x e x'-=,即()2[]x f x e x '=, 所以()2x f x e c x =+,因为()339f e =,所以33e e c =+,解得0c,则()2x f x e x=,()()20xf x x e x =>,当0x >时,()()22220x x x f x x e x e e x x '=⋅+⋅=+>,函数()f x 在()0,∞+上单调递增,又()1f e =,所以()()1f x e f >=的解集为()1,+∞. 故答案为: ()1,+∞ 【点睛】本题考查导数的运算法则、利用导数研究函数的单调性、利用函数的单调性解不等式,属于中档题.20.【分析】根据期望的定义先得到将不等式化为构造函数利用导数的方法判断其单调性计算即可得出结果【详解】由题意所以可化为即其中显然成立;两边同时取以为底的对数得令则当时即函数单调递增;当时即函数单调递减; 解析:4【分析】根据期望的定义,先得到()31kE X ke k -=-++,将不等式()E X k <化为ln 3kk >,构造函数()ln ,03kf k k k =->,利用导数的方法判断其单调性,计算()4f ,()5f ,即可得出结果. 【详解】 由题意,()()333111k k k E X ek e ke k ---⎛⎫=++-=-++ ⎪⎝⎭,所以()E X k <可化为310kke --+<,即3kk e >,其中0k >显然成立; 两边同时取以e 为底的对数,得ln 3k k >, 令()ln ,03k f k k k =->,则()11333k f k k k-'=-=, 当()0,3k ∈时,()303k f k k -'=>,即函数()ln 3kf k k =-单调递增; 当()3,k ∈+∞时,()303k f k k -'=<,即函数()ln 3kf k k =-单调递减; 因此()()max 33ln 3ln 3103f k f ==-=->, 又()444ln 42ln 2 1.3862 1.3333033f =-≈-=->, ()55ln 5 1.6094 1.666603f =-≈-<,因此满足ln 3kk >的最大正整数k 的值是4, 即满足()E X k <的最大正整数k 的值是4.故答案为:4. 【点睛】本题主要考查导数的方法研究不等式能成立的问题,涉及离散型随机变量的期望,属于常考题型.三、解答题21.(1)函数()f x 的单调递增区间为(1,)+∞,递减区间为(0,1);(2)(1,e e -⎤-∞-⎦.【分析】(1)解不等式()0f x '>与()0f x '<即可得单调区间; (2)先分离参数再利用导数研究函数最值即可得结果. 【详解】(1)依题意11(0,),()1x x f x x x'-∈+∞=-=, 令()0f x '>,解得1x >,令()0f x '<,解得01x <<,故函数()f x 的单调递增区间为(1,)+∞,递减区间为(0,1);(2)因为0x >,故不等式化为(ln )x x x e e m x --⋅,令(ln )()xx x e e h x x--⋅=,故min [()]m h x ,因为2(1)(ln 1)()xx x x e h x e x---+'=, 令11()ln 1,()1x x x x e x x xϕϕ'-=--+=-=,由(1)可知,当(0,1)x ∈时,()0x ϕ'>,当(1,)x ∈+∞时,()0x ϕ'<,又221130,(1)20,()0e e e e e ϕϕϕ⎛⎫=--<=->=⎪⎝⎭, 所以()ϕx 在(0,1)上存在唯一零点0x ,在(1,)+∞上存在唯一零点x e =,当00x x <<时,()0()0x h x ϕ'<<,,当01x x <<时,()0()0x h x ϕ'>>,,当1x e <<时,()0()0x h x ϕ'><,,当x e >时,()0,()0x h x ϕ'<>,所以函数()h x 在()00,x 和(1,)e 上为减函数,在()0,1x 和(,)e +∞上为增函数, 所以min [()]h x 是()0h x 与()h e 中的较小者,而1()e h e e -=-,因为()000ln 10x x x e ϕ=--+=,故010x e x e +-=, 故()()00100ln x x e x x e e h x e e x x ---=⋅=-=-,故1e m e --,综上所述,实数m 的取值范围为(1,e e -⎤-∞-⎦.【点晴】参变分离利用导数求解函数最值是解参数范围的关键. 22.(1)10,3⎛⎫ ⎪⎝⎭;(2)(],1-∞-. 【分析】(1)利用对数的运算法则化简,求解对数不等式. 注意化简前保证真数大于零.(2)分离参数,利用方程()2log 41xx m +-=-有解,构造函数()()2log 41x g x x =+-,求导,分析函数单调性,求出最值,得到m 的取值范围.【详解】(1)()()212log 22f x x -=-()()()()222lo 2212log 22g 1log 11f x x x x x xf ----+-=<+= 1220110222x x x x ⎧⎪->⎪+>⎨⎪-<+⎩<⎪ 则103x <<故x 的取值范围为10,3⎛⎫ ⎪⎝⎭.(2)()40xf x m -+=则()()2log 4104xxf x m m x =+-++=- ()2log 41xx m +-=- 设()()2log 41xg x x =+-()()'ln 444111441ln 2x x x x g x ⋅-=-=++⋅当(),0x ∈-∞时,'0gx当()0,x ∈+∞时,()'0g x > 且x →-∞时,()g x →+∞()2min log 21g x ==故1m -≥ 则1m ≤-故m 的取值范围为:(],1-∞- 【点睛】利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域. 23.(1)11ln 2,022⎡⎫-+⎪⎢⎣⎭;(2)证明见解析. 【分析】(1)方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,等价于函数()f x 在区间1,12⎡⎤-⎢⎥⎣⎦上的图像与直线y t =有两个交点,所以利用导数求出()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减,再比较出(1)f 和12f ⎛⎫ ⎪⎝⎭的大小即可得答案;(2)由0m n >>,要证(1)(1)n mm n +<+,只需证ln(1)ln(1)n m m n +<+,只需证ln(1)ln(1)m n m n ++<,构造函数ln(1)(),(0)x g x x x +=>,然后利用导数证明()g x 是减函数即可 【详解】解:(1)由()(1)ln(1)f x x x x =-++,定义域为()1,-+∞,()ln(1)f x x '=-+,()ln(1)00f x x x '=-+=⇒=,当102x -≤<时,()()0,f x f x '>单调递增, 当01x <≤时,()()0,f x f x '<单调递减, 则()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减, 又111(0)0,(1)1ln 4,()ln 2222f f f ==--=-+, 135(1)()ln 20,222∴--=-<f f 1(1)2f f ⎛⎫∴< ⎪⎝⎭∴ 当11ln 2,022⎡⎫∈-+⎪⎢⎣⎭t 时,方程()f x t =有两解. (2)∵ 0m n >>.∴ 要证:(1)(1)n m m n +<+,只需证ln(1)ln(1)n m m n +<+, 只需证:ln(1)ln(1)m n m n++<.设ln(1)(),(0)x g x x x+=>, 则22ln(1)(1)ln(1)1()(1)xx x x x x g x x x x -+-+++=+'=. 由(1)知()(1)ln(1)f x x x x =-++在(0,)+∞单调递减, 又()00=f ,∴ (1)ln(1)0x x x -++<, 即()g x 是减函数,而m n >. ∴ ()()g m g n <,故原不等式成立. 【点睛】关键点点睛:此题考查导数的应用,考查利用导数证明不等式,考查数学转化思想,解题的关键是把(1)(1)n mm n +<+,转化为ln(1)ln(1)m n m n++<,再构造函数,再利用导数判断此函数为减函数即可,属于中档题 24.(1)证明见解析;(2)(,0]-∞. 【分析】(1)求出导函数()'f x ,()'g x ,求出()f x 在00(,())x f x 切线方程,利用切线斜率求得()y g x =的切点坐标,得切线方程,由两条切线方程是相同的,可证结论;(2)令()()()ln(1)x a h x g x f x e x a -=-=-+-,求得()h x ',确定单调性,最小值,由最小值不小于1可得a 的范围. 【详解】(1)若0a =,则()ln(1)f x x =+,()xg x e =.所以1()1f x x '=+,()xg x e '=, 曲线()y f x =在点()()00,x f x 处的切线方程为()()0001ln 11y x x x x =-+++, 令01()1xg x e x '==+,则01ln 1x x =+, 曲线()y g x =在点0011ln,11x x ⎛⎫⎪++⎝⎭处的切线方程为()00011ln 111y x x x x ⎡⎤=+++⎣⎦++, 由题意知()()()000000111ln 1ln 1111x x x x x x x x ⎡⎤-++=+++⎣⎦+++,整理可得()000ln 111x x x +=+,00x =显然不满足, 因此()0001ln 1x x x ++=. (2)令()()()ln(1)x ah x g x f x e x a -=-=-+-若0a >,0(0)01ah ea e -=-<-=,不符合条件;若0a =,()ln(1)xh x e x =-+,1()1x h x e x '=-+, 当(1,0)x ∈-时,()0h x '<,()h x 单调递减, 当(0,)x ∈+∞时,()0h x '>,()h x 单调递增, 所以()(0)1h x h ≥=,符合条件; 若0a <,则()ln(1)ln(1)1x ax h x ex a e x -=-+->-+≥,符合条件.所以a 的取值范围是(,0]-∞. 【点睛】思路点睛:本题考查导数的几何意义,考查用导数研究不等式恒成立问题.求切线方程时要注意是函数图象在某点处的切线,还是过某点的切线,由导数得斜率得切线方程,若不知切点时一般需设出切点坐标,写出切线方程,代入所过点的坐标求出切点,再得切线方程,不能弄错.25.(1)最大值为22e -,最小值为1;(2)(i )见详解;(ii )a e >. 【分析】(1)由1a =得()22ln f x x x =-,对其求导,利用导数的方法判定其在1,e e⎡⎤⎢⎥⎣⎦上单调性,即可求出最值;(2)(i )先对函数求导,分别讨论0a ≤和0a >两种情况,利用导数的方法,即可判定函数单调性;(ii )由(i )中函数单调性,先判断0a ≤时不满足题意,再由0a >时函数的单调性,得到()min ln f x a a a =-,由函数零点个数,必有()min 0f x <,求出a 的范围,再进行验证,即可得出结果. 【详解】(1)由1a =得()22ln f x x x =-,所以()()()21122x x f x x x x+-'=-=, 当1,1x e ⎛⎫∈ ⎪⎝⎭时,()()()2110x x f x x+-'=<,则()f x 单调递减;当()1,x e ∈时,()()()2110x x f x x+-'=>,则()f x 单调递增;所以()()min 11f x f ==;又2211112ln 2f e e e e ⎛⎫=-=+ ⎪⎝⎭,()22122f e e e =->+,所以()()2max 2f x f e e ==-;即()f x 在1,e e⎡⎤⎢⎥⎣⎦上的最大值为22e -,最小值为1;(2)(i )()()2222x a a f x x x x-'=-=, 当0a ≤时,()0f x '≥恒成立;即()f x 在定义域()0,∞+上单调递增;当0a >时,若0x <<,则()()220x a f x x-'=<;若x >()()220x a f x x-'=>,所以()f x 在(上单调递减;在)+∞上单调递增;综上,当0a ≤时,()f x 在()0,∞+上单调递增;当0a >时,()f x 在(上单调递减;在)+∞上单调递增;(ii )由(i )知,当0a ≤时,()f x 在定义域()0,∞+上单调递增;不可能有两个零点;当0a >时,()min 2ln f x fa a a a a ==-=-;为使()f x 有两个零点,必有()min ln 0f x a a a =-<,即a e >; 又()()2242ln 222ln 2f a a a a a a a =-=-,令()ln g x x x =-,2x e >,则()1110x g x x x-'=-=>在()2,e +∞上恒成立, 即()ln g x x x =-在()2,e +∞上单调递增,所以()()22ln 20g x g e e e >=->,即()()222ln 20f a a a a =->,所以根据零点存在性定理可得,存在)1x a ∈,使得()10f x =;又442ln 0f aa a aa =-=+>,根据零点存在性定理可得,存在2x ∈,使得()20f x =, 综上,当a e >时,函数()f x 有两个零点. 【点睛】 思路点睛:利用导数的方法求解由函数零点个数求参数范围问题时,一般需要先对函数求导,利用导数的方法判定函数单调性,求出极值,进而可求出零点个数.(有时也需要分离参数,构造新的函数,将问题转化为两函数图象交点个数问题进行求解)26.(Ⅰ)证明见解析;(Ⅱ)(,2]-∞. 【分析】(Ⅰ)设切点为001(,)P x x ,求出切线方程并计算l 与坐标轴围成的三角形的面积为2,故可得相应的结论.(Ⅱ)由题设可得()0g x '≤,利用参变分离可得a 的取值范围. 【详解】(Ⅰ)当0a =时,1(),0f x x x =>,21()f x x'=-,设()f x 图象上任意一点001(,)P x x ,切线l 斜率为0201()k f x x =-'=. 过点001(,)P x x 的切线方程为020011()y x x x x -=--. 令0x =,解得02y x =;令0y =,解得02x x =. 切线与坐标轴围成的三角形面积为0012|||2|22S x x =⋅=. 所以l 与坐标轴围成的三角形的面积与切点无关. (Ⅱ)由题意,函数()g x 的定义域为(0,)+∞. 因为()g x 在(0,)+∞上单调递减, 所以21()10a g x x x'=--≤在(0,)+∞上恒成立, 即当(0,)x ∈+∞,1a x x≤+恒成立, 所以min 1()a x x≤+ 因为当(0,)x ∈+∞,12x x+≥,当且仅当1x =时取等号. 所以当1x =时,min 1()2x x+= 所以2a ≤.所以a 的取值范围为(,2]-∞. 【点睛】结论点睛:一般地,若()f x 在区间(),a b 上可导,且()()()00f x f x ''><,则()f x 在(),a b 上为单调增(减)函数;反之,若()f x 在区间(),a b 上可导且为单调增(减)函数,则()()()00f x f x ''≥≤.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(含答案解析)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(含答案解析)

一、选择题1.已知1a e =,ln33b =,ln 44c =,则a 、b 、c 的大小关系为( )A .b c a <<B .c b a <<C .c a b <<D .a c b <<2.已知函数244()ln -⎫⎛=++ ⎪⎝⎭x f x k x k x ,[1,)∈+∞k ,曲线()y f x =上总存在两点()11,M x y ,()22,N x y 使曲线()y f x =在M 、N 两点处的切线互相平行,则12+x x 的取值范围为( ) A .[4,)+∞B .(4,)+∞C .16,5⎡⎫+∞⎪⎢⎣⎭D .16,5⎛⎫+∞⎪⎝⎭3.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .24.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f << B .()()()623428f f f << C .()()()346229f f f <<D .()()()286234f f f <<5.对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩.若对函数()ln 22f x x x =-+,有()()g x f x =恒成立,则( )A .k 的最大值为1ln2+B .k 的最小值为1ln2+C .k 的最大值为ln 2D .k 的最小值为ln 26.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 7.若曲线()11xmy e x x =+<-+上存在两条垂直于y 轴的切线,则m 的取值范围是( ) A .34,1e ⎛⎫⎪⎝⎭B .34,e ⎛⎫-∞ ⎪⎝⎭C .340,e ⎛⎫ ⎪⎝⎭D .341,e ⎛⎫- ⎪⎝⎭8.对任意0,2x π⎛⎫∈ ⎪⎝⎭,不等式()()sin cos x f x x f x ⋅⋅'<恒成立,则下列不等式错误的是( )A.34f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭B .()2cos113f f π⎛⎫⋅⎪⎝⎭> C.()14f f π⎛⎫⋅⎪⎝⎭D.426f f ππ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭< 9.已知函数2()f x x m =+与函数1()ln3g x x x =--,1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( ) A .5ln )4[2,2+ B .5[2ln 2,ln 2)4-+ C .5(ln 2,2ln 2)4+-D .(]2ln2,2-10.设()f x 是定义在R 上的偶函数,()f x '为其导函数,()20f =,当0x >时,有()()'>xf x f x 恒成立,则不等式()0xf x <的解集为( )A .()2,2-B .()(),20,2-∞-C .()()2,00,2-D .()()2,02,-+∞11.设函数()'f x 是奇函数()()f x x R ∈的导函数,(2)0f -=,当0x >时,()()03xf x f x '+>,则使得()0f x >成立的x 的取值范围是( ) A .(,2)(0,2)-∞-⋃ B .(,2)(2,2)-∞--C .(2,0)(2,)-+∞ D .(0,2)(2,)⋃+∞12.已知函数()221,02,0k x f x x x k x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且只有四个不同的零点,则实数k 的取值范围为( ) A .k 0<B .0k >C .27k <D .27k >二、填空题13.已知函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值,则实数m 的取值范围是_________.14.函数()y f x =的导函数的图像如图所示,给出下列判断:①函数()y f x =在区间(3)5,内单调递增; ②函数()y f x =在区间1(3)2-,内单调递减; ③函数()y f x =在区间(22)-,内单调递增; ④当12x =-时,函数()y f x =有极大值;⑤当2x =时,函数()y f x =有极大值; 则上述判断中正确的是________.15.已知函数)(f x 的定义域为R ,且)(12f -=.若对任意x ∈R ,)(2f x '>,则)(24f x x >+的解集为______.16.已知定义在R 上的函数()f x 关于y 轴对称,其导函数为()f x '. 当0x ≥时,()()1xf x f x '>-. 若对任意x ∈R ,不等式()()0x x x e f e e ax axf ax -+->恒成立,则正整数a 的最大值为_____.17.函数2sin y x x =-在[]0,2π上的递增区间是________.18.若存在两个正实数x ,y 使等式()()ln ln 0x m y x y x +--=成立,(其中2.71828e =)则实数m 的取值范围是________.19.已知函数18ln ,y a x x e e⎛⎫⎡⎤=+∈ ⎪⎢⎥⎣⎦⎝⎭的图象上存在点P ,函数22y x =--的图象上存在点Q ,且P ,Q 关于x 轴对称,则a 的取值范围为________.20.函数()ln f x x ax =-在()1,+∞上单调递减,则实数a 的取值范围是______.三、解答题21.已知函数32()392f x x x x =-++-.(1)求函数()y f x =的图象在点()()1,1f 处的切线方程; (2)求()f x 的单调区间.22.已知函数()()3f x alnx ax a R =--∈.(1)函数()f x 的单调区间;(2)当1a =-时,证明:当()1x ∈+∞,时,()20f x +>. 23.已知f (x )=ax -ln x ,x ∈(0,e ],g (x )=ln xx,x ∈(0,e ],其中e 是自然常数,a R ∈. (1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12; (3)是否存在正实数a ,使()f x 的最小值是3?若存在,求出a 的值;若不存在,请说明理由.24.已知函数3()f x x x =-.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间和极值; (Ⅲ)设函数()()2sin f x t x x x=-,(0,)x ∈π,试判断()t x 的零点个数,并证明你的结论. 25.已知函数()(),0xa e f x a R a x⋅=∈≠.(1)当1a =时,求曲线()y f x =在点()()1,1f 处切线的方程; (2)求函数()f x 的单调区间.26.已知函数21()ln (1)12f x a x x a x =+-++. (I )当0a =时,求曲线()y f x =在点(2,(2))f 处的切线方程;(Ⅱ)若函数()f x 在1x =处取得极小值,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 构造函数()ln xf x x=,利用导数分析函数()f x 在区间[),e +∞上的单调性,由此可得出a 、b 、c 的大小关系.【详解】 构造函数()ln x f x x =,则()21ln xf x x -'=,当x e ≥时,()0f x '≤,所以,函数()f x 在区间[),e +∞上为减函数,34e <<,则()()()34>>f e f f ,即a b c >>.故选:B. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.数值比较多的比较大小问题也也可以利用两种方法的综合应用.2.B解析:B 【分析】求得()f x 的导数()f x ',由题意可得121()()(f x f x x '=',20x >,且12)x x ≠,化为121244()()x x k x x k +=+,因此12164x x k k+>+对[1k ∈,)+∞都成立,令4()g k k k=+,[1k ∈,)+∞,根据对勾函数的性质求出最值即可得出.【详解】解:函数244()()x f x k lnx k x-=++,导数2414()()1f x k k x x '=+--.由题意可得121()()(f x f x x '=',20x >,且12)x x ≠. 即有221122444411k k k k x x x x ++--=--, 化为121244()()x x k x x k+=+,而21212()2x x x x +<, 2121244()()()2x xx x k k +∴+<+,化为12164x x k k+>+对[1k ∈,)+∞都成立, 令4()g k k k=+,[1,)∈+∞k ,则()g k 在[)1,2上单调减,在[2,)+∞上单调递增, 所以()()min 22442g k g ==+= ∴6164414k k=+, 124x x ∴+>,即12x x +的取值范围是()4,+∞.故选:B . 【点睛】方法点晴:本题利用导数几何意义,函数的单调性与最值问题的等价转化方法、基本不等式的性质.3.A解析:A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥,利用导数判断()g x 的单调性求最小值即可. 【详解】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-, 整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.4.B解析:B 【分析】构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论. 【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>, 所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<, 故选:B.5.B解析:B 【分析】利用导数求出函数()f x 的最大值,由函数()g x 的定义结合()()g x f x =恒成立可知()f x k ≤,由此可得出k 的取值范围,进而可得出合适的选项.【详解】对于正数k ,定义函数:()()()(),,f x f x k g x k f x k ⎧≤⎪=⎨>⎪⎩,且()()g x f x =恒成立,则()f x k ≤.函数()ln 22f x x x =-+的定义域为()0,∞+,且()111xf x x x-'=-=. 当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当1x >时,()0f x '<,此时,函数()f x 单调递减. 所以,()()max 11ln 2f x f ==+,1ln 2k ∴≥+. 因此,k 的最小值为1ln2+. 故选:B. 【点睛】解决导数中的新定义的问题,要紧扣新定义的本质,将问题转化为导数相关的问题,本题将问题转为不等式()k f x ≥恒成立,从而将问题转化为求函数()f x 的最大值.6.C解析:C【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 123a--=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;7.C解析:C 【分析】先求出原函数的导函数,令0y '=,得到2(1)x m x e =+,然后将问题转化为2(1)x m x e =+在(,1)-∞-上有两个不同的解,再构造函数2()(1)(1)x f x x e x =+<-,求出()f x 的取值范围,即可得到m 的取值范围. 【详解】由(1)1xm y e x x =+<-+,得2(1)xm y e x '=-+,令0y '=,则2(1)x m x e =+,曲线(1)1xmy e x x =+<-+存在两条垂直于y 轴的切线, 2(1)x m x e ∴=+在(,1)-∞-上有两个不同的解.令2()(1)x f x x e =+,则22()2(1)(1)(43)x x x f x x e x e x x e '=+++=++.∴当3x <-时,()0f x '>,当31x -<<-时,()0f x '<,()f x ∴在(,3)-∞-上单调递增,在(3,1)--上单调递减, ∴34()(3)max f x f e =-=, 又当3x <-时,()0f x >,(1)0f -=.m ∴的取值范围为34(0,)e.故选:C . 【点睛】本题考查了利用导数研究曲线上某点处切线斜率,训练了利用导数研究函数的单调性、零点,考查数学转化思想方法,属中档题.8.D解析:D 【分析】构造函数()()cos g x f x x =,对其求导后利用已知条件得到()g x 的单调性,将选项中的角代入函数()g x 中,利用单调性化简,并判断正误,由此得出选项. 【详解】解:构造函数()()cos g x f x x =,则()()()cos sin g x x f x x f x ='⋅⋅'-, ∵()()sin cos x f x x f x ⋅⋅'<,∴()()()cos sin 0g x x f x x f x =⋅-⋅''>, 即()g x 在0,2x π⎛⎫∈ ⎪⎝⎭上为增函数,由43g g <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即cos cos 4433f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即12423f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,故A 正确;()13g g 由<π⎛⎫⎪⎝⎭,即()1cos1cos 33f f ππ⎛⎫ ⎪⎝⎭<,即()2cos113f f π⎛⎫⋅ ⎪⎝⎭>,故B 正确;()14g g π⎛⎫⎪⎝⎭由<,即()cos 1cos144f f <ππ⎛⎫ ⎪⎝⎭,即()1cos124f f π⎛⎫⎪⎝⎭<,故C 正确;由64g g ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,即cos cos 6644f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<624f f <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即64f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,故错误的是D .故选D . 【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有()f x ,也含有其导数()f x '的不等式,根据不等式的结构,构造出相应的函数.如已知是()()0xf x f x -<',可构造()()f x g x x=,可得()()()20xf x f x g x x'-='<.9.A解析:A 【分析】将问题转化为()()f x g x =-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,令()()()h x f x g x =+,将问题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定区间端点值和最值,由此构造不等式求得结果. 【详解】()f x 与()g x 在1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,()()f x g x ∴=-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,即221ln3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤⎢⎥⎣⎦上恰有两个不同的解, 令()2ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x---+'=+-==, ∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当()1,2x ∈时,()0h x '>,()h x ∴在1,12⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增,又15ln 224h m ⎛⎫=--+⎪⎝⎭,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1,22⎡⎤⎢⎥⎣⎦上恰有两个零点,则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡⎫+⎪⎢⎣⎭.故选:A . 【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.10.B解析:B【分析】构造函数()()f x g x x=,易知()g x 在()0,∞+上单调递增,由()f x 是定义在R 上的偶函数可推出()g x 是定义在()(),00,-∞⋃+∞上的奇函数,故()g x 在(),0-∞上也单调递增,且()()220g g =-=.而不等式()0xf x <的解可等价于即()0g x <的解,从而得解.【详解】解:设()()f x g x x =,0x ≠,则()()()'2xf x f x g x x-'=, ∵当0x >时,有()()'xfx f x >恒成立,∴当0x >时,()0g x '>,()g x 在()0,∞+上单调递增,∵()f x 是定义在R 上的偶函数,∴()()()()f x f x g x g x x x--===---,即()g x 是定义在()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上也单调递增.又()20f =,∴()()2202f g ==,∴()20g -=. 不等式()0xf x <的解可等价于即()0g x <的解,∴02x <<或2x <-,∴不等式的解集为()(),20,2-∞-.故选:B .【点睛】本题主要考查函数奇偶性的应用,考查函数的单调性,利用了构造思想,导函数的运用,属于中档题. 11.C解析:C【分析】通过令3()()g x x f x =可知问题转化为解不等式()0>g x ,利用当0x >时32()3()0x f x x f x '+>及奇函数与偶函数的积函数仍为奇函数可知()g x 在(,0)-∞递减、在(0,)+∞上单调递增,进而可得结论.【详解】解:令3()()g x x f x =,则问题转化为解不等式()0>g x ,当0x >时,()3()0xf x f x '+>,∴当0x >时,233()()0x f x x f x +'>,∴当0x >时()0g x '>,即函数()g x 在(0,)+∞上单调递增,又(2)0f -=,()()f x x R ∈是奇函数,()()()()()()()333g x x f x x f x x f x g x ∴-=--=--== 故()g x 为偶函数,f ∴(2)0=,g (2)0=,且()g x 在(,0)-∞上单调递减,∴当0x >时,()0>g x 的解集为(2,)+∞,当0x <时,()0(2)g x g >=-的解集为(2,0)-,∴使得f ()0x >成立的x 的取值范围是(2-,0)(2⋃,)+∞,故选C .【点睛】本题考查利用导数研究函数的单调性,考查运算求解能力,构造新函数是解决本题的关键,注意解题方法的积累,属于中档题.12.D解析:D【分析】表示出函数()g x ,分0k =,k 0<及0k =讨论,易知当0k =及k 0<时均不合题意,而观察解析式可知,问题可化为22()(0)k g x x k x x=+->有且仅有两个不同的零点,故利用导数研究函数()g x 在(0,)+∞上的最小值小于0即可.【详解】 解:依题意,222,0()4,02,0k x k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩,当0k =时,原函数有且只有一个零点,不合题意,故0k ≠;观察解析式,易知函数()g x 为偶函数,则函数()g x 有且仅有四个不同的零点,可转化为22()(0)k g x x k x x=+->有且仅有两个不同的零点, 当k 0<时,函数()g x 在(0,)+∞上递增,最多一个零点,不合题意;当0k >时,322()()x k g x x -'=,0x >, 令()0g x '>,解得13x k >,令()0g x '<,解得130x k <<,故函数()g x 在13(0,)k 上递减,在13(k ,)+∞上递增,要使()g x 在(0,)+∞上有且仅有两个不同的零点,则1233132()()0min k g x g k k k k ==+-<,解得27k >.故选:D .【点睛】 本题考查函数零点与方程根的关系以及利用导数研究函数的单调性,最值等,考查分类讨论思想以及运算求解能力,属于中档题.二、填空题13.【分析】利用导数求出函数的极大值点和极小值点由题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】则令可得列表如下: 极大值 极小值 所以函数的极大值点为解析:()3,2--【分析】利用导数求出函数()f x 的极大值点和极小值点,由题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】()32133f x x x =++,则()()222f x x x x x '=+=+, 令()0f x '=,可得12x =-,20x =,列表如下:所以,函数f x 的极大值点为2x =-,极小值点为0x =,由于函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值, 所以,230m m <-⎧⎨+>⎩,解得32m -<<-. 因此,实数m 的取值范围是()3,2--.故答案为:()3,2--.【点睛】易错点点睛:已知极值点求参数的值,先计算()0f x '=,求得x 的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误. 14.③⑤【分析】根据导函数图像得出导数正负根据导数正负判定单调区间根据左正右负和左负有正判定极值【详解】解:对于①当时单调递减当时单调递增所以①错;对于②当时单调递增当时单调递减所以②错;对于③当时单调解析:③⑤【分析】根据导函数图像得出导数正负,根据导数正负判定单调区间,根据左正右负和左负有正判定极值.【详解】解:对于①,当(34)x ∈,时()0f x '<,()f x 单调递减, 当(4,5)x ∈时()0f x '>,()f x 单调递增,所以①错;对于②,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,所以②错; 对于③,当(22)x ∈-,时()0f x '>,()f x 单调递增,所以③对; 对于④,当(22)x ∈-,时()0f x '>,()f x 单调递增,故当12x =-时()f x 不是极大值,所以④错;对于⑤,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,故2x =时函数()y f x =取得极大值,所以⑤对.故答案为:③⑤.【点睛】求函数的极值或极值点的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域;(2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定极值点或函数的极值.15.【分析】构造函数利用导数研究函数的单调性即可得结论【详解】设则因为对任意所以所以对任意是单调递增函数因为所以由可得则的解集故答案为:【点睛】本题主要考查不等式的求解利用条件构造函数利用导数研究函数的 解析:)(1,-+∞【分析】构造函数)(()24g x f x x =--,利用导数研究函数的单调性即可得结论.【详解】设)(()24g x f x x =--,则)(()2g x f x ='-',因为对任意x ∈R ,)(2f x '>,所以()0g x '>,所以对任意x ∈R , ()g x 是单调递增函数,因为)(12f -=,所以)((1)124440g f -=-+-=-=,由()()10g x g >-=,可得1x >-,则)(24f x x >+的解集()1,-+∞.故答案为:()1,-+∞.【点睛】本题主要考查不等式的求解,利用条件构造函数、利用导数研究函数的单调性是解决本题的关键. 16.2【分析】令利用可得在单调递增不等式恒成立等价于即当时分离参数可得可求出正整数的最大值为2再检验当时对于不等式恒成立即可求解【详解】因为定义在上的函数关于轴对称所以函数为上的偶函数令则因为当时即所以 解析:2【分析】令()()g x xf x x =-,利用()()1xf x f x '>-可得()g x 在[)0,+∞单调递增,不等式()()0x x x e f e e ax axf ax -+->恒成立等价于()()x g e g ax >,即e x ax >,当0x >时,分离参数可得()xe a h x x<=,可求出正整数a 的最大值为2,再检验当2a =时,对于0x <,不等式恒成立,即可求解.【详解】因为定义在R 上的函数()f x 关于y 轴对称,所以函数()f x 为R 上的偶函数,令()()g x xf x x =-,则()()()1g x f x xf x ''=+-,因为当0x ≥时,()()1xf x f x '>-,即()()()10g x f x xf x ''=+->,所以()g x 在[)0,+∞单调递增,不等式()()0x x x e f ee ax axf ax -+->恒成立, 即()()x x x e f e e axf ax ax ->-,即()()xg e g ax >,所以e x ax >,当0x >时,()xe a h x x <=,则()()21x e x h x x -'=, 可得()h x 在()0,1单调递减,在()1,+∞单调递增,所以()()min 1h x h e ==,所以a e <,此时最大的正整数a 为2,2a =对于0x <时,e x ax >恒成立,综上所述:正整数a 的最大值为2,故答案为:2【点睛】关键点点睛:本题的关键点是构造函数()()g x xf x x =-,利用导数判断出()g x 在[)0,+∞单调递增,不等式恒成立即()()x g e g ax >,利用单调性可得e x ax >,再分类参数求最值.17.【分析】根据函数求导解的解集即可【详解】因为函数所以令得或当时所以函数在上的递增区间是故答案为:【点睛】本题主要考查导数与函数的单调性还考查了转化问题和运算求解的能力属于中档题 解析:5,33ππ⎡⎤⎢⎥⎣⎦【分析】根据函数2sin y x x =-,求导12cos y x '=-,解0y '>的解集即可.【详解】因为函数2sin y x x =-,所以12cos y x '=-,令12cos 0y x '=-=,得3x π=或53x π=, 当533x ππ≤≤时,0y '>, 所以函数2sin y x x =-在[]0,2π上的递增区间是5,33ππ⎡⎤⎢⎥⎣⎦. 故答案为:5,33ππ⎡⎤⎢⎥⎣⎦ 【点睛】 本题主要考查导数与函数的单调性,还考查了转化问题和运算求解的能力,属于中档题. 18.【分析】由条件转化为换元令由导数确定函数的值域即可求解【详解】设且设那么恒成立所以是单调递减函数当时当时函数单调递增当函数单调递减所以在时取得最大值即解得:故答案为:【点睛】本题主要考查了利用导数研 解析:(),0-∞【分析】 由条件转化为11ln y y m x x ⎛⎫=-⋅ ⎪⎝⎭,换元0y t x=>,令()()1ln g t t t =-,由导数确定函数的值域即可求解.【详解】()()ln ln x m x y y x =--,()()ln ln 11ln x y y x y y m x x x --⎛⎫==-⋅ ⎪⎝⎭ 设0y t x =>且1t ≠, 设()()1ln g t t t =-,那么()()11ln 1ln 1g t t t t t t'=-+-⋅=-+-, ()221110t g t t t t+''=--=-<恒成立, 所以()g t '是单调递减函数,当1t =时,()10g '=,当()0,1t ∈时,()0g t '>,函数单调递增,当()1,t ∈+∞,()0g t '<,函数单调递减,所以()g t 在1t =时,取得最大值,()10g =,即10m <, 解得:0m <,故答案为:(),0-∞【点睛】本题主要考查了利用导数研究函数的单调性、最值,考查了变形运算能力,属于中档题. 19.【分析】设代入解析式得到两个方程联立可得让取值域即可【详解】设则所以联立可得即对于有解令由可得:;由可得:所以在单调递减在上单调递增所以所以值域为即可得的取值范围为故答案为:【点睛】本题主要考查了利 解析:2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦【分析】设()00,Q x y 、()00,P x y -代入解析式,得到两个方程联立可得2008ln 2a x x =-+,2000()8ln 2h x x x =-+,1,x e e ⎡⎤∈⎢⎥⎣⎦,让a 取0()h x 值域即可. 【详解】设()00,Q x y 、则()00,P x y -所以2002y x =--,008ln y a x -=+,联立可得2008ln 2a x x =-+即2008ln 2a x x =-+对于1,x e e ⎡⎤∈⎢⎥⎣⎦有解, 令2000()8ln 2h x x x =-+,200000288()2x h x x x x -'=-=, 由0()0h x '>可得:2x e <<;由0()0h x '<可得:12x e<<, 所以0()h x 在1,2e ⎡⎤⎢⎥⎣⎦单调递减,在[]2,e 上单调递增, 20min ()(2)28ln 2268ln 2h x h ==-+=-,2211118ln 210h e e e e ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭, ()()228ln 26h e e e e =-+=-, 所以0max 21()10h x e =+, 所以0()h x 值域为2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦, 即可得a 的取值范围为2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦, 故答案为:2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦. 【点睛】 本题主要考查了利用导数解决存在性问题,涉及求函数的值域,属于中档题. 20.【分析】求导得到恒成立化简得到计算得到答案【详解】在恒成立即恒成立故故答案为【点睛】本题考查了利用导数计算函数的单调性意在考查学生的计算能力解析:[1,)+∞【分析】 求导得到1'()0f x a x =-≤恒成立,化简得到1a x≤,计算得到答案. 【详解】 1()ln '()0f x x ax f x a x =-∴=-≤在()1,+∞恒成立 即1a x≤恒成立,故1a ≥ 故答案为[1,)+∞ 【点睛】本题考查了利用导数计算函数的单调性,意在考查学生的计算能力.三、解答题21.(1)1230x y --=;(2)单调递减区间为(,1)-∞-和(3,)+∞,单调递增区间为()1,3-.【分析】(1)求出导函数()'f x ,然后计算导数得斜率,从而得切线方程;(2)由()0f x '>得增区间,()0f x '<得减区间.【详解】解:(1)∵32()392f x x x x =-++-,∴2()369f x x x '=-++,∴()112f '=.又∵()19f =,∴函数()y f x =的图象在点()()1,1f 处的切线方程为912(1)y x -=-,即1230x y --=.(2)由(1),得2()3693(1)(3)f x x x x x '=-++=-+-, 令()0f x '=,解得1x =-或3x =;当()0f x '<时,1x <-或3x >;当()0f x '>时,13x .∴()f x 的单调递减区间为(,1)-∞-和(3,)+∞,单调递增区间为()1,3-.【点睛】关键点点睛:本题考查导数的几何意义,考查求函数的单调区间.解题方法是求出导函数()'f x ,计算0()f x '得切线斜率,由点斜式写出切线方程并整理成一般式.而求单调区间只要解不等式()0f x '>即得增区间,解不等式()0f x '<即得减区间.22.(1)答案见解析;(2)证明见解析.【分析】(1)求导()()1'(0)a x f x x x -=>,0a >,0a <,0a =讨论,令()'0f x >求解.(2)结合(1)将问题转化为()min 2f x >-求解.【详解】(1)根据题意知,()()1'(0)a x f x x x -=>,当0a >时,当()01x ∈,时,()'0f x >,当()1x ∈+∞,时,()'0f x <, 所以()f x 的单调递增区间为()01,,单调递减区间为()1+∞,;同理,当0a <时,()f x 的单调递增区间为()1+∞,,单调递减区间为()01,;当0a =时,()3f x =-,不是单调函数,无单调区间.(2)证明:当1a =-时,()ln 3f x x x =-+-,所以12f ,由(1)知()ln 3f x x x =-+-在()1+∞,上单调递增, 所以当()1x ∈+∞,时,()()1f x f >. 即()2f x >-,所以()20f x +>.【点睛】方法点睛:利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,或者函数的最值证明函数h (x )>0,其中一个重要技巧就是找到函数h (x )在什么地方可以等于零,这往往就是解决问题的一个突破口. 23.(1)当01x <<时,()f x 单调递减;当1x e <≤时,()f x 单调递增;最小值1;(2)证明见解析;(3)存在,2a e =.【分析】(1)根据f (x )=x -ln x ,求导得11()1x f x x x '-=-=,分别令f ′(x )<0,f ′(x )>0求解单调性和极值.(2)要证 f (x )>g (x )+12,即证[f (x )]min -[g (x )]max >12,由(1)知f (x )在(0,e ]上的最小值为1,再利用导数法求得[g (x )]max 即可.(3)假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e ])有最小值3,求导11()ax f x a x x'-=-=,分0<1a <e ,1a ≥e 讨论求解. 【详解】 (1)因为f (x )=x -ln x , 所以11()1x f x x x'-=-=, 所以当0<x <1时,f ′(x )<0,此时f (x )单调递减;当1<x ≤e 时,f ′(x )>0时,此时f (x )单调递增.∴f (x )的极小值为f (1)=1.(2)∵f (x )的极小值为1,∴f (x )在(0,e ]上的最小值为1,即[f (x )]min =1.又g ′(x )=21ln xx -, ∴当0<x <e 时,g ′(x )>0,g (x )在(0,e]上单调递增. ∴[g (x )]max =g (e)=112e <, ∴[f (x )]min -[g (x )]max >12, ∴在(1)的条件下,f (x )>g (x )+12. (3)假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e ])有最小值3, 则11()ax f x a x x'-=-=. ①当0<1a <e 时,f (x )在(0,1a )上单调递减,在(1a ,e ]上单调递增, [f (x )]min =f (1a)=1+ln a =3,a =e 2,满足条件; ②当1a≥e 时,f (x )在(0,e ]上单调递减, [f (x )]min =f (e)=a e -1=3,a =4e(舍去), 所以,此时f (x )无最小值.综上,存在实数a =e 2,使得当x ∈(0,e ]时f (x )有最小值3. 【点睛】方法点睛:不等式问题.(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.24.(Ⅰ)22y x =-;(Ⅱ)()f x 的单调递减区间是(,单调递增区间是(,-∞,)+∞9-;(Ⅲ)一个,证明见解析. 【分析】(Ⅰ)利用导数的几何意义求切线方程;(Ⅱ)根据()0f x '>和()0f x '<,求函数的单调递增和递减区间,根据极值的定义求极值;(Ⅲ)首先方程等价于212sin 0x x --=,设函数2()12sin ,(0,)g x x x x π=--∈,求函数的导数()22cos g x x x '=-,分0,2x π⎛⎫∈ ⎪⎝⎭和,2x ππ⎡⎫∈⎪⎢⎣⎭两个区间讨论函数的单调性,并结合零点存在性定理说明函数的零点个数. 【详解】(Ⅰ)由3()f x x x =-,得 2()31x f x '=-. 因为(1)0f =,(1)2f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程为22y x =-.(Ⅱ)令()0f x '=,得2310x -=,解得x =3x =. 当x 变化时,()f x 和()'f x 变化情况如下表:)+∞;()f x 在3x =-3x =处取得极小值.(Ⅲ)(0,)x π∈,()0t x =,即2120sin x x--=, 等价于212sin 0x x --=. 设2()12sin ,(0,)g x x x x π=--∈,则()22cos g x x x '=-.①当,2x ππ⎡⎫∈⎪⎢⎣⎭时,()0r g x >,()g x 在区间,2上单调递增.又2()3024g ππ=-<,2()10g π=π->, 所以()g x 在区间,2上有一个零点.②当(0,)2x π∈时,设()()22cos h x g x x x '==-.()22sin 0h x x '=+>,所以()'g x 在区间(0,)2π上单调递增.又(0)20g '=-<,()02g π'=π>,所以存在0(0,)2x π∈,使得00()g x '=.所以,当0(0,)x x ∈时,()0g x '<,()g x 单调递减;当0(,)2x x π∈时,()0g x '>,()g x 单调递增.又(0)10g =-<,2()3024g ππ=-<, 所以()g x 在区间(0,)2π上无零点.综上所述,函数()t x 在定义域内只有一个零点. 【点睛】关键点点睛:本题第三问判断零点个数,首先要构造函数,当0,2x π⎛⎫∈ ⎪⎝⎭时,利用二次导数判断()g x '单调递增,存在0(0,)2x π∈,使得00()g x '=,再判断零点个数时,需结合函数的单调性和端点值共同判断. 25.(1)y e =;(2)答案见解析. 【分析】(1)先求出切点坐标,求出导函数,得到()1k f '=,再写出切线方程即可; (2)求出导函数,对a 分类讨论,判断函数的导数的符号,可得到函数的单调区间. 【详解】(1)当1a =时,()()0xe f x x x=≠,()1f e =,切点()1,e ,()2x xx e e f x x'=-, ()10k f '==, 所以切线方程为0y e -=,即y e =.(2)()()()2210x x xe x e ef x a a x x xx -'==≠-, ① 0a >,当10x ->,即1x >时, ()0f x '>,函数()f x 单调递增;当10x -<,即0x <,或01x <<时, ()0f x '<,函数()f x 在每个区间上单调递减; ② 0a <,当10x ->,即1x >时, ()0f x '<,函数()f x 单调递减;当10x -<,即0x <,或01x <<时, ()0f x '>,函数()f x 在每个区间上单调递增; 综上所述,0a >时,()f x 的单调递增区间为()1,+∞,单调递减区间为(),0-∞,()0,1;0a <时,()f x 的单调递增区间为(),0-∞,()0,1,单调递减区间为()1,+∞.【点睛】含参问题注意分类,找到合理的分类标准是解决本题的关键,是中档题. 26.(I )1y x =-;(Ⅱ)1a <. 【分析】(Ⅰ)当0a =时,利用导数的几何意义求切线方程;(Ⅱ)首先求函数的导数,2(1)()10a x a x af x x a x x'-++=+--==时,11x =和2x a =,并讨论a 与0,1的大小关系,求实数a 的取值范围. 【详解】(I )当0a =时,21()12f x x x =-+. 所以()1f x x '=-, 所以(2)1k f '==,因为21(2)22112f =⨯-+=. 所以切线方程为1y x =-.(Ⅱ)函数()f x 的定义域为(0,)+∞. 因为21()ln (1)12f x a x x a x =+-++ 所以2(1)()1a x a x af x x a x x'-++=+--=. 令()0f x '=,即2(1)0x a x a -++=,解得1x =或x a =.(1)当0a 时,当x 变化时,(),()f x f x '的变化状态如下表:所以0a 成立.(2)当01a <<时,当x 变化时,(),()f x f x '的变化状态如下表:所以01a <<成立.(3)当1a =时,()0f x '在(0,)+∞上恒成立,所以函数()f x 在(0,)+∞上单调递增,没有板小值,不成立. (4)当1a >时,当x 变化时,(),()f x f x '的变化状态如下表:所以1a >不成立. 综上所述,1a <. 【点睛】关键点点睛:本题考查根据极值点求a 的取值范围,本题容易求出导函数的零点1和a ,但需讨论a 的范围,这是易错的地方,容易讨论不全面,需注意.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(4)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(4)

一、选择题1.已知函数()()2e x x f x x =∈R ,若关于方程()()210f x tf x t -+-=恰好有4个不相等的实根,则实数t 的取值范围为( )A .()24,22,e e ⎛⎫⋃ ⎪⎝⎭B .24,1e ⎛⎫ ⎪⎝⎭C .24,e e ⎛⎫ ⎪⎝⎭D .241,1e ⎛⎫+ ⎪⎝⎭2.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是( )A .(,2e ⎤-∞⎦ B .()0,2e C .(,4e ⎤-∞⎦ D .()0,4e 3.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π 4.已知函数()()()110ln x f x x x ++=>,若()1k f x x >+恒成立,则整数k 的最大值为( )A .2B .3C .4D .55.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=-的图象如图所示,则下列结论中一定成立的是( )A .()f x 有极大值()2f -B .()f x 有极小值()2f -C .()f x 有极大值()1fD .()f x 有极小值()1f6.对于R 上可导的任意函数()f x ,若当2x ≠时满足()02f x x '≤-,则必有( ) A .()()()1322f f f +<B .()()()1322f f f +≤C .()()()1322f f f +≥D .()()()1322f f f +> 7.已知函数31()sin x xf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是( )A .1[,1]2-B .1[1,]2-C .1(,1][,)2-∞-⋃+∞D .1(,][1,)2-∞-⋃+∞ 8.设函数()x f x e x =-,直线y ax b =+是曲线()y f x =的切线,则+a b 的最大值是( )A .11e -B .1C .1e -D .22e - 9.已知函数()f x (x ∈R )满足()34f =,且()f x 的导函数()1f x '<,则不等式()221f x x -<的解集为( )A .()2,2-B .()(),22,-∞-+∞C .(D .((),3,-∞+∞ 10.函数3()3f x x x =-在[0,]m 上最大值为2,最小值为0,则实数m 取值范围为( )A .[1B .[1,)+∞C .(1D .(1,)+∞ 11.若函数()x x f x ax ee -=+-在R 上单调递减,则实数a 的取值范围为( ) A .2a ≤ B .1a ≤C .1a ≥D .2a ≥ 12.设函数()f x 的定义域为R ,其导函数是()f x ',若()()()20,01'+<=f x f x f ,则不等式()2x f x e->的解集是( ) A .()0,1 B .()1,+∞ C .()0,∞+ D .(),0-∞二、填空题13.若直线l 与曲线C 满足下列两个条件:(1)直线l 在点()00,P x y 处与曲线C 相切;(2)曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线l :0y =在点()0,0P 处“切过”曲线C :3y x =.②直线l :1x =-在点()1,0P -处“切过”曲线C :()21y x =+. ③直线l :y x =在点()0,0P 处“切过”曲线C :sin y x =.④直线l :1y x =+在点()0,1P 处“切过”曲线C :x y e =.⑤直线l :1y x =-在点()1,0P 处“切过”曲线C :ln y x =.14.已知函数2()ln 3m f x x x x x=+-+.若函数()f x 在[1,2]上单调递减,则实数m 的最小值为________.15.已知()f x 满足()()431f f =-=,()f x '为其导函数,且导函数()y f x '=的图象如图所示,则()1f x <的解集是_________.16.若函数()()()()21222x f x a x e ax ax a R ⎡⎤=---+∈⎢⎥⎣⎦在1,12⎛⎫ ⎪⎝⎭上有最大值,则a 的取值范围是___________.17.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________.18.若函数()()32f x x ax a R =--∈在(),0-∞内有且只有一个零点,则()f x 在[]1,2-上的最小值为______.19.设定义在R 上的连续函数()f x 的导函数为()f x ',已知函数()y x f x =⋅'的图象(如图)与x 轴的交点分别为()2,0-,()0,0,()2,0.给出下列四个命题:①函数()f x 的单调递增区间是()2,0-,(2,)+∞;②函数()f x 的单调递增区间是(–,2)∞-,(2,)+∞;③2x =-是函数()f x 的极小值点;④2x =是函数()f x 的极小值点.其中,正确命题的序号是__________.20.已知随机变量X 的分布列为:X1 1k + P 3ke - 31ke --随机变量X 的数学期望为()E X ,则满足()E X k <的最大正整数k 的值是_____. (参考数据:ln 20.6931≈,ln3 1.0986≈,ln5 1.6094≈)三、解答题21.某偏远贫困村积极响应国家“扶贫攻坚”政策,在对口帮扶单位的支持下建了一个工厂,已知每件产品的成本为a 元,预计当每件产品的售价为x 元()38x ≤≤时,年销量为()29x -万件.若每件产品的售价定为6元时,预计年利润为27万元(1)试求每件产品的成本a 的值;(2)当每件产品的售价定为多少元时?年利润y (万元)最大,并求最大值. 22.已知函数()()3f x alnx ax a R =--∈.(1)函数()f x 的单调区间;(2)当1a =-时,证明:当()1x ∈+∞,时,()20f x +>. 23.已知函数()(0)xax f x a e =≠. (1)当1a =时,求函数()y f x =在[0,2]上的最大值和最小值; (2)求函数()f x 的单调区间.24.已知函数()ln f x kx x =-(k ∈R ).(1)若函数()f x 在()()1,1f 处的切线与x 轴平行,求函数()f x 的单调区间; (2)讨论函数()f x 的零点个数.25.已知函数2()ln 24()f x a x x x a =+-∈R .(1)若2x =是()f x 的极值点,求()f x 的单调区间;(2)求()()g x f x ax =-在区间[1,]e 上的最小值()h a . 26.设函数33,().()2,x x x a f x a R x x a ⎧-=∈⎨->⎩(1)若0a =,则()f x 的最大值为;(2)若()f x 无最大值,则求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】求得()f x 的导数,可得单调区间和极值,作出()f x 的图象,将方程()()210f x tf x t -+-=因式分解为()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,则()1f x =或()1f x t =-,从而()1f x t =-有3个实数根,即函数()y f x =与1y t =-有3个交点,数形结合即可得到1t -的取值范围,从而得解;【详解】 解:函数2()x x f x e=的导数为22()x x x f x e -'=, 当02x <<时,()0f x '>,()f x 递增;当2x >或0x <时,()0f x '<,()f x 递减,可得()f x 在0x =处取得极小值0,在2x =处取得极大值241e <, 作出()y f x =的图象如下所示,因为()()210f x tf x t -+-=恰好有4个不相等的实根,所以()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,解得()1f x =或()1f x t =-,当()1f x =时,有1个实数解,所以()1f x t =-应有3个实数根,即函数()y f x =与1y t =-有3个交点,所以2401t e <-<,即2411t e<<+ 故选:D【点睛】本题考查方程的根的个数问题解法,考查数形结合思想方法,以及导数的运用:求单调区间和极值,考查运算能力.2.A解析:A【分析】先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可. 【详解】()()212x g x x e ax '=+-,由题意可知()()2120x g x x e ax '=+-≥在()0,∞+恒成立, 即()212x x e a x+≥恒成立, 设()()21x x f x x e +=,()()()()22221211xx x x e x x e x x f x +--+='= 10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数; 1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数; ()f x 的最小值为12f ⎛⎫= ⎪⎝⎭,所以a ≤ 故选:A.【点睛】利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立;(2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.3.B解析:B【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r =代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=,底面半径为r ,高为h 的圆柱2r h π,所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r r r r rππππππ=+=+=+, 322324324r S r r rππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S rππ-'=<可得02r <<, 所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值. 4.B解析:B【分析】将不等式化为()()111ln x x k x +++>,令()()()111ln x g x xx ++=+,求出导函数,利用导数判断函数的单调性,从而可得()02,3x ∃∈使()00g x '=,进而可得()()001()g x x x g ≥=+,即求.【详解】()()()1ln 10x f x x x ++=>, ()1k f x x ∴>+可化为()111ln x k x x ++>+ 即()()111ln x x k x+++>, 令()()()111ln x g x xx ++=+, 则()()()()21ln 11111x x x x ln x g x x +++---++⎡⎤⎣⎦'= ()211x ln x x--+= 令()()11h x x ln x =--+, 则()111h x x '=-+,()0,x ∈+∞时, ()0h x '>,()g x '∴在()0,∞+单调递增.又()()1ln 32ln 420,30,49g g --''=<=> ()02,3x ∃∈使()00g x '=,即()0011ln x x +=-.当()00,x x ∈时,()()0,g x g x '<单调递减,当0(,)x x ∈+∞时,()()0,g x g x '>单调递增,()()000001ln 1))1(()(1x x g x x x x g +∴≥==+++, ()02,3x ∈,()013,4x +∴∈,∴正整数k 的最大值为3.故选:B.【点睛】关键点点睛:本题考查了导数研究不等式恒成立问题,解题的关键根据函数的单调性确定存在()02,3x ∈,使得()00g x '=,考查了分离参数法求范围.5.A解析:A【分析】由函数()()1y x f x '=-的图象,可得1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.由此可得函数()f x 的单调性,则答案可求.【详解】解:函数()()1y x f x '=-的图象如图所示,∴1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.∴函数()f x 在(),2-∞-上单调递增,在()2,1-上单调递减,在()1,+∞上单调递减. ∴()f x 有极大值()2f -. 故选:A .【点睛】本题考查根据导函数的相关图象求函数的单调区间,考查数形结合思想,是中档题. 6.B解析:B【分析】 根据()02f x x '≤-,得到2x >时,()f x 单调非递增函数,2x <时,()f x 单调非递减函数求解.【详解】因为()02f x x '≤-, 所以当20x ->,即2x >时,()0f x '≤,则()f x 单调非递增函数,所以()()32f f ≤;当20x -<,即2x <时,()0f x '≥,()f x 单调非递减函数,所以()()12f f ≤;由不等式的性质得:()()()1322f f f +≤.故选:B【点睛】本题主要考查导数与函数的单调性以及不等式的基本性质,属于中档题.7.B解析:B【分析】利用函数的奇偶性将函数转化为f (M )≤f (N )的形式,再利用单调性脱去对应法则f ,转化为一般的二次不等式求解即可.【详解】由于()31sin x x f x x x e e=-+-,,则f (﹣x )=﹣x 3sin x ++e ﹣x ﹣e x =﹣f (x ),故函数f (x )为奇函数.故原不等式f (a ﹣1)+f (2a 2)≤0,可转化为f (2a 2)≤﹣f (a ﹣1)=f (1﹣a ),即f (2a 2)≤f (1﹣a );又f '(x )=3x 2﹣cosx+e x +e ﹣x ,由于e x +e ﹣x ≥2,故e x +e ﹣x ﹣cosx>0,所以f '(x )=3x 2﹣cosx+e x +e ﹣x ≥0恒成立,故函数f (x )单调递增,则由f (2a 2)≤f (1﹣a )可得,2a 2≤1﹣a ,即2a 2+a ﹣1≤0, 解得112a -≤≤, 故选B .【点睛】本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题. 8.C解析:C【分析】先设切点写出曲线的切线方程,得出a 、b 的值,再利用构造函数利用导数求+a b 的最大值即可.【详解】解:由题得()1x f x e '=-,设切点(t ,())f t ,则()t t f t e =-,()1t f t e '=-;则切线方程为:()(1)()t ty e t e x t --=--,即(1)(1)t t y e x e t =-+-,又因为y ax b =+,所以1t a e =-,(1)t b e t =-,则12t t a b e te +=-+-,令()12t t g t e te =-+-,则()(1)tg t t e '=-,则有1t >,()0g t '<;1t <,()0g t '>,即()g t 在(),1-∞上递增,在()1,+∞上递减, 所以1t =时,()g t 取最大值(1)121g e e e =-+-=-,即+a b 的最大值为1e -.故选:C.【点睛】本题考查了利用导数求曲线的切线方程和研究函数的最值,属于中档题. 9.B解析:B【分析】构造函数()()g x f x x =-,求导后可证得()g x 在R 上单调递减,将原不等式可转化为()()()221133f x x f ---<-,即()()213g x g -<,再利用函数单调性的定义求解.【详解】令()()g x f x x =-,则()()10g x f x ''=-<,所以()g x 在R 上单调递减.因为不等式()221f x x -<可等价于()()()221133f x x f ---<-, 即()()213g x g -<, 所以213x ->,解得2x >或2x <-,故选:B.【点睛】本题主要考查函数的单调性与导数以及利用函数的单调性解不等式,还考查了运算求解的能力,属于中档题.10.A解析:A【分析】求导得()3(1)(1)f x x x =+-',从而知函数()f x 的单调性,再结合(0)0f =,f (1)2=,即可得解【详解】. 3()3f x x x =-,2()333(1)(1)f x x x x ∴=-=+-',令()0f x '=,则1x =或1-(舍负),当01x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减. 函数()f x 在[0,]m 上最大值为2,最小值为0,且(0)(3)0f f ==,f (1)2=,13m ∴≤≤故选:A.【点睛】本题考查利用导数研究函数的最值问题,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.11.A解析:A【分析】由()x x f x ax ee -=+-在R 上单调递减,可得:导函数()0x xf x a e e -'=--≤在R 上恒成立,参变分离后,求最值即可的解. 【详解】由()x x f x ax e e -=+-在R 上单调递减,可得:导函数()0x x f x a ee -'=--≤在R 上恒成立,因为0x e >, 参变分离可得:min (+)x x a e e -≤, +22x x x x e e e e --≥⋅=2a ≤故选:A【点睛】本题考查了利用函数单调性求参数范围,考查了恒成立思想和基本不等式的应用,属于中档题.12.D解析:D【分析】构造新函数2()()x g x e f x =,求导后可推出()g x 在R 上单调递减,而2()x f x e ->可等价于20()1(0)x e f x e f >=,即()(0)g x g >,故而得解.【详解】令2()()x g x e f x =,则2()[2()()]x g x e f x f x ''=+,2()()0f x f x +'<,()0g x '∴<,即()g x 在R 上单调递减,(0)1f =,2()x f x e -∴>可等价于20()1(0)x e f x e f >=,即()(0)g x g >,0x ∴<,∴不等式的解集为(,0)-∞.故选:D .【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.二、填空题13.①③【分析】根据直线在点处切过曲线的定义对5个函数逐个判断可得答案【详解】对于①由得所以则直线:是曲线:在点处的的切线又当时当时满足曲线在附近位于直线的两侧故直线:在点处切过曲线:故①正确;对于②由解析:①③【分析】根据直线l 在点P 处“切过”曲线C 的定义,对5个函数逐个判断可得答案.【详解】对于①,由3y x =,得23y x '=,所以0|0x y ='=,则直线l :0y =是曲线C :3y x =在点()0,0P 处的的切线,又当0x >时,0y >,当0x <时,0y <,满足曲线C 在P 附近位于直线l 的两侧,故直线l :0y =在点()0,0P 处“切过”曲线C :3y x =,故①正确;对于②,由()21y x =+,得2(1)y x '=+,所以1|0x y =-'=,而直线l :1x =-的斜率不存在,在点()1,0P -处与曲线C :()21y x =+不相切,故②不正确; 对于③,由sin y x =,得cos y x '=,所以0|1x y ='=,则直线l :y x =是曲线C :sin y x =在点()0,0P 处的切线,令sin y x x =-,则1cos y x '=-,当02x π-<<时,0y '>,函数sin y x x =-递增,所以当02x π-<<时,0sin 0y x <-=,当02x π<<时,0y '>,函数sin y x x =-递增,所以当02x π<<时,0sin 00y >-=,所以当02x π-<<时,sin x x <,当02x π<<时,sin x x >,所以曲线C 在P 附近位于直线l 的两侧,故直线l :y x =在点()0,0P 处“切过”曲线C :sin y x =,故③正确;对于④,由x y e =,得e x y '=,所以0|1x y ='=,则曲线C :x y e =在点()0,1P 处的切线方程为10y x -=-,即1y x =+,令()1x g x e x =--,则()1xg x e '=-,当0x >时,()0g x '>,函数()g x 递增,当0x <时,()0g x '<,函数()g x 递减,则当0x =时,函数()g x 取得极小值,同时也是最小值(0)0g =,则()0g x ≥,即1x e x ≥+,则曲线C :xy e =不在切线l :1y x =+的两侧,故④不正确; 对于⑤,由ln y x =,得1y x'=,所以|11y x '==,所以曲线C :ln y x =在点()1,0P 处的切线方程为01y x -=-,即1y x =-, 令()1ln g x x x =--,则1()1g x x'=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,函数()g x 取得极小值,也是最小值,所以()(1)0g x g ≥=,所以曲线C :ln y x =不在切线l :1y x =-的两侧,故⑤不正确.故答案为:①③【点睛】关键点点睛:对直线l 在点P 处“切过”曲线C 的定义正确理解是解题关键.14.6【分析】求导函数令恒成立变量分离转化为求新函数的最大值【详解】可得令若函数在上单调递减即当时单调增所以函数在上单调递增所以故答案为:6【点睛】关键点睛:变量分离转化为不等式恒成立问题进而求又一函数 解析:6【分析】求导函数()f x ',令()0f x '≤恒成立,变量分离转化为求新函数的最大值.【详解】21()23m f x x x x'=+--,()0f x '≤,可得3223m x x x ≥-+, 令()3223g x x x x =-+,若函数()f x 在[1,2]上单调递减,即()max m g x ≥当[1,2]x ∈时,()2661g x x x '=-+单调增, ()()266110g x x x g ''=-+≥>,所以函数()g x 在[1,2]上单调递增()()max 26g x g ==,所以6m ≥.故答案为:6【点睛】关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.15.【分析】利用导数分析函数的单调性分和两种情况解不等式由此可得出原不等式的解集【详解】由函数的图象可知当时此时函数单调递减;当时此时函数单调递增因为当时由可得;当时由可得综上所述不等式的解集时故答案为 解析:()3,4-【分析】利用导数分析函数()f x 的单调性,分0x ≤和0x >两种情况解不等式()1f x <,由此可得出原不等式的解集.【详解】由函数()y f x '=的图象可知,当0x <时,()0f x '<,此时函数()f x 单调递减; 当0x >时,()0f x '>,此时函数()f x 单调递增.因为()()431f f =-=,当0x ≤时,由()()13f x f <=-,可得30x -<≤; 当0x >时,由()()14f x f <=,可得04x <<.综上所述,不等式()1f x <的解集时()3,4-.故答案为:()3,4-.【点睛】思路点睛:根据函数单调性求解函数不等式的思路如下:(1)先分析出函数在指定区间上的单调性;(2)根据函数单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式 ,从而求解出不等式的解集.16.【分析】先通过有根在上求得参数范围再验证其左右的导数符号以保证取得极大值即得结果【详解】依题意在开区间上函数有最大值即说明在上有极大值故在上有根易见导函数的一个根故有根且在上故即故此时有两个根要使为解析:)【分析】先通过()0f x '=有根在1,12⎛⎫ ⎪⎝⎭上求得参数范围,再验证其左右的导数符号,以保证取得极大值,即得结果.【详解】依题意,在开区间1,12⎛⎫ ⎪⎝⎭上,函数()f x 有最大值,即说明()f x 在1,12⎛⎫ ⎪⎝⎭上有极大值, 故()()()()()()21210x x f x a x e ax a a x e a '⎡⎤=---+=---=⎣⎦在1,12⎛⎫ ⎪⎝⎭上有根, 易见,导函数的一个根11,12x ⎛⎫=∉⎪⎝⎭,故0x e a -=有根,且在1,12⎛⎫ ⎪⎝⎭上,故10,ln ,12a x a ⎛⎫>=∈ ⎪⎝⎭,即ln ln ln a e <e a <<, 此时()()()()210x f x a x e a '=---=有两个根,要使ln x a =为极大值点, 则需(),ln x a ∈-∞时,()0f x '>,()ln ,1x a ∈时,()0f x '<,故20a ->,即2a <.综上,a 的取值范围是).故答案为:). 【点睛】易错点点睛: ()00f x '=是0x x =为极值点的必要条件,利用其求得参数值(或范围)后必须验证()f x '在0x x =左右的符号,也进而能确定0x x =是极大值点还是极小值点,这是这类题的易错点.17.【分析】由题意可得:有2个不相等的实根也即有2个不相等的实根利用即可求解【详解】由题意可得:有2个不相等的实根也即有2个不相等的实根所以即解得:或故答案为:【点睛】本题主要考查了极值和导数的关系属于 解析:()(),22,-∞-+∞【分析】由题意可得:()20()22x f x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即 ()2220x a x a ++++=有2个不相等的实根,利用0∆>即可求解.【详解】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根, 也即()2220x a x a ++++=有2个不相等的实根, 所以()()22420a a ∆=+-+>,即()()2240a a ++->,解得:2a >或2a <-,故答案为:()(),22,-∞-+∞【点睛】本题主要考查了极值和导数的关系,属于中档题.18.【分析】利用导数分析函数在区间上的单调性根据该函数在区间上有且只有一个零点求得参数的值进而利用导数可求得函数在区间上的最小值【详解】则①当时对任意的恒成立此时函数在区间上单调递增且不合乎题意;②当时 解析:4-【分析】利用导数分析函数()y f x =在区间(),0-∞上的单调性,根据该函数在区间(),0-∞上有且只有一个零点求得参数a 的值,进而利用导数可求得函数()y f x =在区间[]1,2-上的最小值.【详解】()32f x x ax =--,则()23f x x a '=-.①当0a ≤时,对任意的(),0x ∈-∞,()0f x '>恒成立,此时,函数()y f x =在区间(),0-∞上单调递增,且()()020f x f <=-<,不合乎题意;②当0a >时,令()230f x x a '=-=,可得x =x =当x <()0f x '>,此时函数()y f x =单调递增;当0x <<时,()0f x '<,此时函数()y f x =单调递减.所以,()max 20f x f ⎛=== ⎝,解得3a =,()332f x x x ∴=--. ()()()233311f x x x x '=-=-+,当11x -<<时,()0f x '<,此时函数()y f x =单调递减;当12x <<时,()0f x '>,此时函数()y f x =单调递增.因此,函数()y f x =在1x =处取得极小值,亦即最小值,故()()min 14f x f ==-. 故答案为:4-.【点睛】本题考查利用导数求解函数在区间上的最值,同时也考查了利用导数研究函数的零点,考查计算能力,属于中等题. 19.②④【分析】根据函数和图象可得的单调区间和单调性从而得到答案【详解】由函数和图象可得当时得所以函数单调递增当时得所以函数单调递减当时得所以函数单调递减当时得所以函数单调递增所以①错误;②正确;③是函解析:②④【分析】根据函数()y x f x =⋅'和图象可得()f x 的单调区间和单调性,从而得到答案.【详解】由函数()y x f x =⋅'和图象可得,当2()–,x ∞-∈时,0y <,得()0f x '>,所以函数()f x 单调递增,当()2,0x ∈-时,0y >,得()0f x '<,所以函数()f x 单调递减,当(0,2)x ∈时,0y <,得()0f x '<,所以函数()f x 单调递减,当(2,)x ∈+∞时,0y >,得()0f x '>,所以函数()f x 单调递增,所以①错误;②正确;③2x =-是函数()f x 的极大值点,错误;④正确. 故答案为:②④.【点睛】本题结合图象考查函数的单调性和判断极值,属于基础题.20.【分析】根据期望的定义先得到将不等式化为构造函数利用导数的方法判断其单调性计算即可得出结果【详解】由题意所以可化为即其中显然成立;两边同时取以为底的对数得令则当时即函数单调递增;当时即函数单调递减; 解析:4【分析】根据期望的定义,先得到()31k E X kek -=-++,将不等式()E X k <化为ln 3k k >,构造函数()ln ,03k f k k k =->,利用导数的方法判断其单调性,计算()4f ,()5f ,即可得出结果.【详解】由题意,()()333111kk k E X e k e ke k ---⎛⎫=++-=-++ ⎪⎝⎭, 所以()E X k <可化为310k ke --+<,即3k k e >,其中0k >显然成立;两边同时取以e 为底的对数,得ln 3k k >, 令()ln ,03k f k k k =->,则()11333k f k k k-'=-=, 当()0,3k ∈时,()303k f k k -'=>,即函数()ln 3k f k k =-单调递增;当()3,k ∈+∞时,()303k f k k -'=<,即函数()ln 3k f k k =-单调递减; 因此()()max 33ln 3ln 3103f k f ==-=->, 又()444ln 42ln 2 1.3862 1.3333033f =-≈-=->, ()55ln 5 1.6094 1.666603f =-≈-<, 因此满足ln 3k k >的最大正整数k 的值是4, 即满足()E X k <的最大正整数k 的值是4.故答案为:4.【点睛】本题主要考查导数的方法研究不等式能成立的问题,涉及离散型随机变量的期望,属于常考题型.三、解答题21.(1)3a =;(2)每件产品的售价定为5元时,年利润y 最大,最大值为32万元.【分析】(1)求得利润为()()29y x a x =--,代入点()6,27可求得实数a 的值; (2)由(1)可得出()()239y x x =--,()38x ≤≤,利用导数求出y 的最大值及其对应的x 的值,即可得出结论.【详解】(1)由题意可知,该产品的年利润为()()29y x a x =--,()38x ≤≤, 当6x =时,()9627y a =⨯-=,解得:3a =;(2)由()()239y x x =--,()38x ≤≤, 得:()()()()()292399315y x x x x x '=-+--=--,由0y '=,得5x =或9x =(舍).当[)3,5x ∈时,0y '>,当(]5,8x ∈时,0y '<.所以当5x =时,max 32y =(万元)即每件产品的售价定为5元时,年利润y 最大,最大值为32万元.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.22.(1)答案见解析;(2)证明见解析.【分析】(1)求导()()1'(0)a x f x x x -=>,0a >,0a <,0a =讨论,令()'0f x >求解.(2)结合(1)将问题转化为()min 2f x >-求解.【详解】(1)根据题意知,()()1'(0)a x f x x x -=>,当0a >时,当()01x ∈,时,()'0f x >,当()1x ∈+∞,时,()'0f x <, 所以()f x 的单调递增区间为()01,,单调递减区间为()1+∞,; 同理,当0a <时,()f x 的单调递增区间为()1+∞,,单调递减区间为()01,;当0a =时,()3f x =-,不是单调函数,无单调区间.(2)证明:当1a =-时,()ln 3f x x x =-+-,所以12f ,由(1)知()ln 3f x x x =-+-在()1+∞,上单调递增, 所以当()1x ∈+∞,时,()()1f x f >. 即()2f x >-,所以()20f x +>.【点睛】方法点睛:利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,或者函数的最值证明函数h (x )>0,其中一个重要技巧就是找到函数h (x )在什么地方可以等于零,这往往就是解决问题的一个突破口. 23.(1)最大值为1e,最小值分别为0;(2)答案见解析. 【分析】(1)当1a =时,()xx f x e =,对其求导,利用导函数得符号判断()y f x =在[0,2]上的单调性,即可求得最值; (2)对()f x 求导可得()1()x a x f x e-'=,讨论0a >和0a <,由()0f x '>可得单调递增区间,由()0f x '<,可得单调递减区间.【详解】(1)当1a =时,()x x f x e =,所以21()x x x xe xe xf x e e --'==. 令()0f x '=,得1x =.当01x ≤<时,()0f x '>;当12x <≤时,()0f x '<.所以()y f x =在()0,1单调递增,在()1,2单调递减,所以当1x =时,()f x 取最大值1(1)f e =. 又因为(0)0f =,22(2)f e =,所以函数()x x f x e =的最大值和最小值分别为1e ,0. (2)因为()1()x a x f x e-'=. 当0a >时,由()0f x '>,得1x <;由()0f x '<,得1x >, 此时函数()x x f x e=的单调递增区间为(,1)-∞,单调递减区间为(1,)+∞; 当0a <时,由()0f x '>,得1x >;由()0f x '<,得1x <. 此时函数()x x f x e =的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞ 综上所述:当0a >时,函数()x x f x e =的单调递增区间为(,1)-∞,单调递减区间为(1,)+∞; 当0a <时,函数()x x f x e =的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞. 【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数在区间[],a b 上单调递增或递减,则()f a 与()f b 一个为最大值,另一个为最小值;(2)若函数在区间[],a b 内有极值,则要先求出函数在[],a b 上的极值,再与()f a ,()f b 比较,最大的为最大值,最小的为最小值;(3)函数()f x 在区间(),a b 上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.24.(1)函数()f x 的单调递增区间是()1,+∞,单调递减区间是()0,1;(2)当1k e >时,函数()f x 没有零点;当1k e =或0k ≤时,函数()f x 有1个零点;当1k e <<0时,函数()f x 有2个零点.【分析】(1)由题得()10f '=,进而得1k =,再根据导数求解单调区间即可;(2)根据题意将问题转化为函数()ln g x x =与y kx =的交点个数问题,再讨论过原点的函数()ln g x x =的切线方程的斜率,进而求解.【详解】解:(1)因为函数()f x 在()()1,1f 处的切线与x 轴平行,()1'f x k x =-, 所以()10f '=,即10k -=,求得1k =,所以()ln f x x x =-,()111x f x x x-'=-=(0x >), 令()'0f x >,则1x >;令()'0f x <,则01x <<,∴函数()f x 的单调递增区间是()1,+∞,单调递减区间是()0,1.(2)函数()f x 的零点个数可等价于函数()ln g x x =与y kx =的交点个数.设()00,P x y 是函数()ln g x x =上的一点,由()ln g x x =得,()1g x x'=, ∴()g x 在点()00,P x y 处的切线方程为()0001ln y x x x x -=-, 令0x y ==则0x e =,∴过原点所作的函数()ln g x x =的切线方程为1y x e =, 故由图可知, 故当1k e >时,函数()f x 没有零点; 当1k e=或0k ≤时,函数()f x 有1个零点; 当1k e <<0时,函数()f x 有2个零点.【点睛】本题第二问解题的关键在于根据题意将问题转化为函数()ln g x x =与y kx =的交点个数问题,再讨论过原点的函数()ln g x x =的切线方程的斜率,数形结合即可求解.考查化归转化思想和运算求解能力,是中档题.25.(1)单调递减区间为()0,2,单调递增区间为(2,)+∞;(2)222,41()ln ,4448(1)24,4a a a h a a a a a e e a e e a e --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩. 【分析】(1)根据(2)0f '=,求出8a =-,再根据导数与函数单调性的关系即可求解.(2)求出(4)(1)()x a x g x x --'=,令()0g x '=,解得4a x =或1x =,讨论14a ≤、14a e <<或4a e ≥,判断函数在区间[1,]e 上的单调性,根据单调性即可求出函数的最值. 【详解】 解:(1)()f x 的定义域为(0,)+∞,244()44a x x a f x x x x-+'=+-=. 因为2x =是()f x 的极值点,所以168(2)02a f -+'==,解得8a =-, 所以24484(2)(1)()x x x x f x x x---+'==, 当2x >时,()0f x '>;当02x <<时,()0f x '<,所以()f x 的单调递减区间为()0,2,单调递增区间为(2,)+∞.(2)2()ln 24g x a x x ax x =+--,则(4)(1)()44a x a x g x x a x x--'=+--=, 令()0g x '=,得4a x =或1x =.①当14a ≤,即4a ≤时,()g x 在[]1,e 上为增函数,()()12h a g a ==--; ②当14a e <<,即44a e <<时,()g x 在1,4a ⎡⎫⎪⎢⎣⎭上单调递减,在,e 4a ⎛⎤ ⎥⎝⎦上单调递增, 所以21()ln 448a a h a g a a a ⎛⎫==--⎪⎝⎭; ③当4a e ≥,即4a e ≥时,()g x 在[1,]e 上为减函数, 所以2()()(1)24h a g e e a e e ==-+-. 综上所述,222,41()ln ,4448(1)24,4a a a h a a a a a e e a e e a e --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩. 【点睛】关键点点睛:本题考查了利用导数求函数的单调区间、求函数的最值,解题的关键是确定函数在区间[1,]e 上的单调性,考查了分类讨论的思想以及运算求解能力.26.(1)2;(2)(,1)-∞-.【分析】(1)将0a =代入,求出函数的导数,分析函数的单调性可得当1x =-时,()f x 有最大值2;(2)若()f x 无最大值,则3123a a a a ≤-⎧⎨->-⎩或312322a a a a a >-⎧⎪->-⎨⎪->⎩,解得可得答案. 【详解】(1)若0a =,33,0()2,0x x x f x x x ⎧-=⎨->⎩,所以233,0()2,0x x f x x ⎧-=⎨->⎩', 当1x <-时,()0f x '>,此时函数为单调递增函数,当1x >-时,()0f x '<,此时函数为单调递减函数,故当1x =-时()f x 有最大值为2 .(2)233,()2,x x a f x x a ⎧-=⎨->'⎩,令()0f x '=,则1x =±,若()f x 无最大值,则 3123a a a a ≤-⎧⎨->-⎩ ① 或312322a a a a a >-⎧⎪->-⎨⎪->⎩②, 由①得(,1)a ∈-∞-,由②得无解,所以(,1)a ∈-∞-.-∞-.故答案为:2;(,1)【点睛】分段函数在高考中的常见题型有:已知分段函数求值、已知分段函数求值域、已知分段函数求不等式解集、已知分段函数求参数取值范围等,分段函数问题要注意分类讨论,涉及分段函数的单调性、奇偶性、周期性等问题,要善于利用数形结合的思想解决问题.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(答案解析)(4)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(答案解析)(4)

一、选择题1.已知函数()()22ln x x t f x x+-=,若对任意的[]2,3x ∈,()()0f x f x x '+>恒成立,则实数t 的取值范围是( )A .(),2-∞B .5,2⎛⎫-∞ ⎪⎝⎭C .103⎛⎫-∞ ⎪⎝⎭,D .()2,+∞2.若函数()3221f x x x mx =+++在()-∞+∞,内单调递增,则m 的取值范围是( ) A .43m ≥B .43m >C .43m ≤D .43<m 3.已知函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围为( ) A .34a ≤-B .1a ≤-C .1a ≤D .01a ≤≤4.已知曲线1C :()xf x xe =在0x =处的切线与曲线2C :()()ln a xg x a x=∈R 在1x =处的切线平行,令()()()h x f x g x =,则()h x 在()0,∞+上( )A .有唯一零点B .有两个零点C .没有零点D .不确定5.已知函数()f x 的导函数是'()f x ,'()f x 的图象如图所示,下列说法正确的是( )A .函数()f x 在(2,1)--上单调递减B .函数()f x 在3x =处取得极大值C .函数()f x 在(1,1)-上单调递减D .函数()f x 共有4个极值点6.已知函数()()30f x ax bx c ac =++<,则函数()y f x =的图象可能是( ).A .B .C .D .7.对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩.若对函数()ln 22f x x x =-+,有()()g x f x =恒成立,则( )A .k 的最大值为1ln2+B .k 的最小值为1ln2+C .k 的最大值为ln 2D .k 的最小值为ln 28.已知函数()f x 的定义域为[)2-+∞,,部分对应值如下表;()f x '为()f x 的导函数,函数()y f x '=的图象如下图所示.若实数a 满足()211f a +≤,则a 的取值范围是( ) x2-0 4 ()f x11-1A .33,22⎛⎫-⎪⎝⎭ B .13,22⎛⎫-⎪⎝⎭ C .33,22⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤-⎢⎥⎣⎦9.某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812863y x x =-+-,则该生产厂家获取的最大年利润为( )A .300万元B .252万元C .200万元D .128万元10.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+11.若函数()()11xf x e a x =--+在(0,1)上不单调,则a 的取值范围是( ) A .()2,1e +B .[]2,1e +C .(][),21,e -∞⋃++∞D .()(),21,e -∞⋃++∞12.已知函数()()()2122x x f x m e m R =+++∈有两个极值点,则实数m 的取值范围为( )A .10e ⎡⎤-⎢⎥⎣⎦,B .111e⎛⎫--- ⎪⎝⎭,C .1e ⎛⎫-∞- ⎪⎝⎭,D .()0+∞,二、填空题13.已知()y f x =是定义在R 上的奇函数,()20f -=,且当0x >时()()20f x xf x x '-<,则不等式()()2110x f x -->的解集是______. 14.已知函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,且当2x ≠,其导数()f x '满足()()2xf x f x ''<,若()30f =,则不等式()0xf x >的解集为__________.15.已知函数21()ln 2f x x x =+,函数()f x 在[1,]e 上的最大值为__________. 16.若函数()()32111562f x x mx n x =-++-+是[]0,1上的单调增函数,其中0m ≥,0n ≥,则()()2268m n +++的最小值为________.17.若函数32()1f x x ax x =-++在()2,+∞上单调递增,则实数a 的取值范围是__________.18.若函数()ln f x ax x =-在区间()0,1上是减函数,则实数a 的取值范围是________.19.使“函数()xe f x x=在区间(0,m ]上单调递减”成立的一个m 值是_____.20.已知函数()()31f x x ax b =---,x ∈R ,其中a 、b ∈R ,若()f x 存在极值点0x ,且()()10f x f x =,其中10x x ≠,则102x x +=_______.三、解答题21.已知函数()3213 1.3f x x x x =+-- (1)求函数()f x 的极值;(2)求函数()f x 在区间[]5,4-上的最大值与最小值. 22.已知函数()()3f x alnx ax a R =--∈. (1)函数()f x 的单调区间;(2)当1a =-时,证明:当()1x ∈+∞,时,()20f x +>. 23.已知函数()2ln f x x a x =+.(1)当2a =-时,求函数()f x 在点()()11f ,处的切线方程;(2)若()()2g x f x x=+在[1,+)∞上是单调增函数,求实数a 的取值范围. 24.已知函数()1ln =--f x x x .(1)证明:()f x 存在唯一的零点; (2)当0x >时,证明:ln x e x x >>. 25.已知函数()11f x x=-. (1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)设函数()()ln g x f x t x =+,当1t ≤时,求()g x 零点的个数. 26.设函数2()cos ,()sin a f x x x g x x=+=. (1)当[0,]x π∈时,判断()f x 的单调性; (2)若当,62x ππ⎡⎤∈⎢⎥⎣⎦时,不等式()()0f x g x -恒成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求导函数()f x ',化简()()0f x f x x'+>得10x t x+->在[]2,3x ∈恒成立,参变分离即可求参数范围. 【详解】∵()2222ln 2x x t f x x-+-'=, ∴对任意的[]2,3x ∈,()()0f x f x x'+>恒成立⇔对任意的[]2,3x ∈,()()0xf x f x '+>恒成立, ⇔对任意的[]2,3x ∈,10x t x+->恒成立, ⇔1x t x+>恒成立, 又()1g x x x =+在[]2,3上单调递增,∴()()225min g x g ==,∴52t <.则实数t 的取值范围是5,2⎛⎫-∞ ⎪⎝⎭.故选:B 【点睛】对于恒成立问题,常用到以下两个结论: (1)()a f x ≥ 恒成立()max a f x ⇔≥; (2) ()a f x ≤ 恒成立()min a f x ⇔≤.2.A解析:A 【分析】由于()f x 在R 上递增得()0f x '≥恒成立,利用参数分离求得参数范围. 【详解】因为()f x 在R 上递增得()0f x '≥恒成立,则()2340f x x x m '=++≥所以234m x x ≥--在R 上恒成立,令()234g x x x =--,则()max m g x ≥因为()g x 为二次函数且图像的对称轴为23x =-,所以()max 2433g x g ⎛⎫=-= ⎪⎝⎭故43m ≥故选:A 【点睛】方法点晴:本题利用导数与单调性的关系转化为恒成立问题,结合参数分离法求得参数范围.3.B解析:B 【分析】 由函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,知'0y ≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,分离参数,求最值得答案. 【详解】 因为函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增, 所以22'20a x x ay x x x--=--=≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以222(1)1a x x x ≤-=--在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以1a ≤-,【点睛】方法点睛:该题考查的是有关根据函数在给定区间上单调增求你参数的取值范围的问题,解题方法如下:(1)利用函数在给定区间上单调递增,得到其导数大于等于零在给定区间上恒成立; (2)求导;(3)分离参数,求最小值,得结果.4.A解析:A 【分析】先对函数()xf x xe =和()ln a xg x x=求导,根据两曲线在1x =处的切线平行,由导数的几何意义求出a ,得到函数()()()ln xh x f x g x e x ==,对其求导,利用导数的方法判定单调性,确定其在()0,∞+上的最值,即可确定函数零点个数. 【详解】∵()xf x xe =,∴()()1xf x x e '=+,又()ln a x g x x =,∴()2ln a a xg x x-'=, 由题设知,()()01f g '=',即()02ln1101a a e -+=,∴1a =, 则()()()ln ln xx xh x f x g x xe e x x==⋅=, ∴()()ln 1ln xx xx x ee h x e x x x+=='+,0x >, 令()ln 1m x x x =+,0x >,则()ln 1m x x '=+,当10,e x ⎛⎫∈ ⎪⎝⎭时,()0m x '<,即函数()ln 1m x x x =+单调递减;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0m x '>,即函数()ln 1m x x x =+单调递增;∴在()0,∞+上()m x 的最小值为1110m e e⎛⎫=-> ⎪⎝⎭, ∴()0m x >,则()0h x '>,∴()h x 在()0,∞+上单调递增,且()10h =.()h x 在()0,∞+上有唯一零点,故选:A . 【点睛】利用导数的方法判定函数零点个数时,一般需要先对函数求导,利用导数的方法判定函数单调性,确定函数极值和最值,即可确定函数零点个数.(有时也需要利用数形结合的方法进行判断)5.C解析:C 【分析】对于选项A ,函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,故D 错误. 【详解】对于选项A ,由导函数的图象得函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,由导函数的图象得函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,由导函数的图象得函数()f x 在(1,1)-上单调递减,故C 正确; 对于选项D ,由导函数的图象得函数()f x 共有3个极值点,3,1x x =-=是极小值点,1x =-是极大值点,故D 错误. 故选:C. 【点睛】结论点睛:(1)函数()f x 的()0f x '>在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递增;函数()f x 的()0f x '<在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递减.(2)如果函数()f x 的极值点是0x ,则0x 附近左右两边的导数符号相反.6.B解析:B 【分析】利用函数()f x 的对称性排除A 选项;然后分0a >和0a <两种情况讨论,利用导数分析函数()f x 的单调性,结合()0f 的符号可得出合适的选项. 【详解】()3f x ax bx c =++,则()3f x ax bx c -=--+,()()2f x f x c ∴+-=,所以,函数()f x 的图象关于点()0,c 对称,排除A 选项;()3f x ax bx c =++,则()23f x ax b '=+,当0a >,x →+∞时,()0f x '>,函数()f x 单调递增, 又0ac <,()00f c ∴=<,排除D 选项;当0a <,x →+∞时,()0f x '<,函数()f x 单调递减, 又0ac <,()00f c ∴=>,排除C 选项. 故选:B . 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.7.B解析:B 【分析】利用导数求出函数()f x 的最大值,由函数()g x 的定义结合()()g x f x =恒成立可知()f x k ≤,由此可得出k 的取值范围,进而可得出合适的选项.【详解】对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩,且()()g x f x =恒成立,则()f x k ≤.函数()ln 22f x x x =-+的定义域为()0,∞+,且()111xf x x x-'=-=. 当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当1x >时,()0f x '<,此时,函数()f x 单调递减. 所以,()()max 11ln 2f x f ==+,1ln 2k ∴≥+. 因此,k 的最小值为1ln2+. 故选:B. 【点睛】解决导数中的新定义的问题,要紧扣新定义的本质,将问题转化为导数相关的问题,本题将问题转为不等式()k f x ≥恒成立,从而将问题转化为求函数()f x 的最大值.8.A解析:A 【分析】由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到()f x 的单调性,结合函数的单调性即可求得a 的取值范围. 【详解】由导函数的图象知:()2,0x ∈-时,()0f x '<,()0,x ∈+∞时,()0f x '>, 所以()f x 在()2,0-上单调递减,在()0,∞+上单调递增, 因为()211f a +≤,()21f -=,()41f =, 所以2214a -<+<,可得:3322a -<<, 故选:A. 【点睛】本题主要考查了利用导函数的符号判断原函数的单调性,以及利用函数的单调性解不等式,属于中档题.9.C解析:C 【分析】求得函数的导数,得到函数的单调性,进而求解函数的最大值,即可得到答案. 【详解】由题意,函数31812863y x x =-+-,所以281y x '=-+,当09x <<时,0y '>,函数()f x 为单调递增函数; 当9x >时,0y '<,函数()f x 为单调递减函数,所以当9x =时,y 有最大值,此时最大值为200万元,故选C. 【点睛】本题主要考查了利用导数研究函数的单调性与最值问题,其中解答中熟记函数的导数在函数中的应用,准确判定函数的单调性是解答的关键,着重考查了推理与计算能力,属于基础题.10.A解析:A 【分析】设()()2xxF x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x xF x e f x e =-,则[]()()()2()()2x x x xF x e f x e f x e ef x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦,所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-,故(3)2(2)2ef f e +<+. 故选:A.【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.11.A解析:A 【分析】求导得()1xf x e a '=-+,原问题可转化为()'f x 在(0,1)上有变号零点,由于()'f x 单调递增,只需满足()()010f f ''<,解之即可. 【详解】 解:()(1)1x f x e a x =--+,()1x f x e a '∴=-+,若()f x 在(0,1)上不单调,则()'f x 在(0,1)上有变号零点,又()f x '单调递增,()()010f f ''∴<,即(11)(1)0a e a -+-+<,解得21a e <<+.a ∴的取值范围是(2,e +1).故选:A . 【点睛】本题考查利用导数研究函数的单调性、零点存在定理,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.12.B解析:B 【分析】求导()()1xf x x m e '=++,将问题转化为()()1xf x x m e '=++有两个不同的零点,也即是关于x 的方程1x xm e --=有两个不同的解,构造函数()xx g x e =,求导()1x xg x e-'=,分析导函数取得正负的区间,从而得函数()g x 的单调性和最值,从而可得选项.【详解】函数()f x 的定义域为R ,()()'1x fx x m e =++,因为函数()f x 有两个极值点,所以()()1xf x x m e '=++有两个不同的零点, 故关于x 的方程1xxm e --=有两个不同的解, 令()xx g x e =,则()1x xg x e-'=,当(,1)x ∈-∞时, ()0g x '>,当(1,+)x ∈∞时,()0g x '<,所以函数()g x 在区间(,1)-∞上单调递增,在区间(1,+∞)上单调递减,又当x →-∞时,()g x →-∞;当x →+∞时,()0g x →, 且0,()0x g x >>()11g e=,故101m e <--<,即111m e --<<-. 故选:B. 【点睛】本题考查运用导函数研究函数的单调性、最值、极值,关键在于构造合适的函数,参变分离的方法的运用,属于中档题.二、填空题13.【分析】设则为偶函数由则在是上单调递增在是上单调递减设即求解分和两种情况解不等式和【详解】设由当时即所以在是上单调递增为奇函数则为偶函数在是上单调递减即()设当时即由为奇函数则所以由在是上单调递增所 解析:()()1,13,-+∞【分析】 设()()f x g x x =,则()g x 为偶函数,由()()()2xf x f x g x x'-'=, 则()g x 在()0+∞,是上单调递增,()g x 在()0-∞,是上单调递减,设1x t -=,即求解()0f t >,分0t >和0t <两种情况解不等式()0g t >和()0g t <.【详解】 设()()f x g x x =,由()()()2xf x f x g x x'-'= 当0x >时()()20f x xf x x'-<,即()0g x '>,所以()g x 在()0+∞,是上单调递增. ()y f x =为奇函数,则()()f x g x x=为偶函数,()g x 在()0-∞,是上单调递减 ()()2110x f x -->,即()10f x ->(1x ≠)设1x t -=,当0t >时,()0f t >,即()()0f t g t t=> 由()20f -=,()y f x =为奇函数,则()20f =,所以()20g =由()g x 在()0+∞,是上单调递增,()0g t >,所以2t >,即12x ->,所以3x > 当0t <时,()0f t >,即()()0f t g t t=< 由()20f -=,则()20g -=,根据()g x 在()0-∞,是上单调递减所以当()0g t <时,则20t -<<,即210x -<-<,所以11x -<< 综上所述:不等式()()2110x f x -->的解集是:()()1,13,-+∞故答案为:()()1,13,-+∞【点睛】关键点睛:本题考查构造函数讨论单调性解不等式,解答本题的关键是构造函数()()f x g x x =,由()()()2xf x f x g x x'-'=结合条件和奇偶性得出其单调性, 属于中档题. 14.【分析】由可得对称轴是由可得从而得出判断的单调区间再结合即可得不等式的解集【详解】因为函数对定义域内内的任意都有所以对称轴是因为满足即所以当时单调递增当时单调递减又因为所以时时时当与同号时所以的解集 解析:()(),01,3-∞⋃【分析】由()()4f x f x =-,可得()f x 对称轴是2x =,由()()2xf x f x ''<可得()()20x f x '-<,从而得出判断()f x 的单调区间,再结合()30f =,即可得不等式()0xf x >的解集.【详解】因为函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-, 所以()f x 对称轴是2x =,因为()f x '满足()()2xf x f x ''<,即()()20x f x '-<, 所以当2x <时()0f x '>,()f x 单调递增, 当2x >时()0f x '<,()f x 单调递减, 又因为()()130f f ==,所以1x <时,()0f x <,13,x <<时,()0f x >,3x >时,()0f x <, 当x 与()f x 同号时,()0xf x >, 所以()0xf x >的解集为:()(),01,3-∞⋃, 故答案为:()(),01,3-∞⋃ 【点睛】本题主要考查了函数的对称性和单调性,导数的符号决定原函数的单调性,根据单调性解不等式,属于中档题.15.【分析】根据求导函数根据在上单调性求解【详解】因为函数所以所以在上单调递增所以函数在上的最大值为故答案为:【点睛】本题主要考查导数法求函数的最值还考查了运算求解的能力属于中档题解析:212e +【分析】 根据21()ln 2f x x x =+,求导函数,根据()f x 在[1,]e 上单调性求解. 【详解】 因为函数21()ln 2f x x x =+, 所以1()0f x x x'=+>, 所以()f x 在[1,]e 上单调递增,所以函数()f x 在[1,]e 上的最大值为2()()12e f x f e ==+. 故答案为:212e +【点睛】本题主要考查导数法求函数的最值,还考查了运算求解的能力,属于中档题.16.49【分析】求出函数的导数根据函数的单调性得到关于的不等式组根据两点间的距离公式求出其最小值即可【详解】若在上递增则故满足条件的平面区域如图示:的几何意义表示和阴影部分的点的距离故到阴影部分的最小值解析:49 【分析】求出函数的导数,根据函数的单调性得到关于m ,n 的不等式组,根据两点间的距离公式求出其最小值即可. 【详解】21()(1)2f x x mx n '=-++-,若()f x 在[0,1]上递增, 则(0)10f n '=-,()11102m n f =-++-', 故满足条件001102m n n m n ⎧⎪⎪⎪⎨⎪⎪-+⎪⎩的平面区域如图示:22(6)(8)m n -+-的几何意义表示(6,8)和阴影部分的点的距离,故(6,8)到阴影部分的最小值是自(6,8)向1n =作垂线, 故垂线段是7,故22(6)(8)m n -+-的最小值是49, 故答案为:49. 【点睛】本题考查了函数的单调性问题,考查导数的应用以及简单的线性规划问题,考查了数学运算能力和数形结合思想.17.【分析】求出函数的导函数利用导函数与函数单调性的关系只需在上即可【详解】由函数所以函数在上单调递增则即所以令因为由对勾函数的单调性可知在单调递增故故即实数a 的取值范围是故答案为:【点睛】本题考查了导解析:13,4⎛⎤-∞ ⎥⎝⎦ 【分析】求出函数的导函数()f x ',利用导函数与函数单调性的关系只需在()2,+∞上()0f x '≥即可. 【详解】由函数32()1f x x ax x =-++,所以()2321f x x ax '=-+,函数()f x 在()2,+∞上单调递增, 则()0f x '≥,即23210x ax -+≥,所以3122x a x≤+, 令()13133222x g x x x x ⎛⎫ ⎪=+=⋅+ ⎪ ⎪⎝⎭,因为()2,x ∈+∞,由对勾函数的单调性可知()g x 在()2,+∞单调递增,故()()1324g x g >=,故134a ≤,即实数a 的取值范围是13,4⎛⎤-∞ ⎥⎝⎦故答案为:13,4⎛⎤-∞ ⎥⎝⎦ . 【点睛】本题考查了导函数在函数单调性的应用,考查了分离参数法求参数的取值范围,属于中档题.18.【分析】求出函数的导数问题转化为在区间恒成立求出的范围即可【详解】若函数区间上为减函数则在区间恒成立即因为所以所以故答案为:【点睛】本题主要考查了利用导数研究函数的单调性函数的单调性的性质属于中档题解析:(],1-∞【分析】求出函数的导数,问题转化为10a x-在区间(0,1)恒成立,求出a 的范围即可. 【详解】()f x ax lnx =-,(0)x >, 1()f x a x∴'=-,若函数()f x ax lnx =-区间(0,1)上为减函数, 则10a x-在区间(0,1)恒成立, 即1()min a x ,因为(0,1)x ∈, 所以min11x ⎛⎫>⎪⎝⎭, 所以1a ≤.故答案为:(-∞,1]. 【点睛】本题主要考查了利用导数研究函数的单调性,函数的单调性的性质,属于中档题.19.;【分析】首先有且根据导函数得到的单调区间及对应的单调性使函数在区间(0m 上单调递减成立即(0m 包含于的单调递减区间即可得到一个m 值【详解】由题意知:且∴当且时即单调递减当时即单调递增故要使在区间(解析:12; 【分析】首先有2(1)()xx e f x x-'=且0x ≠,根据导函数得到()f x 的单调区间及对应的单调性,使“函数()xe f x x=在区间(0,m ]上单调递减”成立,即(0,m ]包含于()f x 的单调递减区间,即可得到一个m 值 【详解】由题意,知:2(1)()xx e f x x -'=且0x ≠∴当0x ≠且1x <时,()0f x '<,即()f x 单调递减 当1x >时,()0f x '> ,即()f x 单调递增故,要使()f x 在区间(0,m ]上单调递减,则01m <<即可 ∴12m =符合要求 故答案为:12【点睛】本题考查了根据命题的真假求参数范围,结合导函数研究函数的单调区间,由命题中函数单调的成立条件确定区间的包含关系,进而求参数范围20.【分析】根据得出再根据利用作差因式分解可得出的值【详解】由题意可得则即即故答案为:【点睛】本题考查利用极值点求代数式的值主要考查因式分解考查计算能力属于中等题 解析:3【分析】根据()00f x '=得出()2031a x =-,再根据()()10f x f x =利用作差因式分解可得出102x x +的值.【详解】()()31f x x ax b =---,()()231f x x a '∴=--,由题意可得()()200310f x x a '=--=,则()2031a x =-,10x x ≠,100x x ∴-≠,()()10f x f x =,()()33110011x ax b x ax b ∴---=---,()()()33101011x x a x x ∴---=-,()()()()()()22101100101111x x x x x x a x x ⎡⎤∴--+--+-=-⎣⎦,()()()()()22211000111131x x x x a x ∴-+--+-==-,()()()()221100111210x x x x ∴-+----=,()()()()1010111210x x x x ∴---⋅-+-=⎡⎤⎡⎤⎣⎦⎣⎦,即()()1010230x x x x -+-=,10230x x ∴+-=,即1023x x +=.故答案为:3. 【点睛】本题考查利用极值点求代数式的值,主要考查因式分解,考查计算能力,属于中等题.三、解答题21.(1)答案见解析;(2)最大值是733,最小值是83-.【分析】(1)求得导函数,并计算()0f x '=的根,列表判断极值即可得结果; (2)根据(1)的极值再比较()853f -=-,()7343f =的大小即可得最值. 【详解】解:(1)函数()321313f x x x x =+--的定义域为R . ()()()22331f x x x x x '=+-=+-.令()0f x '=,解得3x =-,或1x =.当x 变化时,()f x ',()f x 的变化情况如下表所示.因此,当3x =-时,函数f x 有极大值,并且极大值为38f -=, 当1x =时,函数()f x 有极小值,并且极小值为()318f =-. (2)由(1)知,函数()f x 在区间[]5,4-上, 极大值为()38f -=,极小值为()318f =-. 又由于()853f -=-,()7343f =, 所以函数()f x 在区间[]5,4-上的最大值是733,最小值是83-.【点晴】方法点晴:求极值的方法步骤:1、求函数定义域;2、求导函数并解方程()0f x '=的根;3、列表判断极值. 22.(1)答案见解析;(2)证明见解析. 【分析】 (1)求导()()1'(0)a x f x x x-=>,0a >,0a <,0a =讨论,令()'0f x >求解.(2)结合(1)将问题转化为()min 2f x >-求解. 【详解】(1)根据题意知,()()1'(0)a x f x x x-=>,当0a >时,当()01x ∈,时,()'0f x >,当()1x ∈+∞,时,()'0f x <, 所以()f x 的单调递增区间为()01,,单调递减区间为()1+∞,; 同理,当0a <时,()f x 的单调递增区间为()1+∞,,单调递减区间为()01,;当0a =时,()3f x =-,不是单调函数,无单调区间. (2)证明:当1a =-时,()ln 3f x x x =-+-, 所以12f ,由(1)知()ln 3f x x x =-+-在()1+∞,上单调递增, 所以当()1x ∈+∞,时,()()1f x f >. 即()2f x >-,所以()20f x +>. 【点睛】方法点睛:利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,或者函数的最值证明函数h (x )>0,其中一个重要技巧就是找到函数h (x )在什么地方可以等于零,这往往就是解决问题的一个突破口. 23.(1)1y =;(2)0a ≥. 【分析】(1)利用导数的几何意义可求得结果; (2)转化为()0g x '≥,即222a x x≥-在[1,+)∞上恒成立,再构造函数求出最大值即可得解.【详解】(1)当2a =-时,()22f x x lnx =-,定义域为(0,)+∞,2222()2x f x x x x -'=-=,所以函数()f x 在点()()11f ,处的切线的斜率为2212(1)01f ⨯-'==,又(1)1201f =-⨯=,所以函数()f x 在点()()11f ,处的切线方程为1y = (2)因为()()2g x f x x=+22ln x a x x =++在[1,+)∞上是单调增函数,所以322222()2a x ax g x x x x x+-'=-+=0≥在[1,+)∞上恒成立, 即222a x x≥-在[1,+)∞上恒成立, 因为222y x x =-在[1,+)∞上为单调递减函数,所以当1x =时,222y x x=-取得最大值0,所以0a ≥. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤; 24.(1)证明见解析;(2)证明见解析. 【分析】(1)对()f x 求导,利用导数判断()f x 的单调性,求出()f x 的极值或最值,即可求证;(2)构造函数()xg x e x =-,求导利用单调性证明()0xg x e x =->,再由(1)可知()1ln 0f x x x =--≥即1ln x x ≥+可得ln x x >,进而可证明0x >时, ln x e x x >>.【详解】(1)()1ln =--f x x x 的定义域为()0,∞+,1()1f x x'=-当01x <<时,1()10f x x '=-<,当1x >时,1()10'=->f x x, 所以()f x 在()0,1单调递减,在()1,+∞单调递增,所以1x =时()f x 最小为(1)11ln10f =--=, 所以()f x 存在唯一的零点1x =,(2)令()xg x e x =-,则()1x g x e '=-,当0x >时,()10xg x e '=->,()x g x e x =-在()0,∞+单调递增,所以()()0001g x g e >=-=,即10x e x ->>,即0x e x ->,所以x e x >,由(1)知()1ln =--f x x x 在()0,1单调递减,在()1,+∞单调递增, 所以()f x 最小为(1)11ln10f =--=,所以()1ln 0f x x x =--≥即1ln x x ≥+,所以ln x x >, 综上所述:当0x >时,ln x e x x >>. 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.25.(1)10x y +-=;(2)答案见解析. 【分析】(1)求出()1f 和()1f '的值,结合点斜式可得出曲线()y f x =在点()()1,1f 处的切线方程;(2)求得()21tx g x x-'=,分0t ≤、01t <<、1t =三种情况讨论,由导数分析函数()g x 的单调性与极值,进而可得出实数t 在不同取值下函数()g x 零点的个数.【详解】 (1)因为()11f x x =-,所以()21f x x'=-,所以()10f =,()11f '=-. 所以曲线()y f x =在点()()1,1f 处的切线方程是()1y x =--,即10x y +-=;(2)因为()()ln g x f x t x =+,所以()()1ln 10g x t x x x =+->, 所以()2211t tx g x x x x-'=-+=. ①当0t ≤时,()0g x '≤,所以()g x 在()0,∞+上单调递减.因为()10g =,所以()g x 有且仅有一个零点;②当01t <<时,令()0g x '>,得1x t>,令()0g x '<,得1x t <. 所以()g x 在10,t ⎛⎫ ⎪⎝⎭上单调递减,在1,t ⎛⎫+∞ ⎪⎝⎭上单调递增. 因为()10g =,所以()g x 在10,t ⎛⎫ ⎪⎝⎭上有且仅有一个零点. 因为()110g g t ⎛⎫<= ⎪⎝⎭,即1ln 10t t t +-<,则111ln 1t t t <-<,所以,11t e t >, 则()1110t t g e e =>, 所以01,x t ⎛⎫∃∈+∞ ⎪⎝⎭,使得()00g x =,所以()g x 在1,t ⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点.所以当01t <<时,()g x 有两个零点;③当1t =时,()21x g x x-'=. 令()0g x '>,得1x >,令()0g x '<,得1x <.所以()g x 在()0,1上单调递减,在()1,+∞上单调递增.所以当1x =时,()g x 取得最小值,且()10g =,所以()g x 有且仅有一个零点. 综上所述,当0t ≤或1t =时,()g x 有且仅有一个零点;当01t <<时,()g x 有两个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.26.(1)()f x 单调递增;(2)24aπ. 【分析】(1)求导()'2sin f x x x =-,得出导函数的符号,从而可得函数()f x 单调性.(2)由已知将问题转化为不等式sin ()a x f x ⋅恒成立,令()sin ()k x x f x =⋅,求导''()cos ()sin ()k x x f x x f x =⋅+⋅,分析导函数的符号,得出()k x 单调递增,求得()k x 的最大值,由恒等式的思想可得出a 的取值范围.【详解】解:(1)()'2sin f x x x =-,令()2sin h x x x =-,当[0,]x π∈时,'()2cos 0h x x =->,所以当[0,]x π∈时,()2sin h x x x =-单调递增;所以()(0)0h x h =,即()0f x ',所以()f x 单调递增. (2)因为当,62x ππ⎡⎤∈⎢⎥⎣⎦时,不等式()()0f x g x -恒成立, 所以当,62x ππ⎡⎤∈⎢⎥⎣⎦时,不等式sin ()a x f x ⋅恒成立, 令()sin ()k x x f x =⋅,所以''()cos ()sin ()k x x f x x f x =⋅+⋅,因为当,62x ππ⎡⎤∈⎢⎥⎣⎦时,'cos 0,()0,sin 0,()0x f x x f x >>>>,所以'()0k x >,所以()k x 单调递增,所以2()24k x k ππ⎛⎫≤= ⎪⎝⎭,所以24a π≥. 【点睛】方法点睛:对于不等式恒成立问题,常常采用:()f x a >对一切x I ∈恒成立,等价于min ()f x a >;()f x α<对一切x I ∈恒成立,等价于max ()f x α<.。

北师大版高中数学选修1-1第四章《导数应用》测试卷(包含答案解析)

北师大版高中数学选修1-1第四章《导数应用》测试卷(包含答案解析)

一、选择题1.已知,a b ∈R ,若函数()e =-x f x a bx 存在两个零点1x ,2x ,且210x x >>,则下列结论可能成立的是( ). A .0ae b >>B .0ae b >>C .0b ae >>D .0ae b >> 2.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定3.已知函数()2()x xf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<4.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是( )A .(,2e ⎤-∞⎦B .()0,2eC .(,4e ⎤-∞⎦D .()0,4e5.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .6.若函数32()x x x f x e e e a =---存在零点,则实数a 的取值范围为( ) A .[2,)-+∞B .[,)e C .2[,)e -+∞ D .[1,)-+∞7.已知曲线1C :()xf x xe =在0x =处的切线与曲线2C :()()ln a xg x a x=∈R 在1x =处的切线平行,令()()()h x f x g x =,则()h x 在()0,∞+上( )A .有唯一零点B .有两个零点C .没有零点D .不确定8.若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( )A .(0)(0)-∞+∞,, B .(0)(3)-∞⋃+∞,, C .(0)+∞,D .(3)+∞,9.已知函数()()30f x ax bx c ac =++<,则函数()y f x =的图象可能是( ).A .B .C .D .10.已知函数()f x 的定义域为[)2-+∞,,部分对应值如下表;()f x '为()f x 的导函数,函数()y f x '=的图象如下图所示.若实数a 满足()211f a +≤,则a 的取值范围是() x2-0 4 ()f x11-1A .33,22⎛⎫-⎪⎝⎭ B .13,22⎛⎫-⎪⎝⎭ C .33,22⎡⎤-⎢⎥⎣⎦ D .13,22⎡⎤-⎢⎥⎣⎦ 11.设函数()f x 的定义域为R ,其导函数是()f x ',若()()()20,01'+<=f x f x f ,则不等式()2xf x e ->的解集是( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0-∞12.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有2()()0f x xf x '+>,且(1)0f -=,则使得()0f x >成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-二、填空题13.对于函数22,0()12,02x x e x f x x x x ⎧⋅≤⎪=⎨-+>⎪⎩有下列命题: ①在该函数图象上一点(﹣2,f (﹣2))处的切线的斜率为22e -; ②函数f (x )的最小值为2e-; ③该函数图象与x 轴有4个交点;④函数f (x )在(﹣∞,﹣1]上为减函数,在(0,1]上也为减函数. 其中正确命题的序号是_____.14.已知函数()cos sin f x x x x =-,下列结论中, ①函数()f x 的图象关于原点对称; ②当(0,)x π∈时,()0f x π-<<; ③若120x x π<<<,则1122sin sin x x x x >;④若sin ax x bx <<对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1. 所有正确结论的序号为______.15.若a 是区间[]0,3e 上任意选取的一个实数,则xea x>对()0,x ∈+∞恒成立的概率为______.16.已知函数()()()3ln 06x f x a x x x a =-->,当0x >时,()0f x '≥(()f x '为函数()f x 的导函数),则实数a 的取值范围为______.17.若存在两个正实数x ,y 使等式()()ln ln 0x m y x y x +--=成立,(其中2.71828e =)则实数m 的取值范围是________.18.函数()cos f x x x =+在()0,π上的极大值为M ,极小值为N ,则M N +=__________.19.已知函数()y f x =在R 上的图象是连续不断的一条曲线,并且关于原点对称,其导函数为()f x ',当0x >时,有不等式()()22x f x xf x '>-成立,若对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,则正整数a 的最大值为_______.20.函数31()3f x x ax =-的极大值为a =__________. 三、解答题21.已知函数22()1ln f x x ax a x =++-. (1)当1a =时,求()f x 的单调区间; (2)若0a =,且(0,1)x ∈,求证:2()2ln 122xf x x x e x-+-<. 22.已知函数()xf x e ax a =--.(1)当1a =时,求过点()0,1-且与曲线()y f x =相切的直线方程; (2)若()0f x ≥,求实数a 的取值范围.23.已知函数()()21xf x x a e =-+.(1)讨论()f x 的单调性;(2)若()f x 存在零点,求a 的取值范围. 24.已知曲线3211()33f x x ax bx =+++在点()()1,1f 处的切线斜率为3,且2x =时()y f x =有极值.(1)求函数()f x 的解析式;(2)求函数()f x 在[]0,3上的极值和最小值. 25.已知函数2()ln (0)f x x a x a =->.(1)若2a =,求曲线()y f x =的斜率等于3的切线方程; (2)若()y f x =在区间1,e e⎡⎤⎢⎥⎣⎦上恰有两个零点,求a 的取值范围.26.已知函数()ln f x x ax =-有两个不同的零点()1212,x x x x <,其中e 2.71828=是自然对数的底数.(1)求实数a 的取值范围; (2)求证:(i )11x a<;(ii )212x x ->【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意将问题转化为方程xb e a x=在0,上有两个实数根,进而令()(),0,xe g x x x=∈+∞,再研究函数()g x 的单调性得0b e a >>,进而分0a >和0a <讨论即可得答案. 【详解】解:当0a =时,函数()f x 只有一个零点,故0a ≠, 因为函数()e =-x f x a bx 存在两个零点1x ,2x ,且210x x >>所以方程xb e a x=在0,上有两个不相等的实数根.令()(),0,x e g x x x =∈+∞,()()21'x x e g x x-=, 所以当()1,∈+∞x 时()'0g x >,()0,1∈x 时()'0g x <,故函数()(),0,xe g x x x=∈+∞在1,上单调递增,在0,1上单调递减;所以()()min 1g x g e ==,所以0be a>>, 当0a >时,0b ae >>,当0a <时,0b ae <<. 故选:D. 【点睛】本题考查利用导数研究函数零点问题,解题的关键在于将问题转化为方程xb e a x=在0,上有两个不相等实数根,进而令()g x 研究函数的单调性即可.考查运算求解能力与化归转化思想,是中档题.2.A解析:A【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增,()f x 的最小值是()1f 1=,故1a =, ()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x x x g x x e xe x x+=+--=-', 令()1x h x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->,故存在0(0,1)x ∈使得()0h x =即001xx e =,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =, 所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.3.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx x x f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符; 如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符; 如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A 【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.4.A解析:A 【分析】先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可.【详解】()()212x g x x e ax '=+-,由题意可知()()2120x g x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数; 1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数; ()f x的最小值为12f ⎛⎫= ⎪⎝⎭a ≤故选:A. 【点睛】利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立; (2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.5.A解析:A 【分析】利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象. 【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=. 当01x <<时,0y '<,此时函数ln 1y x x =--单调递减; 当1x >时,0y '>,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞. 所以,函数()y f x =的图象如A 选项中函数的图象. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.6.D解析:D 【分析】由题意得32x x x a e e e =--,令32()x x x g x e e e =--,求()g x 的取值范围可得答案. 【详解】由32()0x x x f x e e e a =---=,则32x x x a e e e =--, 令32()x x x g x e e e =--, 则()()()3223()3211213xx x x x x x x x g x ee e e e e e e e '=--=+-=--,当()0g x '>得0x >,()g x 单调递增,当()0g x '<得0x <,()g x 单调递减, 所以min()(0)1g x g ≥=-,()2215()124xxxxx g x e e e e e ⎡⎤⎛⎫=--=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当x 趋向于正无穷大时,()g x 也趋向于正无穷大, 所以函数()f x 存在零点,则1a ≥-. 故选:D. 【点睛】方法点睛:本题考查函数零点问题.解题方法是把零点个数转化为方程解的个数,再转化为函数图象交点个数,由图象观察所需条件求得结论.考查了分析问题、解决问题的能力.7.A解析:A 【分析】先对函数()xf x xe =和()ln a xg x x=求导,根据两曲线在1x =处的切线平行,由导数的几何意义求出a ,得到函数()()()ln xh x f x g x e x ==,对其求导,利用导数的方法判定单调性,确定其在()0,∞+上的最值,即可确定函数零点个数. 【详解】∵()xf x xe =,∴()()1xf x x e '=+,又()ln a x g x x =,∴()2ln a a xg x x -'=, 由题设知,()()01f g '=',即()02ln1101a a e -+=,∴1a =,则()()()ln ln xx xh x f x g x xe e x x==⋅=, ∴()()ln 1ln xx xx x ee h x e x x x+=='+,0x >, 令()ln 1m x x x =+,0x >,则()ln 1m x x '=+, 当10,e x ⎛⎫∈ ⎪⎝⎭时,()0m x '<,即函数()ln 1m x x x =+单调递减; 当1,x e⎛⎫∈+∞ ⎪⎝⎭时,()0m x '>,即函数()ln 1m x x x =+单调递增;∴在()0,∞+上()m x 的最小值为1110m e e⎛⎫=-> ⎪⎝⎭, ∴()0m x >,则()0h x '>,∴()h x 在()0,∞+上单调递增,且()10h =.()h x 在()0,∞+上有唯一零点,故选:A . 【点睛】 思路点睛:利用导数的方法判定函数零点个数时,一般需要先对函数求导,利用导数的方法判定函数单调性,确定函数极值和最值,即可确定函数零点个数.(有时也需要利用数形结合的方法进行判断)8.C解析:C 【分析】构造函数()()3x x g x e f x e =⋅--,解不等式()0g x >即可,对()g x 求导得()[()()1]0x g x e f x f x ''=+->,可得()g x 在R 上单调递增,且(0)0g =,根据单调性可得0x >,即得正确答案. 【详解】令()()3x x g x e f x e =⋅--,则()()()[()()1]0x x x x g x e f x e f x e e f x f x '''=⋅+⋅-=+->, 所以()g x 在R 上单调递增, 又因为00(0)(0)30g e f e =⋅--=, 所以()0>g x ⇒0x >,即不等式的解集是(0)+∞,, 故选:C 【点睛】关键点点睛:本题的关键点是构造函数()()3x x g x e f x e =⋅--,所要解的不等式等价于 ()0g x >,且(0)0g =,所以()()0g x g >,因此需要对()g x 求导判断单调性即可. 9.B解析:B【分析】利用函数()f x 的对称性排除A 选项;然后分0a >和0a <两种情况讨论,利用导数分析函数()f x 的单调性,结合()0f 的符号可得出合适的选项.【详解】()3f x ax bx c =++,则()3f x ax bx c -=--+,()()2f x f x c ∴+-=,所以,函数()f x 的图象关于点()0,c 对称,排除A 选项;()3f x ax bx c =++,则()23f x ax b '=+,当0a >,x →+∞时,()0f x '>,函数()f x 单调递增,又0ac <,()00f c ∴=<,排除D 选项;当0a <,x →+∞时,()0f x '<,函数()f x 单调递减,又0ac <,()00f c ∴=>,排除C 选项.故选:B .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;(2)从函数的值域,判断图象的上下位置.(3)从函数的单调性,判断图象的变化趋势;(4)从函数的奇偶性,判断图象的对称性;(5)函数的特征点,排除不合要求的图象.10.A解析:A【分析】由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到()f x 的单调性,结合函数的单调性即可求得a 的取值范围.【详解】由导函数的图象知:()2,0x ∈-时,()0f x '<,()0,x ∈+∞时,()0f x '>, 所以()f x 在()2,0-上单调递减,在()0,∞+上单调递增,因为()211f a +≤,()21f -=,()41f =,所以2214a -<+<,可得:3322a -<<, 故选:A.【点睛】本题主要考查了利用导函数的符号判断原函数的单调性,以及利用函数的单调性解不等式,属于中档题.11.D解析:D【分析】构造新函数2()()x g x e f x =,求导后可推出()g x 在R 上单调递减,而2()x f x e ->可等价于20()1(0)x e f x e f >=,即()(0)g x g >,故而得解.【详解】令2()()x g x e f x =,则2()[2()()]x g x e f x f x ''=+,2()()0f x f x +'<,()0g x '∴<,即()g x 在R 上单调递减,(0)1f =,2()x f x e -∴>可等价于20()1(0)x e f x e f >=,即()(0)g x g >,0x ∴<,∴不等式的解集为(,0)-∞.故选:D .【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.12.B解析:B【分析】根据条件构造函数2()()g x x f x =,求函数的导数,判断函数的单调性,将不等式进行转化求解.【详解】由题意,设2()()g x x f x =,则2'()2()()[2()'()]g x xf x x f x x f x xf x =+=+, 因为当0x >时,有2()'()0f x xf x +>,所以当0x >时,'()0g x >,所以函数2()()g x x f x =在(0,)+∞上为增函数,因为(1)0f -=,又函数()f x 是偶函数,所以(1)(1)0f f =-=,所以(1)0g =,而当()0>g x 时,可得1x >,而()0>g x 时,有()0f x >,根据偶函数图象的对称性,可知()0f x >的解集为()(),11,-∞-⋃+∞,故选B.【点睛】该题考查的是与导数相关的构造新函数的问题,涉及到的知识点有函数的求导公式,应用导数研究函数的单调性,解相应的不等式,属于中档题目.二、填空题13.①②④【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③【详解】x≤0时f(x)=2xexf′(x)=2(1+x )ex 故f′(﹣2)=①正确;且f(解析:①②④【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③.【详解】x ≤0时,f (x )=2xe x ,f ′(x )=2(1+x )e x ,故f ′(﹣2)=22e-,①正确; 且f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增,故x ≤0时,f (x )有最小值f (﹣1)=2e-, x >0时,f (x )=2122x x -+在(0,1)上单调递减,在(1,+∞)上单调递增,故x >0时,f (x )有最小值f (1)=122e ->- 故f (x )有最小值2e-,②④正确;令20x x e ⋅=得0x =,令21202x x -+=得22x =,故该函数图象与x 轴有3个交点,③错误;故答案为:①②④【点睛】本题考查导数的几何意义,考查利用导数判断函数的单调性、求函数的最值一定注意定义域.14.①②④【分析】首先对函数的奇偶性进行判断得出①正确;利用导数研究函数的单调性求得函数的值域判断②正确;利用导数研究函数的单调性进行变形得到③是错误的数形结合思想可以判断④是正确的【详解】因为所以所以解析:①②④【分析】首先对函数的奇偶性进行判断得出①正确;利用导数研究函数的单调性,求得函数的值域,判断②正确;利用导数研究函数sin ()x g x x=的单调性,进行变形得到③是错误的,数形结合思想可以判断④是正确的.【详解】因为()cos sin f x x x x =-, 所以()()cos()sin()cos sin ()f x x x x x x x f x -=----=-+=-,所以()f x 为奇函数,所以函数()f x 的图象关于原点对称,所以①正确;因为'()cos sin cos sin f x x x x x x x =--=-,因为(0,)x π∈,所以'()0f x <,所以()f x 在(0,)π上单调递减,所以()()(0)0f f x f ππ-=<<=,所以()0f x π-<<,所以②正确; 令sin ()x g x x=,2cos sin '()x x x g x x -=, 由②可知,()f x 在(0,)π上单调递减,所以)'(0g x <, 所以()g x 在(0,)π上单调递减,若120x x π<<<,所以1212sin sin x x x x >, 即1122sin sin x x x x <,所以③错误; 若sin ax x bx <<对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,相当于sin y x =在0,2π⎛⎫ ⎪⎝⎭上落在直线y ax =的上方,落在直线y bx =的下方,结合图形,可知a 的最大值为连接(0,0),(,1)2π的直线的斜率,即2π,b 的最小值为曲线sin y x =在(0,0)处的切线的斜率,即0'|1x y ==,所以④正确;故正确答案为:①②④.【点睛】方法点睛:该题属于选择性填空题,解决此类问题的方法:(1)利用函数的奇偶性判断函数图象的对称性;(2)利用导数研究函数的单调性,从而求得其值域;(3)转化不等式,构造新函数,求导解决问题;(4)数形结合,找出范围.15.【分析】由对恒成立可知只要小于的最小值所以构造函数利用导数求出从而得然后利用区间长度比求出概率即可【详解】设则当时;当时在递减在递增∴∴当时对恒成立故所求概率为故答案为:【点睛】此题考查的是几何概型解析:13【分析】 由x e a x >对()0,x ∈+∞恒成立,可知只要a 小于x e x的最小值,所以构造函数()xe f x x=,利用导数求出()()min 1f x f e ==,从而得()0,a e ∈,然后利用区间长度比求出概率即可.【详解】设()x e f x x =,则()()'21x e x f x x -=,0x >.当01x <<时,()'0f x <;当1x >时,()'0f x >,()f x 在()0,1递减,在()1,+∞递增∴()()min 1f x f e ==,∴当a e <时,xe a x>对()0,x ∈+∞恒成立.故所求概率为1303e e =-. 故答案为:13【点睛】此题考查的是几何概型,不等式恒成立问题,属于基础题. 16.【分析】转化条件得设求导后求出函数的最小值令即可得解【详解】由题意得由于时故设则由于所以当时单调递减;当时单调递增于是所以即故实数的取值范围是故答案为:【点睛】本题考查了利用导数解决不等式恒成立问题 解析:(]0,e【分析】转化条件得()min 0f x '≥,设()()g x f x '=,求导后求出函数()g x 的最小值()min g x ,令()min 0g x ≥即可得解.【详解】由题意得()2ln 2x f x a x '=-. 由于0x >时,()0f x '≥,故()min 0f x '≥.设()()g x f x '=,则()(2x x x a g x x x+-'==. 由于0x >,所以当(x ∈时,()0g x '<,()g x 单调递减;当)x ∈+∞时,()0g x '>,()g x 单调递增. 于是()()()min min ln 1ln 022a a f x g x g a a '===-=-≥,所以ln 1a ≤即0a e <≤,故实数a 的取值范围是(]0,e .故答案为:(]0,e【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.17.【分析】由条件转化为换元令由导数确定函数的值域即可求解【详解】设且设那么恒成立所以是单调递减函数当时当时函数单调递增当函数单调递减所以在时取得最大值即解得:故答案为:【点睛】本题主要考查了利用导数研 解析:(),0-∞【分析】 由条件转化为11ln y y m x x ⎛⎫=-⋅ ⎪⎝⎭,换元0y t x=>,令()()1ln g t t t =-,由导数确定函数的值域即可求解.【详解】()()ln ln x m x y y x =--,()()ln ln 11ln x y y x y y m x x x --⎛⎫==-⋅ ⎪⎝⎭ 设0y t x =>且1t ≠, 设()()1ln g t t t =-,那么()()11ln 1ln 1g t t t t t t'=-+-⋅=-+-, ()221110t g t t t t+''=--=-<恒成立, 所以()g t '是单调递减函数,当1t =时,()10g '=,当()0,1t ∈时,()0g t '>,函数单调递增,当()1,t ∈+∞,()0g t '<,函数单调递减,所以()g t 在1t =时,取得最大值,()10g =,即10m <, 解得:0m <,故答案为:(),0-∞【点睛】本题主要考查了利用导数研究函数的单调性、最值,考查了变形运算能力,属于中档题. 18.【分析】直接求导再判断函数单调性进而求出极值即可【详解】因为令解得或当时单调递增;当时单调递减;当时单调递增所以极大值极小值则故答案为:【点睛】本题考查函数的导数的应用函数的极值以及求法考查分析问题【分析】直接求导,再判断函数单调性,进而求出极值即可.【详解】因为()sin (0)f x x x π'=-<<,令()0f x '=,解得3x π=或23x π=, 当(0,)3x π∈时,()0f x '>,()f x 单调递增; 当(,)33x π2π∈时,()0f x '<,()f x 单调递减; 当2(,)3x ππ∈时,()0f x '>,()f x 单调递增,所以极大值()cos 333M f πππ==+=极小值222()cos 333N f πππ==+=则M N +==,. 【点睛】 本题考查函数的导数的应用,函数的极值以及求法,考查分析问题解决问题的能力,是中档题.19.【分析】令先判断函数g(x)的奇偶性和单调性得到在R 上恒成立再利用导数分析解答即得解【详解】因为当时有不等式成立所以令所以函数g(x)在(0+∞)上单调递增由题得所以函数g(x)是奇函数所以函数在R解析:2【分析】令2()(),g x x f x =先判断函数g(x)的奇偶性和单调性,得到e x ax >在R 上恒成立,再利用导数分析解答即得解.【详解】因为当0x >时,有不等式()()22x f x xf x '>-成立, 所以()()22+20,[()]0x f x xf x x f x ''>∴>, 令2()(),g x x f x =所以函数g(x)在(0,+∞)上单调递增,由题得22()()()g(x),g x x f x x f x -=-=-=-所以函数g(x)是奇函数,所以函数在R 上单调递增.因为对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,所以()()222,()()e x x x x e f e a x f ax g e g ax ax >∴>∴>,, 因为a >0,所以当x≤0时,显然成立.当x >0时,()(0)xe a h x x x<=>, 所以2(1)()xx e h x x-'=,所以函数h (x)在(0,1)单调递减,在(1,+∞)单调递增. 所以min ()(1)h x h e ==,所以a <e,所以正整数a 的最大值为2.故答案为2【点睛】本题主要考查函数的奇偶性及其应用,考查函数单调性的判断及其应用,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.属于中档题.20.3【分析】求导数取导数为0计算代入原函数计算极大值得到答案【详解】函数的极大值为由题意知:当时有极大值所以故答案为3【点睛】本题考查了函数的极大值意在考查学生的计算能力解析:3【分析】求导数,取导数为0,计算x =.【详解】函数31()3f x x ax =-的极大值为 2()f x x a '=- 由题意知:0,a x >⇒=当x =(f =所以3a =故答案为3【点睛】本题考查了函数的极大值,意在考查学生的计算能力.三、解答题21.(1)单调递增区间为(]0,1,单调递减区间为[1,)+∞;(2)证明见解析.【分析】(1)先求出函数的定义域,再对函数求导,然后分别令0f x 和0f x ,解不等式可求出函数的单调区间;(2)22()2ln 11ln 12222x x f x x x x x e x e x--+-<⇔+-<,即()3(1ln )221(01)x x x e x x x -<-++<<,然后构造函数()(1ln )(01)g x x x x =-<<和()3()221x h x e x x =-++,利用导数分别求出()()11g x g <=,()1h x >,从而可得结论【详解】(1)当1a =时,2()1ln f x x x x =++-,定义域为(0,)+∞, ∴1(1)(21)()12x x f x x x x --+'=+-=, 令0f x ,得01x <<;令0f x ,得1x >,∴()f x 的单调递增区间为(]0,1,单调递减区间为[1,)+∞.(2)当0a =时,()1ln f x x =+, ∴22()2ln 11ln 12222x x f x x x x x e x e x--+-<⇔+-<, 即()3(1ln )221(01)x x x e x x x -<-++<<,令()(1ln )(01)g x x x x =-<<,∴()ln 0g x x '=->,∴()g x 在0,1上单调递增,∴()()11g x g <=.令()3()221x h x e x x =-++(01x <<),∴()32()2623x h x e x x x '=--++, 令32()2623x x x x ϕ=--++,∴2()6122x x x ϕ'=--+在0,1上递减,又(0)20ϕ'=>,(1)160ϕ'=-<,∴0(0,1)x ∃∈使()00x ϕ'=,且()00,x x ∈时,()0x ϕ'>,()ϕx 递增, ()0,1x x ∈时,()0x ϕ'<,()ϕx 递减,而(0)30ϕ=>,(1)30ϕ=-<,∴1(0,1)x ∃∈使()10x ϕ=,即()10h x '=,()10,x x ∈时()0h x '>,()h x 单调递增,()1,1x x ∈时()0h x '<,()h x 单调递减, 而(0)1h =,(1)h e =,∴()1h x >恒成立,∴()()g x h x <,即()3(1ln )221(01)x x x ex x x -<-++<<, 即2()2ln 122x f x x x e x-+-<. 【点睛】关键点点睛:此题考查导数的应用,利用导数求函数的单调区间,利用导数求函数的最值,第2问解题的关键是把2()2ln 122x f x x x e x-+-<等价转化为()3(1ln )221(01)x x x e x x x -<-++<<,然后构造函数()(1ln )(01)g x x x x =-<<,()3()221x h x e x x =-++,分别求出两个函数的最值即可,考查数学转化思想,属于中档题22.(1)()110e x y ---=;(2)01a ≤≤.【分析】(1)设切点坐标,求出导数及切线方程,把()0,1-代入切线方程可得0x ,然后再求出切线方程;(2)求出导函数,对a 进行讨论并判断函数的单调性,利用函数的最小值可得答案.【详解】(1)当1a =时,点()0,1-不在函数图象上,()1xf x e '=-, 设切点为()000, x x e ax a --,则切线方程为()()()0000x y e ax a f x x x '---=-, 因为过点()0,1-,所以0000()111x xe x e x --++=--, 解得01x =,因此所求的直线方程为()110e x y ---=.(2)()x f x e a '=-,当0a ≤时,()'0f x >,所以在R 上单调递增,其中0a =,()0xf x e =>,符合题意, 当0a <时,取110a x a-=<,()1110x f x e =-<,不符合题意; 当0a >时,()()n 0,,l x a f x '∈-∞<,所以()f x 在(),ln a -∞上单调递减,()()ln ,,0x a f x '∈+∞>,所以()f x 在()ln ,a +∞上单调递增,所以()()ln f x f a ≥,要使()0f x ≥,只需()ln 0f a ≥,()ln ln ln 0a f a e a a a =--≥,解得01a <≤;综上所述,01a ≤≤.【点睛】本题考查求函数过一点的切线方程和求参数问题,对于求切线的问题时需要讨论此点是否是切点;对于求参数问题,有时可采用对原函数进行求导讨论其单调性和最值方法求解,也可以采用对参数实行分离的方法,构造新函数并求新函数的值域可得解.23.(1)()f x 在()2,1a -∞-上单调递减,在()21,a -+∞上单调递增;(2)(][),11,-∞-+∞.【分析】(1)先求导并解得()0f x '=的根,再判断根附近导数值的正负,即得单调性;(2)先判断极小值即最小值,再结合()210f a =>可知()min 0f x ≤,解不等式即得结果.【详解】解:(1)()()21x f x x a e '=-+,定义域为R , 由()0f x '=,得21x a =-,当21x a <-时,()0f x '<;当21x a >-时,()0f x '>,故()f x 在()2,1a -∞-上单调递减,在()21,a -+∞上单调递增; (2)由(1)知()f x 在21x a =-处取得极小值,也是最小值,则()()221min 11a f x f a e -=-=-,因为()f x 存在零点,且()210f a =>,故只需()21min 10a f x e -=-≤,即2101a e e -≥=,故210a -≥,解得1a ≤-或1a ≥,所以a 的取值范围为(][),11,-∞-+∞. 【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.24.(1)3211()8333f x x x x -=++;(2)极大值为(2)7f =,无极小值;最小值为1(0)3f =. 【分析】(1)求出导数,根据题意有(1)123(2)440f a b f a b =++=⎧⎨=++=''⎩,解出,a b 代入解析式即可; (2)根据导数求出函数的单调区间,判定函数在区间[]0,3上的单调性,根据极值定义求出函数的极值,比较端点函数值即可解出最小值.【详解】解:(1)函数()f x 求导得2()2f x x ax b '=++因为函数()f x 在点()()1,1f 处的切线斜率为3,且2x =时()y f x =有极值 所以(1)123(2)440f a b f a b =++=⎧⎨=++=''⎩解得38a b =-⎧⎨=⎩所以函数()f x 的解析式为3211()8333f x x x x -=++ (2)由(1)可知2()68(2)(4)f x x x x x '=-+=--所以当2x <或4x >时,()0,()f x f x '>单调递增;当24x <<时,()0f x '<,()f x 单调递减,则函数()f x 在[]0,3上有极大值为(2)7f =,无极小值 又因为119(0),(3),33f f == 所以(0)(3)f f < 则函数()f x 在[]0,3上的最小值为1(0)3f =. 【点睛】求函数的极值或极值点的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域;(2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定极值点或函数的极值.25.(1)322ln 20x y ---=;(2)(22,e e ⎤⎦. 【分析】(1)求出导函数,令()3f x '=求得切点坐标后可得切线方程;(2)求导函数()'f x ,确定()f x 在定义域内只有一个极值点,因此这个极值点必在区间1e e ⎛⎫ ⎪⎝⎭,上,然后得函数在1,e e ⎡⎤⎢⎥⎣⎦上的极小值,由极小值小于0,区间两个端点处函数值大于或等于0可得结论.【详解】由已知函数()f x 定义域是(0,)+∞,(1)2()2ln f x x x =-,22(1)(1)()2x x f x x x x'+-=-=,由2()23f x x x'=-=解得2x =(12x =-舍去), 又()422ln 2f =-,所以切线方程为(42ln 2)3(2)y x --=-,即322ln 20x y ---=;(2)222()2x x a x a f x x x x x⎛ -⎝⎭⎝⎭'=-==, 易知()f x()f x有两个零点,则1e e <<,即2222a e e<<,此时在1e ⎛ ⎝上()0f x '<,()f x递减,在e ⎫⎪⎪⎭上()0f x '>,()f x 递增, ()f x在x =2a f a =-,所以22111ln 0()ln 002f a e e e f e e a e a f a ⎧⎛⎫⎪=-≥ ⎪⎪⎝⎭⎪=-≥⎨⎪⎪=-<⎪⎩解得22e a e <≤.综上a 的范围是(22,e e ⎤⎦. 【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的零点问题.函数在某个区间上的零点,解题时先从大处入手,由导数确定函数的极值点,利用单调区间上的零点最多只有一个,因此函数的极值点必在给定区间内,从而缩小参数的a 范围,在此范围内计算()f x 的单调性与极值,结合零点存在定理可得结论.26.(1)10,a e ⎛⎫∈ ⎪⎝⎭;(2)(i )证明见解析;(ii )证明见解析.【分析】(1)函数()ln f x x ax =-有两个不同的零点,等价于ln x a x =在(0,)+∞上有两个不同的实根,记ln ()x g x x=,对函数求导判断单调性,可得实数a 的取值范围; (2)(i )将()1212,x x x x <代入方程并参变分离,利用分析法可知,需证明111ln 20x x x e -+>,构造()ln 2,(1,)h x x x x e x e =-+∈,求导判断单调性与最值即可证明不等式成立;(ii )设()()()21ln 11x x x x x ϕ-=->+,对函数求导判断单调性可得:()()21ln 011x x x x ->>>+,由1122ln ln x ax x ax =⎧⎨=⎩,两式作差可得2121ln x x a x x =-,利用证得的不等式进行放缩,可得不等式成立.【详解】(1)函数()ln f x x ax =-有两个不同的零点()1212,x x x x <,变量分离得ln x a x=在(0,)+∞上有两个不同的实根,记ln ()x g x x =,则21ln ()x g x x -'= 当(0,)x e ∈时,()0,()'>g x g x 单调递增; 当(,)x e ∈+∞时,()0,()g x g x '<单调递减.且0x →时,()g x →-∞;x →+∞时,()0g x → 故10,a e ⎛⎫∈ ⎪⎝⎭.(2)(i )因为12,x x 是ln x ax =的两根,由(1)可知121x e x <<<,且1122ln ln x ax x ax =⎧⎨=⎩(只涉及变量1x ,故只用11ln x ax =),所以11ln x a x =要证211111111120ln 20x ax ax x e x x x e a<⇔->⇔-+>⇔-+> 构造函数()ln 2,(1,)h x x x x e x e =-+∈,则()ln 10h x x '=-<,()h x 在()1,e 上递减 所以()()0>=h x h e ,原不等式成立.(ii )解析1:放缩设()()()21ln 11x x x x x ϕ-=->+,则()()()()222114011x x x x x x ϕ-'=-=>++恒成立, ()x ϕ∴在()1,+∞单调递增,()()10x ϕϕ>=,即()()21ln 011x x x x ->>>+ 由1122ln ln x ax x ax =⎧⎨=⎩,可得221211221212112121ln ln ln 121x x x x x x a x x x x x x x x x x ⎛⎫- ⎪-⎝⎭==>⋅=---++,从而212x x a >-,则21112x x x a ->->212x x ->>11ae a ⇔>⇔<,证毕! 解析2:对数平均不等式 由对数平均不等式2112211ln ln 2x x x x a x x -+=<-,所以122x x a+>,由(i)可知1x <,所以212x x a >->21x x -=,即212x x -=,只需证:a > 下同解法1.【点睛】方法点睛:本题考查导数研究函数的单调性与零点问题,考查导数证明不等式,设函数()y f x =在[],a b 上连续,在(),a b 上可导,则:1.若()0f x '>,则()y f x =在[],a b 上单调递增;2.若()0f x '<,则()y f x =在[],a b 上单调递减.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试(答案解析)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试(答案解析)

一、选择题1.已知,a b ∈R ,若函数()e =-x f x a bx 存在两个零点1x ,2x ,且210x x >>,则下列结论可能成立的是( ). A .0ae b >> B .0ae b >>C .0b ae >>D .0ae b >>2.已知函数3213()32f x x x c =++有3个不同的零点,则c 的取值范围是( ) A .9,02⎛⎫- ⎪⎝⎭B .4,(0,)3⎫⎛-∞-⋃+∞ ⎪⎝⎭C .4,03⎛⎫-⎪⎝⎭D .9,(0,)2⎫⎛-∞-⋃+∞ ⎪⎝⎭3.函数2()2ln 1f x ax x =--有两个不同零点,则a 的取值范围为( ) A .(,e)-∞B .(0,e)C .(0,1)D .(,1)-∞4.设函数()ln 2e f x x mx n x =--+.若不等式()0f x ≤对()0,x ∈+∞恒成立,则nm的最大值为( ) A .4eB .2e C .e D .2e5.函数()cos f x x x =⋅的导函数为()f x ',则()f x 与()f x '在一个坐标系中的图象为( )A .B .C .D .6.设函数()f x 为偶函数,且当0x ≥时,()cos x f x e x =-,则不等式(21)(2)0f x f x --->的解集为( )A .(1,1)-B .(,3)-∞-C .(3,)-+∞D .(1,)(,1)+∞⋃-∞-7.已知函数()()22,02ln ,0x x f x a x x x x -⎧<⎪=⎨++>⎪⎩,若恰有3个互不相同的实数1x ,2x ,3x ,使得()()()1232221232f x f x f x x x x ===,则实数a 的取值范围为( ) A .1a e>-B .10a e-<< C .0a ≥ D .0a ≥或1a e=-8.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=-的图象如图所示,则下列结论中一定成立的是( )A .()f x 有极大值()2f -B .()f x 有极小值()2f -C .()f x 有极大值()1fD .()f x 有极小值()1f9.已知函数31()sin xxf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是( )A .1[,1]2- B .1[1,]2-C .1(,1][,)2-∞-⋃+∞D .1(,][1,)2-∞-⋃+∞10.已知函数()()()0ln 10x e x f x x x ax x -⎧-<⎪=⎨++>⎪⎩,若()f x 的图象上存在关于原点对称的点,则实数a 的取值范围是( ) A .(),1e -∞-B .()1,e -+∞C .[)1,e -+∞D .(],1e -∞-11.已知函数()()()2122x x f x m e m R =+++∈有两个极值点,则实数m 的取值范围为( )A .10e ⎡⎤-⎢⎥⎣⎦,B .111e⎛⎫--- ⎪⎝⎭,C .1e ⎛⎫-∞- ⎪⎝⎭,D .()0+∞,12.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有2()()0f x xf x '+>,且(1)0f -=,则使得()0f x >成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-二、填空题13.定义在R 上的函数()f x 满足:()()22f x f x x -+=,且当0x ≤时,()2f x x '<,则不等式()()25510f x x x f +-+≥的解集为______.14.已知定义在R 上的函数()f x 关于y 轴对称,其导函数为()f x '. 当0x ≥时,()()1xf x f x '>-. 若对任意x ∈R ,不等式()()0x x x e f e e ax axf ax -+->恒成立,则正整数a 的最大值为_____. 15.函数()31443f x x x =-+的极大值为______. 16.已知函数()()ln ,11,1x x x f x x e x ≥⎧=⎨-<⎩,若函数()()()2g x f x f x a =--⎡⎤⎣⎦有6个零点,则实数a 的取值范围是______.17.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为______. 18.已知函数()21ln 2f x a x x bx =-+存在极小值,且对于b 的所有可能取值,()f x 的极小值恒大于0,则a 的最小值为__________.19.已知函数()f x 是定义在区间()0,∞+)上的可导函数,若对()0,x ∀∈+∞()()20xf x f x '+>恒成立,则不等式()()()202020202019201920192020x f x f x ++<+的解集为______.20.函数31()3f x x ax =-的极大值为a =__________. 三、解答题21.已知R a ∈,函数()1ln f x ax x =--在1x =处取得极值. (1)求函数()f x 的单调区间;(2)若对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围22.“既要金山银山,又要绿水青山”.滨江风景区在一个直径AB 为100米的半圆形花园中设计一条观光线路(如图所示).在点A 与圆弧上的一点C (不同于A ,B 两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点C 到点B 设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设BAC θ∠= (弧度),将绿化带总长度表示为θ的函数()S θ;(2)试确定θ的值,使得绿化带总长度最大.(弧度公式:l r α=⋅,其中α为弧所对的圆心角)23.已知曲线3211()33f x x ax bx =+++在点()()1,1f 处的切线斜率为3,且2x =时()y f x =有极值.(1)求函数()f x 的解析式;(2)求函数()f x 在[]0,3上的极值和最小值.24.设函数1()ln ,f x a x a x=+∈R .(Ⅰ)设l 是()y f x =图象的一条切线,求证:当0a =时,l 与坐标轴围成的三角形的面积与切点无关;(Ⅱ)若函数()()g x f x x =-在定义域上单调递减,求a 的取值范围. 25.已知函数()ln x f x x x ae a =-+,其中a ∈R . (1)当0a =时,求函数在(,())e f e 处的切线方程; (2)若函数()f x 在定义域内单调递减,求实数a 的取值范围. 26.已知函数2()ln ()f x x ax x a R =-+∈. (Ⅰ)若3a =,求函数()f x 的单调递增区间; (Ⅱ)令21()()2g x f x x ax =-+,若()g x 的最大值为1-,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意将问题转化为方程xb e a x=在0,上有两个实数根,进而令()(),0,xe g x x x=∈+∞,再研究函数()g x 的单调性得0b e a >>,进而分0a >和0a <讨论即可得答案. 【详解】解:当0a =时,函数()f x 只有一个零点,故0a ≠,因为函数()e =-xf x a bx 存在两个零点1x ,2x ,且210x x >>所以方程xb e a x=在0,上有两个不相等的实数根.令()(),0,x e g x x x =∈+∞,()()21'x x e g x x -=, 所以当()1,∈+∞x 时()'0g x >,()0,1∈x 时()'0g x <,故函数()(),0,xe g x x x=∈+∞在1,上单调递增,在0,1上单调递减;所以()()min 1g x g e ==,所以0be a>>, 当0a >时,0b ae >>,当0a <时,0b ae <<. 故选:D. 【点睛】本题考查利用导数研究函数零点问题,解题的关键在于将问题转化为方程xb e a x=在0,上有两个不相等实数根,进而令()g x 研究函数的单调性即可.考查运算求解能力与化归转化思想,是中档题.2.A解析:A【分析】求出三次函数的导数,根据导函数正负情况分析单调性和极值,图象要与x 轴三个交点,据此得出取值范围. 【详解】由条件得2()3(3)f x x x x x '=+=+, 令()0f x '>,可得解集为(,3)(0,)-∞-⋃+∞ 令()0f x '<,可得解集为(3,0)-则()f x 在(,3)-∞-和(0,)+∞上单调递增,在(3,0)-上单调递减,又9(3)2f c -=+,(0)f c =,要使()f x 有3个不同的零点,则902c c <<+,所以902c -<<. 故选:A 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.C解析:C 【分析】先令()0f x =,分离参数得到22ln 1x a x +=,令()22ln1x g x x +=根据函数有两个不同零点,可得y a =与()22ln 1x g x x +=的图象有两个不同交点,对()g x 求导,判定其单调性,得出最值,画出大致图象,结合图象,即可得出结果. 【详解】因为函数2()2ln 1f x ax x =--有两个不同零点, 所以方程22ln 10ax x --=有两不同实根,即22ln 1x a x +=有两个不同的零点, 令()22ln 1x g x x +=,0x >,则得y a =与()22ln 1x g x x +=的图象有两个不同交点, 因为()()24322ln 124ln x x xx x g x x x ⋅-+⋅-'==,由()0g x '=可得1x =, 当()0,1x ∈时,()0g x '>,则()g x 单调递增; 当()1,x ∈+∞时,()0g x '<,则()g x 单调递减; 所以()()max 11g x g ==, 又由()22ln 10x g x x +=>可得x e >;由()22ln 10x g x x+=<可得0x e <<, 画出()22ln 1x g x x +=的大致图象如下:由图像可得,当01a <<时,y a =与()22ln 1x g x x +=的图象有两个不同交点, 即原函数有两个不同零点. 故选:C.【点睛】 思路点睛:利用导数的方法研究函数零点个数(方程根的个数)求参数问题时,一般需要先分离参数,根据分离后的结果,构造新的函数,利用导数的方法研究函数单调性,确定函数最值,利用数形结合的方法求解.4.D解析:D 【分析】 由题意可得ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭,根据它们的图象,结合的导数的几何意义,以及射线的性质,即可得到所求的最大值. 【详解】由不等式()0f x ≤对()0,x ∈+∞恒成立, 即为ln 20e x mx n x --+≤,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,由()210eg x x x'=+>, 可得()g x 在()0,∞+上递增,且()0g e =,当0x →时,()g x →-∞;x →+∞,()g x →+∞, 作出()y g x =的图象, 再设()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭, 可得()h x 表示过,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点), 要求nm 的最大值,且满足不等式恒成立,可得2n m的最大值, 由于点,02n m ⎛⎫⎪⎝⎭在x 轴上移动, 只需找到合适的0m >,且()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,如图所示:此时2n e m =,即nm 的最大值为2e . 故选:D 【点睛】关键点点睛:本题考查不等式恒成立问题的解法,解题的关键是将问题转化为()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,注意运用转化思想和数形结合思想,考查了导数的应用,求切线的斜率与单调性,考查了运算能力和推理能力.5.A解析:A 【分析】分析函数()f x 、()f x '的奇偶性,以及2f π⎛⎫' ⎪⎝⎭、()f π'的符号,利用排除法可得出合适的选项. 【详解】函数()cos f x x x =的定义域为R ,()()()cos cos f x x x x x f x -=--=-=-, 即函数()cos f x x x =为奇函数,()cos sin f x x x x '=-,函数()f x '的定义域为R ,()()()()cos sin cos sin f x x x x x x x f x ''-=-+-=-=,函数()f x '为偶函数,排除B 、C 选项;22f ππ⎛⎫'=- ⎪⎝⎭,()1f π'=-,则()02f f ππ⎛⎫<< ⎪⎝⎭''.对于D 选项,图中的偶函数为()f x ',由02f π⎛⎫'< ⎪⎝⎭,()0f π'<与题图不符,D 选项错误, 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.6.D解析:D 【分析】利用导数判断函数在[)0,+∞的单调性,然后根据奇偶性判断()f x 在(],0-∞的单调性,再利用单调性与奇偶性结合求解不等式. 【详解】当0x ≥时,()cos x f x e x =-,所以()sin xf x e x '=+,因为0x ≥,所以1x e ≥,即()1sin 0f x x '≥+≥,所以函数()f x 在[)0,+∞上单调递增,又因为函数()f x 为R 上的偶函数,所以函数()f x 在(],0-∞上单调递减,在[)0,+∞上单调递增,则不等式(21)(2)0f x f x --->,等价于212x x ->-,所以1x <-或1x >.故选:D. 【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若()f x 为偶函数,则()()()f x f x f x -==. 7.D解析:D 【分析】根据题意,令()()221,02ln 2,0x x f x x g x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩,得到函数()()2f xg x x =与直线2y =共有三个不同的交点;根据导数的方法,分别判断0x <和0x >时,函数的单调性,以及最值,结合题中条件,即可得出结果. 【详解】因为()()22,02ln ,0xx f x a x x x x -⎧<⎪=⎨++>⎪⎩,令()()221,02ln 2,0x x f x x g x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩, 由题意,函数()()2f x g x x=与直线2y =共有三个不同的交点; 当0x <时,()212x g x x =⋅,则()()()()222232222ln 222ln 22222x x x x x x x x xx g x x x x '-⋅⋅+⋅+'==-=-⋅⋅⋅,由()3ln 2202x x g x x +'=-=⋅解得222log ln 2x e =-=-; 所以()2,2log x e ∈-∞-时,()0g x '<,即函数()212x g x x=⋅单调递减; ()22log ,0x e ∈-时,()0g x '>,即函数()212x g x x=⋅单调递增; 所以()()()()222222min 2log 2212log 2422log 4log ee e g x g e e e -=-==<<⋅-,又2121122122g -⎛⎫-==> ⎪⎝⎭⎛⎫⋅- ⎪⎝⎭,()()271128724927g --==>⋅-, 所以()212x g x x=⋅与直线2y =有且仅有两个不同的交点; 当0x >时,()ln 2xg x a x =++,则()21ln x g x x -'=, 由()21ln 0xg x x -'==得x e =, 所以当()0,x e ∈时,()0g x '>,则函数()ln 2xg x a x=++单调递增; 当(),x e ∈+∞时,()0g x '<,则函数()ln 2xg x a x=++单调递减; 所以()()max 12g x g e a e==++, 又当1≥x 时,()ln 22xg x a a x=++≥+;当01x <<时,()2g x a <+; 当x e ≥时,()ln 22xg x a a x=++>+,所以为使()ln 2x g x a x =++与直线2y =只有一个交点, 只需122a e ++=或22a +≥,即1a e=-或0a ≥. 故选:D.【点睛】 本题主要考查由方程根的个数求参数,转化为函数交点个数问题求解即可,属于常考题型. 8.A解析:A【分析】由函数()()1y x f x '=-的图象,可得1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.由此可得函数()f x 的单调性,则答案可求.【详解】解:函数()()1y x f x '=-的图象如图所示,∴1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.∴函数()f x 在(),2-∞-上单调递增,在()2,1-上单调递减,在()1,+∞上单调递减. ∴()f x 有极大值()2f -. 故选:A .【点睛】本题考查根据导函数的相关图象求函数的单调区间,考查数形结合思想,是中档题. 9.B解析:B【分析】利用函数的奇偶性将函数转化为f (M )≤f (N )的形式,再利用单调性脱去对应法则f ,转化为一般的二次不等式求解即可.【详解】由于()31sin x x f x x x e e=-+-,,则f (﹣x )=﹣x 3sin x ++e ﹣x ﹣e x =﹣f (x ),故函数f (x )为奇函数.故原不等式f (a ﹣1)+f (2a 2)≤0,可转化为f (2a 2)≤﹣f (a ﹣1)=f (1﹣a ),即f (2a 2)≤f (1﹣a );又f '(x )=3x 2﹣cosx+e x +e ﹣x ,由于e x +e ﹣x ≥2,故e x +e ﹣x ﹣cosx>0,所以f '(x )=3x 2﹣cosx+e x +e ﹣x ≥0恒成立,故函数f (x )单调递增,则由f (2a 2)≤f (1﹣a )可得,2a 2≤1﹣a ,即2a 2+a ﹣1≤0, 解得112a -≤≤, 故选B .本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题. 10.C解析:C【分析】转化条件为当0x >时,ln 1x e x x a x--=有解,令()ln 1,0x e x x g x x x --=>,通过导数确定()g x 的取值范围即可得解.【详解】若()f x 的图象上存在关于原点对称的点,则当0x >时,()()ln 1x e x x ax ----=++有解,即当0x >时,ln 1x e x x ax =++有解,所以当0x >时,ln 1x e x x a x--=有解, 令()ln 1,0x e x x g x x x--=>, 则()()()2ln 1ln 1x x e x x e x x g x x -----'=()()()221111x x x e x e x x x ----+==, 当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∈+∞时,()0g x '>,()g x 单调递增,所以()()min 11g x g e ==-,()[)1,g x e ∈-+∞,所以[)1,a e ∈-+∞.故选:C.【点睛】本题考查了函数与方程的综合应用及利用导数研究方程有解问题,考查了运算求解能力与转化化归思想,属于中档题.11.B解析:B【分析】求导()()1x f x x m e '=++,将问题转化为()()1xf x x m e '=++有两个不同的零点,也即是关于x 的方程1x x m e --=有两个不同的解,构造函数()xx g x e =,求导()1xx g x e -'=,分析导函数取得正负的区间,从而得函数()g x 的单调性和最值,从而可得选项.函数()f x 的定义域为R ,()()'1x fx x m e =++,因为函数()f x 有两个极值点, 所以()()1x f x x m e '=++有两个不同的零点,故关于x 的方程1x x m e --=有两个不同的解, 令()x x g x e =,则()1x x g x e-'=,当(,1)x ∈-∞时, ()0g x '>,当(1,+)x ∈∞时,()0g x '<,所以函数()g x 在区间(,1)-∞上单调递增,在区间(1,+∞)上单调递减,又当x →-∞时,()g x →-∞;当x →+∞时,()0g x →,且0,()0x g x >>()11g e=,故101m e <--<, 即111m e--<<-. 故选:B.【点睛】 本题考查运用导函数研究函数的单调性、最值、极值,关键在于构造合适的函数,参变分离的方法的运用,属于中档题.12.B解析:B【分析】根据条件构造函数2()()g x x f x =,求函数的导数,判断函数的单调性,将不等式进行转化求解.【详解】由题意,设2()()g x x f x =,则2'()2()()[2()'()]g x xf x x f x x f x xf x =+=+, 因为当0x >时,有2()'()0f x xf x +>,所以当0x >时,'()0g x >,所以函数2()()g x x f x =在(0,)+∞上为增函数,因为(1)0f -=,又函数()f x 是偶函数,所以(1)(1)0f f =-=,所以(1)0g =,而当()0>g x 时,可得1x >,而()0>g x 时,有()0f x >,根据偶函数图象的对称性,可知()0f x >的解集为()(),11,-∞-⋃+∞,故选B.【点睛】该题考查的是与导数相关的构造新函数的问题,涉及到的知识点有函数的求导公式,应用导数研究函数的单调性,解相应的不等式,属于中档题目. 二、填空题13.【分析】令问题转化为根据函数的单调性求出不等式的解集即可【详解】因为所以令则所以为奇函数又因为当时所以在上单调递减即在上单调递减而不等式所以所以故答案为:【点睛】构造辅助函数是高中数学中一种常用的方 解析:5,2⎛⎤-∞ ⎥⎝⎦ 【分析】令()()2g x f x x =-,问题转化为()()5g x x g -≥,根据函数的单调性求出不等式的解集即可.【详解】因为()()22f x f x x -+=, 所以()()()220f x x f x x ---+-=,令()()2g x f x x =-,则()()0g x g x -+=,所以()g x 为奇函数. 又因为当0x ≤时,()()20g x f x x ''=-<,所以()g x 在(],0-∞上单调递减,即()g x 在R 上单调递减.而不等式()()()()()()()2225510555f x f x x f x x f x x g x g x +≥-+⇔-≥---⇔≥-, 所以5x x ≤-,所以52x ≤. 故答案为:5,2⎛⎤-∞ ⎥⎝⎦【点睛】构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数. 14.2【分析】令利用可得在单调递增不等式恒成立等价于即当时分离参数可得可求出正整数的最大值为2再检验当时对于不等式恒成立即可求解【详解】因为定义在上的函数关于轴对称所以函数为上的偶函数令则因为当时即所以 解析:2【分析】令()()g x xf x x =-,利用()()1xf x f x '>-可得()g x 在[)0,+∞单调递增,不等式()()0x x x e f e e ax axf ax -+->恒成立等价于()()x g e g ax >,即e x ax >,当0x >时,分离参数可得()xe a h x x<=,可求出正整数a 的最大值为2,再检验当2a =时,对于0x <,不等式恒成立,即可求解.【详解】因为定义在R 上的函数()f x 关于y 轴对称,所以函数()f x 为R 上的偶函数,令()()g x xf x x =-,则()()()1g x f x xf x ''=+-,因为当0x ≥时,()()1xf x f x '>-,即()()()10g x f x xf x ''=+->,所以()g x 在[)0,+∞单调递增,不等式()()0x x x e f ee ax axf ax -+->恒成立, 即()()x x x e f e e axf ax ax ->-,即()()xg e g ax >,所以e x ax >,当0x >时,()xe a h x x <=,则()()21x e x h x x-'=, 可得()h x 在()0,1单调递减,在()1,+∞单调递增,所以()()min 1h x h e ==,所以a e <,此时最大的正整数a 为2,2a =对于0x <时,e x ax >恒成立,综上所述:正整数a 的最大值为2,故答案为:2【点睛】关键点点睛:本题的关键点是构造函数()()g x xf x x =-,利用导数判断出()g x 在[)0,+∞单调递增,不等式恒成立即()()x g e g ax >,利用单调性可得e x ax >,再分类参数求最值.15.【分析】求函数导数解得的根判断导函数在两侧区间的符号即可求解【详解】由解得或时当时是的极大值点函数的极大值为故答案为:【点睛】本题主要考查了基本初等函数的求导公式二次函数的图象以及函数极大值点的定义 解析:283【分析】求函数导数,解得()0f x '=的根,判断导函数在2x =±两侧区间的符号,即可求解.【详解】()31443f x x x =-+, 2()4,f x x '∴=-由()0f x '=解得2x =±,2x ∴<-或2x >时,()0f x '>,当22x -<<时,()0f x '<,2x ∴=-是()f x 的极大值点,∴函数的极大值为128(2)(8)8433f -=⨯-++=, 故答案为:283【点睛】本题主要考查了基本初等函数的求导公式,二次函数的图象,以及函数极大值点的定义及其求法,属于中档题. 16.【分析】当时利用导数法得到函数的单调性与极值再由时作出函数的大致图象令将问题转化为方程有两个不等根且即各有3个根求解【详解】当时所以当时递增当时递减所以当时取得最大值1又当时所以的大致图象如图所示: 解析:1,04⎛⎫- ⎪⎝⎭【分析】当1x <时,()()1xf x x e =-,利用导数法得到函数的单调性与极值,再由1≥x 时,()ln f x x =,作出函数()f x 的大致图象,令()f x t =,将问题转化为方程20t t a --=有两个不等根12,t t ,且12,(0,1)t t ∈即()()12,f x t f x t ==各有3个根求解.【详解】当1x <时,()()1xf x x e =-, 所以()xf x xe '=-,当0x <时,()0f x '>,()f x 递增, 当01x <<时,()0f x '<,()f x 递减,所以当0x =时, ()f x 取得最大值1,又当1≥x 时,()ln f x x =,所以()f x 的大致图象如图所示:令()f x t =,则转化为方程20t t a --=有两个不等根12,t t ,且()()2121,(0,1),,t f x t f t x t ==∈各有3个根,方程20t t a --=在(0,1)有两个不同的解,设2()g t t t a =--,所以(0)0140(1)0g a a g a =->⎧⎪∆=+>⎨⎪=->⎩, 解得104a -<<. 故答案为:1,04⎛⎫-⎪⎝⎭ 【点睛】本题主要方程的根与函数的零点问题,利用导数研究函数的单调性与极值,还考查了转化化归思想、数形结合思想和运算求解的能力,属于中档题.17.【分析】求函数的导数根据利用参数分离法进行转化然后构造函数转化为求函数的最值即可【详解】解:函数的导数由在上恒成立得在上恒成立即得在上恒成立设则当时恒成立即在上是增函数则当时取得最小值则即实数的取值 解析:(],3-∞【分析】求函数的导数,根据()0f x ',利用参数分离法进行转化,然后构造函数()g x ,转化为求函数的最值即可.【详解】 解:函数的导数2()21f a x x x '=+-,由()0f x '在1x 上恒成立得2210a x x +-在1x 上恒成立, 即221a x x +, 得322x x a +在1x 上恒成立,设32()2g x x x =+,则2()622(31)g x x x x x '=+=+,当1x 时,()0g x '>恒成立,即()g x 在1x 上是增函数,则当1x =时,()g x 取得最小值()1213g =+=,则3a ,即实数a 的取值范围是(],3-∞,故答案为:(],3-∞【点睛】本题主要考查函数恒成立问题,求函数的导数,利用参数分离法以及构造函数,利用导数研究函数的最值是解决本题的关键.属于中档题.18.【解析】因故有解即有解令取得极小值点为则则函数的极小值为将代入可得由题设可知令则由即当时函数取最小值即也即所以即应填答案点睛:本题是一道较为困难的试题求解思路是先确定极小值的极值点为则进而求出函数的解析:3min a e =-【解析】因()a f x x b x -'=+,故()0a f x x b x-+'==有解,即20x bx a --=有解.令取得极小值点为t ,则2bt t a =-,则函数的极小值为21()ln 2f t a t t bt =-+,将2bt t a =-代入可得21()ln 2f t a t t a =+-,由题设可知21ln 02a t t a +->,令21()ln 2h t a t t a =+-,则()a h t t t =+',由2()0a h t t t a t=+'=⇒=-,即当2t a =-时,函数21()ln 2h t a t t a =+-取最小值1()02h a a a =--≥,即3322a a ≥-⇒≤,也即13ln()ln()322a a -≤⇒-≤,所以33a e a e -≤⇒≥-,即3min a e =-,应填答案3min a e =-.点睛:本题是一道较为困难的试题.求解思路是先确定极小值的极值点为t ,则2bt t a =-,进而求出函数的极小值21()ln 2f t a t t bt =-+,通过代入消元将未知数b 消掉,然后求函数21()ln 2h t a t t a =+-的最小值为1()02h a a a =--≥,从而将问题转化为3322a a ≥-⇒≤,然后通过解不等式求出即3min a e =-.19.【分析】令求的导数根据条件可知从而判断单调递增将不等式化为即可求解【详解】令因为的定义域为所以函数的定义域也为则所以函数在上单调递增又可以化为即所以所以故不等式的解集为故答案为:【点睛】本题考查利用 解析:()2020,1--【分析】令()2()g x x f x =,求()g x 的导数'()g x ,根据条件可知'()0g x >,从而判断()g x 单调递增,将不等式化为()()20202019g x g +<即可求解.【详解】令()2()g x x f x =,因为()f x 的定义域为()0,∞+,所以函数()g x 的定义域也为()0,∞+,则()()()()()2220g x xf x x f x x f x xf x '''=+=+>⎡⎤⎣⎦, 所以函数()g x 在()0,∞+上单调递增,又()()()202020202019201920192020x f x f x ++<+可以化为()()()222020202020192019x f x f ++<,即()()20202019g x g +<,所以020202019x <+<,所以20201x -<<-,故不等式的解集为()2020,1--.故答案为:()2020,1--.【点睛】本题考查利用函数的单调性解不等式,构造函数求导是解题的关键,属于中档题. 20.3【分析】求导数取导数为0计算代入原函数计算极大值得到答案【详解】函数的极大值为由题意知:当时有极大值所以故答案为3【点睛】本题考查了函数的极大值意在考查学生的计算能力解析:3【分析】求导数,取导数为0,计算x =.【详解】函数31()3f x x ax =-的极大值为2()f x x a '=- 由题意知:0,a x >⇒=当x =(f =所以3a =故答案为3【点睛】本题考查了函数的极大值,意在考查学生的计算能力.三、解答题21.(1)在(0,1)上单调递减,在()1,+∞上单调递增;(2)211b e -≤. 【分析】(1)对函数求导得()11ax f x a x x-'=-=,由题意,()110f a '=-=,得1a =,再代入计算()0f x '>与()0f x '<,即可得单调性;(2)参变分离得1ln ()1=+-≥x g x b x x ,利用恒成立方法,对函数1ln ()1x g x x x=+-求导,判断单调性,求最小值即可.【详解】 (1)函数的定义域为(0,)+∞,()11ax f x a x x -'=-=,由题意,()110f a '=-=,所以1a =,即1()x f x x'-=,由()0f x '>得1x >,由()0f x '<得01x <<,故函数()f x 在(0,1)上单调递减,在()1,+∞上单调递增.(2)1ln ()21x f x bx b x x≥-⇒+-≥,令1ln ()1x g x x x =+-,则min ()≥g x b 成立,2ln 2()x g x x-'=,由()0g x '>,得2x e >,由()0g x '<,得20x e <<, 故()g x 在2(0,)e 上递减,在2(,)e +∞上递增,2min 21()()1==∴-x g e e g ,即211b e-≤. 【点睛】 导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.22.(1)()200cos 100,0,2S πθθθθ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)6πθ=. 【分析】(1)在直角三角形ABC 中,求出AC ,在扇形COB 中利用弧长公式求出弧BC 的长度,则可得函数()S θ;(2)利用导数可求得结果.【详解】(1)如图,连接,BC OC ,在直角三角形ABC 中,100,,AB BAC θ=∠=所以100cos ,AC θ=由于22,BOC BAC θ∠=∠=则弧BC 的长为250100,l r αθθ=⋅=⋅=()22100cos 100200cos 100,0,2S AC l πθθθθθθ⎛⎫⎛⎫∴=+=⨯+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)由(1)可知()200sin 100S θθ'=-+, 令()0,S θ'= 得1sin 2θ=,因为(0,)2πθ∈所以6πθ=,当0,,()0,()6S S πθθθ'⎛⎫∈> ⎪⎝⎭单调递增, 当,,()0,()62S S ππθθθ'⎛⎫∈< ⎪⎝⎭单调递减, 所以当6πθ=时,使得绿化带总长度()S θ最大. 【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键.23.(1)3211()8333f x x x x -=++;(2)极大值为(2)7f =,无极小值;最小值为1(0)3f =. 【分析】 (1)求出导数,根据题意有(1)123(2)440f a b f a b =++=⎧⎨=++=''⎩,解出,a b 代入解析式即可; (2)根据导数求出函数的单调区间,判定函数在区间[]0,3上的单调性,根据极值定义求出函数的极值,比较端点函数值即可解出最小值.【详解】解:(1)函数()f x 求导得2()2f x x ax b '=++因为函数()f x 在点()()1,1f 处的切线斜率为3,且2x =时()y f x =有极值 所以(1)123(2)440f a b f a b =++=⎧⎨=++=''⎩解得38a b =-⎧⎨=⎩所以函数()f x 的解析式为3211()8333f x x x x -=++ (2)由(1)可知2()68(2)(4)f x x x x x '=-+=--所以当2x <或4x >时,()0,()f x f x '>单调递增;当24x <<时,()0f x '<,()f x 单调递减,则函数()f x 在[]0,3上有极大值为(2)7f =,无极小值 又因为119(0),(3),33f f == 所以(0)(3)f f < 则函数()f x 在[]0,3上的最小值为1(0)3f =. 【点睛】求函数的极值或极值点的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域;(2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定极值点或函数的极值.24.(Ⅰ)证明见解析;(Ⅱ)(,2]-∞.【分析】(Ⅰ)设切点为001(,)P x x ,求出切线方程并计算l 与坐标轴围成的三角形的面积为2,故可得相应的结论.(Ⅱ)由题设可得()0g x '≤,利用参变分离可得a 的取值范围. 【详解】(Ⅰ)当0a =时,1(),0f x x x =>,21()f x x'=-, 设()f x 图象上任意一点001(,)P x x ,切线l 斜率为0201()k f x x =-'=. 过点001(,)P x x 的切线方程为020011()y x x x x -=--. 令0x =,解得02y x =;令0y =,解得02x x =.切线与坐标轴围成的三角形面积为0012|||2|22S x x =⋅=. 所以l 与坐标轴围成的三角形的面积与切点无关.(Ⅱ)由题意,函数()g x 的定义域为(0,)+∞.因为()g x 在(0,)+∞上单调递减, 所以21()10a g x x x '=--≤在(0,)+∞上恒成立, 即当(0,)x ∈+∞,1a x x ≤+恒成立, 所以min 1()a x x ≤+因为当(0,)x ∈+∞,12x x+≥,当且仅当1x =时取等号. 所以当1x =时,min 1()2x x +=所以2a ≤.所以a 的取值范围为(,2]-∞.【点睛】结论点睛:一般地,若()f x 在区间(),a b 上可导,且()()()00f x f x ''><,则()f x 在(),a b 上为单调增(减)函数;反之,若()f x 在区间(),a b 上可导且为单调增(减)函数,则()()()00f x f x ''≥≤.25.(1)20x y e --=;(2)1,e ⎡⎫+∞⎪⎢⎣⎭.【分析】(1)0a =时,先求出切点和切线斜率,再利用点斜式写直线方程即可;(2)先将单调性问题转化成恒成立问题,再分离参数研究最值即得结果.【详解】解:(1)当0a =时,()ln ,()f x x x f e e ==,即切点为(),e e ,由()ln 1f x x '=+知,切线斜率()2k f e '==, ∴切线方程为:2()y e x e -=-,即20x y e --=;(2)函数()f x 的定义域为(0,)+∞,()ln 1x f x x ae '=+-,因为()f x 在(0,)+∞内是减函数,所以()ln 10x f x x ae '=+-≤在(0,)+∞内恒成立,ln 1xx a e +∴≥在(0,)+∞内恒成立, 令ln 1()xx g x e +=,则1ln 1()xx x g x e --'=,由函数1y x =和ln y x =-在(0,)+∞上递减可知,函数1()ln 1h x x x=--在(0,)+∞单调递减,且(1)0h =,(0,1)x ∴∈时()0g x '>,即()g x 在(0,1)单调递增,(1,)x ∈+∞时()0g x '<,即()g x 在(1,)+∞单调递减, 故max 11()(1)g x g a e e==∴≥, 即a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭.【点睛】方法点睛:已知函数()y f x =单调性求参数的取值范围问题,通常利用导数将其转化成恒成立问题: (1)函数()y f x =在区间I 上单调递增,则()0f x '≥在区间I 上恒成立;(2)函数()y f x =在区间I 上单调递减,则()0f x '≤在区间I 上恒成立. 26.(Ⅰ)()10,,1,+2⎛⎫∞ ⎪⎝⎭;(Ⅱ)2.【分析】(Ⅰ)当3a =时,()2()3ln 0f x x x x x =-+>,对()f x 进行求导得()()211()x x f x x--'=,再令()0f x '>,结合定义域0x >,即可求出函数()f x 的单调递增区间; (Ⅱ)根据题意得出()1()=ln 02g x x ax x ->,求导得()()12022a ax g x x x x -'=-=>,分类讨论当0a ≤和0a >时,()g x 的单调区间,从而可求出最大值()max 21g x g a ⎛⎫==- ⎪⎝⎭,即可求得a 的值. 【详解】解:(Ⅰ)当3a =时,2()3ln =-+f x x x x ,定义域为()0,∞+, 则()()2211123+1()23x x x x f x x x x x---'=-+==, 令()0f x '>,即()()2110x x -->,解得:12x <或1x >, 又()f x 定义域为()0,∞+,所以函数()f x 的单调递增区间为:()10,,1,+2⎛⎫∞ ⎪⎝⎭.(Ⅱ)21()()2g x f x x ax =-+,2()ln ()f x x ax x a R =-+∈, 即()2211()ln =ln ,022g x x ax x x ax x ax x =-+-+->, 所以()()12022a ax g x x x x-'=-=>, 当0a ≤时,则20ax -≥,则()0g x '≥恒成立,则()g x 在()0,∞+上单调递增,所以()g x 无最大值;当0a >时,令()0g x '=,即20ax -=,解得:20x a =>, 令()0g x '>,即20ax ->,解得:2x a <, 令()0g x '<,即20ax -<,解得:2x a >, 又0x ,所以在区间20,a ⎛⎫ ⎪⎝⎭上()g x 单调递增,在区间2,a ⎛⎫+∞ ⎪⎝⎭上()g x 单调递减, 所以当2x a=时,()g x 取得最大值,而()g x 的最大值为1-, 所以()max 22122ln ln 112g x g a a a a a ⎛⎫==-⨯=-=-⎪⎝⎭, 则2ln 0a =,故21a,解得:2a =.【点睛】 关键点点睛:本题考查利用导数法求解函数的单调性和最值,解题的关键在于运用导数求解函数的最大值从而求出参数值,考查运算能力和分类讨论思想.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试(有答案解析)(2)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试(有答案解析)(2)

一、选择题1.已知函数32()22sin 524x f x x x π⎛⎫=++++ ⎪⎝⎭,且()22(34)12f t t f t -+-+<,则实数t 的取值范围是( ) A .(1,4) B .(,1)(4,)-∞⋃+∞ C .(4,1)-D .(,4)(1,)-∞-+∞2.已知函数244()ln -⎫⎛=++ ⎪⎝⎭x f x k x k x ,[1,)∈+∞k ,曲线()y f x =上总存在两点()11,M x y ,()22,N x y 使曲线()y f x =在M 、N 两点处的切线互相平行,则12+x x 的取值范围为( ) A .[4,)+∞B .(4,)+∞C .16,5⎡⎫+∞⎪⎢⎣⎭D .16,5⎛⎫+∞⎪⎝⎭3.已知关于x 的不等式32ln x ax x -≥恒成立,则实数a 的取值范围为( ). A .(,1]-∞B .(0,1]C .10,e⎛⎤ ⎥⎝⎦D .(,0]-∞4.已知函数()()2ex x f x x =∈R ,若关于方程()()210f x tf x t -+-=恰好有4个不相等的实根,则实数t 的取值范围为( )A .()24,22,e e ⎛⎫⋃⎪⎝⎭ B .24,1e ⎛⎫⎪⎝⎭C .24,e e ⎛⎫⎪⎝⎭D .241,1e ⎛⎫+ ⎪⎝⎭5.对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩.若对函数()ln 22f x x x =-+,有()()g x f x =恒成立,则( )A .k 的最大值为1ln2+B .k 的最小值为1ln2+C .k 的最大值为ln 2D .k 的最小值为ln 26.已知函数()f x 的定义域为[)2-+∞,,部分对应值如下表;()f x '为()f x 的导函数,函数()y f x '=的图象如下图所示.若实数a 满足()211f a +≤,则a 的取值范围是( )A .33,22⎛⎫-⎪⎝⎭B .13,22⎛⎫-⎪⎝⎭C .33,22⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤-⎢⎥⎣⎦7.对于R 上可导的任意函数()f x ,若当2x ≠时满足()02f x x '≤-,则必有( ) A .()()()1322f f f +< B .()()()1322f f f +≤ C .()()()1322f f f +≥D .()()()1322f f f +>8.函数3()3f x x x =-在[0,]m 上最大值为2,最小值为0,则实数m 取值范围为( ) A .[13]B .[1,)+∞C .(13]D .(1,)+∞9.设函数()'f x 是奇函数()()f x x R ∈的导函数,(2)0f -=,当0x >时,()()03xf x f x '+>,则使得()0f x >成立的x 的取值范围是( ) A .(,2)(0,2)-∞-⋃ B .(,2)(2,2)-∞--C .(2,0)(2,)-+∞ D .(0,2)(2,)⋃+∞10.若函数(1),()21,x x e x af x x x a⎧-+=⎨-->⎩有最大值,则实数a 的取值范围是( )A .211[,)22e --+∞ B .21[,)2e -+∞ C .[2-,)+∞ D .211(2,]22e --- 11.已知函数()221,02,0k x f x x x k x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且只有四个不同的零点,则实数k 的取值范围为( ) A .k 0<B .0k >C .27k <D .27k >12.已知函数()()()2122x x f x m e m R =+++∈有两个极值点,则实数m 的取值范围为( )A .10e ⎡⎤-⎢⎥⎣⎦,B .111e⎛⎫--- ⎪⎝⎭,C .1e ⎛⎫-∞- ⎪⎝⎭,D .()0+∞,二、填空题13.函数()()ln 2x f x x=,关于x 的不等式()0f x k ->只有两个整数解,则实数k 的取值范围是_________14.已知函数)(f x 的定义域为R ,且)(12f -=.若对任意x ∈R ,)(2f x '>,则)(24f x x >+的解集为______.15.若函数()231xf x e x mx =+-+在(],3-∞上单调递减,则实数m 的取值范围为______.16.若对任意a ,b 满足0<a <b <m ,都有ln ln a a b b >,则实数m 的最大值为_____________________. 17.已知函数21()ln 2f x x x =+,函数()f x 在[1,]e 上的最大值为__________. 18.若函数3y x ax =-+在[)1,+∞上是单调函数,则a 的最大值是______.19.已知函数()y f x =在R 上的图象是连续不断的一条曲线,并且关于原点对称,其导函数为()f x ',当0x >时,有不等式()()22x f x xf x '>-成立,若对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,则正整数a 的最大值为_______.20.已知函数()xf x e x =-,()22g x x mx =-,若对任意1x ∈R ,存在[]21,2x ∈,满足()()12f x g x ≥,则实数m 的取值范围为______.三、解答题21.已知函数()(2)(0)x f x ae x a =-≠. (1)求()f x 的单调区间;(2)若函数2()()2g x f x x x =+-有两个极值点,求实数a 的取值范围.22.已知函数2()ln ()f x a x a x=-∈R . (1)当1a =-时,求()f x 的单调区间; (2)若()f x 在21,e ⎛⎫+∞⎪⎝⎭上有两个零点,求a 的取值范围. 23.“既要金山银山,又要绿水青山”.滨江风景区在一个直径AB 为100米的半圆形花园中设计一条观光线路(如图所示).在点A 与圆弧上的一点C (不同于A ,B 两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点C 到点B 设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设BAC θ∠= (弧度),将绿化带总长度表示为θ的函数()S θ;(2)试确定θ的值,使得绿化带总长度最大.(弧度公式:l r α=⋅,其中α为弧所对的圆心角)24.已知函数()ln(1)f x x a =++,()x a g x e -=,a R ∈.(1)若0a =,曲线()y f x =在点()()00,x f x 处的切线也是曲线()y g x =的切线,证明:()0001ln 1x x x ++=; (2)若()()1g x f x -≥,求a 的取值范围. 25.已知函数()()2xf x e ax a R =-∈. (1)若12a =,求函数()f x 的单调区间 (2)当[]2,3x ∈时,()0f x ≥恒成立,求实数a 的取值范围. 26.已知函数32()24,1f x x ax x =-+=是函数()f x 的一个极值点.(1)求函数()f x 的单调递增区间; (2)当[1,2]x ∈-,求函数()f x 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先利用二倍角公式和诱导公式化简函数,构造()()6g x f x =-为R 上单调递增的奇函数,再转化不等式为()22(34)g t t g t -<-,利用单调性解不等式即得结果. 【详解】解:33()26cos 2sin 62f x x x x x x x π⎛⎫=++-+=+++⎪⎝⎭令3()()62sin g x f x x x x =-=++,则2()32cos 0g x x x '=++>,()()g x g x -=-, 故()g x 在R 上单调递增,且()g x 为奇函数.不等式()22(34)12f t t f t -+-+<,即()226(34)60f t t f t --+-+-<, 即()22(34)0g t t g t -+-+<,则()22(34)g t t g t -<- 故2234t t t -<-,即2540t t -+<,所以14t <<. 故选:A.【点睛】 方法点睛:利用函数奇偶性和单调性解不等式问题:(1)()f x 是奇函数,图像关于原点中心对称,利用奇函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可;(2)()f x 是偶函数,图像关于y 轴对称,利用偶函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可.2.B解析:B 【分析】求得()f x 的导数()f x ',由题意可得121()()(f x f x x '=',20x >,且12)x x ≠,化为121244()()x x k x x k +=+,因此12164x x k k+>+对[1k ∈,)+∞都成立,令4()g k k k=+,[1k ∈,)+∞,根据对勾函数的性质求出最值即可得出.【详解】解:函数244()()x f x k lnx k x-=++,导数2414()()1f x k k x x '=+--.由题意可得121()()(f x f x x '=',20x >,且12)x x ≠. 即有221122444411k k k k x x x x ++--=--, 化为121244()()x x k x x k+=+,而21212()2x x x x +<, 2121244()()()2x xx x k k +∴+<+,化为12164x x k k+>+对[1k ∈,)+∞都成立, 令4()g k k k=+,[1,)∈+∞k ,则()g k 在[)1,2上单调减,在[2,)+∞上单调递增, 所以()()min 22442g k g ==+=∴6164414k k=+, 124x x ∴+>,即12x x +的取值范围是()4,+∞.故选:B . 【点睛】方法点晴:本题利用导数几何意义,函数的单调性与最值问题的等价转化方法、基本不等式的性质.3.A解析:A 【分析】将不等式32ln x ax x -≥恒成立,转化为不等式2ln x xa x≤-在()0,∞+上恒成立,令()2ln xx xg x =-,用导数法求得其最小值即可. 【详解】因为不等式32ln x ax x -≥恒成立, 所以不等式2ln x xa x ≤- 在()0,∞+上恒成立, 令()2ln x x xg x =-, 则()3312ln x xg x x-+'=, 令()312ln h x x x =-+,则()2230h x x x'=+>, 所以()h x 在()0,∞+上是递增,又()10h =, 所以当01x <<时,()0h x <,即()0g x '<, 当1x >时,()0h x >,即()0g x '>, 所以当1x =时,()g x 取得最小值()11g =, 所以 1a ≤, 故选:A 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 4.D解析:D 【分析】求得()f x 的导数,可得单调区间和极值,作出()f x 的图象,将方程()()210f x tf x t -+-=因式分解为()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,则()1f x =或()1f x t =-,从而()1f x t =-有3个实数根,即函数()y f x =与1y t =-有3个交点,数形结合即可得到1t -的取值范围,从而得解; 【详解】解:函数2()x x f x e=的导数为22()x x x f x e -'=,当02x <<时,()0f x '>,()f x 递增;当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0, 在2x =处取得极大值241e <, 作出()y f x =的图象如下所示,因为()()210fx tf x t -+-=恰好有4个不相等的实根,所以()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,解得()1f x =或()1f x t =-,当()1f x =时,有1个实数解,所以()1f x t =-应有3个实数根,即函数()y f x =与1y t =-有3个交点,所以2401t e <-<,即2411t e <<+ 故选:D 【点睛】本题考查方程的根的个数问题解法,考查数形结合思想方法,以及导数的运用:求单调区间和极值,考查运算能力.5.B解析:B 【分析】利用导数求出函数()f x 的最大值,由函数()g x 的定义结合()()g x f x =恒成立可知()f x k ≤,由此可得出k 的取值范围,进而可得出合适的选项.【详解】对于正数k ,定义函数:()()()(),,f x f x k g x k f x k ⎧≤⎪=⎨>⎪⎩,且()()g x f x =恒成立,则()f x k ≤.函数()ln 22f x x x =-+的定义域为()0,∞+,且()111xf x x x-'=-=. 当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当1x >时,()0f x '<,此时,函数()f x 单调递减. 所以,()()max 11ln 2f x f ==+,1ln 2k ∴≥+. 因此,k 的最小值为1ln2+. 故选:B. 【点睛】解决导数中的新定义的问题,要紧扣新定义的本质,将问题转化为导数相关的问题,本题将问题转为不等式()k f x ≥恒成立,从而将问题转化为求函数()f x 的最大值.6.A解析:A 【分析】由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到()f x 的单调性,结合函数的单调性即可求得a 的取值范围. 【详解】由导函数的图象知:()2,0x ∈-时,()0f x '<,()0,x ∈+∞时,()0f x '>, 所以()f x 在()2,0-上单调递减,在()0,∞+上单调递增, 因为()211f a +≤,()21f -=,()41f =,所以2214a -<+<,可得:3322a -<<, 故选:A. 【点睛】本题主要考查了利用导函数的符号判断原函数的单调性,以及利用函数的单调性解不等式,属于中档题.7.B解析:B 【分析】根据()02f x x '≤-,得到2x >时,()f x 单调非递增函数,2x <时,()f x 单调非递减函数求解. 【详解】因为()02f x x '≤-, 所以当20x ->,即2x >时,()0f x '≤,则()f x 单调非递增函数,所以()()32f f ≤;当20x -<,即2x <时,()0f x '≥,()f x 单调非递减函数, 所以()()12f f ≤;由不等式的性质得:()()()1322f f f +≤. 故选:B 【点睛】本题主要考查导数与函数的单调性以及不等式的基本性质,属于中档题.8.A解析:A 【分析】求导得()3(1)(1)f x x x =+-',从而知函数()f x 的单调性,再结合(0)0f =,f (1)2=,即可得解 【详解】.3()3f x x x =-,2()333(1)(1)f x x x x ∴=-=+-',令()0f x '=,则1x =或1-(舍负),当01x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减.函数()f x 在[0,]m 上最大值为2,最小值为0,且(0)0f f ==,f (1)2=,13m ∴≤≤故选:A. 【点睛】本题考查利用导数研究函数的最值问题,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.9.C解析:C 【分析】通过令3()()g x x f x =可知问题转化为解不等式()0>g x ,利用当0x >时32()3()0x f x x f x '+>及奇函数与偶函数的积函数仍为奇函数可知()g x 在(,0)-∞递减、在(0,)+∞上单调递增,进而可得结论.【详解】解:令3()()g x x f x =,则问题转化为解不等式()0>g x , 当0x >时,()3()0xf x f x '+>,∴当0x >时,233()()0x f x x f x +'>,∴当0x >时()0g x '>,即函数()g x 在(0,)+∞上单调递增,又(2)0f -=,()()f x x R ∈是奇函数,()()()()()()()333g x x f x x f x x f x g x ∴-=--=--== 故()g x 为偶函数,f ∴(2)0=,g (2)0=,且()g x 在(,0)-∞上单调递减, ∴当0x >时,()0>g x 的解集为(2,)+∞,当0x <时,()0(2)g x g >=-的解集为(2,0)-,∴使得f ()0x >成立的x 的取值范围是(2-,0)(2⋃,)+∞,故选C . 【点睛】本题考查利用导数研究函数的单调性,考查运算求解能力,构造新函数是解决本题的关键,注意解题方法的积累,属于中档题.10.A解析:A 【分析】由x a >时,()21f x x =--递减,且无最大值,可得x a 时,()f x 取得最大值M ,且21M a --,求出x a 时,()f x 的导数和单调区间、极大值,讨论2a <-,判断单调性,可得最大值,解不等式判断无解,则2a -,求出最大值,解不等式即可得到所求a 的范围. 【详解】解:由x a >时,()21f x x =--递减,可得()21f x a <--,无最大值,函数(1),()21,x x e x af x x x a ⎧-+=⎨-->⎩有最大值,可得x a 时,()f x 取得最大值M ,且21M a --,由()(1)xf x x e =-+的导数为()(2)xf x x e '=-+,可得2x >-时,()0f x '<,()f x 递减;2x <-时,()0f x '>,()f x 递增. 即有()f x 在2x =-处取得极大值,且为最大值2e -.若2a <-,则()f x 在(-∞,]a 递增,可得()()f x f a (1)aa e =-+,由题意可得(1)21a a e a -+≥--,即得(1)210aa e a +--≤, 令(1))1(2aa e g a a +--=,则()(2)20ag a a e '=+-<,(2)a <-, 则()g a 在(),2-∞-递减,可得2(2)0()3g a g e ->-=-+>,则不等式(1)210aa e a +--≤无实数解.故2a -,此时在2x =-处()f x 取得最大值,为2e --,故221e a ----, 解得21122a e --, 综上可得,a 的范围是211[22e--,)+∞. 故选:A. 【点睛】本题考查了分段函数的最值问题,考查转化思想,以及分类讨论思想方法,注意运用导数,求出单调区间和极值、最值,考查化简整理的运算能力,属于中档题.11.D解析:D 【分析】表示出函数()g x ,分0k =,k 0<及0k =讨论,易知当0k =及k 0<时均不合题意,而观察解析式可知,问题可化为22()(0)kg x x k x x=+->有且仅有两个不同的零点,故利用导数研究函数()g x 在(0,)+∞上的最小值小于0即可. 【详解】解:依题意,222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩, 当0k =时,原函数有且只有一个零点,不合题意,故0k ≠;观察解析式,易知函数()g x 为偶函数,则函数()g x 有且仅有四个不同的零点,可转化为22()(0)kg x x k x x=+->有且仅有两个不同的零点, 当k 0<时,函数()g x 在(0,)+∞上递增,最多一个零点,不合题意;当0k >时,322()()x k g x x -'=,0x >,令()0g x '>,解得13x k >,令()0g x '<,解得130x k <<, 故函数()g x 在13(0,)k 上递减,在13(k ,)+∞上递增, 要使()g x 在(0,)+∞上有且仅有两个不同的零点, 则1233132()()0min k g x g k k k k==+-<,解得27k >.故选:D . 【点睛】本题考查函数零点与方程根的关系以及利用导数研究函数的单调性,最值等,考查分类讨论思想以及运算求解能力,属于中档题.12.B解析:B 【分析】求导()()1xf x x m e '=++,将问题转化为()()1xf x x m e '=++有两个不同的零点,也即是关于x 的方程1x xm e --=有两个不同的解,构造函数()xx g x e =,求导()1x xg x e-'=,分析导函数取得正负的区间,从而得函数()g x 的单调性和最值,从而可得选项.【详解】函数()f x 的定义域为R ,()()'1x fx x m e =++,因为函数()f x 有两个极值点,所以()()1xf x x m e '=++有两个不同的零点, 故关于x 的方程1xxm e --=有两个不同的解, 令()xx g x e =,则()1x xg x e-'=,当(,1)x ∈-∞时,()0g x '>,当(1,+)x ∈∞时,()0g x '<,所以函数()g x 在区间(,1)-∞上单调递增,在区间(1,+∞)上单调递减, 又当x →-∞时,()g x →-∞;当x →+∞时,()0g x →, 且0,()0x g x >>()11g e=,故101m e <--<,即111m e --<<-. 故选:B. 【点睛】本题考查运用导函数研究函数的单调性、最值、极值,关键在于构造合适的函数,参变分离的方法的运用,属于中档题.二、填空题13.【分析】利用导数分析函数的单调性与极值数形结合可得出实数的取值范围【详解】函数的定义域为令可得列表如下: 极大值 所以函数的极大值为且如下图所示:要使得关于的不等式只有两个解析:ln 6,ln 23⎡⎫⎪⎢⎣⎭【分析】利用导数分析函数()f x 的单调性与极值,数形结合可得出实数k 的取值范围. 【详解】 函数()()ln 2x f x x =的定义域为()0,∞+,()()21ln 2x f x x-'=, 令()0f x '=,可得2ex =,列表如下:所以,函数()f x 的极大值为22f e e ⎛⎫==⎪⎝⎭,()1,22e ∈,且()()12ln 2f f ==,()ln 633f =,如下图所示:要使得关于x 的不等式()0f x k ->只有两个整数解,则ln 6ln 23k ≤<. 因此,实数k 的取值范围是ln 6,ln 23⎡⎫⎪⎢⎣⎭. 故答案为:ln 6,ln 23⎡⎫⎪⎢⎣⎭. 【点睛】关键点点睛:本题考查利用不等式的整数解的个数求参数的取值范围,解题的关键在于利用导数分析函数的单调性与极值,然后在同一直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】构造函数利用导数研究函数的单调性即可得结论【详解】设则因为对任意所以所以对任意是单调递增函数因为所以由可得则的解集故答案为:【点睛】本题主要考查不等式的求解利用条件构造函数利用导数研究函数的 解析:)(1,-+∞【分析】构造函数)(()24g x f x x =--,利用导数研究函数的单调性即可得结论. 【详解】设)(()24g x f x x =--,则)(()2g x f x ='-', 因为对任意x ∈R ,)(2f x '>,所以()0g x '>, 所以对任意x ∈R , ()g x 是单调递增函数,因为)(12f -=,所以)((1)124440g f -=-+-=-=, 由()()10g x g >-=,可得1x >-, 则)(24f x x >+的解集()1,-+∞. 故答案为:()1,-+∞. 【点睛】本题主要考查不等式的求解,利用条件构造函数、利用导数研究函数的单调性是解决本题的关键.15.【分析】根据函数在上单调递减由恒成立求解【详解】因为函数在上单调递减所以恒成立;令在上单调递增所以实数的取值范围为故答案为:【点睛】方法点睛:恒成立问题的解法:(1)若在区间D 上有最值则;;(2)若解析:)336,e ⎡++∞⎣【分析】根据函数()231xf x e x mx =+-+在(],3-∞上单调递减,由()0f x '≤,(],3x ∈-∞恒成立求解. 【详解】()320x f x e x m '=+-≤,因为函数()231xf x e x mx =+-+在(],3-∞上单调递减,所以32x e x m +≤,(],3x ∈-∞恒成立;令32xy e x =+在(],3-∞上单调递增,3max 36y e =+,所以实数m 的取值范围为)336,e ⎡++∞⎣. 故答案为:)336,e ⎡++∞⎣ 【点睛】方法点睛:恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.16.【分析】根据0<a<b<m 都有令则在上是减函数由求解【详解】因为0<a<b<m 都有令所以在上是减函数所以解得所以的最大值为故答案为:【点睛】本题主要考查导数与函数的单调性及其应用还考查了分析求解问题解析:1e【分析】根据0<a <b <m ,都有ln ln a a b b >,令()ln f x x x =,则()f x 在()0,m 上是减函数,由()0f x '<求解.【详解】因为0<a <b <m ,都有ln ln a a b b >, 令()ln f x x x =,所以()f x 在()0,m 上是减函数,所以()1ln 0f x x '=+<, 解得10x e<<, 所以m 的最大值为1e, 故答案为:1e【点睛】本题主要考查导数与函数的单调性及其应用,还考查了分析求解问题的能力,属于中档题.17.【分析】根据求导函数根据在上单调性求解【详解】因为函数所以所以在上单调递增所以函数在上的最大值为故答案为:【点睛】本题主要考查导数法求函数的最值还考查了运算求解的能力属于中档题解析:212e +【分析】 根据21()ln 2f x x x =+,求导函数,根据()f x 在[1,]e 上单调性求解. 【详解】 因为函数21()ln 2f x x x =+, 所以1()0f x x x'=+>, 所以()f x 在[1,]e 上单调递增,所以函数()f x 在[1,]e 上的最大值为2()()12e f x f e ==+.故答案为:212e +【点睛】本题主要考查导数法求函数的最值,还考查了运算求解的能力,属于中档题.18.3【分析】首先求解导函数然后利用导函数研究函数的性质确定实数a 的最大值即可【详解】由题意可得:由题意导函数在区间上的函数值要么恒非负要么恒非正很明显函数值不可能恒非负故即在区间上恒成立据此可得:即的解析:3 【分析】首先求解导函数,然后利用导函数研究函数的性质确定实数a 的最大值即可. 【详解】由题意可得:2'3y x a =-+,由题意导函数在区间[)1,+∞上的函数值要么恒非负,要么恒非正,很明显函数值不可能恒非负,故230x a -+≤, 即23a x ≤在区间[)1,+∞上恒成立,据此可得:3a ≤, 即a 的最大值是3. 故答案为3. 【点睛】本题主要考查导函数研究函数的单调性,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.19.【分析】令先判断函数g(x)的奇偶性和单调性得到在R 上恒成立再利用导数分析解答即得解【详解】因为当时有不等式成立所以令所以函数g(x)在(0+∞)上单调递增由题得所以函数g(x)是奇函数所以函数在R 解析:2【分析】令2()(),g x x f x =先判断函数g(x)的奇偶性和单调性,得到e x ax >在R 上恒成立,再利用导数分析解答即得解. 【详解】因为当0x >时,有不等式()()22x f x xf x '>-成立,所以()()22+20,[()]0x f x xf x x f x ''>∴>,令2()(),g x x f x =所以函数g(x)在(0,+∞)上单调递增, 由题得22()()()g(x),g x x f x x f x -=-=-=- 所以函数g(x)是奇函数,所以函数在R 上单调递增. 因为对x R ∀∈,不等式()()2220xxe f e a x f ax ->恒成立,所以()()222,()()e xxxxe f ea x f ax g e g ax ax >∴>∴>,,因为a >0,所以当x≤0时,显然成立.当x >0时,()(0)xe a h x x x<=>,所以2(1)()xx e h x x-'=,所以函数h (x)在(0,1)单调递减,在(1,+∞)单调递增. 所以min ()(1)h x h e ==, 所以a <e,所以正整数a 的最大值为2. 故答案为2 【点睛】本题主要考查函数的奇偶性及其应用,考查函数单调性的判断及其应用,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.属于中档题.20.【分析】首先对进行求导利用导数研究函数的最值问题根据题意对任意存在使只要的最小值大于等于在指定区间上有解【详解】由得当时当时∴在上单调递减在上单调递增∴在上有解在上有解函数在上单调增故答案为:【点睛 解析:[)0,+∞【分析】首先对()f x 进行求导,利用导数研究函数()f x 的最值问题,根据题意对任意1x R ∈,存在[]21,2x ∈,使12()()f x g x ,只要()f x 的最小值大于等于()g x 在指定区间上有解 . 【详解】由()xf x e x =-,得()1xf x e '=-,当()1,0x ∈-时,()0f x '<,当()0,1x ∈时,()0f x '>, ∴()f x 在()1,0-上单调递减,在()0,1上单调递增, ∴()()min 01f x f ==()1g x ≤在[]1,2上有解,21212x mx m x x -≤⇔≥-在[]1,2上有解,函数1y x x =-在[]1,2上单调增,1101min y ∴=-=,20,0m m ≥≥.故答案为: [)0,+∞ 【点睛】不等恒成立与能成立的等价转换:任意1x A ∈,存在2x B ∈,使()()12min min ()()f x g x f x g x ⇔≥ 任意1x A ∈,任意2x B ∈,使()()12min max ()()f x g x f x g x ⇔= 存在1x A ∈,存在2x B ∈,使()()12max min ()()f x g x f x g x ⇔⇔三、解答题21.(1)答案见解析;(2)22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)先对函数求导,然后分0a >和0a <两种情况,解不等式()0f x '<,()0f x '>,可求出函数的单调区间;(2)函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,然后分0a >和0a <两种情况讨论即可得答案 【详解】(1)()(1)xf x ae x '=-,若0a >,由()0f x '<,得1x <;由()0f x '>,得1,()x f x >∴的递减区间为(,1)-∞,递增区间为(1,)+∞.若0a <,由()0f x '<,得1x >;由()0f x '>,得1,()x f x <∴的递减区间为(1,)+∞,递增区间为(,1)-∞.(2)22()()2(2)2x g x f x x x ae x x x =+-=-+-,()()(1)22(1)2x x g x ae x x x ae '=-+-=-+. 2()(2)2x g x ae x x x ∴=-+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,当1x =时,1(1)20h ae =+≠,即2a e≠-. ∴①当0a >时,()20x h x ae =+>,此时无零点; ②当0a <且2a e≠-时,2()0,()h x ae h x '=<∴为减函数. 又2ln 2ln 20a h ae a ⎛⎫- ⎪⎝⎭⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭,∴总存在唯一实数2ln a ⎛⎫- ⎪⎝⎭,使()0h x =.综上,()g x 有两个极值点实数a 的取值范围22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭. 【点睛】关键点点睛:此题考查导数的应用,考查利用导数求函数的单调区间,考查导数与极值,第2问解题的关键是将函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,从而分情况讨论即可,考查数学转化思想,属于中档题 22.(1)单调递减区间为(0,2),单调递增区间为[2,)+∞;(2)()22,e e --. 【分析】(1)求出导函数()'f x ,由()0f x '>确定增区间,由()0f x '<确定减区间;(2)首先说明0a =无零点,0a ≠时,()0f x =变形为1ln 2x x a =.引入ln ()2x x g x =,利用导数研究的单调性与极值,结合方程有两个解可得参数范围. 【详解】解:(1)当1a =-时,2()ln f x x x=+,则22212()(0)x f x x x x x -'=-+=>.令()0f x ',得2x ,所以函数()f x 在[2,)+∞上单调递增;令()0f x '<,得02x <<,所以函数()f x 在(0,2)上单调递减. 故当1a =-时,()f x 的单调递减区间为(0,2),单调递增区间为[2,)+∞.(2)当0a =时,2()f x x=没有零点,则0a =不符合题意. 当0a ≠时,令2()ln 0f x a x x =-=,得1ln 2x x a =. 设ln ()2x x g x =,则ln 1()2x g x +'=. 由()0g x '>,得1x e >;由()0g x '<,得211x e e<<. 则()g x 在211,e e ⎛⎫⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增, 故min 11()2g x g e e⎛⎫==- ⎪⎝⎭. 因为2211g e e ⎛⎫=-⎪⎝⎭,所以21112e a e -<<-, 解得22e a e -<<-.故a 的取值范围为()22,e e --. 【点睛】思路点睛:本题考查用导数求函数的单调区间,研究函数零点个数问题.解题思路是函数零点个数转化为方程的解的个数,再转化为直线与函数图象交点个数,利用导数研究函数的单调性与极值等性质后可得结论,关键是转化.23.(1)()200cos 100,0,2S πθθθθ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)6πθ=.【分析】(1)在直角三角形ABC 中,求出AC ,在扇形COB 中利用弧长公式求出弧BC 的长度,则可得函数()S θ; (2)利用导数可求得结果. 【详解】(1)如图,连接,BC OC ,在直角三角形ABC 中,100,,AB BAC θ=∠= 所以100cos ,AC θ=由于22,BOC BAC θ∠=∠= 则弧BC 的长为250100,l r αθθ=⋅=⋅=()22100cos 100200cos 100,0,2S AC l πθθθθθθ⎛⎫⎛⎫∴=+=⨯+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)由(1)可知()200sin 100S θθ'=-+, 令()0,S θ'= 得1sin 2θ=,因为(0,)2πθ∈所以6πθ=,当0,,()0,()6S S πθθθ'⎛⎫∈> ⎪⎝⎭单调递增,当,,()0,()62S S ππθθθ'⎛⎫∈< ⎪⎝⎭单调递减,所以当6πθ=时,使得绿化带总长度()S θ最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键. 24.(1)证明见解析;(2)(,0]-∞. 【分析】(1)求出导函数()'f x ,()'g x ,求出()f x 在00(,())x f x 切线方程,利用切线斜率求得()y g x =的切点坐标,得切线方程,由两条切线方程是相同的,可证结论;(2)令()()()ln(1)x a h x g x f x e x a -=-=-+-,求得()h x ',确定单调性,最小值,由最小值不小于1可得a 的范围. 【详解】(1)若0a =,则()ln(1)f x x =+,()xg x e =.所以1()1f x x '=+,()xg x e '=, 曲线()y f x =在点()()00,x f x 处的切线方程为()()0001ln 11y x x x x =-+++, 令01()1xg x e x '==+,则01ln 1x x =+,曲线()y g x =在点0011ln ,11x x ⎛⎫⎪++⎝⎭处的切线方程为()00011ln 111y x x x x ⎡⎤=+++⎣⎦++, 由题意知()()()000000111ln 1ln 1111x x x x x x x x ⎡⎤-++=+++⎣⎦+++,整理可得()000ln 111x x x +=+,00x =显然不满足, 因此()0001ln 1x x x ++=. (2)令()()()ln(1)x ah x g x f x e x a -=-=-+-若0a >,0(0)01ah ea e -=-<-=,不符合条件;若0a =,()ln(1)xh x e x =-+,1()1x h x e x '=-+, 当(1,0)x ∈-时,()0h x '<,()h x 单调递减, 当(0,)x ∈+∞时,()0h x '>,()h x 单调递增, 所以()(0)1h x h ≥=,符合条件; 若0a <,则()ln(1)ln(1)1x ax h x ex a e x -=-+->-+≥,符合条件.所以a 的取值范围是(,0]-∞. 【点睛】思路点睛:本题考查导数的几何意义,考查用导数研究不等式恒成立问题.求切线方程时要注意是函数图象在某点处的切线,还是过某点的切线,由导数得斜率得切线方程,若不知切点时一般需设出切点坐标,写出切线方程,代入所过点的坐标求出切点,再得切线方程,不能弄错.25.(1)函数()xf x e x =-的单调递增区间为()0,∞+;单调递减区间为(),0-∞;(2)2,4e ⎛⎤-∞ ⎥⎝⎦. 【分析】 (1)当12a =时,()xf x e x =-,利用导数可求得函数()f x 的单调递增区间和递减区间;(2)由参变量分离法得出min2x e a x ⎛⎫≤ ⎪⎝⎭,利用导数求出函数()xe g x x =在区间[]2,3上的最小值,由此可得出实数a 的取值范围. 【详解】 (1)当12a =时,()x f x e x =-,()1xf x e '=-, 令()0f x '=,得0x =.令()0f x '>,得0x >:令()0f x '<,得0x <.所以函数()xf x e x =-的单调递增区间为()0,∞+,单调递减区间为(),0-∞;(2)()202xxe f x e ax a x =-≥⇔≤对任意的[]2,3x ∈恒成立,即min2x e a x ⎛⎫≤ ⎪⎝⎭,设()xe g x x =﹐则()()21x e x g x x-'=,显然当[]2,3x ∈时()0g x '>恒成立. ()g x ∴在[]2,3单调递增,()n2mi ()22g x g e ∴==,22224e e a a ∴≤⇒≤,所以2,4 e a ⎛⎤∈-∞ ⎥⎝⎦. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥. 26.(1)(,0)-∞和(1,)+∞;(2)1-. 【分析】(1)由极值点求出参数3a =,再代入,解不等式()0f x '>求递增区间 (2)求()f x 在[1,2]-上的极值,与端点值比较得出最小值. 【详解】(1)由题意2()62f x x ax '=-()01f '=,则3a =32()234,()6(1)f x x x f x x x '=-+=-,当(,0)x ∈-∞时,()0f x '>;当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以,函数()f x 的单调递增区间为(,0)-∞和(1,)+∞ (2)当[1,2]x ∈-时,(),()f x f x '的变化情况如下表当1,(1)2343x f ==-+=.所以当[1,2]x ∈-时,函数()f x 的最小值为1-.【点睛】用导数法求最值方法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;。

(常考题)北师大版高中数学选修1-1第四章《导数应用》检测题(含答案解析)

(常考题)北师大版高中数学选修1-1第四章《导数应用》检测题(含答案解析)

一、选择题1.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定2.已知函数2()sin f x x x x =+,,22x ππ⎛⎫∈- ⎪⎝⎭,则下列式子成立的是( ) A .13(1)22f f f ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭ B .13(1)22f f f ⎛⎫⎛⎫<-<⎪ ⎪⎝⎭⎝⎭C .13(1)22f f f ⎛⎫⎛⎫<<-⎪ ⎪⎝⎭⎝⎭D .31(1)22f f f ⎛⎫⎛⎫<-<⎪ ⎪⎝⎭⎝⎭3.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞B .()2e ,+∞C .()20,eD .()0,e4.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( ) A .1-B .0C .1D .25.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=-的图象如图所示,则下列结论中一定成立的是( )A .()f x 有极大值()2f -B .()f x 有极小值()2f -C .()f x 有极大值()1fD .()f x 有极小值()1f6.已知函数()f x 的定义域为[)2-+∞,,部分对应值如下表;()f x '为()f x 的导函数,函数()y f x '=的图象如下图所示.若实数a 满足()211f a +≤,则a 的取值范围是( ) x2- 0 4()f x11-1A .33,22⎛⎫- ⎪⎝⎭B .13,22⎛⎫- ⎪⎝⎭C .33,22⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤-⎢⎥⎣⎦7.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( ) A .12B .132-C .132+D .238.已知对任意实数x 都有()()2xf x f x e '-=,()01f =-,若()()1f x k x >-恒成立,则k 的取值范围是( ) A .()1,+∞B .323,42e ⎛⎫ ⎪⎝⎭C .()121,4eD .()321,4e9.函数3()3f x x x =-在[0,]m 上最大值为2,最小值为0,则实数m 取值范围为( ) A .[13]B .[1,)+∞C .(13]D .(1,)+∞10.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+11.若函数(1),()21,x x e x af x x x a⎧-+=⎨-->⎩有最大值,则实数a 的取值范围是( )A .211[,)22e --+∞ B .21[,)2e -+∞ C .[2-,)+∞D .211(2,]22e --- 12.已知函数()ln f x ax x =-,若()0f x ≥对一切(0,)x ∈+∞恒成立,则a 的取值范围是( ) A .(0,)+∞B .1[,)e+∞C .[1,)+∞D .[),e +∞二、填空题13.已知定义在R 上的函数()f x 满足()11f =,且对于任意的x ,1()2f x '<恒成立,则不等式()22lg 1lg 22x f x <+的解集为________.14.已知函数2()ln 3mf x x x x x=+-+.若函数()f x 在[1,2]上单调递减,则实数m 的最小值为________.15.已知函数()()()x f x e x b b R =-∈.若存在1,22x ⎡∈⎤⎢⎥⎣⎦,使得()()0f x xf x '+>,则实数b 的取值范围是____.16.函数2()ln f x x ax x =-在2(,2)e上不单调,则实数a 的取值范围是_____. 17.若函数()()32111562f x x mx n x =-++-+是[]0,1上的单调增函数,其中0m ≥,0n ≥,则()()2268m n +++的最小值为________.18.已知函数()f x 定义在R 上的函数,若2()()0x f x e f x --=,当0x ≤时,()()0f x f x '+<,则不等式21()(1)x f x e f x -≥-的解集为__________19.若函数()ln f x ax x =-在区间()0,1上是减函数,则实数a 的取值范围是________. 20.已知函数()xf x e x =-,()22g x x mx =-,若对任意1x ∈R ,存在[]21,2x ∈,满足()()12f x g x ≥,则实数m 的取值范围为______.三、解答题21.已知函数()()22646x x e f x x x -=++.(1)求函数()f x 的单调区间,并求()f x 的最值; (2)已知[)0,1a ∈,()()()2322202x e a x x g x x x-++=>.①证明:()g x 有最小值;②设()g x 的最小值为()h a ,求函数()h a 的值域. 22.已知函数()ln 1ln f x x x x x =+--.(Ⅰ)设函数()y f x =在1x =和x e =处的切线交直线1y =于,M N 两点,求||MN ; (Ⅱ)设()0f x 为函数()y f x =的最小值,求证:()0102f x -<<. 23.已知函数()(0)xaxf x a e =≠. (1)当1a =时,求函数()y f x =在[0,2]上的最大值和最小值;(2)求函数()f x 的单调区间. 24.已知函数2()ln (0)f x x a x a =->.(1)若2a =,求曲线()y f x =的斜率等于3的切线方程;(2)若()y f x =在区间1,e e ⎡⎤⎢⎥⎣⎦上恰有两个零点,求a 的取值范围.25.已知函数()ln f x kx x =-(k ∈R ).(1)若函数()f x 在()()1,1f 处的切线与x 轴平行,求函数()f x 的单调区间; (2)讨论函数()f x 的零点个数. 26.已知函数32113f xx ax ,0a >. (1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积;(2)是否存在实数a ,使得()f x 在[]0,2上的最小值为56?若存在,求出a 的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增, ()f x 的最小值是()1f 1=,故1a =,()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x xx g x x e xe x x+=+--=-',令()1xh x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->, 故存在0(0,1)x ∈使得()0h x =即001x x e=,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =,所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.2.B解析:B 【分析】由奇偶性的定义得到函数()f x 为偶函数,求导数得到函数()f x 在(0,)2π上为增函数,则函数在(,0)2π-上为减函数.结合单调性和奇偶性即可判断出答案.【详解】函数2()sin f x x x x =+, 22x ππ⎛⎫∈- ⎪⎝⎭,,定义域关于原点对称,且()()()()()22sin sin f x x x x x x x f x -=-+--=+=.所以函数()f x 为偶函数,所以()()11f f -= 又当0,2x π⎛⎫∈ ⎪⎝⎭时,()2sin cos 0f x x x x x '=++>. ()f x ∴在0,2π⎛⎫ ⎪⎝⎭上为增函数,则()f x 在,02π⎛⎫- ⎪⎝⎭上为减函数.13π1222<<<,所以()13122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 则()13122f f f ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】关键点睛:本题考查利用函数的奇偶性和单调性比较函数值大小,解答本题的关键是先得出函数为偶函数,再由0,2x π⎛⎫∈ ⎪⎝⎭时,()2sin cos 0f x x x x x '=++>利用单数判断出单调性,属于中档题.3.B解析:B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.4.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-. 设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0.故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212lnx kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.5.A解析:A 【分析】由函数()()1y x f x '=-的图象,可得1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.由此可得函数()f x 的单调性,则答案可求.【详解】解:函数()()1y x f x '=-的图象如图所示,∴1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>. ∴函数()f x 在(),2-∞-上单调递增,在()2,1-上单调递减,在()1,+∞上单调递减. ∴()f x 有极大值()2f -.故选:A . 【点睛】本题考查根据导函数的相关图象求函数的单调区间,考查数形结合思想,是中档题.6.A解析:A 【分析】由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到()f x 的单调性,结合函数的单调性即可求得a 的取值范围. 【详解】由导函数的图象知:()2,0x ∈-时,()0f x '<,()0,x ∈+∞时,()0f x '>, 所以()f x 在()2,0-上单调递减,在()0,∞+上单调递增, 因为()211f a +≤,()21f -=,()41f =, 所以2214a -<+<, 可得:3322a -<<,故选:A. 【点睛】本题主要考查了利用导函数的符号判断原函数的单调性,以及利用函数的单调性解不等式,属于中档题.7.C解析:C 【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<,则2661y p p '=-+-6(p p =--- 则函数y在单调递减,在单调递增,故函数在36p =+处取得极大值,也是最大值. 故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.8.D解析:D 【分析】由导数的运算求出()f x ,然后用分离参数法得出1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-,再设(21)()1x e x h x x -=-,求出()h x 在1x >时最小值,在1x <时的最大值,从而可得k 的范围. 【详解】因为()()2xf x f x e '-=,所以()()2x f x f x e '-=,即()2x f x e '⎡⎤=⎢⎥⎣⎦,所以()2x f x x c e =+(c 为常数),()(2)x f x e x c =+,由(0)1f c ==-,()(21)x f x e x =-,不等式()()1f x k x >-为(21)(1)xe x k x ->-,1x =时,不等式为0e >,成立,1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-, 设(21)()1x e x h x x -=-,则2(23)()(1)x xe x h x x -'=-, 当312x <<或01x <<时,()0h x '<,当32x >或0x <时,()0h x '>,所以()h x 在(0,1)和31,2⎛⎫⎪⎝⎭上是减函数,在3,2⎛⎫+∞ ⎪⎝⎭和(,0)-∞上是增函数,1x >时,()h x 在32x =时取得极小值也最小值32342h e ⎛⎫= ⎪⎝⎭,由(21)1x e x k x -<-恒成立得324k e <,1x <时,()h x 在0x =时取得极大值也是最大值(0)1h =,由(21)1xe x k x ->-恒成立得1k >,综上有3214k e <<. 故选:D . 【点睛】本题考查导数的运算,考查用导数研究不等式恒成立问题,用分离参数法转化为求函数的最值是解题关键,解题时注意分类讨论思想的应用.9.A解析:A 【分析】求导得()3(1)(1)f x x x =+-',从而知函数()f x 的单调性,再结合(0)0f =,f (1)2=,即可得解 【详解】.3()3f x x x =-,2()333(1)(1)f x x x x ∴=-=+-',令()0f x '=,则1x =或1-(舍负),当01x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减.函数()f x 在[0,]m 上最大值为2,最小值为0,且(0)0f f ==,f (1)2=,13m ∴≤≤故选:A. 【点睛】本题考查利用导数研究函数的最值问题,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.10.A解析:A 【分析】设()()2xxF x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x xF x e f x e =-,则[]()()()2()()2x x x xF x e f x e f x e ef x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦,所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-,故(3)2(2)2ef f e +<+. 故选:A. 【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.11.A解析:A 【分析】由x a >时,()21f x x =--递减,且无最大值,可得x a 时,()f x 取得最大值M ,且21M a --,求出x a 时,()f x 的导数和单调区间、极大值,讨论2a <-,判断单调性,可得最大值,解不等式判断无解,则2a -,求出最大值,解不等式即可得到所求a 的范围. 【详解】解:由x a >时,()21f x x =--递减,可得()21f x a <--,无最大值,函数(1),()21,x x e x af x x x a ⎧-+=⎨-->⎩有最大值,可得x a 时,()f x 取得最大值M ,且21M a --,由()(1)xf x x e =-+的导数为()(2)xf x x e '=-+,可得2x >-时,()0f x '<,()f x 递减;2x <-时,()0f x '>,()f x 递增. 即有()f x 在2x =-处取得极大值,且为最大值2e -.若2a <-,则()f x 在(-∞,]a 递增,可得()()f x f a (1)aa e =-+,由题意可得(1)21a a e a -+≥--,即得(1)210aa e a +--≤, 令(1))1(2aa e g a a +--=,则()(2)20ag a a e '=+-<,(2)a <-, 则()g a 在(),2-∞-递减,可得2(2)0()3g a g e ->-=-+>,则不等式(1)210aa e a +--≤无实数解.故2a -,此时在2x =-处()f x 取得最大值,为2e --,故221e a ----, 解得21122a e --, 综上可得,a 的范围是211[22e--,)+∞. 故选:A. 【点睛】本题考查了分段函数的最值问题,考查转化思想,以及分类讨论思想方法,注意运用导数,求出单调区间和极值、最值,考查化简整理的运算能力,属于中档题.12.B解析:B 【分析】()ln 0f x ax x =-≥对一切(0,)x ∈+∞恒成立,即ln xa x≥对一切(0,)x ∈+∞恒成立,设()ln g xx x=,求出()g x 的导数,进而求出其最大值,得到答案. 【详解】 ()ln 0f x ax x =-≥对一切(0,)x ∈+∞恒成立,即ln xa x≥对一切(0,)x ∈+∞恒成立 设()ln g x x x=,则()21ln 'xg x x -=由()21ln '0x g x x -=>,则0x e <<,由()21ln '0xg x x-=<,则x e > 所以()g x 在()0e ,上单调递增,在()+∞e ,上单调递减.当x e =时, ()g x 有最大值()1g e e= 所以1a e≥ 故选:B 【点睛】本题考查恒成立求参数问题,考查分离参数法的应用,属于中档题.二、填空题13.【分析】由构造单调递减函数利用其单调性求解【详解】设则是上的减函数且不等式即为所以得解得或原不等式的解集为故答案为:【点睛】利用导数研究函数的单调性构造函数比较大小属于难题联系已知条件和结论构造辅助解析:10,10,10.【分析】 由()12f x '<,构造单调递减函数()()12h x f x x =-,利用其单调性求解.【详解】()()11,022f x f x <∴-''<,设()()12h x f x x =-, 则()()102h x f x ''=-<, ()h x ∴是R 上的减函数,且()()111111222h f =-=-=, 不等式()22lg 1lg 22x f x <+,即为()22lg 1lg 22x f x -<,所以()()2lg 1h x h <,得2lg 1x >,解得10x >或110x, ∴原不等式的解集为10,10,10.故答案为:10,10,10.【点睛】利用导数研究函数的单调性、构造函数比较大小,属于难题,联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.14.6【分析】求导函数令恒成立变量分离转化为求新函数的最大值【详解】可得令若函数在上单调递减即当时单调增所以函数在上单调递增所以故答案为:6【点睛】关键点睛:变量分离转化为不等式恒成立问题进而求又一函数解析:6 【分析】求导函数()f x ',令()0f x '≤恒成立,变量分离转化为求新函数的最大值. 【详解】21()23mf x x x x'=+--,()0f x '≤,可得3223m x x x ≥-+, 令()3223g x x x x =-+,若函数()f x 在[1,2]上单调递减,即()max m g x ≥ 当[1,2]x ∈时,()2661g x x x '=-+单调增,()()266110g x x x g ''=-+≥>,所以函数()g x 在[1,2]上单调递增()()max 26g x g ==,所以6m ≥.故答案为:6 【点睛】关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.15.【详解】解答:∵f(x)=ex(x−b)∴f′(x)=ex(x−b+1)若存在x ∈2使得f(x)+xf′(x)>0则若存在x ∈2使得ex(x−b)+xex(x−b+1)>0即存在x ∈2使得b<成立令解析:83b <【详解】 解答: ∵f(x)=e x (x−b), ∴f′(x)=e x (x−b+1), 若存在x ∈[12,2],使得f(x)+xf′(x)>0, 则若存在x ∈[12,2],使得e x (x−b)+xe x (x−b+1)>0, 即存在x ∈[12,2],使得b<221x x x ++ 成立,令()221,,212x x g x x x +⎡⎤=∈⎢⎥+⎣⎦, 则()()222201x x g x x ++'=>+ ,g(x)在1,22⎡⎤⎢⎥⎣⎦递增,∴g(x)最大值=g(2)=83, 则实数b 的取值范围是83b <16.【分析】求得函数的导函数根据在区间上有极值求得的取值范围【详解】令得由于分离常数得构造函数所以在上递减在上递增下证:构造函数当时①而即所以所以由①可得所以当时单调递增由于所以当时故也即由于所以所以的 解析:4(2,)ln 21+ 【分析】求得函数()f x 的导函数()'f x ,根据()f x 在区间2(,2)e上有极值,求得a 的取值范围. 【详解】()()'21ln 2ln f x x a x x a x a =-+=--,令'0f x得2ln 0x a x a --=,由于222,ln ln ln 2,ln 2ln 1ln 2x x x e e e<<<<<+<, 分离常数a 得21ln xa x=+.构造函数()21ln x h x x =+,()()'22ln 1ln x h x x =+,所以()h x 在2,1e ⎛⎫ ⎪⎝⎭上递减,在()1,2上递增,()()()424444,12,22ln 2ln 2ln 21ln 21ln eeh h h e e e e⎛⎫======⎪+⎝⎭+. 下证22e e >:构造函数()22xg x x =-,()'2ln 22xg x =-,当2x ≥时,22ln 222ln 22x -≥-①,而1ln 2ln 2e =<=<,即1ln 212<<,所以222ln 24<<,所以由①可得22ln 222ln 220x -≥->.所以当2x ≥时,()g x 单调递增.由于()20g =,所以当2x >时,()()20g x g >=,故()0g e >,也即22022e e e e ->⇒>.由于()22ln 2ln 2eee e >⇒>,所以()22h h e ⎛⎫<⎪⎝⎭. 所以a 的取值范围是4(2,)ln 21+ 故答案为:4(2,)ln 21+ 【点睛】本小题主要考查利用导数研究函数的单调性,属于中档题.17.49【分析】求出函数的导数根据函数的单调性得到关于的不等式组根据两点间的距离公式求出其最小值即可【详解】若在上递增则故满足条件的平面区域如图示:的几何意义表示和阴影部分的点的距离故到阴影部分的最小值解析:49 【分析】求出函数的导数,根据函数的单调性得到关于m ,n 的不等式组,根据两点间的距离公式求出其最小值即可. 【详解】21()(1)2f x x mx n '=-++-,若()f x 在[0,1]上递增, 则(0)10f n '=-,()11102m n f =-++-', 故满足条件001102m n n m n ⎧⎪⎪⎪⎨⎪⎪-+⎪⎩的平面区域如图示:22(6)(8)m n -+-的几何意义表示(6,8)和阴影部分的点的距离,故(6,8)到阴影部分的最小值是自(6,8)向1n =作垂线, 故垂线段是7,故22(6)(8)m n -+-的最小值是49, 故答案为:49. 【点睛】本题考查了函数的单调性问题,考查导数的应用以及简单的线性规划问题,考查了数学运算能力和数形结合思想.18.【分析】令根据题中条件得到为偶函数;对其求导根据题中条件判定在上单调递减;则在上单调递增;化所求不等式为求解即可得出结果【详解】令则因为所以即所以函数为偶函数;又当时所以即函数在上单调递减;则在上单解析:12x x ⎧⎫≥⎨⎬⎩⎭【分析】令()()xg x f x e =,根据题中条件,得到()g x 为偶函数;对其求导,根据题中条件,判定()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增;化所求不等式为1x x ≥-,求解,即可得出结果.【详解】令()()xg x f x e =,则()()xg x f x e --=-,因为2()()0xf x ef x --=,所以()()x x f x e f x e -=-,即()()g x g x =-,所以函数()g x 为偶函数;又()[]()()()()x x xg x f x e f x e f x f x e '''=+=+,当0x ≤时,()()0f x f x '+<,所以()[]()()0xg x f x f x e ''=+<,即函数()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增; 又不等式21()(1)x f x ef x -≥-可化为1()(1)x x f x e f x e -≥-,即()()1g x g x ≥-,所以只需1x x ≥-,则()221x x ≥-,解得12x ≥. 故答案为:12x x ⎧⎫≥⎨⎬⎩⎭. 【点睛】本题主要考查由函数单调性与奇偶性解不等式,考查导数的方法判定函数单调性,涉及绝对值不等式的解法,属于常考题型.19.【分析】求出函数的导数问题转化为在区间恒成立求出的范围即可【详解】若函数区间上为减函数则在区间恒成立即因为所以所以故答案为:【点睛】本题主要考查了利用导数研究函数的单调性函数的单调性的性质属于中档题解析:(],1-∞【分析】求出函数的导数,问题转化为10a x-在区间(0,1)恒成立,求出a 的范围即可. 【详解】()f x ax lnx =-,(0)x >, 1()f x a x∴'=-,若函数()f x ax lnx =-区间(0,1)上为减函数, 则10a x-在区间(0,1)恒成立, 即1()min a x ,因为(0,1)x ∈, 所以min11x ⎛⎫>⎪⎝⎭, 所以1a ≤.故答案为:(-∞,1]. 【点睛】本题主要考查了利用导数研究函数的单调性,函数的单调性的性质,属于中档题.20.【分析】首先对进行求导利用导数研究函数的最值问题根据题意对任意存在使只要的最小值大于等于在指定区间上有解【详解】由得当时当时∴在上单调递减在上单调递增∴在上有解在上有解函数在上单调增故答案为:【点睛 解析:[)0,+∞【分析】首先对()f x 进行求导,利用导数研究函数()f x 的最值问题,根据题意对任意1x R ∈,存在[]21,2x ∈,使12()()f x g x ,只要()f x 的最小值大于等于()g x 在指定区间上有解 . 【详解】由()xf x e x =-,得()1xf x e '=-,当()1,0x ∈-时,()0f x '<,当()0,1x ∈时,()0f x '>, ∴()f x 在()1,0-上单调递减,在()0,1上单调递增, ∴()()min 01f x f ==()1g x ≤在[]1,2上有解,21212x mx m x x -≤⇔≥-在[]1,2上有解,函数1y x x =-在[]1,2上单调增,1101min y ∴=-=,20,0m m ≥≥.故答案为: [)0,+∞ 【点睛】不等恒成立与能成立的等价转换:任意1x A ∈,存在2x B ∈,使()()12min min ()()f x g x f x g x ⇔≥ 任意1x A ∈,任意2x B ∈,使()()12min max ()()f x g x f x g x ⇔= 存在1x A ∈,存在2x B ∈,使()()12max min ()()f x g x f x g x ⇔⇔三、解答题21.(1)单调递减区间为(),0-∞,单调递增区间为()0,+∞,最小值为1-,无最大值;(2)①证明见解析;②31627e ⎛⎤⎥⎝⎦,.【分析】(1)对()f x 求导,由()0f x '>可得单调递增区间,由()0f x '<可得单调递减区间,比较极值即可得最值; 【详解】(1)()f x 的定义域为R()()()()()()()2322222446262424646x x xx e x x x e x x e f x xx xx ⎡⎤-++--+⎣⎦==++++'当(),0x ∈-∞时,()0f x '<,()f x 在(),0-∞单调递减, 当()0,+x ∈∞时,()0f x '>,()f x 在()0,+∞单调递增, 所以()f x 的单调递减区间为(),0-∞,单调递增区间为()0,+∞,()()min 01f x f ==-,()f x 最小值为()()min 01f x f ==-,无最大值.(2)①()()()()()()()22244242646464626=22462x x x e a x x x x x x x e g a f x a x x x x x x -+++++++⎡⎤-==++⎡⎤⎢⎥⎣⎦++⎣⎦'令()()x f x a ϕ=+,()0,+x ∈∞ ,由(1)知,()x ϕ单调递增,()010a ϕ=-<,()30a ϕ=≥所以存在唯一的(]00,3x ∈,使得()00x ϕ=,即()0020026046xx e a x x -+=++当00x x <<时,()0x ϕ<,()g x 单调递减; 当0x x >时,()0x ϕ>,()g x 单调递增 故()()()00200min 032000222246x x e a x x e g x g x x x x -++===++, 所以()g x 有最小值得证②令()020046x e h a x x =++,()00,3x ∈,()()22222204646xxx x e e x x x x '++⎡⎤=>⎢⎥++⎣⎦++,所以()h a 单增, 所以,由()00,3x ∈,得()0033222001= < =6040646343627x e e e e h a x x =≤+⨯++++⨯+因为246xe x x ++单调递增,对任意31627e λ⎛⎤∈ ⎥⎝⎦,,存在唯一的()00,3x ∈,()[)00,1a f x =-∈,使得()h a λ=,所以()h a 的值域为31627e ⎛⎤ ⎥⎝⎦,综上:当[)0, 1a ∈,函数()g x 最小值为()h a ,函数()h a 的值域为31627e ⎛⎤⎥⎝⎦,【点睛】利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.22.(Ⅰ)2||1e MN e =-;(Ⅱ)证明见解析.【分析】(Ⅰ)求出导函数,得切线方程,然后求得交点,M N 坐标后可得线段长MN ;(Ⅱ)由零点存在定理得()'f x 存在一个零点0(1,2)x ∈,并求出最小值0()f x ,利用0()0f x '=化简0()f x 后根据0(1,2)x ∈可证上得结论.【详解】解:(Ⅰ)函数()f x 的导函数为11()1ln 1ln f x x x x x'=+--=-. 所以1(1)1,()1f f e e''=-=-.又因为(1)0,()0f f e ==, 因此()y f x =在1x =和x e =处的切线方程分别为1y x =-+和1()e y x e e-=-. 令1y =,可得M 和N 的坐标分别为(0,1)和2,11e e ⎛⎫ ⎪-⎝⎭,故2||1e MN e =-.(Ⅱ)因为1()ln f x x x'=-在(0,)+∞上单调递增,而1(1)10,(2)ln 202f f ''=-<=->, 所以必然存在0(1,2)x ∈,满足()00f x '=,且当()00,x x ∈)时()0f x '<,当()0,x x ∈+∞时()0f x '>. 即()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,当0x x =时,()f x 取得最小值()00000ln 1ln f x x x x x =+--. 由()00f x '=可得001ln x x =,所以()00012f x x x ⎛⎫=-+ ⎪⎝⎭. 当0(1,2)x ∈时,00152,2x x ⎛⎫+∈ ⎪⎝⎭,所以()0102f x -<<. 【点睛】关键点点睛:本题考查导数的几何意义,考查用导数求函数的最值.求最值时在极值点0x 不能直接求出时,对极值点(最值点)0x 进行定性分析:确定其取值范围,利用注意0()0f x '=得出0x 满足的性质,代入0()f x 化简表达式后再求解.23.(1)最大值为1e,最小值分别为0;(2)答案见解析. 【分析】(1)当1a =时,()xxf x e =,对其求导,利用导函数得符号判断()y f x =在[0,2]上的单调性,即可求得最值; (2)对()f x 求导可得()1()xa x f x e-'=,讨论0a >和0a <,由()0f x '>可得单调递增区间,由()0f x '<,可得单调递减区间. 【详解】(1)当1a =时,()x x f x e =,所以21()x xx x e xe xf x e e--'==.令()0f x '=,得1x =.当01x ≤<时,()0f x '>;当12x <≤时,()0f x '<.所以()y f x =在()0,1单调递增,在()1,2单调递减,所以当1x =时,()f x 取最大值1(1)f e =. 又因为(0)0f =,22(2)f e =,所以函数()x x f x e =的最大值和最小值分别为1e ,0. (2)因为()1()xa x f x e -'=. 当0a >时,由()0f x '>,得1x <;由()0f x '<,得1x >, 此时函数()x x f x e=的单调递增区间为(,1)-∞,单调递减区间为(1,)+∞; 当0a <时,由()0f x '>,得1x >;由()0f x '<,得1x <. 此时函数()x x f x e=的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞ 综上所述: 当0a >时,函数()xx f x e =的单调递增区间为(,1)-∞,单调递减区间为(1,)+∞; 当0a <时,函数()x x f x e=的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞. 【点睛】 方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数在区间[],a b 上单调递增或递减,则()f a 与()f b 一个为最大值,另一个为最小值;(2)若函数在区间[],a b 内有极值,则要先求出函数在[],a b 上的极值,再与()f a ,()f b 比较,最大的为最大值,最小的为最小值;(3)函数()f x 在区间(),a b 上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.24.(1)322ln 20x y ---=;(2)(22,e e ⎤⎦. 【分析】(1)求出导函数,令()3f x '=求得切点坐标后可得切线方程;(2)求导函数()'f x ,确定()f x 在定义域内只有一个极值点,因此这个极值点必在区间1e e ⎛⎫ ⎪⎝⎭,上,然后得函数在1,e e ⎡⎤⎢⎥⎣⎦上的极小值,由极小值小于0,区间两个端点处函数值大于或等于0可得结论.【详解】由已知函数()f x 定义域是(0,)+∞,(1)2()2ln f x x x =-,22(1)(1)()2x x f x x x x'+-=-=, 由2()23f x x x'=-=解得2x =(12x =-舍去), 又()422ln 2f =-,所以切线方程为(42ln 2)3(2)y x --=-,即322ln 20x y ---=;(2)222()2x x a x a f x x x x x⎛-+ -⎝⎭⎝⎭'=-==, 易知()f x()f x有两个零点,则1e e <<,即2222a e e<<,此时在1e ⎛ ⎝上()0f x '<,()f x递减,在e ⎫⎪⎪⎭上()0f x '>,()f x 递增, ()f x在x =时取得极小值2a f a =-,所以22111ln 0()ln 002f a e e e f e e a e a f a ⎧⎛⎫⎪=-≥ ⎪⎪⎝⎭⎪=-≥⎨⎪⎪=-<⎪⎩解得22e a e <≤.综上a 的范围是(22,e e ⎤⎦. 【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的零点问题.函数在某个区间上的零点,解题时先从大处入手,由导数确定函数的极值点,利用单调区间上的零点最多只有一个,因此函数的极值点必在给定区间内,从而缩小参数的a 范围,在此范围内计算()f x 的单调性与极值,结合零点存在定理可得结论.25.(1)函数()f x 的单调递增区间是()1,+∞,单调递减区间是()0,1;(2)当1k e >时,函数()f x 没有零点;当1k e =或0k ≤时,函数()f x 有1个零点;当1k e<<0时,函数()f x 有2个零点.【分析】(1)由题得()10f '=,进而得1k =,再根据导数求解单调区间即可;(2)根据题意将问题转化为函数()ln g x x =与y kx =的交点个数问题,再讨论过原点的函数()ln g x x =的切线方程的斜率,进而求解.【详解】解:(1)因为函数()f x 在()()1,1f 处的切线与x 轴平行,()1'f x k x =-, 所以()10f '=,即10k -=,求得1k =,所以()ln f x x x =-,()111x f x x x-'=-=(0x >), 令()'0f x >,则1x >;令()'0f x <,则01x <<,∴函数()f x 的单调递增区间是()1,+∞,单调递减区间是()0,1.(2)函数()f x 的零点个数可等价于函数()ln g x x =与y kx =的交点个数.设()00,P x y 是函数()ln g x x =上的一点,由()ln g x x =得,()1g x x'=, ∴()g x 在点()00,P x y 处的切线方程为()0001ln y x x x x -=-, 令0x y ==则0x e =,∴过原点所作的函数()ln g x x =的切线方程为1y x e =, 故由图可知,故当1k e >时,函数()f x 没有零点; 当1k e=或0k ≤时,函数()f x 有1个零点; 当1k e <<0时,函数()f x 有2个零点. 【点睛】本题第二问解题的关键在于根据题意将问题转化为函数()ln g x x =与y kx =的交点个数问题,再讨论过原点的函数()ln g x x =的切线方程的斜率,数形结合即可求解.考查化归转化思想和运算求解能力,是中档题.26.(1)89;(2)存在,12a =. 【分析】(1)由1a =,求导()22f x x x '=-,利用导数的几何意义求得曲线()y f x =在点()()1,1f 处的切线方程,再求得切线的x 轴、y 轴上的截距,代入三角形的面积公式求解. (2)求导()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =,然后分022a <<,22a ≥,由()f x 在[]0,2上的最小值为56求解. 【详解】(1)当1a =时,()32113f x x x =-+,()22f x x x '=-, 所以()11f '=-,又()113f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()113y x -=--, 即3340x y +-=,直线3340x y +-=在x 轴、y 轴上的截距均为43, 所以三角形的面积为14482339S =⨯⨯=. (2)()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =.当022a <<,即01a <<时,当[]0,2x a ∈时,()0f x '≤,()f x 单调递减;当[]2,2x a ∈时.()0f x '≥,()f x 单调递增.则()()33min 8524136f x f a a a ==-+=,解得12a =, 当22a ≥,即1a ≥时,当[]0,2x ∈时,()0f x '≤,()f x 单调递减,则()()min 8524136f x f a ==-+=,解得17124a =<,舍去. 综上:存在12a =,使得()f x 在[]0,2上的最小值为56. 【点睛】方法点睛:(1)求解函数的最值时,要先求函数y=f(x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.(2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》检测(包含答案解析)

(常考题)北师大版高中数学选修1-1第四章《导数应用》检测(包含答案解析)

一、选择题1.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .22.设函数()ln 2e f x x mx n x =--+.若不等式()0f x ≤对()0,x ∈+∞恒成立,则nm 的最大值为( ) A .4e B .2eC .eD .2e3.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( ) A .34B .16C .24D .174.已知函数()ln f x x ax =-,其中[)1+x ∈∞,,若不等式()0f x ≤恒成立,则实数a 的取值范围为( ) A .[)1,+∞B .1,1e⎛⎤-∞- ⎥⎦⎝C .1,e ⎡⎫+∞⎪⎢⎣⎭D .[)0,+∞5.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( ) A .12B.126-C.12+D .236.已知函数()()()0ln 10x e x f x x x ax x -⎧-<⎪=⎨++>⎪⎩,若()f x 的图象上存在关于原点对称的点,则实数a 的取值范围是( ) A .(),1e -∞-B .()1,e -+∞C .[)1,e -+∞D .(],1e -∞-7.已知函数22(1)2,0()log 0x x f x x x ⎧-++≤⎪=⎨>⎪⎩,,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则23423121()x x x x x +⋅+⋅的取值范围是( ) A .71(,]42-- B .37[,]24--C .71[,)42--D .313(,]42-- 8.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+9.函数()327f x x kx x =+-在区间[]1,1-上单调递减,则实数k 的取值范围是( )A .(],2-∞-B .[]22-,C .[)2,-+∞D .[)2,+∞10.设函数()'f x 是奇函数()()f x x R ∈的导函数,(2)0f -=,当0x >时,()()03xf x f x '+>,则使得()0f x >成立的x 的取值范围是( ) A .(,2)(0,2)-∞-⋃ B .(,2)(2,2)-∞--C .(2,0)(2,)-+∞ D .(0,2)(2,)⋃+∞11.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有2()()0f x xf x '+>,且(1)0f -=,则使得()0f x >成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-12.已知函数()xx f x e e ax -=-+(a 为常数)有两个不同极值点,则实数a 的取值范围是( ) A .[)1,+∞B .[)2,+∞C .()2,+∞D .()1,+∞二、填空题13.函数()y f x =的导函数的图像如图所示,给出下列判断:①函数()y f x =在区间(3)5,内单调递增; ②函数()y f x =在区间1(3)2-,内单调递减; ③函数()y f x =在区间(22)-,内单调递增; ④当12x =-时,函数()y f x =有极大值;⑤当2x =时,函数()y f x =有极大值; 则上述判断中正确的是________. 14.已知一个母线长33___________米.15.若函数()()()()21222xf x a x e ax ax a R ⎡⎤=---+∈⎢⎥⎣⎦在1,12⎛⎫⎪⎝⎭上有最大值,则a 的取值范围是___________.16.如果定义在R 上的函数()f x ,对任意两个不相等的实数1x ,2x ,都有()()()()11221221x f x x f x x f x x f x +>+,则称函数()f x 为“H 函数”,给出下列函数:①e 1x y =+ ②()32sin cos y x x x =--③32331y x x x =+++ ④ln ,0,0x x y x x ⎧≠=⎨=⎩以上函数是“H 函数”的所有序号为________.17.设函数f (x )在R 上存在导数f '(x ),当x ∈(0,+∞)时,f '(x )<x .且对任意x ∈R ,有f (x )=x 2﹣f (﹣x ),若f (1﹣t )﹣f (t )12≥-t ,则实数t 的取值范围是_____. 18.已知函数()()ln ,11,1x x x f x x e x ≥⎧=⎨-<⎩,若函数()()()2g x f x f x a =--⎡⎤⎣⎦有6个零点,则实数a 的取值范围是______.19.已知函数()f x 是定义在区间()0,∞+)上的可导函数,若对()0,x ∀∈+∞()()20xf x f x '+>恒成立,则不等式()()()202020202019201920192020x f x f x ++<+的解集为______.20.已知函数()()31f x x ax b =---,x ∈R ,其中a 、b ∈R ,若()f x 存在极值点0x ,且()()10f x f x =,其中10x x ≠,则102x x +=_______.三、解答题21.已知函数()2ln 2f x x x =-,函数()212g x x a x=--+. (1)求函数()f x 的单调区间;(2)若对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立,求实数a 的取值范围. 22.已知函数()323f x x ax x m =-++在3x =处取得极值.(1)求实数a 的值;(2)函数()y f x =有三个零点,求m 的取值范围. 23.已知()21ln f x ax x =--(1)当2a =时,求()f x 的单调增区间; (2)若()0f x ≥,求实数a 的取值范围. 24.已知函数()21x f x ae x =-+. (1)讨论()f x 的单调性;(2)函数()()ln g x f x x x =+,当0a >时,讨论()g x 零点的个数. 25.设函数(),02alnxf x x a =->. (1)求()f x 的单调区间;(2)求证:当1,ax e ∈⎡⎤⎣⎦时,()22aaf x e ≤- 26.已知函数()ln 1ln f x x x x x =+--.(Ⅰ)设函数()y f x =在1x =和x e =处的切线交直线1y =于,M N 两点,求||MN ; (Ⅱ)设()0f x 为函数()y f x =的最小值,求证:()0102f x -<<.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥,利用导数判断()g x 的单调性求最小值即可. 【详解】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-, 整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.2.D解析:D 【分析】 由题意可得ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭,根据它们的图象,结合的导数的几何意义,以及射线的性质,即可得到所求的最大值. 【详解】由不等式()0f x ≤对()0,x ∈+∞恒成立, 即为ln 20e x mx n x --+≤,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,由()210eg x x x'=+>, 可得()g x 在()0,∞+上递增,且()0g e =,当0x →时,()g x →-∞;x →+∞,()g x →+∞, 作出()y g x =的图象, 再设()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭, 可得()h x 表示过,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点), 要求nm 的最大值,且满足不等式恒成立,可得2n m的最大值, 由于点,02n m ⎛⎫⎪⎝⎭在x 轴上移动, 只需找到合适的0m >,且()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,如图所示:此时2n e m =,即nm 的最大值为2e . 故选:D 【点睛】关键点点睛:本题考查不等式恒成立问题的解法,解题的关键是将问题转化为()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,注意运用转化思想和数形结合思想,考查了导数的应用,求切线的斜率与单调性,考查了运算能力和推理能力.3.A解析:A 【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值. 【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下: x()3,2--2-()2,2-2()2,3()f x '+- 0+()f x极大值极小值所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34,故选:A . 【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.4.C解析:C 【分析】不等式()0f x ≤恒成立等价于ln xa x ≥在[)1,+∞上恒成立,则maxln x a x ⎛⎫≥ ⎪⎝⎭,运用导数求出函数ln xx在[)1,+∞上的最大值. 【详解】解:当[)1+x ∈∞,时,不等式()0f x ≤恒成立等价于ln xa x≥在[)1,+∞上恒成立, 令ln ()xg x x=,则21ln ()x g x x -'=当0x e <<时,()0g x '>;当x e >时,()0g x '<;所以max 1()()g x g e e==,所以1a e ≥故选:C. 【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.5.C解析:C 【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<,则2661y p p '=-+-336()(66p p -+=---则函数y 在单调递减,在单调递增,故函数在p =处取得极大值,也是最大值. 故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.6.C解析:C 【分析】转化条件为当0x >时,ln 1x e x x a x--=有解,令()ln 1,0x e x x g x x x --=>,通过导数确定()g x 的取值范围即可得解. 【详解】若()f x 的图象上存在关于原点对称的点, 则当0x >时,()()ln 1x ex x ax ----=++有解,即当0x >时,ln 1x e x x ax =++有解,所以当0x >时,ln 1x e x x a x--=有解,令()ln 1,0x e x x g x x x--=>,则()()()2ln 1ln 1xx e x x e x x g x x -----'=()()()221111xx x e x e x x x ----+==, 当()0,1x ∈时,()0g x '<,()g x 单调递减, 当()1,x ∈+∞时,()0g x '>,()g x 单调递增, 所以()()min 11g x g e ==-,()[)1,g x e ∈-+∞, 所以[)1,a e ∈-+∞. 故选:C. 【点睛】本题考查了函数与方程的综合应用及利用导数研究方程有解问题,考查了运算求解能力与转化化归思想,属于中档题.7.D解析:D 【分析】画出图形,数形结合解答.注意到122x x +=-,2324log log x x -=,化简结论得32312x x-,311,42x ⎛⎤∈ ⎥⎝⎦,构造函数21()2f x x x =-,11,42x ⎛⎤∈ ⎥⎝⎦,利用导数判断出函数的单调性即可. 【详解】已知函数图象如下:方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<, 则122x x +=-,2324log log x x -=,所以341x x ⋅=,且311,42x ⎛⎤∈ ⎥⎝⎦, 所以234322312311()2x x x x x x x ⋅=+⋅+-, 令21()2f x x x =-,11,42x ⎛⎤∈ ⎥⎝⎦, 则31()1f x x =+'在11,42⎛⎤⎥⎝⎦上恒大于0, 故()f x 在11,42x ⎛⎤∈⎥⎝⎦上单调递增, 所以313(),42f x ⎡⎫∈--⎪⎢⎣⎭, 故选:D . 【点评】本题考查了函数的图像运用,利用数形结合判断函数交点问题,属于中档题.8.A解析:A 【分析】设()()2xxF x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x x F x e f x e =-,则[]()()()2()()2x x x xF x e f x e f x e ef x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦,所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-,故(3)2(2)2ef f e +<+. 故选:A. 【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.9.B解析:B 【分析】由题意得出()0f x '≤对于任意的[]1,1x ∈-恒成立,由此得出()()1010f f ⎧-≤⎪⎨≤''⎪⎩,进而可求得实数k 的取值范围. 【详解】()327f x x kx x =+-,()2327f x x kx '∴=+-,由题意可知,不等式()0f x '≤对于任意的[]1,1x ∈-恒成立,所以,()()12401240f k f k ⎧-='--≤⎪⎨='-≤⎪⎩,解得22k -≤≤.因此,实数k 的取值范围是[]22-,. 故选:B. 【点睛】本题考查利用函数在区间上的单调性求参数,一般转化为导数不等式在区间上恒成立,考查运算求解能力,属于中等题.10.C解析:C 【分析】通过令3()()g x x f x =可知问题转化为解不等式()0>g x ,利用当0x >时32()3()0x f x x f x '+>及奇函数与偶函数的积函数仍为奇函数可知()g x 在(,0)-∞递减、在(0,)+∞上单调递增,进而可得结论.【详解】解:令3()()g x x f x =,则问题转化为解不等式()0>g x , 当0x >时,()3()0xf x f x '+>,∴当0x >时,233()()0x f x x f x +'>,∴当0x >时()0g x '>,即函数()g x 在(0,)+∞上单调递增,又(2)0f -=,()()f x x R ∈是奇函数,()()()()()()()333g x x f x x f x x f x g x ∴-=--=--== 故()g x 为偶函数,f ∴(2)0=,g (2)0=,且()g x 在(,0)-∞上单调递减, ∴当0x >时,()0>g x 的解集为(2,)+∞,当0x <时,()0(2)g x g >=-的解集为(2,0)-,∴使得f ()0x >成立的x 的取值范围是(2-,0)(2⋃,)+∞,故选C . 【点睛】本题考查利用导数研究函数的单调性,考查运算求解能力,构造新函数是解决本题的关键,注意解题方法的积累,属于中档题.11.B解析:B 【分析】根据条件构造函数2()()g x x f x =,求函数的导数,判断函数的单调性,将不等式进行转化求解. 【详解】由题意,设2()()g x x f x =,则2'()2()()[2()'()]g x xf x x f x x f x xf x =+=+, 因为当0x >时,有2()'()0f x xf x +>, 所以当0x >时,'()0g x >,所以函数2()()g x x f x =在(0,)+∞上为增函数,因为(1)0f -=,又函数()f x 是偶函数,所以(1)(1)0f f =-=,所以(1)0g =,而当()0>g x 时,可得1x >,而()0>g x 时,有()0f x >, 根据偶函数图象的对称性,可知()0f x >的解集为()(),11,-∞-⋃+∞, 故选B. 【点睛】该题考查的是与导数相关的构造新函数的问题,涉及到的知识点有函数的求导公式,应用导数研究函数的单调性,解相应的不等式,属于中档题目.12.C解析:C 【分析】由导数与极值的关系知可转化为方程()0f x '=在R 上有两个不等根,结合函数的性质可求. 【详解】函数有两个不同极值点,()0x x f x e e a -'∴=--+=有2个不等的实数根,即x x a e e -=+有2个不等的实数根, 令()xxg x e e-=+,则()xxg x e e '-=-在R 上单调递增且(0)0g '=,当0?x <时 ()0,()g x g x '<单调递减,当0 x >时,()0,()'>g x g x 单调递增, 所以函数有极小值也是最小值(0)2g =,又当x →-∞时,()g x →+∞,x →+∞,()g x →+∞, 所以2a >即可, 故选:C 【点睛】本题主要考查了利用导数研究函数的单调性、极值、最值,转化思想,属于中档题.二、填空题13.③⑤【分析】根据导函数图像得出导数正负根据导数正负判定单调区间根据左正右负和左负有正判定极值【详解】解:对于①当时单调递减当时单调递增所以①错;对于②当时单调递增当时单调递减所以②错;对于③当时单调解析:③⑤ 【分析】根据导函数图像得出导数正负,根据导数正负判定单调区间,根据左正右负和左负有正判定极值. 【详解】解:对于①,当(34)x ∈,时()0f x '<,()f x 单调递减, 当(4,5)x ∈时()0f x '>,()f x 单调递增,所以①错;对于②,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,所以②错; 对于③,当(22)x ∈-,时()0f x '>,()f x 单调递增,所以③对; 对于④,当(22)x ∈-,时()0f x '>,()f x 单调递增,故当12x =-时()f x 不是极大值,所以④错;对于⑤,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,故2x =时函数()y f x =取得极大值,所以⑤对.故答案为:③⑤. 【点睛】求函数的极值或极值点的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域;(2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定极值点或函数的极值.14.【分析】设圆锥的高为米可得出底面圆的半径为求出圆锥形容器的体积关于的表达式利用导数可求得的最大值及其对应的的值【详解】设圆锥形容器的高为米半径为米由勾股定理可得其中圆锥形容器的体积为则令由于可得当时 解析:3【分析】设圆锥的高为h 米,可得出底面圆的半径为r =V 关于h 的表达式,利用导数可求得V 的最大值及其对应的h 的值. 【详解】设圆锥形容器的高为h 米,半径为r 米,由勾股定理可得2227h r +=,2227r h ∴=-,其中0h << 圆锥形容器的体积为()()2231112727333V r h h h h h πππ==-=-,则()29V h π'=-,令0V '=,由于(h ∈,可得3h =.当03h <<时,0V '>;当3h <<0V '<.所以,当3h =时,圆锥形容器的体积V 取得最大值. 故答案为:3. 【点睛】方法点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.15.【分析】先通过有根在上求得参数范围再验证其左右的导数符号以保证取得极大值即得结果【详解】依题意在开区间上函数有最大值即说明在上有极大值故在上有根易见导函数的一个根故有根且在上故即故此时有两个根要使为解析:)【分析】先通过()0f x '=有根在1,12⎛⎫⎪⎝⎭上求得参数范围,再验证其左右的导数符号,以保证取得极大值,即得结果. 【详解】依题意,在开区间1,12⎛⎫ ⎪⎝⎭上,函数()f x 有最大值,即说明()f x 在1,12⎛⎫⎪⎝⎭上有极大值,故()()()()()()21210x xf x a x e ax a a x e a '⎡⎤=---+=---=⎣⎦在1,12⎛⎫ ⎪⎝⎭上有根,易见,导函数的一个根11,12x ⎛⎫=∉ ⎪⎝⎭,故0x e a -=有根,且在1,12⎛⎫⎪⎝⎭上,故10,ln ,12a x a ⎛⎫>=∈⎪⎝⎭,即ln ln ln a e <e a <<, 此时()()()()210xf x a x e a '=---=有两个根,要使ln x a =为极大值点,则需(),ln x a ∈-∞时,()0f x '>,()ln ,1x a ∈时,()0f x '<,故20a ->,即2a <.综上,a 的取值范围是).故答案为:).【点睛】 易错点点睛:()00f x '=是0x x =为极值点的必要条件,利用其求得参数值(或范围)后必须验证()f x '在0x x =左右的符号,也进而能确定0x x =是极大值点还是极小值点,这是这类题的易错点.16.①②③【分析】根据题意可知H 函数为增函数转化为判断函数在上是否为增函数根据解析式可知①正确;根据导数可知②③正确;根据解析式可知④不正确【详解】因为可化为所以根据题意可知函数为上的增函数即H 函数为增解析:①②③ 【分析】根据题意可知“H 函数”为增函数,转化为判断函数在R 上是否为增函数,根据解析式可知①正确;根据导数可知②③正确;根据解析式可知④不正确. 【详解】因为()()()()11221221x f x x f x x f x x f x +>+可化为[]1212()()()0f x f x x x -->, 所以根据题意可知,函数()f x 为R 上的增函数,即“H 函数”为增函数, ①e 1x y =+显然是增函数,故①正确; ②()32sin cos y x x x =--,因为32cos 2sin y x x '=--=3)4x π-+30≥->,所以函数()32sin cos y x x x =--为R 上的增函数,故②正确;③32331y x x x =+++,223633(1)0y x x x '=++=+≥,且只有当1x =-时,y '0=,所以函数32331y x x x =+++为R 上的增函数,故③正确;④ln ,0,0x x y x x ⎧≠=⎨=⎩,当0x >时,ln y x =在(0,)+∞上递增,当0x <时,()ln y x =-在(,0)-∞上递减,所以ln ,0,0x x y x x ⎧≠=⎨=⎩不是R 上的增函数,故④不正确.故答案为:①②③ 【点睛】关键点点睛:转化为判断函数在R 上是否为增函数是解题关键.17.+∞)【分析】构造函数可得即是奇函数由时可得进而根据奇函数及可知在R 上是减函数再根据可得则即可求解【详解】令因为则所以所以是奇函数易知所以因为当时所以所以在上单调递减所以在R 上是减函数所以因为所以即解析:[12,+∞) 【分析】构造函数()()212g x f x x =-,可得()()0g x g x -+=,即()g x 是奇函数,由()0,x ∈+∞时,()f x x '<可得()()0g x f x x ''=-<,进而根据奇函数及()00g =可知()g x 在R 上是减函数,再根据()()112f t f t t --≥-可得()()1g t g t -≥,则1t t -≤,即可求解. 【详解】 令()()212g x f x x =-, 因为()()2f x x f x =--,则()()2f x f x x +-=, 所以()()()()()()22211022g x g x f x x f x x f x f x x -+=--+-=-+-=, 所以()g x 是奇函数,易知()00f =,所以()00g =,因为当()0,x ∈+∞时,()f x x '<,所以()()0g x f x x ''=-<, 所以()g x 在()0,∞+上单调递减,所以()g x 在R 上是减函数, 所以()()()()()()()221111111222g t g t f t t f t t f t f t t --=----+=--+-, 因为()()112f t f t t --≥-,所以()()10g t g t --≥,即()()1g t g t -≥, 所以1t t -≤,即12t ≥, 所以1,2t ⎡⎫∈+∞⎪⎢⎣⎭,故答案为:1,2⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查构造函数法利用导函数判断函数单调性,考查利用函数单调性比较大小,考查函数的奇偶性的应用.18.【分析】当时利用导数法得到函数的单调性与极值再由时作出函数的大致图象令将问题转化为方程有两个不等根且即各有3个根求解【详解】当时所以当时递增当时递减所以当时取得最大值1又当时所以的大致图象如图所示:解析:1,04⎛⎫- ⎪⎝⎭【分析】当1x <时,()()1xf x x e =-,利用导数法得到函数的单调性与极值,再由1≥x 时,()ln f x x =,作出函数()f x 的大致图象,令()f x t =,将问题转化为方程20t t a --=有两个不等根12,t t ,且12,(0,1)t t ∈即()()12,f x t f x t ==各有3个根求解.【详解】当1x <时,()()1xf x x e =-,所以()xf x xe '=-,当0x <时,()0f x '>,()f x 递增,当01x <<时,()0f x '<,()f x 递减, 所以当0x =时, ()f x 取得最大值1, 又当1≥x 时,()ln f x x =, 所以()f x 的大致图象如图所示:令()f x t =,则转化为方程20t t a --=有两个不等根12,t t ,且()()2121,(0,1),,t f x t f t x t ==∈各有3个根, 方程20t t a --=在(0,1)有两个不同的解,设2()g t t t a =--,所以(0)0140(1)0g a a g a =->⎧⎪∆=+>⎨⎪=->⎩,解得104a -<<. 故答案为:1,04⎛⎫- ⎪⎝⎭【点睛】本题主要方程的根与函数的零点问题,利用导数研究函数的单调性与极值,还考查了转化化归思想、数形结合思想和运算求解的能力,属于中档题.19.【分析】令求的导数根据条件可知从而判断单调递增将不等式化为即可求解【详解】令因为的定义域为所以函数的定义域也为则所以函数在上单调递增又可以化为即所以所以故不等式的解集为故答案为:【点睛】本题考查利用 解析:()2020,1--【分析】令()2()g x x f x =,求()g x 的导数'()g x ,根据条件可知'()0g x >,从而判断()g x 单调递增,将不等式化为()()20202019g x g +<即可求解. 【详解】令()2()g x x f x =,因为()f x 的定义域为()0,∞+,所以函数()g x 的定义域也为()0,∞+,则()()()()()2220g x xf x x f x x f x xf x '''=+=+>⎡⎤⎣⎦,所以函数()g x 在()0,∞+上单调递增, 又()()()202020202019201920192020x f x f x ++<+可以化为()()()222020202020192019x f x f ++<,即()()20202019g x g +<,所以020202019x <+<, 所以20201x -<<-, 故不等式的解集为()2020,1--. 故答案为:()2020,1--. 【点睛】本题考查利用函数的单调性解不等式,构造函数求导是解题的关键,属于中档题.20.【分析】根据得出再根据利用作差因式分解可得出的值【详解】由题意可得则即即故答案为:【点睛】本题考查利用极值点求代数式的值主要考查因式分解考查计算能力属于中等题 解析:3【分析】根据()00f x '=得出()2031a x =-,再根据()()10f x f x =利用作差因式分解可得出102x x +的值.【详解】()()31f x x ax b =---,()()231f x x a '∴=--,由题意可得()()200310f x x a '=--=,则()2031a x =-,10x x ≠,100x x ∴-≠,()()10f x f x =,()()33110011x ax b x ax b ∴---=---,()()()33101011x x a x x ∴---=-,()()()()()()22101100101111x x x x x x a x x ⎡⎤∴--+--+-=-⎣⎦,()()()()()22211000111131x x x x a x ∴-+--+-==-,()()()()221100111210x x x x ∴-+----=,()()()()1010111210x x x x ∴---⋅-+-=⎡⎤⎡⎤⎣⎦⎣⎦,即()()1010230x x x x -+-=,10230x x ∴+-=,即1023x x +=.故答案为:3. 【点睛】本题考查利用极值点求代数式的值,主要考查因式分解,考查计算能力,属于中等题.三、解答题21.(1)单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞ ⎪⎝⎭;(2)(],1-∞. 【分析】(1)求导,判断导函数正负,进而判断函数单调区间; (2)()()f x g x ≥恒成立,可转化为不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,设()1ln h x x x=+,求导,判断单调性并求得最小值,()min a h x ≤. 【详解】(1)函数()2ln 2f x x x =-的定义域为0,,则()()()21212114'4x x x f x x x x x-+-=-==, 由题意120x +>,得 当10,2⎛⎫∈ ⎪⎝⎭x 时,()()'0,f x f x >递增, 当1,2⎛⎫∈+∞ ⎪⎝⎭x 时,令()()'0,f x f x <递减, 所以()f x 的单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞⎪⎝⎭; (2)对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立, 即不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立, 令()1ln h x x x=+, 则()22111'x h x x x x-=-=, 当1,12x ⎡⎫∈⎪⎢⎣⎭时,()'0h x <, 函数()h x 单调递减, 当时()1,∈+∞x ,()'0h x >, 函数()h x 单调递增,所以当1x =时,()h x 有最小值()1ln111h =+=, 从而a 的取值范围是(],1-∞. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22.(1)5a =;(2)13,927⎛⎫- ⎪⎝⎭. 【分析】(1)由条件可知'(3)0f =,求a 后再验证是否满足条件;(2)利用导函数的符号,推出函数的单调性,得到函数的极值,列不等式求解即可. 【详解】(1)()2323f x x ax =-+',由已知得()30f '=,得27630a -+=,5a = (2)()3253f x x x x m =-++,令()231030f x x x '=-+=,得3x =或13x =, 由()0f x '>得3x >或13x <,此时()f x 为增函数, 由()0f x '<得133x <<,此时()f x 为减函数, 即当13x =时,函数()f x 取得极大值,当3x =时,()f x 取得极小值, 即()()39f x f m ==-极小值,()113327f x f m ⎛⎫==+ ⎪⎝⎭极大值, 所以函数()f x 有三个不同零点,因此,只需()10330ff ⎧⎛⎫>⎪ ⎪⎝⎭⎨⎪<⎩,即1302790m m ⎧+>⎪⎨⎪-<⎩,解得13927m -<<, m 的范围是13,927⎛⎫- ⎪⎝⎭.【点睛】方法点睛:该题考查的是有关导数的问题,解题方法如下:(1)根据函数在极值点处导数等于零,求得参数的值,之后需要验证;(2)对函数求导,得到其极值,结合三次函数有三个零点的条件为极大值大于零,极小值小于零,列出不等式组,求得结果. 23.(1)1,2⎛⎫+∞ ⎪⎝⎭;(2)12a e ≥.【分析】(1)求出导函数()'f x ,在定义域内由()0f x '>得增区间;(2)分离参数得21ln x a x +≥.设()21ln x g x x +=,由导数求得()g x 最大值即可得结论. 【详解】(1)当2a =时,()()221ln ,0,f x x x x =--∈+∞.由()()()221211414x x x f x x x x x+--'=-==,令()0f x '>,得12x >, 所以()f x 的单调增区间为1,2⎛⎫+∞⎪⎝⎭. (2)由()21ln 0f x ax x =--≥,则21ln x a x +≥. 设()21ln x g x x +=,则()312ln x g x x--'=. 令()0g x '=,得12x e -=, 且当120,x e -⎛⎫∈ ⎪⎝⎭时,()0g x '>;当12,x e -⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<, 所以()g x 在120,e -⎛⎫ ⎪⎝⎭上单调递增,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递减, 所以当12x e -=到时,()g x 取得最大值为12e , 所以12a e ≥. 【点睛】 方法点睛:本题考查用导数求函数的单调区间,研究不等式恒成立问题.不等式恒成立问题的解题方法通常是利用分离参数法分离参数,然后引入新函数,利用导数求得新函数的最值,则可得参数范围.24.(1)答案见解析;(2)答案见解析.【分析】(1)讨论0a ≤,0a >两种情况,确定()'f x 的正负,利用导数求()f x 的单调性;(2)设()()g x h x x=,利用导数得出()h x 的单调性,进而得出最小值,讨论最小值大于、小于、等于0的情况结合零点存在性定理确定()h x 的零点个数,即()g x 零点的个数. 【详解】解:(1)函数()f x 的定义域为R ,()2x f x ae '=-.①当0a ≤时,()0f x '<,所以()f x 在R 上单调递减;②当0a >时,令()0f x '=得2lnx a =. 若2,lnx a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<; 若2ln ,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '>;所以()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. 综上所述,当0a ≤时,()f x 在R 上单调递减; 当0a >时,()f x 在2,lna ⎛⎫-∞ ⎪⎝⎭单调递减;()f x 在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. (2)()ln 21x g x ae x x x =+-+ 设函数()1()ln 2x g x ae h x x x x x==++- ()2221(1)(1)11()x x ae x ae x h x x x x x +--'=+-= 因为0a >,所以()0h x '=得1x =.当(0,1)x ∈时,()0h x '<,()h x 在(0,1)上单调递减.当(1,)x ∈+∞时,()0h x '>,()h x 在(1,)+∞上单调递增.所以当1x =时,()h x 取最小值,最小值为(1)1h ae =-. 若1a e =时,(1)0h =,所以函数()h x 只有1个零点; 若1a e>时,()(1)0h x h ≥>,所以函数()h x 无零点; 若10a e <<时,(1)0h <,()222222240e e h e a e e e---=-+->->, ()22221220e e h e a e e=++->,故()2(1)0h h e -<,()2(1)0h h e <; 所以函数()h x 在()21,e -和()21,e 各有一个零点,所以函数()h x 有两个零点. 综上所述,当1a e =时,函数()g x 只有1个零点;当1a e >时,函数()g x 无零点; 当10a e<<时,函数()g x 有两个零点 【点睛】 方法点睛:研究含参函数()g x 的零点问题,即方程()0g x =的实根问题,通常选择参变分离,得到()a g x 的形式,后借助数形结合(几何法)思想求解;若无法参变分离,则整体含参讨论函数()g x 的单调性、极值符号,由数形结合可知函数()g x 的图象与x 轴的交点情况即函数()g x 的零点情况.25.(1)单调递增区间为,2a ⎛⎫+∞⎪⎝⎭,单调递减区间为0,2a ⎛⎫ ⎪⎝⎭;(2)证明见解析. 【分析】(1)对()f x 求导,分别由()'0f x >和()'0f x <可求得单调递增和单调递减区间;(2)由题意只需证明()2max 2aa f x e ≤-即可,讨论当12a ≤,即02a <≤,()f x 在1,a e ⎡⎤⎣⎦上单调递增,()()max a f x f e =;当2a >时先证明12a a e a >>>,可得()()max a f x f e =或()()max 11f x f ==,比较即可求证.【详解】(1)由题意得:()1,02a f x x x '=->, 由()'0f x >,得2a x >, 由()'0f x <,得02a x <<, 所以()f x 的单调递增区间为,2a ⎛⎫+∞⎪⎝⎭,单调递减区间为0,2a ⎛⎫ ⎪⎝⎭. (2)若12a ≤,即02a <≤,由(1)知()f x 在1,a e ⎡⎤⎣⎦上单调递增, 所以()()22max22a a a a a f x f e e e ==-≤-成立; 若12a >,即2a >,设()a g a e a =-, 则当2a >时,()'10a g a e =->,所以()()2220g a g e >=->, 所以2a a e a >>,从而1,2a a e ∈⎡⎤⎣⎦. 结合(1)可知,()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在,2a a e ⎛⎤ ⎥⎝⎦上单调递增, 下面比较()22a aa f e e =-和()11f =的大小, 设()22aa h a e =-,当2a >时,()'0,a h a e a =-> 所以()()2221h a h e >=->, 即()()1af e f >,而()()2max 2a a a f x f e e ==-, 所以当1,a x e ∈⎡⎤⎣⎦时,()22a a f x e ≤- 综上所述:当1,a x e ∈⎡⎤⎣⎦时,()22aa f x e ≤-.【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.26.(Ⅰ)2||1e MN e =-;(Ⅱ)证明见解析. 【分析】(Ⅰ)求出导函数,得切线方程,然后求得交点,M N 坐标后可得线段长MN ;(Ⅱ)由零点存在定理得()'f x 存在一个零点0(1,2)x ∈,并求出最小值0()f x ,利用0()0f x '=化简0()f x 后根据0(1,2)x ∈可证上得结论.【详解】解:(Ⅰ)函数()f x 的导函数为11()1ln 1ln f x x x x x'=+--=-. 所以1(1)1,()1f f e e''=-=-.又因为(1)0,()0f f e ==, 因此()y f x =在1x =和x e =处的切线方程分别为1y x =-+和1()e y x e e -=-. 令1y =,可得M 和N 的坐标分别为(0,1)和2,11e e ⎛⎫ ⎪-⎝⎭,故2||1e MN e =-. (Ⅱ)因为1()ln f x x x'=-在(0,)+∞上单调递增,而1(1)10,(2)ln 202f f ''=-<=->, 所以必然存在0(1,2)x ∈,满足()00f x '=,且当()00,x x ∈)时()0f x '<,当()0,x x ∈+∞时()0f x '>.即()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,当0x x =时,()f x 取得最小值()00000ln 1ln f x x x x x =+--.由()00f x '=可得001ln x x =,所以()00012f x x x ⎛⎫=-+ ⎪⎝⎭. 当0(1,2)x ∈时,00152,2x x ⎛⎫+∈ ⎪⎝⎭,所以()0102f x -<<. 【点睛】关键点点睛:本题考查导数的几何意义,考查用导数求函数的最值.求最值时在极值点0x 不能直接求出时,对极值点(最值点)0x 进行定性分析:确定其取值范围,利用注意0()0f x '=得出0x 满足的性质,代入0()f x 化简表达式后再求解.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(答案解析)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(答案解析)

一、选择题1.已知1a e =,ln33b =,ln 44c =,则a 、b 、c 的大小关系为( )A .b c a <<B .c b a <<C .c a b <<D .a c b <<2.已知函数21()ln 2f x x x a =--,若0x ∃>,()0f x ≥,则a 的取值范围是( ) A .1,2⎛⎤-∞- ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .(],e -∞ 3.已知函数()2()x xf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<4.若函数()3221f x x x mx =+++在()-∞+∞,内单调递增,则m 的取值范围是( ) A .43m ≥B .43m >C .43m ≤D .43<m 5.设函数()ln 2e f x x mx n x =--+.若不等式()0f x ≤对()0,x ∈+∞恒成立,则nm 的最大值为( ) A .4e B .2eC .eD .2e6.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( ) A .34B .16C .24D .177.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π8.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( ) A .1-B .0C .1D .29.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=-的图象如图所示,则下列结论中一定成立的是( )A .()f x 有极大值()2f -B .()f x 有极小值()2f -C .()f x 有极大值()1fD .()f x 有极小值()1f10.已知对任意实数x 都有()()2xf x f x e '-=,()01f =-,若()()1f x k x >-恒成立,则k 的取值范围是( ) A .()1,+∞B .323,42e ⎛⎫ ⎪⎝⎭C .()121,4eD .()321,4e11.函数()212x f x x -=+的值域是( ) A .30,3⎡⎤⎢⎥⎣⎦B .33⎛⎫∞ ⎪ ⎪⎝⎭,+ C .()0,3D .)3,⎡+∞⎣12.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 二、填空题13.已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______.14.已知()f x 满足()()431f f =-=,()f x '为其导函数,且导函数()y f x '=的图象如图所示,则()1f x <的解集是_________.15.已知函数)(f x 的定义域为R ,且)(12f -=.若对任意x ∈R ,)(2f x '>,则)(24f x x >+的解集为______.16.若函数()231xf x e x mx =+-+在(],3-∞上单调递减,则实数m 的取值范围为______. 17.函数21f xx x 的极大值为_________.18.已知函数()x f x e alnx =-+2在[]1,4上单调递增,则a 的取值范围是__. 19.已知函数()2cos sin 2f x x x =+,则()f x 的最小值是______. 20.已知成立, 则实数a 的取值范围是 .三、解答题21.已知函数1()ln1xf x x+=-. (1)求证:当(0,1)x ∈时,3()2()3x f x x >+;(2)设实数k 使得3()()3x f x k x >+对(0,1)x ∈恒成立,求k 的最大值.22.函数()cos x f x e x =. (1)求()f x 的单调区间;(2)当0x ≥时,不等式22()(2)x x f x e e ax ≤'-恒成立,求实数a 的取值范围.23.如图所示,某风景区在一个直径AB 为200m 的半圆形花园中设计一条观光路线,在点A 与圆弧上一点C 之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C 到点B 设计为沿圆弧BC 的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)(1)设BAC θ∠=(弧度),将绿化带总长度()S θ表示为θ的函数; (2)试确定θ的值,使得绿化带总长度最大. 24.已知函数2()22ln (,)f x x mx x m m n R =+-+∈. (1)若直线2y mx =与曲线()y f x =相切,求m 的值;(2)若函数()()4ln g x f x x =+有两个不同的极值点()1212,x x x x <,求()211g x x x +的取值范围.25.设函数()(1)ln(1)f x x x x =-++ (1)若方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,求t 的取值范围; (2)证明:当0m n >>时,(1)(1)n mm n +<+.26.已知f (x )=ax -ln x ,x ∈(0,e ],g (x )=ln xx,x ∈(0,e ],其中e 是自然常数,a R ∈. (1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12; (3)是否存在正实数a ,使()f x 的最小值是3?若存在,求出a 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 构造函数()ln xf x x=,利用导数分析函数()f x 在区间[),e +∞上的单调性,由此可得出a 、b 、c 的大小关系.【详解】 构造函数()ln x f x x =,则()21ln xf x x -'=, 当x e ≥时,()0f x '≤,所以,函数()f x 在区间[),e +∞上为减函数,34e <<,则()()()34>>f e f f ,即a b c >>.故选:B. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.数值比较多的比较大小问题也也可以利用两种方法的综合应用.2.A解析:A 【分析】由()f x 得21ln 2a x x ≤-,设21()ln 2g x x x =-,利用导数求()g x 的最大值可得答案. 【详解】 由21()ln 2f x x x a =--,得21ln 2a x x ≤-.设21()ln 2g x x x =-,则211()x g x x x x-'=-=.令()0g x '>,得01x <<;令()0g x '<,得1x >, 则()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而1()(1)2g x g ≤=-, 故12a ≤-. 故选:A. 【点睛】本题考查了能成立求参数的问题,关键点是构造函数利用导数求最值,考查了分析问题、解决问题的能力.3.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx x x f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符; 如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符; 如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.4.A解析:A 【分析】由于()f x 在R 上递增得()0f x '≥恒成立,利用参数分离求得参数范围. 【详解】因为()f x 在R 上递增得()0f x '≥恒成立,则()2340f x x x m '=++≥所以234m x x ≥--在R 上恒成立,令()234g x x x =--,则()max m g x ≥因为()g x 为二次函数且图像的对称轴为23x =-,所以()max 2433g x g ⎛⎫=-= ⎪⎝⎭ 故43m ≥故选:A 【点睛】方法点晴:本题利用导数与单调性的关系转化为恒成立问题,结合参数分离法求得参数范围.5.D解析:D 【分析】 由题意可得ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭,根据它们的图象,结合的导数的几何意义,以及射线的性质,即可得到所求的最大值. 【详解】由不等式()0f x ≤对()0,x ∈+∞恒成立, 即为ln 20e x mx n x --+≤,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,由()210eg x x x'=+>, 可得()g x 在()0,∞+上递增,且()0g e =,当0x →时,()g x →-∞;x →+∞,()g x →+∞, 作出()y g x =的图象,再设()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭, 可得()h x 表示过,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点), 要求nm 的最大值,且满足不等式恒成立,可得2n m的最大值, 由于点,02n m ⎛⎫⎪⎝⎭在x 轴上移动, 只需找到合适的0m >,且()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,如图所示:此时2n e m =,即nm 的最大值为2e . 故选:D 【点睛】关键点点睛:本题考查不等式恒成立问题的解法,解题的关键是将问题转化为()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,注意运用转化思想和数形结合思想,考查了导数的应用,求切线的斜率与单调性,考查了运算能力和推理能力.6.A解析:A 【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值.【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下:所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34, 故选:A . 【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.7.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r=代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=, 底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r r ππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S r ππ-'=<可得02r <<,所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B 【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.8.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-. 设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0.故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212lnx kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.9.A解析:A 【分析】由函数()()1y x f x '=-的图象,可得1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.由此可得函数()f x 的单调性,则答案可求.【详解】解:函数()()1y x f x '=-的图象如图所示,∴1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.∴函数()f x 在(),2-∞-上单调递增,在()2,1-上单调递减,在()1,+∞上单调递减. ∴()f x 有极大值()2f -.故选:A . 【点睛】本题考查根据导函数的相关图象求函数的单调区间,考查数形结合思想,是中档题.10.D解析:D 【分析】由导数的运算求出()f x ,然后用分离参数法得出1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-,再设(21)()1x e x h x x -=-,求出()h x 在1x >时最小值,在1x <时的最大值,从而可得k 的范围. 【详解】因为()()2xf x f x e '-=,所以()()2x f x f x e '-=,即()2x f x e '⎡⎤=⎢⎥⎣⎦,所以()2x f x x c e =+(c 为常数),()(2)x f x e x c =+,由(0)1f c ==-,()(21)x f x e x =-,不等式()()1f x k x >-为(21)(1)xe x k x ->-,1x =时,不等式为0e >,成立,1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-, 设(21)()1x e x h x x -=-,则2(23)()(1)x xe x h x x -'=-,当312x <<或01x <<时,()0h x '<,当32x >或0x <时,()0h x '>,所以()h x 在(0,1)和31,2⎛⎫⎪⎝⎭上是减函数,在3,2⎛⎫+∞ ⎪⎝⎭和(,0)-∞上是增函数,1x >时,()h x 在32x =时取得极小值也最小值32342h e ⎛⎫= ⎪⎝⎭,由(21)1x e x k x -<-恒成立得324k e <,1x <时,()h x 在0x =时取得极大值也是最大值(0)1h =,由(21)1xe x k x ->-恒成立得1k >,综上有3214k e <<. 故选:D .【点睛】本题考查导数的运算,考查用导数研究不等式恒成立问题,用分离参数法转化为求函数的最值是解题关键,解题时注意分类讨论思想的应用.11.A解析:A 【分析】求出函数的定义域,然后求出导函数,确定单调性,得值域. 【详解】由21020x x ⎧-≥⎨+≠⎩得11x -≤≤,()f x '==当112x -≤<-时,()0f x '>,()f x 递增,112x -<≤时,()0f x '<,()f x 递减, 所以12x =-时,max()322f x ==-+(1)(1)0f f -==, 所以()f x的值域是0,3⎡⎢⎣⎦.故选:A . 【点睛】本题考查用导数求函数的值域,解题方法是由导数确定函数的单调性,得出最大值和最小值,得值域.12.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x123a--=,x2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值, ∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;二、填空题13.【分析】由得根据的范围得利用导数得可得令将化为关于的二次函数根据二次函数知识可求得结果【详解】因为所以所以因为所以当时由得由得所以在上递减在上递增所以在处取得最小值所以所以令则所以所以当时取得最小值解析:24,0e ⎡⎤-⎣⎦【分析】由()()12f x f x =得2124x e x e x =-,根据1x 的范围得224x e e x ≤,利用导数得22x e e x ≥,可得224x e e e x ≤≤,令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识可求得结果. 【详解】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤,当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x'--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭, 令22x e t x =,则4e t e ≤≤,所以()12x f x 24t et =-()2224t e e =--,所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦. 故答案为:24,0e ⎡⎤-⎣⎦ 【点睛】关键点点睛:令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识求解是解题关键.14.【分析】利用导数分析函数的单调性分和两种情况解不等式由此可得出原不等式的解集【详解】由函数的图象可知当时此时函数单调递减;当时此时函数单调递增因为当时由可得;当时由可得综上所述不等式的解集时故答案为 解析:()3,4-【分析】利用导数分析函数()f x 的单调性,分0x ≤和0x >两种情况解不等式()1f x <,由此可得出原不等式的解集. 【详解】由函数()y f x '=的图象可知,当0x <时,()0f x '<,此时函数()f x 单调递减; 当0x >时,()0f x '>,此时函数()f x 单调递增.因为()()431f f =-=,当0x ≤时,由()()13f x f <=-,可得30x -<≤; 当0x >时,由()()14f x f <=,可得04x <<. 综上所述,不等式()1f x <的解集时()3,4-.故答案为:()3,4-.【点睛】思路点睛:根据函数单调性求解函数不等式的思路如下: (1)先分析出函数在指定区间上的单调性;(2)根据函数单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式 ,从而求解出不等式的解集.15.【分析】构造函数利用导数研究函数的单调性即可得结论【详解】设则因为对任意所以所以对任意是单调递增函数因为所以由可得则的解集故答案为:【点睛】本题主要考查不等式的求解利用条件构造函数利用导数研究函数的 解析:)(1,-+∞【分析】构造函数)(()24g x f x x =--,利用导数研究函数的单调性即可得结论. 【详解】设)(()24g x f x x =--,则)(()2g x f x ='-', 因为对任意x ∈R ,)(2f x '>,所以()0g x '>, 所以对任意x ∈R , ()g x 是单调递增函数,因为)(12f -=,所以)((1)124440g f -=-+-=-=, 由()()10g x g >-=,可得1x >-, 则)(24f x x >+的解集()1,-+∞. 故答案为:()1,-+∞. 【点睛】本题主要考查不等式的求解,利用条件构造函数、利用导数研究函数的单调性是解决本题的关键.16.【分析】根据函数在上单调递减由恒成立求解【详解】因为函数在上单调递减所以恒成立;令在上单调递增所以实数的取值范围为故答案为:【点睛】方法点睛:恒成立问题的解法:(1)若在区间D 上有最值则;;(2)若解析:)336,e ⎡++∞⎣【分析】根据函数()231xf x e x mx =+-+在(],3-∞上单调递减,由()0f x '≤,(],3x ∈-∞恒成立求解. 【详解】()320x f x e x m '=+-≤,因为函数()231xf x e x mx =+-+在(],3-∞上单调递减,所以32x e x m +≤,(],3x ∈-∞恒成立;令32x y e x =+在(],3-∞上单调递增,3max 36y e =+,所以实数m 的取值范围为)336,e ⎡++∞⎣. 故答案为:)336,e ⎡++∞⎣ 【点睛】方法点睛:恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.17.【分析】利用导数研究函数的单调性由此可求得该函数的极大值【详解】定义域为令可得或当或时此时函数单调递增;当时此时函数单调递减所以函数在处取得极大值且极大值为故答案为:【点睛】本题考查利用导数求解函数 解析:427【分析】利用导数研究函数21f x x x 的单调性,由此可求得该函数的极大值.【详解】()()21f x x x =-,定义域为R ,()()()()()2121311f x x x x x x '=-+-=--.令()0f x '=,可得13x =或1x =. 当13x <或1x >时,()0f x '>,此时,函数21f x x x 单调递增;当113x <<时,()0f x '<,此时,函数21f x x x 单调递减.所以,函数21f xx x 在13x =处取得极大值,且极大值为21114133327f ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭. 故答案为:427. 【点睛】本题考查利用导数求解函数的极值,考查计算能力,属于中等题.18.【分析】由函数在区间上单调递增即在上恒成立即在上恒成立设利用导数求得的单调性与最小值即可求解【详解】由题意函数则因为函数在区间上单调递增即在上恒成立即在上恒成立设则所以当时所以为单调递增函数所以函数解析:a e ≤【分析】由函数()f x 在区间[]1,4上单调递增,即()0xaf x e x'=-≥在[]1,4上恒成立,即x a xe ≤在[]1,4上恒成立,设()xg x xe =,利用导数求得()g x 的单调性与最小值,即可求解. 【详解】由题意,函数()2xf x e alnx =-+,则()xa f x e x '=-, 因为函数()f x 在区间[]1,4上单调递增,即()0xa f x e x'=-≥在[]1,4上恒成立,即x a xe ≤在[]1,4上恒成立,设()xg x xe =,则()(1)x x xe xe e g x x ='=++,所以当[]1,4x ∈时,()(1)0xg x e x '=+≥,所以()g x 为单调递增函数,所以函数()xg x xe =的最小值为()1g e =,所以a e ≤.【点睛】本题主要考查了利用函数的单调性求参数问题,其中解答中把函数的转化为不等式的恒成立问题,利用导数求得新函数的单调性与最值是解答的关键,着重考查了推理与运算能力,属于基础题.19.【分析】由解析式可分析得到的一个周期为则只需考虑在上的值域即可利用导函数求得其最值即可【详解】由题的一个周期为故只需考虑在上的值域令解得或可得此时或或所以的最小值只能在点或或和边界点中取到因为所以的解析: 【分析】由解析式可分析得到()f x 的一个周期为2T π=,则只需考虑()f x 在[)0,2π上的值域即可,利用导函数求得其最值即可. 【详解】由题,()f x 的一个周期为2T π=, 故只需考虑()f x 在[)0,2π上的值域,()()()()22sin 2cos 22sin 212sin 22sin 1sin 1f x x x x x x x '=-+=-+-=--+,令()0f x '=,解得1sin 2x =或sin 1x =-, 可得此时6x π=或56π或π,所以()2cos sin 2f x x x =+的最小值只能在点6x π=或56π或π和边界点0x =中取到, 因为3362f π⎛⎫=⎪⎝⎭,53362f π⎛⎫=- ⎪⎝⎭,()2f π=-,()02f =, 所以()f x 的最小值为332-, 故答案为:332- 【点睛】本题考查导数的运算,考查利用导函数求最值,考查运算能力.20.【详解】当时当时时有最小值因为所以考点:函数的单调性 解析:【详解】,当时,,当时,()0,1f x x '>∴=-时,有最小值()1f -.因为()max g x a =, 所以.考点:函数的单调性.三、解答题21.(1)证明见详解;(2)2 【分析】(1)构造新函数利用函数的单调性证明命题成立.(2)对k 进行讨论,利用新函数的单调性求参数k 的取值范围. 【详解】(1)证明:()()1()lnln 1ln 11xf x x x x+==+---, ()2112111f x x x x '=+=+-- 令()3()2()3x g x f x x =-+,则()()()4222211x g x f x x x ''=-+=-,因为()()001g x x '><<,所以()g x 在()0,1上单调递增, 所以()()00g x g >=,()0,1x ∈,即当()0,1x ∈时,3()2()3x f x x >+.(2)由(1)可知,当k 2≤时,3()()3x f x k x >+对(0,1)x ∈恒成立,当2k >时,令()3()()3x h x f x k x =-+,则()()2222()(1)1kx k h x f x k x x--''=-+=-,所以当0x <<()0h x '<,因此()h x 在区间⎛ ⎝上单调递减,当0x <<()()00h x h <=, 即3()()3x f x k x <+,所以当2k >时,3()()3x f x k x >+并非对(0,1)x ∈恒成立,综上可知,k 的最大值为2. 【点睛】关键点点睛:本题考查了构造新函数,利用导数判断函数的单调性,证明不等式,利用导数研究不等式恒成立,解题的关键是由(1)确定当k 2≤时,3()()3x f x k x >+对(0,1)x ∈恒成立,考查了运算求解能力.22.(1)()f x 的单调递增区间为:32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ;(2)(,2]-∞. 【分析】(1)求导函数,计算()0f x '≥和()0f x '≤即可得单调区间;(2)将()()cos sin x f x e x x '=-代入不等式化简得2sin cos ()20xxx x h x e ax e-=+-≥恒成立,通过求导数讨论单调性并求得最值,从而求的实数a 的取值范围. 【详解】(1)由题可得()cos sin (cos sin )cos 4x x xx f x e x e x e x x x π⎛⎫'=-=-=+ ⎪⎝⎭令()cos 04x f x x π⎛⎫=+ ⎪⎝⎭',得22()242k x k k πππππ-++∈Z ,∴322()44k x k k Z ππππ-+∈,∴()f x 的单调递增区间为32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z . 同理,令()0f x '≤,得()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 综上所述:()f x 的单调递增区间为:32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z , ()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z .(2)由()()cos sin x f x e x x '=-,得2cos sin 2x xx xe ax e--≥, 即2sin cos 20xxx x e ax e-+-. 设2sin cos ()2x x x x h x e ax e -=+-,则()22cos 22xxx h x e a e'=+-. 设()()x h x ϕ=',则344()x xe x x e πϕ⎛⎫-+ ⎪⎝⎭='. 当[0,)x ∈+∞时,344x e ≥,4x π⎛⎫+≤ ⎪⎝⎭()0x ϕ'≥. 所以()x ϕ即()h x '在[0,)+∞上单调递增, 则()()042h x h a ''≥=-.若2a ≤,则()()0420h x h a ''≥=-≥, 所以()h x 在[0,)+∞上单调递增. 所以()()00h x h ≥=恒成立,符合题意.若2a >,则()0420h a '=-<,必存在正实数0x , 满足:当()00,x x ∈时,()0h x '<,()h x 单调递减, 此时()()00h x h <=,不符合题意.综上所述,a 的取值范围是(,2]-∞. 【点晴】方法点晴:将不等式恒成立问题转化为最值问题来求解,通过求导讨论单调性求得最值,从而解决相关问题.23.(1)()400cos 200S θθθ=+,0,2πθ⎛⎫∈ ⎪⎝⎭;(2)6πθ=.【分析】(1)在直角三角形ABC 中,100AB =,BAC θ∠=,可得AC 的长.由于22BOC BAC θ∠=∠=,可得弧BC 的长; (2)利用导数求()s θ最大值可得答案.【详解】(1)如图,连结OC ,BC ,在直角三角形ABC 中,CAB θ∠=,200AB =(m ), 所以200cos AC θ=(m ),由于22COB CAB θ∠=∠=,所以弧BC 的长为1002200θθ⨯=(m ), 所以()2200cos 200400cos 200S θθθθθ=⨯+=+(m ),0,2πθ⎛⎫∈ ⎪⎝⎭,(2)由(1)得()400cos 200S θθθ=+0,2πθ⎛⎫∈ ⎪⎝⎭,所以()()2002sin 1S θθ'=-+,0,2πθ⎛⎫∈ ⎪⎝⎭, 当06πθ<<时,()0S θ'>,当6πθ=时,()0S θ'=,当62ππθ<<时,()0S θ'<, 所以()S θ在0,6π⎛⎫ ⎪⎝⎭上单调递增,在,62ππ⎛⎫⎪⎝⎭上单调递减,当6πθ=时,()S θ有最大值100400cos 20020036663S ππππ⎛⎫=+⨯=⎪⎝⎭, 所以当6πθ=时,绿化带总长度最大.【点睛】本题考查解实际问题的应用,关键正确理解题意,正确列出等量关系或函数关系式,考查了分析问题、解决问题的能力. 24.(1)1m =-;(2)(,4)-∞-. 【分析】(1)求出导函数()'f x ,由导数的几何意义可求得m 值:设切点00(,)x y ,0()2f x m '=,及切点在切线上又在函数图象上可得;(2)求出()'g x ,()0g x '=的两解为12,x x ,由韦达定理得1212221,1,x x m x x m x x ⎛⎫+=-==-+ ⎪⎝⎭,可得21>x ,这样()211g x x x +可表示为2x 的函数,再由导数可求得其范围. 【详解】(1)由题意知(0,)x ∈+∞,2()22f x x m x'=+-,设直线2y mx =与曲线()y f x =相切于点()00,x y 所以()()0000022f x m y f x y mx '⎧=⎪=⎨⎪=⎩,,,整理得201x =,得01,1x m ==-;(2)2()22ln g x x mx x m =+++,所以()2212()22x mx g x x m x x'++=++=, 所以12,x x ,是方程210x mx ++=的两个根, 所以1212221,1,x x m x x m x x ⎛⎫+=-==-+ ⎪⎝⎭,因为120x x <<,所以21>x ,所以()22122211222ln 1g x x x mx x m x x x +++++=()3322222222ln 1x x x x x x =---+>,令()()()()3222222222222222ln 1,32ln h x x x x x x x h x x x x '=---+>=-+-,()ln p x x x =-,则11()1x p x x x-'=-=,1x >时,()0p x '<,()p x 递减,所以()(1)10p x p <=-<,所以220ln x x <-,所以()()220h x h x '<,在(1,)x ∈+∞上单调递减,()2(1)4h x h <=-,从而()211g x x x +的取值范围为(,4)-∞-. 【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的取值范围.解题关键是对多变量函数()211g x x x +进行消元,转化为一元函数,然后利用导数求得其取值范围.根据是12,x x 是方程()0g x '=的两根,由韦达定理建立三个变量之间的关系. 25.(1)11ln 2,022⎡⎫-+⎪⎢⎣⎭;(2)证明见解析. 【分析】(1)方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,等价于函数()f x 在区间1,12⎡⎤-⎢⎥⎣⎦上的图像与直线y t =有两个交点,所以利用导数求出()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减,再比较出(1)f 和12f ⎛⎫ ⎪⎝⎭的大小即可得答案;(2)由0m n >>,要证(1)(1)n mm n +<+,只需证ln(1)ln(1)n m m n +<+,只需证ln(1)ln(1)m n m n ++<,构造函数ln(1)(),(0)x g x x x +=>,然后利用导数证明()g x 是减函数即可 【详解】解:(1)由()(1)ln(1)f x x x x =-++,定义域为()1,-+∞,()ln(1)f x x '=-+,()ln(1)00f x x x '=-+=⇒=,当102x -≤<时,()()0,f x f x '>单调递增, 当01x <≤时,()()0,f x f x '<单调递减, 则()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减,又111(0)0,(1)1ln 4,()ln 2222f f f ==--=-+, 135(1)()ln 20,222∴--=-<f f 1(1)2f f ⎛⎫∴< ⎪⎝⎭∴ 当11ln 2,022⎡⎫∈-+⎪⎢⎣⎭t 时,方程()f x t =有两解. (2)∵ 0m n >>.∴ 要证:(1)(1)n m m n +<+,只需证ln(1)ln(1)n m m n +<+, 只需证:ln(1)ln(1)m n m n++<.设ln(1)(),(0)x g x x x+=>, 则22ln(1)(1)ln(1)1()(1)xx x x x x g x x x x -+-+++=+'=. 由(1)知()(1)ln(1)f x x x x =-++在(0,)+∞单调递减, 又()00=f ,∴ (1)ln(1)0x x x -++<, 即()g x 是减函数,而m n >. ∴ ()()g m g n <,故原不等式成立. 【点睛】关键点点睛:此题考查导数的应用,考查利用导数证明不等式,考查数学转化思想,解题的关键是把(1)(1)n mm n +<+,转化为ln(1)ln(1)m n m n++<,再构造函数,再利用导数判断此函数为减函数即可,属于中档题26.(1)当01x <<时,()f x 单调递减;当1x e <≤时,()f x 单调递增;最小值1;(2)证明见解析;(3)存在,2a e =. 【分析】(1)根据f (x )=x -ln x ,求导得11()1x f x x x'-=-=,分别令f ′(x )<0,f ′(x )>0求解单调性和极值.(2)要证 f (x )>g (x )+12,即证[f (x )]min -[g (x )]max >12,由(1)知f (x )在(0,e ]上的最小值为1,再利用导数法求得[g (x )]max 即可.(3)假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e ])有最小值3,求导11()ax f x a x x'-=-=,分0<1a <e ,1a ≥e 讨论求解.【详解】(1)因为f (x )=x -ln x , 所以11()1x f x x x'-=-=, 所以当0<x <1时,f ′(x )<0,此时f (x )单调递减; 当1<x ≤e 时,f ′(x )>0时,此时f (x )单调递增. ∴f (x )的极小值为f (1)=1. (2)∵f (x )的极小值为1,∴f (x )在(0,e ]上的最小值为1,即[f (x )]min =1. 又g ′(x )=21ln x x -,∴当0<x<e时,g′(x)>0,g(x)在(0,e]上单调递增.∴[g(x)]max=g(e)=112e<,∴[f(x)]min-[g(x)]max>12,∴在(1)的条件下,f(x)>g(x)+12.(3)假设存在正实数a,使f(x)=ax-ln x(x∈(0,e])有最小值3,则11 ()axf x ax x'-=-=.①当0<1a<e时,f(x)在(0,1a)上单调递减,在(1a,e]上单调递增,[f(x)]min=f(1a)=1+ln a=3,a=e2,满足条件;②当1a≥e时,f(x)在(0,e]上单调递减,[f(x)]min=f(e)=a e-1=3,a=4e(舍去),所以,此时f(x)无最小值.综上,存在实数a=e2,使得当x∈(0,e]时f(x)有最小值3.【点睛】方法点睛:不等式问题.(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(含答案解析)(4)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(含答案解析)(4)

一、选择题1.已知函数()()22ln x x t f x x+-=,若对任意的[]2,3x ∈,()()0f x f x x '+>恒成立,则实数t 的取值范围是( )A .(),2-∞B .5,2⎛⎫-∞ ⎪⎝⎭C .103⎛⎫-∞ ⎪⎝⎭,D .()2,+∞2.已知,a b ∈R ,若函数()e =-x f x a bx 存在两个零点1x ,2x ,且210x x >>,则下列结论可能成立的是( ). A .0ae b >>B .0ae b >>C .0b ae >>D .0ae b >>3.已知函数()()2ex x f x x =∈R ,若关于方程()()210f x tf x t -+-=恰好有4个不相等的实根,则实数t 的取值范围为( )A .()24,22,e e ⎛⎫⋃⎪⎝⎭ B .24,1e ⎛⎫⎪⎝⎭C .24,e e ⎛⎫⎪⎝⎭D .241,1e ⎛⎫+ ⎪⎝⎭4.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f << B .()()()623428f f f << C .()()()346229f f f <<D .()()()286234f f f <<5.对任意0x >,若不等式2e ln e xa x ax x++≥恒成立(e 为自然对数的底数),则正实数a 的取值范围是( )A .(0,e]B .2(0,e ]C .2[,e]eD .22[,e ]e6.设函数()f x 为偶函数,且当0x ≥时,()cos x f x e x =-,则不等式(21)(2)0f x f x --->的解集为( )A .(1,1)-B .(,3)-∞-C .(3,)-+∞D .(1,)(,1)+∞⋃-∞-7.已知函数()f x 的定义域为[)2-+∞,,部分对应值如下表;()f x '为()f x 的导函数,函数()y f x '=的图象如下图所示.若实数a 满足()211f a +≤,则a 的取值范围是( )A .33,22⎛⎫-⎪⎝⎭B .13,22⎛⎫-⎪⎝⎭C .33,22⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤-⎢⎥⎣⎦8.设函数()x f x e x =-,直线y ax b =+是曲线()y f x =的切线,则+a b 的最大值是( ) A .11e-B .1C .1e -D .22e -9.某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812863y x x =-+-,则该生产厂家获取的最大年利润为( )A .300万元B .252万元C .200万元D .128万元10.若函数()()11xf x e a x =--+在(0,1)上不单调,则a 的取值范围是( )A .()2,1e +B .[]2,1e +C .(][),21,e -∞⋃++∞D .()(),21,e -∞⋃++∞11.设函数()f x 的定义域为R ,其导函数是()f x ',若()()()20,01'+<=f x f x f ,则不等式()2xf x e ->的解集是( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0-∞12.已知函数()xx f x e e ax -=-+(a 为常数)有两个不同极值点,则实数a 的取值范围是( ) A .[)1,+∞B .[)2,+∞C .()2,+∞D .()1,+∞二、填空题13.若直线l 与曲线C 满足下列两个条件:(1)直线l 在点()00,P x y 处与曲线C 相切;(2)曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线l :0y =在点()0,0P 处“切过”曲线C :3y x =. ②直线l :1x =-在点()1,0P -处“切过”曲线C :()21y x =+.③直线l :y x =在点()0,0P 处“切过”曲线C :sin y x =. ④直线l :1y x =+在点()0,1P 处“切过”曲线C :x y e =. ⑤直线l :1y x =-在点()1,0P 处“切过”曲线C :ln y x =.14.若函数32()f x x x =-在区间(,3)a a +内存在最大值,则实数a 的取值范围是____________.15.已知函数()2ln ()x ax a a x x R f =--∈的图象与x 轴交于不同两点,则实数a 的取值范围为______.16.若对任意a ,b 满足0<a <b <m ,都有ln ln a a b b >,则实数m 的最大值为_____________________.17.已知函数()f x 定义在R 上的函数,若2()()0x f x e f x --=,当0x ≤时,()()0f x f x '+<,则不等式21()(1)x f x e f x -≥-的解集为__________18.已知函数()y f x =在R 上的图象是连续不断的一条曲线,并且关于原点对称,其导函数为()f x ',当0x >时,有不等式()()22x f x xf x '>-成立,若对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,则正整数a 的最大值为_______.19.已知成立, 则实数a 的取值范围是 .20.若函数()ln f x ax x =-在区间()0,1上是减函数,则实数a 的取值范围是________.三、解答题21.已知函数()ln ()=+∈f x x x ax a R . (Ⅰ)当0a =,求()f x 的最小值;(Ⅱ)若函数()()ln g x f x x =+在区间[1,)+∞上为增函数,求实数a 的取值范围; 22.已知函数()2ln f x x a x x=--. (1)已知()f x 在点()()1,1f 处的切线方程为2y x =-,求实数a 的值; (2)已知()f x 在定义域上是增函数,求实数a 的取值范围. 23.已知函数2()ln ()f x a x a x=-∈R . (1)当1a =-时,求()f x 的单调区间; (2)若()f x 在21,e ⎛⎫+∞⎪⎝⎭上有两个零点,求a 的取值范围. 24.已知函数()()3f x alnx ax a R =--∈. (1)函数()f x 的单调区间;(2)当1a =-时,证明:当()1x ∈+∞,时,()20f x +>. 25.已知函数())ln f x a x x a =∈R . (1)当1a =-时,求()f x 的单调区间;(2)求()f x 在[1,4]上的最小值.26.已知函数()ln x f x x x ae a =-+,其中a ∈R . (1)当0a =时,求函数在(,())e f e 处的切线方程; (2)若函数()f x 在定义域内单调递减,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求导函数()f x ',化简()()0f x f x x'+>得10x t x+->在[]2,3x ∈恒成立,参变分离即可求参数范围. 【详解】∵()2222ln 2x x t f x x-+-'=, ∴对任意的[]2,3x ∈,()()0f x f x x'+>恒成立⇔对任意的[]2,3x ∈,()()0xf x f x '+>恒成立, ⇔对任意的[]2,3x ∈,10x t x+->恒成立, ⇔1x t x+>恒成立, 又()1g x x x =+在[]2,3上单调递增,∴()()225min g x g ==, ∴52t <.则实数t 的取值范围是5,2⎛⎫-∞ ⎪⎝⎭.故选:B 【点睛】对于恒成立问题,常用到以下两个结论: (1)()a f x ≥ 恒成立()max a f x ⇔≥; (2) ()a f x ≤ 恒成立()min a f x ⇔≤.2.D解析:D【分析】根据题意将问题转化为方程xb e a x=在0,上有两个实数根,进而令()(),0,xe g x x x=∈+∞,再研究函数()g x 的单调性得0b e a >>,进而分0a >和0a <讨论即可得答案. 【详解】解:当0a =时,函数()f x 只有一个零点,故0a ≠,因为函数()e =-xf x a bx 存在两个零点1x ,2x ,且210x x >>所以方程xb e a x=在0,上有两个不相等的实数根.令()(),0,x e g x x x =∈+∞,()()21'x x e g x x-=, 所以当()1,∈+∞x 时()'0g x >,()0,1∈x 时()'0g x <,故函数()(),0,xe g x x x=∈+∞在1,上单调递增,在0,1上单调递减;所以()()min 1g x g e ==,所以0be a>>, 当0a >时,0b ae >>,当0a <时,0b ae <<. 故选:D. 【点睛】本题考查利用导数研究函数零点问题,解题的关键在于将问题转化为方程xb e a x=在0,上有两个不相等实数根,进而令()g x 研究函数的单调性即可.考查运算求解能力与化归转化思想,是中档题.3.D解析:D【分析】求得()f x 的导数,可得单调区间和极值,作出()f x 的图象,将方程()()210f x tf x t -+-=因式分解为()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,则()1f x =或()1f x t =-,从而()1f x t =-有3个实数根,即函数()y f x =与1y t =-有3个交点,数形结合即可得到1t -的取值范围,从而得解; 【详解】解:函数2()x x f x e=的导数为22()xx x f x e -'=, 当02x <<时,()0f x '>,()f x 递增;当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0, 在2x =处取得极大值241e <, 作出()y f x =的图象如下所示,因为()()210fx tf x t -+-=恰好有4个不相等的实根,所以()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,解得()1f x =或()1f x t =-,当()1f x =时,有1个实数解,所以()1f x t =-应有3个实数根,即函数()y f x =与1y t =-有3个交点, 所以2401t e <-<,即2411t e<<+ 故选:D 【点睛】本题考查方程的根的个数问题解法,考查数形结合思想方法,以及导数的运用:求单调区间和极值,考查运算能力.4.B解析:B 【分析】 构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论. 【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=.当1x >时,由()()ln f x x x f x '<⋅得()0g x '>, 所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<, 故选:B.5.B解析:B 【分析】将不等式化简并换元,构造函数2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,对函数求导,判断导函数零点与区间端点的关系,分类讨论得出函数的单调性和最小值,代入求解可得正实数a 的取值范围. 【详解】22e e e ln e ln e 0x x x a x ax a x x x ++≥⇔-+≥,令e x t x=(由e e x x ≥可知e t ≥), 则2ln e 0t a t -+≥,设2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,易得()1(e)a t a f t t t t-'=-=≥, ①当0e a <≤时,()0f t '≥,所以此时()(e)y f t t =≥是增函数,故2min ()(e)e e 0f t f a ==-+≥,解得2e e a ≤+,又0e a <≤,所以0e a <≤;②当e a >时,则()y f t =在[,)e a 上递减,在(,)a +∞上递增,故min ()()f t f a =,min ()0()0f t f a ≥⇔≥,所以2ln e 0a a a -+≥,设2()ln e (e)g a a a a a =-+>,故()0g a ≥即可,而()ln (e)g a a a '=->,显然()0g a '<,即()y g a =在(e,)+∞上递减,又2(e )0g =,而()0g a ≥,所以2()(e )g a g ≥,所以2e a ≤,又e a >,因此2e e a <≤.综上所述,0e a <≤或2e e a <≤,即2(0,e ]a ∈. 故选:B 【点睛】方法点睛:本题考查不等式的恒成立问题,考查导数在单调性和最值中的应用,考查分类讨论思想,关于恒成立问题的几种常见解法总结如下: 1.参变分离法,将不等式恒成立问题转化为函数求最值问题;2.主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;3.分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;4.数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解.6.D解析:D 【分析】利用导数判断函数在[)0,+∞的单调性,然后根据奇偶性判断()f x 在(],0-∞的单调性,再利用单调性与奇偶性结合求解不等式. 【详解】当0x ≥时,()cos x f x e x =-,所以()sin xf x e x '=+,因为0x ≥,所以1x e ≥,即()1sin 0f x x '≥+≥,所以函数()f x 在[)0,+∞上单调递增,又因为函数()f x 为R 上的偶函数,所以函数()f x 在(],0-∞上单调递减,在[)0,+∞上单调递增,则不等式(21)(2)0f x f x --->,等价于212x x ->-,所以1x <-或1x >.故选:D. 【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若()f x 为偶函数,则()()()f x f x f x -==. 7.A解析:A 【分析】由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到()f x 的单调性,结合函数的单调性即可求得a 的取值范围. 【详解】由导函数的图象知:()2,0x ∈-时,()0f x '<,()0,x ∈+∞时,()0f x '>, 所以()f x 在()2,0-上单调递减,在()0,∞+上单调递增, 因为()211f a +≤,()21f -=,()41f =, 所以2214a -<+<,可得:3322a -<<, 故选:A. 【点睛】本题主要考查了利用导函数的符号判断原函数的单调性,以及利用函数的单调性解不等式,属于中档题.8.C解析:C 【分析】先设切点写出曲线的切线方程,得出a 、b 的值,再利用构造函数利用导数求+a b 的最大值即可. 【详解】解:由题得()1x f x e '=-,设切点(t ,())f t ,则()t t f t e =-,()1tf t e '=-;则切线方程为:()(1)()t t y e t e x t --=--, 即(1)(1)tty e x e t =-+-,又因为y ax b =+, 所以1t a e =-,(1)tb e t =-, 则12t t a b e te +=-+-,令()12ttg t e te =-+-,则()(1)tg t t e '=-,则有1t >,()0g t '<;1t <,()0g t '>,即()g t 在(),1-∞上递增,在()1,+∞上递减, 所以1t =时,()g t 取最大值(1)121g e e e =-+-=-, 即+a b 的最大值为1e -. 故选:C. 【点睛】本题考查了利用导数求曲线的切线方程和研究函数的最值,属于中档题.9.C解析:C 【分析】求得函数的导数,得到函数的单调性,进而求解函数的最大值,即可得到答案. 【详解】由题意,函数31812863y x x =-+-,所以281y x '=-+,当09x <<时,0y '>,函数()f x 为单调递增函数; 当9x >时,0y '<,函数()f x 为单调递减函数,所以当9x =时,y 有最大值,此时最大值为200万元,故选C. 【点睛】本题主要考查了利用导数研究函数的单调性与最值问题,其中解答中熟记函数的导数在函数中的应用,准确判定函数的单调性是解答的关键,着重考查了推理与计算能力,属于基础题.10.A解析:A 【分析】求导得()1xf x e a '=-+,原问题可转化为()'f x 在(0,1)上有变号零点,由于()'f x 单调递增,只需满足()()010f f ''<,解之即可. 【详解】 解:()(1)1x f x e a x =--+,()1x f x e a '∴=-+,若()f x 在(0,1)上不单调,则()'f x 在(0,1)上有变号零点, 又()f x '单调递增,()()010f f ''∴<,即(11)(1)0a e a -+-+<,解得21a e <<+.a ∴的取值范围是(2,e +1).故选:A . 【点睛】本题考查利用导数研究函数的单调性、零点存在定理,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.11.D解析:D 【分析】构造新函数2()()xg x ef x =,求导后可推出()g x 在R 上单调递减,而2()x f x e ->可等价于20()1(0)x e f x e f >=,即()(0)g x g >,故而得解. 【详解】 令2()()xg x ef x =,则2()[2()()]xg x e f x f x ''=+,2()()0f x f x +'<,()0g x '∴<,即()g x 在R 上单调递减,(0)1f =,2()x f x e -∴>可等价于20()1(0)x e f x e f >=,即()(0)g x g >,0x ∴<,∴不等式的解集为(,0)-∞.故选:D . 【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.12.C解析:C 【分析】由导数与极值的关系知可转化为方程()0f x '=在R 上有两个不等根,结合函数的性质可求. 【详解】函数有两个不同极值点,()0x x f x e e a -'∴=--+=有2个不等的实数根,即x x a e e -=+有2个不等的实数根, 令()xxg x e e-=+,则()xxg x e e '-=-在R 上单调递增且(0)0g '=,当0?x <时 ()0,()g x g x '<单调递减,当0 x >时,()0,()'>g x g x 单调递增, 所以函数有极小值也是最小值(0)2g =,又当x →-∞时,()g x →+∞,x →+∞,()g x →+∞,所以2a >即可, 故选:C 【点睛】本题主要考查了利用导数研究函数的单调性、极值、最值,转化思想,属于中档题.二、填空题13.①③【分析】根据直线在点处切过曲线的定义对5个函数逐个判断可得答案【详解】对于①由得所以则直线:是曲线:在点处的的切线又当时当时满足曲线在附近位于直线的两侧故直线:在点处切过曲线:故①正确;对于②由解析:①③ 【分析】根据直线l 在点P 处“切过”曲线C 的定义,对5个函数逐个判断可得答案. 【详解】对于①,由3y x =,得23y x '=,所以0|0x y ='=,则直线l :0y =是曲线C :3y x =在点()0,0P 处的的切线,又当0x >时,0y >,当0x <时,0y <,满足曲线C 在P 附近位于直线l 的两侧,故直线l :0y =在点()0,0P 处“切过”曲线C :3y x =,故①正确;对于②,由()21y x =+,得2(1)y x '=+,所以1|0x y =-'=,而直线l :1x =-的斜率不存在,在点()1,0P -处与曲线C :()21y x =+不相切,故②不正确;对于③,由sin y x =,得cos y x '=,所以0|1x y ='=,则直线l :y x =是曲线C :sin y x =在点()0,0P 处的切线,令sin y x x =-,则1cos y x '=-,当02x π-<<时,0y '>,函数sin y x x =-递增,所以当02x π-<<时,0sin 0y x <-=,当02x π<<时,0y '>,函数sin y x x =-递增,所以当02x π<<时,0sin 00y >-=,所以当02x π-<<时,sin x x <,当02x π<<时,sin x x >,所以曲线C 在P 附近位于直线l 的两侧,故直线l :y x =在点()0,0P 处“切过”曲线C :sin y x =,故③正确;对于④,由x y e =,得e xy '=,所以0|1x y ='=,则曲线C :x y e =在点()0,1P 处的切线方程为10y x -=-,即1y x =+,令()1xg x e x =--,则()1xg x e '=-,当0x >时,()0g x '>,函数()g x 递增,当0x <时,()0g x '<,函数()g x 递减,则当0x =时,函数()g x 取得极小值,同时也是最小值(0)0g =,则()0g x ≥,即1x e x ≥+,则曲线C :xy e =不在切线l :1y x =+的两侧,故④不正确;对于⑤,由ln y x =,得1y x'=,所以|11y x '==,所以曲线C :ln y x =在点()1,0P 处的切线方程为01y x -=-,即1y x =-,令()1ln g x x x =--,则1()1g x x'=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,函数()g x 取得极小值,也是最小值,所以()(1)0g x g ≥=,所以曲线C :ln y x =不在切线l :1y x =-的两侧,故⑤不正确.故答案为:①③ 【点睛】关键点点睛:对直线l 在点P 处“切过”曲线C 的定义正确理解是解题关键.14.【分析】首先利用导数判断函数的单调性再根据函数在开区间内存在最大值可判断极大值点就是最大值点列式求解【详解】由题可知:所以函数在单调递减在单调递增故函数的极大值为所以在开区间内的最大值一定是又所以得 解析:(3,2]--【分析】首先利用导数判断函数的单调性,再根据函数在开区间(),3a a +内存在最大值,可判断极大值点就是最大值点,列式求解. 【详解】由题可知: 2()32(32)f x x x x x '=-=-所以函数()f x 在20,3⎛⎫ ⎪⎝⎭单调递减,在2(,0),,3⎛⎫-∞+∞⎪⎝⎭单调递增,故函数的极大值为 (0)0f =.所以在开区间(,3)a a +内的最大值一定是(0)0,f =又(1)(0)0f f ==, 所以03,31a a a <<+⎧⎨+≤⎩ 得实数a 的取值范围是(3,2].-- 故答案为:(]3,2-- 【点睛】关键点点睛:由函数在开区间内若存在最大值,即极大值点在区间内,同时还得满足极大值点是最大值,还需列不等式31a +≤,不要忽略这个不等式.15.【分析】先由题意得到关于的方程在上有两不等实根即在上有两不等实根令对其求导判定其单调性以及的取值情况即可得出结果【详解】因为函数的图象与x 轴交于不同两点所以关于的方程在上有两不等实根即在上有两不等实 解析:1a >【分析】先由题意,得到关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a +=在()0,∞+上有两不等实根,令()2ln x x g x x +=,对其求导,判定其单调性,以及()g x 的取值情况,即可得出结果. 【详解】因为函数()2ln ()x ax a a x x R f =--∈的图象与x 轴交于不同两点,所以关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a+=在()0,∞+上有两不等实根,令()2ln x x g x x +=,则()2ln x x g x x +=与直线1y a =有两个不同交点, 又()()24311ln 212ln x x x x x x x g x x x ⎛⎫+-+⋅ ⎪--⎝⎭'==, 令()12ln h x x x =--,则()210h x x'=--<在()0,∞+上恒成立,则()12ln h x x x =--在()0,∞+上单调递减,又()10h =,所以当()0,1x ∈时,()0h x >,即()312ln 0x xg x x --'=>,则()g x 单调递增;当()1,x ∈+∞时,()0h x <,即()312ln 0x xg x x --'=<,则()g x 单调递减; 所以()()max 110g x g ==>,又211101eg e e-⎛⎫=< ⎪⎝⎭,所以存在01,1x e ⎛⎫∈ ⎪⎝⎭,使得()0g x =;因此当()00,x x ∈时,()0g x <;当()0,1x x ∈时,()0g x >; 又当1x >时,ln 0x >,所以()0g x >; 因此,为使()2ln x x g x x +=与直线1y a =有两个不同交点,只需101a<<,解得1a >. 故答案为:1a >. 【点睛】 思路点睛:利用导数的方法处理由函数零点个数求参数问题时,一般需要根据函数零点个数,得到对应方程的根的个数,再分离参数,构造新的函数,对新函数求导,利用导数的方法判定其单调性,确定函数的取值情况,进而可求出结果.(也可利用数形结合的方法求解)16.【分析】根据0<a<b<m 都有令则在上是减函数由求解【详解】因为0<a<b<m 都有令所以在上是减函数所以解得所以的最大值为故答案为:【点睛】本题主要考查导数与函数的单调性及其应用还考查了分析求解问题解析:1e【分析】根据0<a <b <m ,都有ln ln a a b b >,令()ln f x x x =,则()f x 在()0,m 上是减函数,由()0f x '<求解.【详解】因为0<a <b <m ,都有ln ln a a b b >, 令()ln f x x x =,所以()f x 在()0,m 上是减函数, 所以()1ln 0f x x '=+<, 解得10x e<<, 所以m 的最大值为1e, 故答案为:1e【点睛】本题主要考查导数与函数的单调性及其应用,还考查了分析求解问题的能力,属于中档题.17.【分析】令根据题中条件得到为偶函数;对其求导根据题中条件判定在上单调递减;则在上单调递增;化所求不等式为求解即可得出结果【详解】令则因为所以即所以函数为偶函数;又当时所以即函数在上单调递减;则在上单解析:12x x ⎧⎫≥⎨⎬⎩⎭【分析】令()()xg x f x e =,根据题中条件,得到()g x 为偶函数;对其求导,根据题中条件,判定()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增;化所求不等式为1x x ≥-,求解,即可得出结果.【详解】令()()xg x f x e =,则()()xg x f x e --=-,因为2()()0xf x ef x --=,所以()()x x f x e f x e -=-,即()()g x g x =-,所以函数()g x 为偶函数;又()[]()()()()x x xg x f x e f x e f x f x e '''=+=+,当0x ≤时,()()0f x f x '+<,所以()[]()()0xg x f x f x e ''=+<,即函数()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增; 又不等式21()(1)x f x ef x -≥-可化为1()(1)x x f x e f x e -≥-,即()()1g x g x ≥-,所以只需1x x ≥-,则()221x x ≥-,解得12x ≥. 故答案为:12x x ⎧⎫≥⎨⎬⎩⎭. 【点睛】本题主要考查由函数单调性与奇偶性解不等式,考查导数的方法判定函数单调性,涉及绝对值不等式的解法,属于常考题型.18.【分析】令先判断函数g(x)的奇偶性和单调性得到在R 上恒成立再利用导数分析解答即得解【详解】因为当时有不等式成立所以令所以函数g(x)在(0+∞)上单调递增由题得所以函数g(x)是奇函数所以函数在R 解析:2【分析】令2()(),g x x f x =先判断函数g(x)的奇偶性和单调性,得到e x ax >在R 上恒成立,再利用导数分析解答即得解. 【详解】因为当0x >时,有不等式()()22x f x xf x '>-成立,所以()()22+20,[()]0x f x xf x x f x ''>∴>,令2()(),g x x f x =所以函数g(x)在(0,+∞)上单调递增, 由题得22()()()g(x),g x x f x x f x -=-=-=- 所以函数g(x)是奇函数,所以函数在R 上单调递增. 因为对x R ∀∈,不等式()()2220xxe f e a x f ax ->恒成立,所以()()222,()()e xxxxe f ea x f ax g e g ax ax >∴>∴>,,因为a >0,所以当x≤0时,显然成立.当x >0时,()(0)xe a h x x x<=>,所以2(1)()xx e h x x-'=,所以函数h (x)在(0,1)单调递减,在(1,+∞)单调递增. 所以min ()(1)h x h e ==, 所以a <e,所以正整数a 的最大值为2. 故答案为2 【点睛】本题主要考查函数的奇偶性及其应用,考查函数单调性的判断及其应用,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.属于中档题.19.【详解】当时当时时有最小值因为所以考点:函数的单调性 解析:【详解】,当时,,当时,()0,1f x x '>∴=-时,有最小值()1f -.因为()max g x a =, 所以.考点:函数的单调性.20.【分析】求出函数的导数问题转化为在区间恒成立求出的范围即可【详解】若函数区间上为减函数则在区间恒成立即因为所以所以故答案为:【点睛】本题主要考查了利用导数研究函数的单调性函数的单调性的性质属于中档题解析:(],1-∞【分析】求出函数的导数,问题转化为10a x-在区间(0,1)恒成立,求出a 的范围即可. 【详解】()f x ax lnx =-,(0)x >, 1()f x a x∴'=-,若函数()f x ax lnx =-区间(0,1)上为减函数, 则10a x-在区间(0,1)恒成立,即1()min a x ,因为(0,1)x ∈, 所以min11x ⎛⎫>⎪⎝⎭, 所以1a ≤.故答案为:(-∞,1]. 【点睛】本题主要考查了利用导数研究函数的单调性,函数的单调性的性质,属于中档题.三、解答题21.(1)11()f e e=-;(2)2a ≥- 【分析】(1)对函数求导,令'()ln 1=0=+f x x ,讨论函数的单调性即可求出结果.(2)由()g x 在区间[1,)+∞单调递增,可得'()0≥g x 在[1,)+∞恒成立,分离参数可得:1ln (1)+≥-+x a x ,构造函数即可求出结果. 【详解】(1)()ln 1,'()ln 1=+=+f x x x f x x 令'()ln 1=0=+f x x ,解得1=x e当x 变化时,(),()f x f x '的变化情况如下:所以min ()()f x f ee==-(2)1'()ln 1=+++g x x a x, ()g x 在区间[1,)+∞单调递增,所以'()0≥g x 在[1,)+∞恒成立,即1ln (1)+≥-+x a x在[1,)+∞恒成立 设221111()ln ,'()0-=+∴=-=>x h x x h x x x x x1()ln ∴=+h x x x[1,)+∞单调递增,min ()=(1)=1h x h 只需1(1)≥-+a 即可,解得2a ≥-【点睛】方法点睛:()g x 在区间[1,)+∞单调递增'()0⇔≥g x 在[1,)+∞恒成立,分离参数,构造函数是常用方法.本题考查了运算求解能力和逻辑推理能力,属于中档题目.. 22.(1)2a =;(2)(-∞. 【分析】(1)由题意可得出()11f '=,由此可求得实数a 的值;(2)求出函数()f x 的定义域为()0,∞+,由题意可知,()2210af x x x'=+-≥在()0,∞+上恒成立,利用参变量分离法得出min2a x x ⎛⎫≤+ ⎪⎝⎭,利用基本不等式求出2x x +在()0,∞+上的最小值,由此可得出实数a 的取值范围.【详解】 (1)()2ln f x x a x x =--,()221af x x x'∴=+-,()13f a '∴=-,又()f x 在点()()1,1f 处的切线方程为2y x =-,()131f a '∴=-=,解得2a =; (2)()f x 的定义域为()0,∞+,()f x 在定义域上为增函数,()2210af x x x'∴=+-≥在()0,∞+上恒成立, 2a x x ∴≤+在()0,∞+上恒成立,min 2a x x ⎛⎫∴≤+ ⎪⎝⎭,由基本不等式2x x +=≥x时等号成立,故min 2x x ⎛⎫+= ⎪⎝⎭ 故a的取值范围为(-∞. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在异号零点; (4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立;(5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立. 23.(1)单调递减区间为(0,2),单调递增区间为[2,)+∞;(2)()22,e e --. 【分析】(1)求出导函数()'f x ,由()0f x '>确定增区间,由()0f x '<确定减区间;(2)首先说明0a =无零点,0a ≠时,()0f x =变形为1ln 2x x a =.引入ln ()2x x g x =,利用导数研究的单调性与极值,结合方程有两个解可得参数范围. 【详解】解:(1)当1a =-时,2()ln f x x x=+,则22212()(0)x f x x x x x -'=-+=>.令()0f x ',得2x ,所以函数()f x 在[2,)+∞上单调递增;令()0f x '<,得02x <<,所以函数()f x 在(0,2)上单调递减. 故当1a =-时,()f x 的单调递减区间为(0,2),单调递增区间为[2,)+∞. (2)当0a =时,2()f x x=没有零点,则0a =不符合题意. 当0a ≠时,令2()ln 0f x a x x =-=,得1ln 2x x a =. 设ln ()2x x g x =,则ln 1()2x g x +'=. 由()0g x '>,得1x e >;由()0g x '<,得211x e e<<. 则()g x 在211,e e ⎛⎫⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增, 故min 11()2g x g e e⎛⎫==-⎪⎝⎭. 因为2211g e e ⎛⎫=- ⎪⎝⎭,所以21112e a e -<<-, 解得22e a e -<<-.故a 的取值范围为()22,e e --. 【点睛】思路点睛:本题考查用导数求函数的单调区间,研究函数零点个数问题.解题思路是函数零点个数转化为方程的解的个数,再转化为直线与函数图象交点个数,利用导数研究函数的单调性与极值等性质后可得结论,关键是转化. 24.(1)答案见解析;(2)证明见解析. 【分析】 (1)求导()()1'(0)a x f x x x-=>,0a >,0a <,0a =讨论,令()'0f x >求解.(2)结合(1)将问题转化为()min 2f x >-求解. 【详解】(1)根据题意知,()()1'(0)a x f x x x-=>,当0a >时,当()01x ∈,时,()'0f x >,当()1x ∈+∞,时,()'0f x <, 所以()f x 的单调递增区间为()01,,单调递减区间为()1+∞,; 同理,当0a <时,()f x 的单调递增区间为()1+∞,,单调递减区间为()01,;当0a =时,()3f x =-,不是单调函数,无单调区间. (2)证明:当1a =-时,()ln 3f x x x =-+-, 所以12f ,由(1)知()ln 3f x x x =-+-在()1+∞,上单调递增, 所以当()1x ∈+∞,时,()()1f x f >. 即()2f x >-,所以()20f x +>. 【点睛】方法点睛:利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,或者函数的最值证明函数h (x )>0,其中一个重要技巧就是找到函数h (x )在什么地方可以等于零,这往往就是解决问题的一个突破口. 25.(1)单调递增区间为(4,)+∞;单调递减区间为(0,4);(2)min2ln 22,11()2ln(2)2,1211,2a a f x a a a a a ⎧⎪+≤-⎪⎪=---<<-⎨⎪⎪≥-⎪⎩.【分析】(1)当1a =-时,()f x '=,进而得4x >时,()0f x '>, 04x <<时,()0f x '<,进而得函数的单调区间;(2)2()2af x x+'=,故分1a ≤-,112a -<<-,12a ≥-三种情况讨论即可得答案.【详解】解:(1)()f x 的定义域为(0,)+∞,当1a =-时,12()2f x x x-'=-= 当4x >时,()0f x '>,则()f x 的单调递增区间为(4,)+∞;当04x <<时,()0f x '<,则()f x 的单调递减区间为(0,4).(2)()a f x x '== 当1a ≤-时,()0,()f x f x '≤在[1,4]上单调递减,此时,()min (4)2ln 22f x f a ==+ 当12a ≥-时,()0,()f x f x '≥在[1,4]上单调递增, 此时,()min (1)1f x f == 当112a -<<-时,若214x a <<,则()0,()f x f x '<单调递减; 若244a x <<,则()0,()f x f x '>单调递增此时,()()22min ()4ln 42ln(2)2f x f a a a a a a ==+=--. 综上所述:min 2ln 22,11()2ln(2)2,1211,2a a f x a a a a a ⎧⎪+≤-⎪⎪=---<<-⎨⎪⎪≥-⎪⎩【点睛】本题考查利用导数求解函数的最小值问题,考查分类讨论思想和运算求解能力,其中第二问解题的关键在于求导得()f x '=1a ≤-,112a -<<-,12a ≥-三种情况讨论求解,是中档题.26.(1)20x y e --=;(2)1,e ⎡⎫+∞⎪⎢⎣⎭.【分析】(1)0a =时,先求出切点和切线斜率,再利用点斜式写直线方程即可;(2)先将单调性问题转化成恒成立问题,再分离参数研究最值即得结果.【详解】解:(1)当0a =时,()ln ,()f x x x f e e ==,即切点为(),e e ,由()ln 1f x x '=+知,切线斜率()2k f e '==, ∴切线方程为:2()y e x e -=-,即20x y e --=;(2)函数()f x 的定义域为(0,)+∞,()ln 1x f x x ae '=+-,因为()f x 在(0,)+∞内是减函数,所以()ln 10x f x x ae '=+-≤在(0,)+∞内恒成立,ln 1x x a e+∴≥在(0,)+∞内恒成立, 令ln 1()x x g x e +=,则1ln 1()xx x g x e --'=, 由函数1y x =和ln y x =-在(0,)+∞上递减可知,函数1()ln 1h x x x=--在(0,)+∞单调递减,且(1)0h =,(0,1)x ∴∈时()0g x '>,即()g x 在(0,1)单调递增,(1,)x ∈+∞时()0g x '<,即()g x 在(1,)+∞单调递减, 故max 11()(1)g x g a e e==∴≥, 即a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭.【点睛】方法点睛:已知函数()y f x =单调性求参数的取值范围问题,通常利用导数将其转化成恒成立问题: (1)函数()y f x =在区间I 上单调递增,则()0f x '≥在区间I 上恒成立;(2)函数()y f x =在区间I 上单调递减,则()0f x '≤在区间I 上恒成立.。

学年高中数学第四章导数应用习题课导数的综合应用训练含解析北师大版选修_

学年高中数学第四章导数应用习题课导数的综合应用训练含解析北师大版选修_

习题课——抛物线的综合问题及应用1.抛物线x 2=2py (p>0)的焦点为F ,过F 作倾斜角为30°的直线,与抛物线交于A ,B 两点,假设|AF ||BF |∈(0,1),那么|AF ||BF |=( )A.15B.14C.13D.12解析:因为抛物线的焦点为(0,p 2),直线方程为y=√33x+p 2,与抛物线方程联立得x 2-2√33px-p 2=0,解方程得x A =-√33p ,x B =√3p ,所以|AF ||BF |=|x A ||x B |=13.应选C . 答案:C2.设抛物线y 2=8x 的准线与x 轴相交于点Q ,假设过点Q 的直线与抛物线有公共点,那么此直线的斜率的取值范围是( )A.[-12,12]B.[-2,2]C.[-1,1]D.[-4,4]解析:准线x=-2,Q (-2,0),设y=k (x+2),由{y =k (x +2),y 2=8x ,得k 2x 2+4(k 2-2)x+4k 2=0, 当k=0时,x=0,即交点为(0,0);当k ≠0时,由Δ≥0,得-1≤k<0或0<k ≤1.综上,k 的取值范围是[-1,1],应选C .答案:C3.A ,B 是抛物线y 2=2px (p>0)上的两点,O 为原点.假设|OA|=|OB|,△AOB 的垂心恰为抛物线的焦点F ,那么直线AB 的方程是( )A.x=pB.x=3pC.x=32pD.x=52p 解析:由抛物线的对称性,知A ,B 两点关于x 轴对称.设A 点坐标为(x 1,y 1),那么B 点坐标为(x 1,-y 1).抛物线y 2=2px (p>0)的焦点坐标为F (p 2,0),由F 是△AOB 的垂心,知AF ⊥OB ,因此k AF k OB =-1,即y 1x 1-p 2·-y 1x 1=-1.①由点A 在抛物线上,得y 12=2px 1.②将②代入①,得x 1=5p 2,故直线AB 的方程为x=52p.答案:D4.平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x=-1的距离相等.假设机器人接触不到过点P (-1,0)且斜率为k 的直线,那么k 的取值范围是 .解析:依题意可知,机器人行进的轨迹方程为y 2=4x.设斜率为k 的直线方程为y=k (x+1),联立{y =k (x +1),y 2=4x ,消去y ,得k 2x 2+(2k 2-4)x+k 2=0. 由Δ=(2k 2-4)2-4k 4<0,得k 2>1,解得k<-1或k>1.答案:(-∞,-1)∪(1,+∞)5.过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,|AF|=2,那么|BF|= . 解析:设点A ,B 的横坐标分别是x 1,x 2,那么依题意有焦点F (1,0),|AF|=x 1+1=2,x 1=1,直线AF 的方程是x=1,此时弦AB 为抛物线的通径,故|BF|=|AF|=2.答案:26.导学号01844020过点P (2,2)作抛物线y 2=3x 的弦AB ,恰被P 所平分,那么AB 所在的直线方程为 .解析:方法一:设以P 为中点的弦AB 端点坐标为A (x 1,y 1),B (x 2,y 2),那么有y 12=3x 1,①y 22=3x 2,②x 1+x 2=4,y 1+y 2=4.③①-②,得(y 1+y 2)(y 1-y 2)=3(x 1-x 2).④将③代入④得y 1-y 2=34(x 1-x 2), 即34=y 1-y2x 1-x 2, ∴k=34.∴所求弦AB 所在直线方程为y-2=34(x-2),即3x-4y+2=0.方法二:设弦AB 所在直线方程为y=k (x-2)+2.由{y 2=3x ,y =k (x -2)+2,消去x ,得ky 2-3y-6k+6=0,。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试(含答案解析)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试(含答案解析)

一、选择题1.若函数11()ln x x f x x x e e m --+=-+++有零点,则实数m 的取值范围是( ) A .(,3]-∞-B .(,1]-∞-C .[1,)-+∞D .[3,)+∞2.已知函数ln ,0()(2),0x xx f x x x e x ⎧>⎪=⎨⎪+≤⎩,若函数()()g x f x a =-仅有一个零点,则实数a的取值范围为( ). A .(2,)+∞B .31(2,),e ⎛⎫+∞⋃-∞-⎪⎝⎭C .311,2,e e ⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭D .31,e ⎛⎫-∞-⎪⎝⎭3.下列不可能是函数()()()xx f x xee Z αα-=-∈的图象的是( )A .B .C .D .4.对于R 上可导的任意函数()f x ,若当2x ≠时满足()02f x x '≤-,则必有( ) A .()()()1322f f f +< B .()()()1322f f f +≤ C .()()()1322f f f +≥D .()()()1322f f f +>5.已知定义域为R 的函数 f x () 的导函数为'f x () ,且满足'24f x f x ()﹣()> ,若 01f =()﹣ ,则不等式22x f x e +()> 的解集为( )A .∞(0,+)B .1+∞(﹣,)C .0∞(﹣,)D .1(﹣,﹣)∞6.某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812863y x x =-+-,则该生产厂家获取的最大年利润为( )A .300万元B .252万元C .200万元D .128万元7.已知函数()f x (x ∈R )满足()34f =,且()f x 的导函数()1f x '<,则不等式()221f x x -<的解集为( )A .()2,2-B .()(),22,-∞-+∞C .(D .((),3,-∞+∞8.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 9.()f x 是R 上的偶函数,当()0,x ∈+∞时,()()0xf x f x '->,且()30f =,则不等式()0f x x>的解集为( ) A .()3,+∞B .()(),33,-∞-+∞C .()()3,03,-⋃+∞D .()()3,00,3-10.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+11.函数()327f x x kx x =+-在区间[]1,1-上单调递减,则实数k 的取值范围是( ) A .(],2-∞-B .[]22-,C .[)2,-+∞D .[)2,+∞12.函数()2xf x ae x =+在R 上有两个零点1x ,2x ,且212x x ≥,则实数a 的最小值为( ) A .ln 22-B .ln 2-C .2e-D .ln 2二、填空题13.对于任意12,[1,)x x ∈+∞,当21x x >时,恒有2121(ln ln )2()a x x x x -<-成立,则实数a 的取值范围是___________.14.已知函数()cos sin f x x x x =-,下列结论中, ①函数()f x 的图象关于原点对称; ②当(0,)x π∈时,()0f x π-<<;③若120x x π<<<,则1122sin sin x x x x >; ④若sin ax x bx <<对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1. 所有正确结论的序号为______.15.已知函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,且当2x ≠,其导数()f x '满足()()2xf x f x ''<,若()30f =,则不等式()0xf x >的解集为__________.16.如图,现有一个圆锥形的铁质毛坯材料,底面半径为6,高为8.某工厂拟将此材料切割加工成一个圆柱形构件,并要求此材料的底面加工成构件的一个底面,则可加工出该圆柱形构件的最大体积为__________.17.已知函数()()()x f x e x b b R =-∈.若存在1,22x ⎡∈⎤⎢⎥⎣⎦,使得()()0f x xf x '+>,则实数b 的取值范围是____.18.已知函数()321f x x x =++,若对于x R ∀∈不等式()21xf ax e a -+≤恒成立,则实数a 的取值范围为:____________. 19.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为______. 20.函数31()3f x x ax =-的极大值为3a =__________. 三、解答题21.已知函数32()2f x x ax bx =+++在1x =-处取得极值7. (1)求,a b 的值;(2)求函数()f x 在区间[2,2]-上的最大值 22.已知函数()22xk f x e x x =--,k ∈R . (1)当0k =时,求函数() f x 的最小值;(2)若() f x 在[)1,+∞上单调递增,求实数k 的取值范围. 23.已知函数()()21xf x x ae=-+.(1)讨论()f x 的单调性;(2)若()f x 存在零点,求a 的取值范围. 24.已知函数()1ln =--f x x x . (1)证明:()f x 存在唯一的零点; (2)当0x >时,证明:ln x e x x >>.25.已知函数())ln f x a x a =∈R . (1)当1a =-时,求()f x 的单调区间; (2)求()f x 在[1,4]上的最小值. 26.已知函数32113f xx ax ,0a >. (1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积;(2)是否存在实数a ,使得()f x 在[]0,2上的最小值为56?若存在,求出a 的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设11()ln e e x x g x x x --+=-++,则函数11()ln x x f x x x e e m --+=-+++有零点转化为函数()g x 的图象与直线y m =-有交点,利用导数判断函数()g x 的单调性,即可求出.【详解】设11()ln e e x x g x x x --+=-++,定义域为()0,∞+,则111()1e e x x g x x--+'=-+-,易知()'g x 为单调递增函数,且(1)0,g '= 所以当(0,1)x ∈时,()0g x '<,()g x 递减; 当(1,)x ∈+∞时, ()0g x '>, ()g x 递增,所以 ()(1)3,g x g ≥= 所以3m -≥,即3m ≤-.故选:A . 【点睛】本题主要考查根据函数有零点求参数的取值范围,意在考查学生的转化能力,属于基础题.2.C解析:C 【分析】转化为()y f x =的图象与直线y a =仅有一个交点,利用导数得到函数的性质,根据函数的性质作出函数的图象,根据图象可得解. 【详解】当0x >时,ln ()x fx x=,21ln ()x x x f x x ⋅-'=21ln xx -=, 当0x e <<时,()'f x 0>,当x e >时,()0f x '<,所以()f x 在(0,)e 上递增,在(,)e +∞上递减,所以()f x 在x e =处取得极大值为1()f e e=,当0x ≤时,()(2)x f x x e =+,()(2)(3)x x xf x e x e x e '=++=+,当3x <-时,()0f x '<,当3x >-时,()0f x '>, 所以()f x 在(,3)-∞-上递减,在(3,0]-上递增,所以()f x 在3x =-处取得极小值为331(3)f e e--=-=-,又(0)2f =, 因为函数()()g x f x a =-仅有一个零点,所以()y f x =的图象与直线y a =仅有一个交点,作出函数()f x 的图象,如图:由图可知:12a e <≤或31a e<-. 故实数a 的取值范围为311,2,e e ⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭.故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.B解析:B 【分析】 由函数()()xx f x xee α-=-,分0a =, a 为正整数,a 为正偶数,a 为正奇数,a 为负整数分析其定义域,奇偶性和单调性判断. 【详解】当0α=时,()xxf x e e -=-其定义域为{}|0x x ≠,关于原点对称,又()()()xx x x f x ee e ef x ---=-=--=-,所以()f x 是奇函数,且单调递增,没有选项符合题意;当α为正整数时,()()xx f x x ee α-=-的定义域为R ,图象经过原点,当0x >时, ()()11()())(x x x x x xf x x e e e e x e e x x x ααααα-----'⎡⎤⎡⎤==-+++⎣⎦+⎣-⎦,因为0,0xxx x e ee e --->+>,所以()0f x '>,则()f x 递增,又存在0M >,当x M >时,随着x 的增大,()'f x 的变化率越来越大, 若α为正偶数,则()f x 是奇函数,此时C 选项符合题意; 若α为正奇数,则()f x 是偶函数,此时A 选项符合题意; 当α为负整数时,()()xx f x xee α-=-的定义域为{}|0x x ≠,当α为负奇数,()()()()xx f x x e e f x α--=--=,()f x 为{}|0x x ≠上的偶函数,无选项符合;当α为负偶数时且4α≤-时,()()()()xx f x x ee f x α--=--=-,()f x 为{}|0x x ≠上的奇函数,当0x >时,()()211(())x x x x f x x e e x x x x x e e x ααααααα----+⎛⎫+--+ ⎪-⎝'⎡⎤=+=⎦⎭⎣, 令()2,0x x S x e x x αα-+=+>-, 则()()()()()2222222xxxxx x S x e x x e ααααα---+-'=-=-⨯--,令(),0x x x x αϕ->=,则()01xx ϕ'<=, 故(),0xx x x αϕ->=为减函数,而()00ϕα=->,()()()23ln ln 2ln t t t αααϕ---+=+=-,其中2t =≥,令()232ln ,2u t t t t t =+-≥,则()()2223,2t t u t t t+-'=≥,则()()22232+440tt +-≤⨯-<,故()232ln ,2u t t t t t =+-≥为减函数,所以()2ln 240u t ≤-<,()()ln 0ϕα-<,所以存在()00x ∈+∞,,使得当()00,x x ∈时,()0x ϕ>即()0S x '<, 当()0,x x ∈+∞时,()0x ϕ<即()0S x '>,故()S x 在()00,x 为减函数,在()0,x +∞为增函数,因为()00S =,故()00S x <,而当x a >-时,()0S x >,故存在()10,x ∈+∞,使得当()10,x x ∈时,()0S x <即()0f x '<,当()1,x x ∈+∞时,()0S x >即()0f x '>,所以()f x 在()10,x 上为减函数,在()1,x +∞为增函数, 又当0x >时,()0f x >恒成立,故D 选项符合题意. 对任意的整数α,当α为非负整数时,()f x 在0x =处有定义,且()f x '在0x =不间断,故B 不符合题意,当α为负整数时,()f x 在0x =处没有定义,故B 不符合题意, 故选:B. 【点睛】方法点睛:对于知式选图问题的解法:1、从函数的定义域,判断函数图象的左右位置,从函数的值域判断图象的上下位置;2、从函数的单调性,判断函数图象的变换趋势;3、从函数的奇偶性,判断函数图象的对称性;4、从函数的周期性,判断函数图象图的循环往复;5、从函数的特殊点,排除不和要求的图象;4.B解析:B 【分析】根据()02f x x '≤-,得到2x >时,()f x 单调非递增函数,2x <时,()f x 单调非递减函数求解. 【详解】因为()02f x x '≤-, 所以当20x ->,即2x >时,()0f x '≤,则()f x 单调非递增函数,所以()()32f f ≤;当20x -<,即2x <时,()0f x '≥,()f x 单调非递减函数, 所以()()12f f ≤;由不等式的性质得:()()()1322f f f +≤. 故选:B 【点睛】本题主要考查导数与函数的单调性以及不等式的基本性质,属于中档题.5.A解析:A 【解析】 设()()22xf x F x e+=,则()()()224xf x f x F x e'--'=,∵f (x )−2f ′(x )−4>0,∴F ′(x )>0,即函数F (x )在定义域上单调递增, ∵f (0)=−1,∴F (0)=1,∴不等式f (x )+2>e 2x 等价为不等式()221e xf x +>等价为F (x )>F (0),解得x >0,故不等式的解集为(0,+∞), 本题选择A 选项.6.C解析:C 【分析】求得函数的导数,得到函数的单调性,进而求解函数的最大值,即可得到答案. 【详解】由题意,函数31812863y x x =-+-,所以281y x '=-+,当09x <<时,0y '>,函数()f x 为单调递增函数; 当9x >时,0y '<,函数()f x 为单调递减函数,所以当9x =时,y 有最大值,此时最大值为200万元,故选C. 【点睛】本题主要考查了利用导数研究函数的单调性与最值问题,其中解答中熟记函数的导数在函数中的应用,准确判定函数的单调性是解答的关键,着重考查了推理与计算能力,属于基础题.7.B解析:B 【分析】构造函数()()g x f x x =-,求导后可证得()g x 在R 上单调递减,将原不等式可转化为()()()221133f x x f ---<-,即()()213g x g -<,再利用函数单调性的定义求解.【详解】令()()g x f x x =-,则()()10g x f x ''=-<, 所以()g x 在R 上单调递减.因为不等式()221f x x -<可等价于()()()221133f x x f ---<-,即()()213g x g -<,所以213x ->, 解得2x >或2x <-, 故选:B. 【点睛】本题主要考查函数的单调性与导数以及利用函数的单调性解不等式,还考查了运算求解的能力,属于中档题.8.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;9.C解析:C 【分析】 构造函数()()f xg x x=,求导,利用()g x 的单调性和奇偶性解不等式. 【详解】 设()()f xg x x=(0x ≠), 则()()()2xf x f x g x x'-'=, ∵当()0,x ∈+∞时,()()0xf x f x '->, ∴()0g x '>,即()g x 在()0,∞+上单调递增, 又()f x 是R 上的偶函数, ∴()()()()f x f x g x g x x x--==-=--, 即()g x 是()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上单调递增, ∵()30f =, ∴()()()33303f g g -=-=-=. 而不等式()0f x x>等价于()0g x >, ∴30x -<<或3x >. 故选:C. 【点睛】本题主要考查函数的单调性与奇偶性的应用,利用条件构造函数,然后利用导数研究函数的单调性是解决本题的关键,属于中档题.10.A解析:A【分析】设()()2x x F x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x x F x e f x e =-,则[]()()()2()()2x x x x F x e f x e f x e e f x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦, 所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-, 故(3)2(2)2ef f e +<+.故选:A.【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.11.B解析:B【分析】由题意得出()0f x '≤对于任意的[]1,1x ∈-恒成立,由此得出()()1010f f ⎧-≤⎪⎨≤''⎪⎩,进而可求得实数k 的取值范围.【详解】()327f x x kx x =+-,()2327f x x kx '∴=+-,由题意可知,不等式()0f x '≤对于任意的[]1,1x ∈-恒成立,所以,()()12401240f k f k ⎧-='--≤⎪⎨='-≤⎪⎩,解得22k -≤≤. 因此,实数k 的取值范围是[]22-,. 故选:B.【点睛】本题考查利用函数在区间上的单调性求参数,一般转化为导数不等式在区间上恒成立,考查运算求解能力,属于中等题.12.B解析:B【分析】函数()2x f x ae x =+,变形为2x x a e =-,令()2xx g x e =-,利用导数求函数的最值,可得20a e-<<,结合212x x ≥,可得212x x =时,a 取得最小值,再把1x ,2x 代入20x ae x +=,求解1x ,再代入112x ae x =-,即可求得a 的最小值【详解】函数()2x f x ae x =+,变形为2x x a e =-,令()2x x g x e =-,得()()21x x g x e-'=, 当(),1x ∈-∞时,0g x,当()1,∈+∞x 时,0g x ,可得1x =时,函数()g x 取得最小值2e-. 又当x →-∞时,()g x →+∞,当x →+∞时,()0g x <, 且函数()2xf x ae x =+在R 上有两个零点1x ,2x ,得20a e -<<. 由212x x ≥,可得212x x =时,a 取得最小值. 由112x ae x =-,222x aex =-,得1214x ae x =-,∴12x e =,解得1ln 2x =. 代入112x ae x =-,解得ln 2a =-.∴a 的最小值为ln 2-.故选:B.【点睛】此题考查利用导数研究函数的单调性与最值,考查化归与转化的数学思想,考查计算能力,属于中档题二、填空题13.【分析】构造函数求得的取值范围化简不等式求得的取值范围【详解】构造函数依题意任意当时表示函数在区间上任意两点连线的斜率故当时对于任意当时不等式成立当时对于任意当时不等式恒成立可转化为恒成立故综上所述 解析:(,2]-∞【分析】构造函数()()ln 1f x x x =≥,求得()'f x 的取值范围,化简不等式2121(ln ln )2()a x x x x -<-求得a 的取值范围.【详解】构造函数()()ln 1f x x x =≥,()(]'10,1f x x=∈, 依题意任意12,[1,)x x ∈+∞,当21x x >时,2121ln ln 0,0x x x x ->->,2121ln ln x x x x --表示函数()f x 在区间[1,)+∞上任意两点连线的斜率,故()2121ln ln 0,1x x x x -∈-. 当0a ≤时,对于任意12,[1,)x x ∈+∞,当21x x >时,不等式2121(ln ln )2()a x x x x -<-成立.当0a >时,对于任意12,[1,)x x ∈+∞,当21x x >时,不等式2121(ln ln )2()a x x x x -<-恒成立可转化为2121ln ln 2x x x x a -<-恒成立,故(]21,0,2a a≥∈. 综上所述,实数a 的取值范围是(,2]-∞.故答案为:(,2]-∞【点睛】求解不等式恒成立问题,可考虑采用分离常数法,结合导数来求解..14.①②④【分析】首先对函数的奇偶性进行判断得出①正确;利用导数研究函数的单调性求得函数的值域判断②正确;利用导数研究函数的单调性进行变形得到③是错误的数形结合思想可以判断④是正确的【详解】因为所以所以解析:①②④【分析】首先对函数的奇偶性进行判断得出①正确;利用导数研究函数的单调性,求得函数的值域,判断②正确;利用导数研究函数sin ()x g x x=的单调性,进行变形得到③是错误的,数形结合思想可以判断④是正确的.【详解】因为()cos sin f x x x x =-,所以()()cos()sin()cos sin ()f x x x x x x x f x -=----=-+=-,所以()f x 为奇函数,所以函数()f x 的图象关于原点对称,所以①正确;因为'()cos sin cos sin f x x x x x x x =--=-,因为(0,)x π∈,所以'()0f x <,所以()f x 在(0,)π上单调递减,所以()()(0)0f f x f ππ-=<<=,所以()0f x π-<<,所以②正确; 令sin ()x g x x=,2cos sin '()x x x g x x -=, 由②可知,()f x 在(0,)π上单调递减,所以)'(0g x <, 所以()g x 在(0,)π上单调递减,若120x x π<<<,所以1212sin sin x x x x >,即1122sin sin x x x x <,所以③错误; 若sin ax x bx <<对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,相当于sin y x =在0,2π⎛⎫ ⎪⎝⎭上落在直线y ax =的上方,落在直线y bx =的下方,结合图形,可知a 的最大值为连接(0,0),(,1)2π的直线的斜率,即2π, b 的最小值为曲线sin y x =在(0,0)处的切线的斜率,即0'|1x y ==,所以④正确;故正确答案为:①②④.【点睛】方法点睛:该题属于选择性填空题,解决此类问题的方法:(1)利用函数的奇偶性判断函数图象的对称性;(2)利用导数研究函数的单调性,从而求得其值域;(3)转化不等式,构造新函数,求导解决问题;(4)数形结合,找出范围.15.【分析】由可得对称轴是由可得从而得出判断的单调区间再结合即可得不等式的解集【详解】因为函数对定义域内内的任意都有所以对称轴是因为满足即所以当时单调递增当时单调递减又因为所以时时时当与同号时所以的解集 解析:()(),01,3-∞⋃【分析】由()()4f x f x =-,可得()f x 对称轴是2x =,由()()2xf x f x ''<可得()()20x f x '-<,从而得出判断()f x 的单调区间,再结合()30f =,即可得不等式()0xf x >的解集.【详解】因为函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,所以()f x 对称轴是2x =,因为()f x '满足()()2xf x f x ''<,即()()20x f x '-<,所以当2x <时()0f x '>,()f x 单调递增,当2x >时()0f x '<,()f x 单调递减,又因为()()130f f ==,所以1x <时,()0f x <,13,x <<时,()0f x >,3x >时,()0f x <, 当x 与()f x 同号时,()0xf x >,所以()0xf x >的解集为:()(),01,3-∞⋃,故答案为:()(),01,3-∞⋃【点睛】本题主要考查了函数的对称性和单调性,导数的符号决定原函数的单调性,根据单调性解不等式,属于中档题.16.【分析】利用几何体的轴截面进行计算结合导数求得圆柱形构件的最大体积【详解】画出圆锥及圆柱的轴截面如下图所示其中四边形为矩形设圆柱的底面半径为即则即所以圆柱的体积为由于所以在区间上单调递增;区间上单调 解析:1283π 【分析】利用几何体的轴截面进行计算,结合导数求得圆柱形构件的最大体积.【详解】画出圆锥及圆柱的轴截面如下图所示.其中8,6AG GC GB ===,AG BC ⊥,四边形HIDE 为矩形.设圆柱的底面半径为()06x x <<,即GI GH x ==, 则AG DI CG IC =,即()844686633DI DI x x x =⇒=-=--. 所以圆柱的体积为()()22332444886333V x x x x x x x πππ⎛⎫⎛⎫=⨯⨯-=⨯-=-+ ⎪ ⎪⎝⎭⎝⎭,06x <<.()()()()'22431244443V x x x x x x x πππ=-+=-⨯-=-⨯⨯-, 由于06x <<,所以()V x 在区间()0,4上()'0V x >,()V x 单调递增;区间()4,6上()'0V x <,()V x 单调递减.所以()V x 在4x =处取得极大值也即是最大值为:()()()3244412824646496323333V ππππ=-+⨯=-+=⨯=. 故答案为:1283π【点睛】本小题主要考查圆锥的最大内接圆柱有关计算,考查利用导数求最值,属于中档题. 17.【详解】解答:∵f(x)=ex(x−b)∴f′(x)=ex(x−b+1)若存在x ∈2使得f(x)+xf′(x)>0则若存在x ∈2使得ex(x−b)+xex(x−b+1)>0即存在x ∈2使得b<成立令 解析:83b < 【详解】解答:∵f(x)=e x (x−b),∴f′(x)=e x (x−b+1),若存在x ∈[12,2],使得f(x)+xf′(x)>0, 则若存在x ∈[12,2],使得e x (x−b)+xe x (x−b+1)>0, 即存在x ∈[12,2],使得b<221x x x ++ 成立, 令()221,,212x x g x x x +⎡⎤=∈⎢⎥+⎣⎦, 则()()222201x x g x x ++'=>+ , g(x)在1,22⎡⎤⎢⎥⎣⎦ 递增, ∴g(x)最大值=g(2)=83, 则实数b 的取值范围是83b < 18.【分析】根据在R 上递增结合将不等式恒成立转化为恒成立然后分和两种情况利用导数法求解【详解】因为所以成立所以在R 上递增又成立所以恒成立即恒成立当时转化为恒成立令当时单调递减当时单调递增所以当时求得最小 解析:10a e≤≤ 【分析】根据()f x 在R 上递增,结合()01f =,将x R ∀∈不等式()21x f ax e a -+≤恒成立,转化为()2xa x e +≤ ,x R ∀∈恒成立,然后分20x +≤和20x +>两种情况,利用导数法求解.【详解】因为()321f x x x =++, 所以()2320f x x '=+>成立,所以()f x 在R 上递增,又()()01,21x f f ax e a =-+≤x R ∀∈成立, 所以20x ax e a -+≤,x R ∀∈ 恒成立,即()2xa x e +≤, x R ∀∈恒成立, 当20x +>时,转化为2xe a x ≤+恒成立, 令()2x g x e x =+,()()()212x x e g x x +'=+, 当21x -<<-时,()0g x '<,()g x 单调递减,当1x >-时,()0g x '>,()g x 单调递增,所以当1x =-时,()g x 求得最小值min 1()(1)g x g e =-=, 所以1a e≤, 当20x +≤时,转化为2xe a x ≥+恒成立, (),(,2)a g x x ≥∈-∞-上恒成立,(,2)x ∈-∞-时,()0,()g x g x '<单调递减,又(,2),()0x g x ∈-∞-<,所以0a ≥不等式恒成立,综上:实数a 的取值范围为10a e ≤≤故答案为:10a e≤≤【点睛】本题主要考查导数与函数的单调性,导数与不等式恒成立,还考查了转化化归的思想,分类讨论思想和运算求解的能力,属于中档题.19.【分析】求函数的导数根据利用参数分离法进行转化然后构造函数转化为求函数的最值即可【详解】解:函数的导数由在上恒成立得在上恒成立即得在上恒成立设则当时恒成立即在上是增函数则当时取得最小值则即实数的取值 解析:(],3-∞【分析】求函数的导数,根据()0f x ',利用参数分离法进行转化,然后构造函数()g x ,转化为求函数的最值即可.【详解】 解:函数的导数2()21f a x x x '=+-, 由()0f x '在1x 上恒成立得2210a x x +-在1x 上恒成立, 即221a x x +, 得322x x a +在1x 上恒成立,设32()2g x x x =+,则2()622(31)g x x x x x '=+=+,当1x 时,()0g x '>恒成立,即()g x 在1x 上是增函数,则当1x =时,()g x 取得最小值()1213g =+=,则3a ,即实数a 的取值范围是(],3-∞,故答案为:(],3-∞【点睛】本题主要考查函数恒成立问题,求函数的导数,利用参数分离法以及构造函数,利用导数研究函数的最值是解决本题的关键.属于中档题.20.3【分析】求导数取导数为0计算代入原函数计算极大值得到答案【详解】函数的极大值为由题意知:当时有极大值所以故答案为3【点睛】本题考查了函数的极大值意在考查学生的计算能力解析:3【分析】求导数,取导数为0,计算x =.【详解】函数31()3f x x ax =-的极大值为2()f x x a '=- 由题意知:0,a x >⇒=当x =(f =所以3a =故答案为3【点睛】本题考查了函数的极大值,意在考查学生的计算能力.三、解答题21.(1)39a b =-⎧⎨=-⎩;(2)max ()7f x =. 【分析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到32()392f x x x x =--+,导数的方法研究其单调性,进而可求出最值.【详解】(1)因为32()2f x x ax bx =+++,所以2()32f x x ax b '=++,又函数32()2f x x ax bx =+++在1x =-处取得极值7, (1)17(1)320f a b f a b -=+-=⎧⎨-=-+='⎩,解得39a b =-⎧⎨=-⎩;, 所以3()3693(3)(1)f x x x x x '=--=-+,由()0f x '>得3x >或1x <-;由()0f x '<得13x;满足题意;(2)又[2,2]x ∈-,由(1)得()f x 在(2,1)x ∈--上单调递增,在(1,2)x ∈-上单调递减,因此max ()(1)7f x f =-=.【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值.22.(1)1;(2)1k e ≤-.【分析】 (1)求出()'f x ,在定义域内,分别令()'0f x >求得x 的范围,可得函数()f x 增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)() f x 在[1,)+∞上单调递增,等价于()'0f x ≥ 在[1,)+∞上恒成立,即1x e k x-≤在[1,)+∞恒成立,利用导数求出1x e x -的最小值即可得答案. 【详解】(1)当0k =时, ()()',1 x x e x e f f x x =-∴=-,令'0f x ,则100x e x -=⇒=,当0x >时,10x e ->,()f x 在()0,∞+上递增,当0x <时,10x e -<,()f x 在(),0-∞上递减,()()min 01f x f ∴==;(2)因为() f x 在[1,)+∞上单调递增,所以()'0f x ≥ 在[1,)+∞上恒成立,因为()'1x f x e kx =--, 所以10x e kx --≥在[1,)+∞恒成立, 即1x e k x-≤在[1,)+∞恒成立, 令()1x e g x x-=, 则()min k g x ≤在[1,)+∞上恒成立,()()'211x e x g x x -+=,当[1,)x ∈+∞时,()'0g x >恒成立, ()g x ∴在[1,)+∞上单调递增,()()1min1111e g x g e -∴===-, 1k e ∴≤-.【点睛】 方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.23.(1)()f x 在()2,1a -∞-上单调递减,在()21,a -+∞上单调递增;(2)(][),11,-∞-+∞.【分析】(1)先求导并解得()0f x '=的根,再判断根附近导数值的正负,即得单调性; (2)先判断极小值即最小值,再结合()210f a=>可知()min 0f x ≤,解不等式即得结果.【详解】解:(1)()()21x f x x a e '=-+,定义域为R , 由()0f x '=,得21x a =-,当21x a <-时,()0f x '<;当21x a >-时,()0f x '>,故()f x 在()2,1a -∞-上单调递减,在()21,a -+∞上单调递增; (2)由(1)知()f x 在21x a =-处取得极小值,也是最小值,则()()221min 11a f x f a e -=-=-,因为()f x 存在零点,且()210f a=>, 故只需()21min 10af x e -=-≤,即2101a e e -≥=,故210a -≥, 解得1a ≤-或1a ≥,所以a 的取值范围为(][),11,-∞-+∞.【点睛】方法点睛: 利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.24.(1)证明见解析;(2)证明见解析.【分析】(1)对()f x 求导,利用导数判断()f x 的单调性,求出()f x 的极值或最值,即可求证;(2)构造函数()x g x e x =-,求导利用单调性证明()0xg x e x =->,再由(1)可知()1ln 0f x x x =--≥即1ln x x ≥+可得ln x x >,进而可证明0x >时, ln x e x x >>.【详解】(1)()1ln =--f x x x 的定义域为()0,∞+,1()1f x x'=- 当01x <<时,1()10f x x '=-<,当1x >时,1()10'=->f x x, 所以()f x 在()0,1单调递减,在()1,+∞单调递增,所以1x =时()f x 最小为(1)11ln10f =--=,所以()f x 存在唯一的零点1x =,(2)令()x g x e x =-,则()1x g x e '=-,当0x >时,()10xg x e '=->, ()x g x e x =-在()0,∞+单调递增,所以()()0001g x g e >=-=,即10x e x ->>,即0x e x ->,所以x e x >,由(1)知()1ln =--f x x x 在()0,1单调递减,在()1,+∞单调递增,所以()f x 最小为(1)11ln10f =--=,所以()1ln 0f x x x =--≥即1ln x x ≥+,所以ln x x >,综上所述:当0x >时,ln x e x x >>.【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点;(2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.25.(1)单调递增区间为(4,)+∞;单调递减区间为(0,4);(2)min 2ln 22,11()2ln(2)2,1211,2a a f x a a a a a ⎧⎪+≤-⎪⎪=---<<-⎨⎪⎪≥-⎪⎩. 【分析】 (1)当1a =-时,()f x '=,进而得4x >时,()0f x '>, 04x <<时,()0f x '<,进而得函数的单调区间;(2)2()2a f x x+'=,故分1a ≤-,112a -<<-,12a ≥-三种情况讨论即可得答案. 【详解】解:(1)()f x 的定义域为(0,)+∞,当1a =-时,1()f x x '=-= 当4x >时,()0f x '>,则()f x 的单调递增区间为(4,)+∞;当04x <<时,()0f x '<,则()f x 的单调递减区间为(0,4).(2)()a f x x '== 当1a ≤-时,()0,()f x f x '≤在[1,4]上单调递减,此时,()min (4)2ln 22f x f a ==+ 当12a ≥-时,()0,()f x f x '≥在[1,4]上单调递增, 此时,()min (1)1f x f == 当112a -<<-时,若214x a <<,则()0,()f x f x '<单调递减; 若244a x <<,则()0,()f x f x '>单调递增此时,()()22min ()4ln 42ln(2)2f x f a a a a a a ==+=--. 综上所述:min 2ln 22,11()2ln(2)2,1211,2a a f x a a a a a ⎧⎪+≤-⎪⎪=---<<-⎨⎪⎪≥-⎪⎩【点睛】本题考查利用导数求解函数的最小值问题,考查分类讨论思想和运算求解能力,其中第二问解题的关键在于求导得()f x '=1a ≤-,112a -<<-,12a ≥-三种情况讨论求解,是中档题.26.(1)89;(2)存在,12a =. 【分析】(1)由1a =,求导()22f x x x '=-,利用导数的几何意义求得曲线()y f x =在点()()1,1f 处的切线方程,再求得切线的x 轴、y 轴上的截距,代入三角形的面积公式求解. (2)求导()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =,然后分022a <<,22a ≥,由()f x 在[]0,2上的最小值为56求解. 【详解】(1)当1a =时,()32113f x x x =-+,()22f x x x '=-,所以()11f '=-,又()113f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()113y x -=--, 即3340x y +-=,直线3340x y +-=在x 轴、y 轴上的截距均为43, 所以三角形的面积为14482339S =⨯⨯=. (2)()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =.当022a <<,即01a <<时,当[]0,2x a ∈时,()0f x '≤,()f x 单调递减;当[]2,2x a ∈时.()0f x '≥,()f x 单调递增.则()()33min 8524136f x f a a a ==-+=,解得12a =, 当22a ≥,即1a ≥时,当[]0,2x ∈时,()0f x '≤,()f x 单调递减,则()()min 8524136f x f a ==-+=,解得17124a =<,舍去. 综上:存在12a =,使得()f x 在[]0,2上的最小值为56. 【点睛】方法点睛:(1)求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.(2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(答案解析)(1)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(答案解析)(1)

一、选择题1.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定2.在数学的研究性学习中,常利用函数的图象研究函数的性质,也利用函数的解析式研究函数的性质,下列函数的解析式(其中 2.71828e =⋅⋅⋅为自然对数的底数)与所给图象最契合的是( )A .22sin 1xy x =+B .221xy x =+C .x xx xe e y e e ---=+ D .x xx xe e y e e--+=- 3.对任意0x >,若不等式2e ln e xa x ax x++≥恒成立(e 为自然对数的底数),则正实数a 的取值范围是( )A .(0,e]B .2(0,e ]C .2[,e]eD .22[,e ]e4.已知函数()23ln f x x ax x =-+在其定义域内为增函数,则a 的最大值为( ) A .4B .6C .27D .65.已知函数()f x 定义域为R ,其导函数为f x ,且()()30f x f x '->在R 上恒成立,则下列不等式定成立的是( ) A .()()310f e f <B .()()210f e f < C .()()310f e f >D .()()210f e f >6.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=-的图象如图所示,则下列结论中一定成立的是( )A .()f x 有极大值()2f -B .()f x 有极小值()2f -C .()f x 有极大值()1fD .()f x 有极小值()1f7.已知函数()f x (x ∈R )满足()34f =,且()f x 的导函数()1f x '<,则不等式()221f x x -<的解集为( )A .()2,2-B .()(),22,-∞-+∞C .(3,3-D .((),33,-∞-+∞8.函数()()()()22ln 00x x x f x x e x -⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()()2240f x af x a a -+-=有四个不等的实数根,则实数a 的取值范围为( ) A .()0,4 B .()(),44,-∞⋃+∞C .(){}4,04- D .(){},44-∞-9.对任意0,2x π⎛⎫∈ ⎪⎝⎭,不等式()()sin cos x f x x f x ⋅⋅'<恒成立,则下列不等式错误的是( )A .234f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭> B .()2cos113f f π⎛⎫⋅ ⎪⎝⎭> C .()214f f π⎛⎫⋅⎪⎝⎭< D .646f f ππ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭< 10.已知函数()221,02,0k x f x x x k x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且只有四个不同的零点,则实数k 的取值范围为( ) A .k 0<B .0k >C .27k <D .27k >11.若函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,则a 的取值范围为( ) A .21,e ⎛⎫--⎪⎝⎭B .2{1},e ⎡⎫-⋃-+∞⎪⎢⎣⎭ C .2,e ⎡⎫-+∞⎪⎢⎣⎭D .2{1},0e ⎡⎫-⋃-⎪⎢⎣⎭12.已知函数()ln f x ax x =-,若()0f x ≥对一切(0,)x ∈+∞恒成立,则a 的取值范围是( ) A .(0,)+∞B .1[,)e+∞C .[1,)+∞D .[),e +∞二、填空题13.已知函数()2ln ()x ax a a x x R f =--∈的图象与x 轴交于不同两点,则实数a 的取值范围为______. 14.函数()31443f x x x =-+的极大值为______. 15.若函数3y x ax =-+在[)1,+∞上是单调函数,则a 的最大值是______. 16.已知函数()f x 定义在R 上的函数,若2()()0x f x e f x --=,当0x ≤时,()()0f x f x '+<,则不等式21()(1)x f x e f x -≥-的解集为__________17.已知函数()()ln ,11,1x x x f x x e x ≥⎧=⎨-<⎩,若函数()()()2g x f x f x a =--⎡⎤⎣⎦有6个零点,则实数a 的取值范围是______.18.已知函数()1ln x f x x+=,若关于x 的不等式()()20f x af x ->恰有两个整数解,则实数a 的取值范围是_______.19.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',且()()32xxf x f x x e'-=,()339f e =,则关于x 的方程()>f x e 的解集为_____________.20.已知函数22(0)()4(0)x e x f x x x ⎧>=⎨+≤⎩,若x R ∀∈,()f x mx ≥,则实数m 的取值范围是________. 三、解答题21.已知函数()()()2220xf x ax x ea =++>,其中e 是自然对数的底数.(1)若()f x 在[]22-,上是单调增函数,求a 的取值范围; (2)证明:当1a =时,方程()5f x x =+有且只有两个零点. 22.已知函数()()23xf x m e x =-+,且()03f '=.(1)求()f x 的解析式;(2)设()22g x x ax a =+-,若对任意2x ≥,()()f x g x ≥,求实数a 的取值范围.23.已知函数()(2)(0)x f x ae x a =-≠. (1)求()f x 的单调区间;(2)若函数2()()2g x f x x x =+-有两个极值点,求实数a 的取值范围.24.已知函数2()(41)43(0)xf x ax a x a e a ⎡⎤=-+++≠⎣⎦. (1)若1a =,求曲线()y f x =在(0,(0))f 处的切线方程; (2)若()f x 在2x =处取得极小值,求a 的取值范围. 25.已知函数()()2xf x e ax a R =-∈.(1)若12a =,求函数()f x 的单调区间 (2)当[]2,3x ∈时,()0f x ≥恒成立,求实数a 的取值范围. 26.已知函数32113f xx ax ,0a >. (1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积;(2)是否存在实数a ,使得()f x 在[]0,2上的最小值为56?若存在,求出a 的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增, ()f x 的最小值是()1f 1=,故1a =,()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x xx g x x e xe x x+=+--=-',令()1xh x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->, 故存在0(0,1)x ∈使得()0h x =即001x x e=,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =,所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.2.B解析:B 【分析】分析合选项中函数值符号、单调性、奇偶性,并与题中的函数图象作比较,由此可得出合适的选项. 【详解】对于A 选项,当2x ππ<<时,22sin 01xy x =<+,与题中函数图象不符; 对于B 选项,设()221xf x x =+,该函数的定义域为R , ()()()222211xx f x f x x x --==-=-+-+,函数()221x f x x =+为奇函数, 当0x >时,()2201x f x x =>+,()()()()()22222222142111x x x f x x x +--'==++, 由()0f x '>,可得11x -<<;由()0f x '<,可得1x <-或1x >.所以,函数()f x 的单调递减区间为(),1-∞-、()1,+∞,单调递增区间为()1,1-, 与题中函数图象相符;对于C 选项,()()()2222212121111x x x x x x x x x x x x x x xe e e e e e e y e e e e e e e e-----+---=+====-++++, 所以,函数x xx xe e y e e---=+为R 上的增函数,与题中函数图象不符;对于D 选项,对于函数x xx xe e y e e--+=-,0x x e e --≠,可得0x ≠,该函数的定义域为{}0x x ≠,与题中函数图象不符. 故选:B. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.3.B解析:B 【分析】将不等式化简并换元,构造函数2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,对函数求导,判断导函数零点与区间端点的关系,分类讨论得出函数的单调性和最小值,代入求解可得正实数a 的取值范围. 【详解】22e e e ln e ln e 0x x x a x ax a x x x ++≥⇔-+≥,令e x t x=(由e e x x ≥可知e t ≥), 则2ln e 0t a t -+≥,设2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,易得()1(e)a t a f t t t t-'=-=≥, ①当0e a <≤时,()0f t '≥,所以此时()(e)y f t t =≥是增函数,故2min ()(e)e e 0f t f a ==-+≥,解得2e e a ≤+,又0e a <≤,所以0e a <≤;②当e a >时,则()y f t =在[,)e a 上递减,在(,)a +∞上递增,故min ()()f t f a =,min ()0()0f t f a ≥⇔≥,所以2ln e 0a a a -+≥,设2()ln e (e)g a a a a a =-+>,故()0g a ≥即可,而()ln (e)g a a a '=->,显然()0g a '<,即()y g a =在(e,)+∞上递减,又2(e )0g =,而()0g a ≥,所以2()(e )g a g ≥,所以2e a ≤,又e a >,因此2e e a <≤.综上所述,0e a <≤或2e e a <≤,即2(0,e ]a ∈. 故选:B 【点睛】方法点睛:本题考查不等式的恒成立问题,考查导数在单调性和最值中的应用,考查分类讨论思想,关于恒成立问题的几种常见解法总结如下:1.参变分离法,将不等式恒成立问题转化为函数求最值问题;2.主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;3.分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;4.数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解.4.B解析:B 【分析】求导,则由题意导函数在0,上恒大于等于0,分参求a 范围.【详解】由题意可得()160f x x a x'=-+≥对()0,x ∈+∞恒成立,即16a x x ≤+,对()0,x ∈+∞恒成立因为16x x +≥16x x =即6x =时取最小值所以a ≤ 故选:B 【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.5.A解析:A 【分析】 构造函数()()3xf xg x e=,由()()30f x f x '->得0g x ,进而判断函数()g x 的单调性,判断各选项不等式. 【详解】()()3x f x g x e=,则()()()()()()3323333x x x x f x e f x e f x f x g x e e ⋅--==''', 因为()()30f x f x '->在R 上恒成立, 所以0g x在R 上恒成立,故()g x 在R 上单调递减, 所以()()10g g <,即()()3010f f e e<,即()()310f e f <, 故选:A.【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.6.A解析:A 【分析】由函数()()1y x f x '=-的图象,可得1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.由此可得函数()f x 的单调性,则答案可求.【详解】解:函数()()1y x f x '=-的图象如图所示,∴1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>. ∴函数()f x 在(),2-∞-上单调递增,在()2,1-上单调递减,在()1,+∞上单调递减. ∴()f x 有极大值()2f -.故选:A . 【点睛】本题考查根据导函数的相关图象求函数的单调区间,考查数形结合思想,是中档题.7.B解析:B 【分析】构造函数()()g x f x x =-,求导后可证得()g x 在R 上单调递减,将原不等式可转化为()()()221133f x x f ---<-,即()()213g x g -<,再利用函数单调性的定义求解.【详解】令()()g x f x x =-,则()()10g x f x ''=-<, 所以()g x 在R 上单调递减.因为不等式()221f x x -<可等价于()()()221133f x x f ---<-,即()()213g x g -<,所以213x ->, 解得2x >或2x <-, 故选:B. 【点睛】本题主要考查函数的单调性与导数以及利用函数的单调性解不等式,还考查了运算求解的能力,属于中档题.8.C解析:C 【分析】作出函数()f x 的大致图象,令()t f x =,则原问题可转为关于t 的方程2240t at a a -+-=有2个不等实根1t 和2t ,结合()f x 的图象可确定1t 和2t 符合两种情形:10t =,24t =或()10,4t ∈,()()2,04,t ∈-∞+∞,最后分两类讨论即可求得a 的取值范围. 【详解】当0x ≥时,()22xf x x e-=,∴()()222xf x x xe-'=-,∴当02x <<时,()0f x '>,()f x 单调递增; 当2x >时,()0f x '<,()f x 单调递减, 函数()f x 的大致图象如图所示:令()t f x =, 当0t =或4时,方程()t f x =有2个实根; 当()(),04,t ∈-∞+∞,方程()t f x =有1个实根.当t ∈(0,4)时,方程t =f (x )有3个实根; 则关于x 的方程()()2240fx af x a a -+-=有四个不等的实数根可等价于关于t 的方程2240t at a a -+-=有2个不等实根1t 和2t .∴1t 和2t 可符合两种情形:10t =,24t =或1t ∈(0,4),()()2,04,t ∈-∞+∞.若10t =,24t =,则124a t t =+=; 若1t ∈(0,4),()()2,04,t ∈-∞+∞,设g (t )=t 2﹣at +4a ﹣a 2,则g (0)•g (4)<0,∴()()22416440a aa a a -⋅-+-<,解得40a .综上,实数a 的取值范围为(){}4,04-.故选:C .【点睛】本题考查方程根的问题,利用导数研究函数的单调性与最值,考查学生的数形结合思想、转化与化归思想、逻辑推理能力和运算能力,属于中档题.9.D解析:D 【分析】构造函数()()cos g x f x x =,对其求导后利用已知条件得到()g x 的单调性,将选项中的角代入函数()g x 中,利用单调性化简,并判断正误,由此得出选项. 【详解】解:构造函数()()cos g x f x x =,则()()()cos sin g x x f x x f x ='⋅⋅'-, ∵()()sin cos x f x x f x ⋅⋅'<,∴()()()cos sin 0g x x f x x f x =⋅-⋅''>, 即()g x 在0,2x π⎛⎫∈ ⎪⎝⎭上为增函数, 由43g g <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即cos cos 4433f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即212423f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,故A 正确;()13g g 由<π⎛⎫⎪⎝⎭,即()1cos1cos 33f f ππ⎛⎫ ⎪⎝⎭<,即()2cos113f f π⎛⎫⋅ ⎪⎝⎭>,故B 正确;()14g g π⎛⎫⎪⎝⎭由<,即()cos 1cos144f f <ππ⎛⎫ ⎪⎝⎭,即()21cos124f f π⎛⎫⎪⎝⎭<,故C 正确;由64g g ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,即cos cos 6644f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<3264f f <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即664f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<, 故错误的是D .故选D .【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有()f x ,也含有其导数()f x '的不等式,根据不等式的结构,构造出相应的函数.如已知是()()0xf x f x -<',可构造()()f x g x x=,可得()()()20xf x f x g x x'-='<.10.D解析:D 【分析】表示出函数()g x ,分0k =,k 0<及0k =讨论,易知当0k =及k 0<时均不合题意,而观察解析式可知,问题可化为22()(0)kg x x k x x=+->有且仅有两个不同的零点,故利用导数研究函数()g x 在(0,)+∞上的最小值小于0即可. 【详解】解:依题意,222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩, 当0k =时,原函数有且只有一个零点,不合题意,故0k ≠;观察解析式,易知函数()g x 为偶函数,则函数()g x 有且仅有四个不同的零点,可转化为22()(0)kg x x k x x=+->有且仅有两个不同的零点, 当k 0<时,函数()g x 在(0,)+∞上递增,最多一个零点,不合题意;当0k >时,322()()x k g x x-'=,0x >, 令()0g x '>,解得13x k >,令()0g x '<,解得130x k <<, 故函数()g x 在13(0,)k 上递减,在13(k ,)+∞上递增, 要使()g x 在(0,)+∞上有且仅有两个不同的零点, 则1233132()()0min k g x g k k k k==+-<,解得27k >.故选:D . 【点睛】本题考查函数零点与方程根的关系以及利用导数研究函数的单调性,最值等,考查分类讨论思想以及运算求解能力,属于中档题.11.B解析:B 【分析】先对函数求导,可得当10x -<<时,()0f x '<;当0x >时,()0f x '>,从而得min ()(0)1f x f a ==--,而x →+∞时,()f x →+∞,所以要函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,只要满足10a --=或20a e--,从而可求出a 的取值范围 【详解】()x f x xe '=,当10x -<<时,()0f x '<;当0x >时,()0f x '>.从而min ()(0)1f x f a ==--,又2(1)f a e-=--,且x →+∞时,()f x →+∞, ∴10a --=或20a e--, 即1a =-或2a e-. 故选:B 【点睛】此题考查由导数解决函数零点问题,考查转化思想和计算能力,属于中档题12.B解析:B 【分析】()ln 0f x ax x =-≥对一切(0,)x ∈+∞恒成立,即ln xa x≥对一切(0,)x ∈+∞恒成立,设()ln g xx x=,求出()g x 的导数,进而求出其最大值,得到答案. 【详解】()ln 0f x ax x =-≥对一切(0,)x ∈+∞恒成立,即ln xa x ≥对一切(0,)x ∈+∞恒成立设()ln g x x x=,则()21ln 'xg x x -=由()21ln '0x g x x -=>,则0x e <<,由()21ln '0xg x x-=<,则x e > 所以()g x 在()0e ,上单调递增,在()+∞e ,上单调递减. 当x e =时, ()g x 有最大值()1g e e= 所以1a e≥ 故选:B 【点睛】本题考查恒成立求参数问题,考查分离参数法的应用,属于中档题.二、填空题13.【分析】先由题意得到关于的方程在上有两不等实根即在上有两不等实根令对其求导判定其单调性以及的取值情况即可得出结果【详解】因为函数的图象与x 轴交于不同两点所以关于的方程在上有两不等实根即在上有两不等实 解析:1a >【分析】先由题意,得到关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a +=在()0,∞+上有两不等实根,令()2ln x x g x x +=,对其求导,判定其单调性,以及()g x 的取值情况,即可得出结果. 【详解】因为函数()2ln ()x ax a a x x R f =--∈的图象与x 轴交于不同两点,所以关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a+=在()0,∞+上有两不等实根,令()2ln x x g x x +=,则()2ln x x g x x +=与直线1y a =有两个不同交点, 又()()24311ln 212ln x x x x x x x g x x x ⎛⎫+-+⋅ ⎪--⎝⎭'==, 令()12ln h x x x =--,则()210h x x'=--<在()0,∞+上恒成立,则()12ln h x x x =--在()0,∞+上单调递减,又()10h =,所以当()0,1x ∈时,()0h x >,即()312ln 0x xg x x --'=>,则()g x 单调递增;当()1,x ∈+∞时,()0h x <,即()312ln 0x xg x x --'=<,则()g x 单调递减; 所以()()max 110g x g ==>,又211101eg e e-⎛⎫=< ⎪⎝⎭,所以存在01,1x e ⎛⎫∈ ⎪⎝⎭,使得()0g x =;因此当()00,x x ∈时,()0g x <;当()0,1x x ∈时,()0g x >; 又当1x >时,ln 0x >,所以()0g x >;因此,为使()2ln x x g x x +=与直线1y a =有两个不同交点,只需101a<<,解得1a >. 故答案为:1a >. 【点睛】 思路点睛:利用导数的方法处理由函数零点个数求参数问题时,一般需要根据函数零点个数,得到对应方程的根的个数,再分离参数,构造新的函数,对新函数求导,利用导数的方法判定其单调性,确定函数的取值情况,进而可求出结果.(也可利用数形结合的方法求解)14.【分析】求函数导数解得的根判断导函数在两侧区间的符号即可求解【详解】由解得或时当时是的极大值点函数的极大值为故答案为:【点睛】本题主要考查了基本初等函数的求导公式二次函数的图象以及函数极大值点的定义 解析:283【分析】求函数导数,解得()0f x '=的根,判断导函数在2x =±两侧区间的符号,即可求解. 【详解】()31443f x x x =-+,2()4,f x x '∴=-由()0f x '=解得2x =±,2x ∴<-或2x >时,()0f x '>,当22x -<<时,()0f x '<, 2x ∴=-是()f x 的极大值点,∴函数的极大值为128(2)(8)8433f -=⨯-++=, 故答案为:283【点睛】本题主要考查了基本初等函数的求导公式,二次函数的图象,以及函数极大值点的定义及其求法,属于中档题.15.3【分析】首先求解导函数然后利用导函数研究函数的性质确定实数a 的最大值即可【详解】由题意可得:由题意导函数在区间上的函数值要么恒非负要么恒非正很明显函数值不可能恒非负故即在区间上恒成立据此可得:即的解析:3 【分析】首先求解导函数,然后利用导函数研究函数的性质确定实数a 的最大值即可. 【详解】由题意可得:2'3y x a =-+,由题意导函数在区间[)1,+∞上的函数值要么恒非负,要么恒非正,很明显函数值不可能恒非负,故230x a -+≤, 即23a x ≤在区间[)1,+∞上恒成立,据此可得:3a ≤, 即a 的最大值是3. 故答案为3. 【点睛】本题主要考查导函数研究函数的单调性,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.16.【分析】令根据题中条件得到为偶函数;对其求导根据题中条件判定在上单调递减;则在上单调递增;化所求不等式为求解即可得出结果【详解】令则因为所以即所以函数为偶函数;又当时所以即函数在上单调递减;则在上单解析:12x x ⎧⎫≥⎨⎬⎩⎭【分析】令()()xg x f x e =,根据题中条件,得到()g x 为偶函数;对其求导,根据题中条件,判定()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增;化所求不等式为1x x ≥-,求解,即可得出结果.【详解】令()()xg x f x e =,则()()xg x f x e --=-,因为2()()0xf x ef x --=,所以()()x x f x e f x e -=-,即()()g x g x =-,所以函数()g x 为偶函数;又()[]()()()()xxxg x f x e f x e f x f x e '''=+=+,当0x ≤时,()()0f x f x '+<,所以()[]()()0xg x f x f x e ''=+<,即函数()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增; 又不等式21()(1)x f x ef x -≥-可化为1()(1)x x f x e f x e -≥-,即()()1g x g x ≥-,所以只需1x x ≥-,则()221x x ≥-,解得12x ≥. 故答案为:12x x ⎧⎫≥⎨⎬⎩⎭.【点睛】本题主要考查由函数单调性与奇偶性解不等式,考查导数的方法判定函数单调性,涉及绝对值不等式的解法,属于常考题型.17.【分析】当时利用导数法得到函数的单调性与极值再由时作出函数的大致图象令将问题转化为方程有两个不等根且即各有3个根求解【详解】当时所以当时递增当时递减所以当时取得最大值1又当时所以的大致图象如图所示:解析:1,04⎛⎫- ⎪⎝⎭【分析】当1x <时,()()1xf x x e =-,利用导数法得到函数的单调性与极值,再由1≥x 时,()ln f x x =,作出函数()f x 的大致图象,令()f x t =,将问题转化为方程20t t a --=有两个不等根12,t t ,且12,(0,1)t t ∈即()()12,f x t f x t ==各有3个根求解.【详解】当1x <时,()()1xf x x e =-,所以()xf x xe '=-,当0x <时,()0f x '>,()f x 递增,当01x <<时,()0f x '<,()f x 递减, 所以当0x =时, ()f x 取得最大值1, 又当1≥x 时,()ln f x x =, 所以()f x 的大致图象如图所示:令()f x t =,则转化为方程20t t a --=有两个不等根12,t t , 且()()2121,(0,1),,t f x t f t x t ==∈各有3个根, 方程20t t a --=在(0,1)有两个不同的解,设2()g t t t a =--,所以(0)0140(1)0g a a g a =->⎧⎪∆=+>⎨⎪=->⎩,解得104a -<<. 故答案为:1,04⎛⎫- ⎪⎝⎭【点睛】本题主要方程的根与函数的零点问题,利用导数研究函数的单调性与极值,还考查了转化化归思想、数形结合思想和运算求解的能力,属于中档题.18.【分析】先对函数求导判定其单调性分别讨论三种情况即可得出结果【详解】因为所以由得;由得;所以函数在上单调递增在上单调递减;画出函数的大致图象如下当时由得或为使满足关于的不等式恰有两个整数解只需即;当解析:1ln 31ln 2,32++⎡⎫⎪⎢⎣⎭【分析】先对函数()1ln xf x x+=求导,判定其单调性,分别讨论0a >,0a =,0a <三种情况,即可得出结果. 【详解】因为()1ln xf x x+=, 所以()2211ln ln x xf x x x--'==-, 由()0f x '>得01x <<;由()0f x '<得1x >;所以函数()f x 在()0,1上单调递增,在()1,+∞上单调递减; 画出函数()f x 的大致图象如下,当0a >时,由()()20fx af x ->得()f x a >或()0f x <,为使满足关于x 的不等式()()20f x af x ->恰有两个整数解,只需()()23f af a ⎧>⎪⎨≤⎪⎩,即1ln 31ln 2,32a ++⎡⎫∈⎪⎢⎣⎭;当0a =时,由()()20fx af x ->得()20f x >,即()0f x >或()0f x <,所以1≥x ,不能满足题意;当0a <时,由()()20f x af x ->得()f x a <-或()0f x >,所以1≥x ,不能满足题意; 综上,1ln 31ln 2,32a ++⎡⎫∈⎪⎢⎣⎭.故答案为:1ln 31ln 2,32a ++⎡⎫∈⎪⎢⎣⎭. 【点睛】本题主要考查导数的方法研究不等式能成立的问题,熟记导数的方法研究函数的单调性即可,属于常考题型.19.【分析】由所给等式变形可得则令可求得c 从而求出的解析式利用导数研究函数的单调性利用函数单调性解不等式即可【详解】因为所以即所以因为所以解得则当时函数在上单调递增又所以的解集为故答案为:【点睛】本题考 解析:()1,+∞【分析】由所给等式变形可得()2[]x f x e x'=,则()2x f x e c x=+,令3x =可求得c 从而求出()f x 的解析式,利用导数研究函数()f x 的单调性,利用函数单调性解不等式即可. 【详解】因为()()32x xf x f x x e '-=,所以()()242xx f x xf x e x'-=,即()2[]x f x e x '=, 所以()2x f x e c x =+,因为()339f e =,所以33e e c =+,解得0c,则()2x f x e x =,()()20xf x x e x =>,当0x >时,()()22220x x x f x x e x e e x x '=⋅+⋅=+>,函数()f x 在()0,∞+上单调递增,又()1f e =,所以()()1f x e f >=的解集为()1,+∞. 故答案为: ()1,+∞ 【点睛】本题考查导数的运算法则、利用导数研究函数的单调性、利用函数的单调性解不等式,属于中档题.20.【分析】由函数的解析式分类讨论利用分离参数结合导数和基本不等式即可求解【详解】由题意函数(1)当时由可得即设可得当时单调递减;当时单调递增所以即;(2)当时由可得当时显然成立;当时可得因为当且仅当时 解析:[4,2]e -【分析】由函数的解析式,分类讨论,利用分离参数,结合导数和基本不等式,即可求解. 【详解】由题意,函数22,0,()4,0,x e x f x x x ⎧>=⎨+≤⎩,(1)当0x >时,由()f x mx ≥,可得2xe mx ≥,即2xe m x≤,设2()xe g x x=,可得22(21)()x e x g x x -'=, 当102x <<时,()0g x '<,()g x 单调递减;当12x >时,()0g x '>,()g x 单调递增, 所以min 1()22g x g e ⎛⎫==⎪⎝⎭,即2m e ≤; (2)当0x ≤时,由()f x mx ≥,可得24x mx +≥, 当0x =时显然成立; 当0x <时,可得4m x x ≥+,因为444x x x x ⎛⎫+=--+≤- ⎪-⎝⎭,当且仅当1x =-时取等号, 所以4m ≥-.综上可得,实数m 的取值范围是[4,2]e -, 故答案为:[4,2]e -. 【点睛】本题主要考查了函数的恒成立问题的求解,以及分段函数的性质的应用,其中解答中根据分段函数的分段条件,合理分类讨论,利用分离参数,结合导数和基本不等式求解是解答的关键,着重考查了转化思想,分类讨论思想,以及推理与运算能力.三、解答题21.(1)(]0,1;(2)证明见解析. 【分析】(1)转化为()22140ax a x +++≥在[]22-,上恒成立,利用二次函数知识可求得结果; (2)构造函数()()2225xh x x x e x =++--,利用导数可得()h x 在()0,x -∞上单调递减,在()0,x +∞上单调递增,其中()01,0x ∈-,再根据零点存在性定理可证结论成立. 【详解】(1)因为()f x 在[]22-,上是单调增函数, 所以()()()()2222222140xxxf x ax e ax x e ax a x e '⎡⎤=++++=+++⎦≥⎣在[]22-,上恒成立,又0x e >,所以()22140ax a x +++≥在[]22-,上恒成立. 令()()2214g x ax a x =+++,又0a >,故对称轴为110x a=--<. ①当112a--≤-,即01a <≤时,()g x 在[]22-,上单调递增, 则()()min 244(1)40g x g a a =-=-++=,所以此时()()20g x g ≥-=恒成立. ②当1210a -<--<,即1a >时,()g x 在12,1a ⎡⎤---⎢⎥⎣⎦上单调递减,在11,2a ⎛⎤-- ⎥⎝⎦上单调递增,所以min 1()1g x g a ⎛⎫=-- ⎪⎝⎭()21112114a a a a ⎛⎫⎛⎫=--++--+ ⎪ ⎪⎝⎭⎝⎭1()2a a =-++()21a a-=-0<,所以()0g x ≥在[]22-,上不恒成立,故1a >不合题意, 综上所述,a 的取值范围是(]0,1.(2)因为1a =,设()()2225xh x x x e x =++--,则()()()()2222221441xxxh x x e x x e x x e =++'++-=++-.令()()2441xx x x e ϕ=++-,则()()()()()()2224446842xxxxx x e x x e x x e x x e ϕ=+++'+=++=++,由()()()420xx x x e ϕ'=++=,得4x =-或2x =-.所以4410x e =-=-<极大值,210x =-=-<极小值 因为()1110eϕ-=-<,()030ϕ=>,所以存在()01,0x ∈-,使()00x ϕ=, 当()0,x x ∈-∞时,()0x ϕ<,()0h x '<;当()0,x x ∈+∞时,()0x ϕ>,()0h x '>, 所以()h x 在()0,x -∞上单调递减,在()0,x +∞上单调递增. 又因为()51750h e -=>,()410410h e-=-<,()030h =-<,()1560h e =->,故根据零点存在定理,可知()0h x =的根()15,4x ∈--,()20,1x ∈,所以方程()5f x x =+有且只有两个零点.【点睛】关键点点睛:第(1)问转化为()22140ax a x +++≥在[]22-,上恒成立是解题关键,第(2)问构造函数()()2225xh x x x e x =++--,利用导数研究函数的零点是解题关键. 22.(1)()23x f x e x +=;(2)(3,3e ⎤-∞⎦. 【分析】(1)求得()f x ',利用()03f '=求出m 的值,即可得出函数()f x 的解析式;(2)分2x =、2x >两种情况讨论,在2x =时可得出a R ∈;在2x >时,由参变量分离法得出32x e a x ≤-,利用导数求出函数()32xe h x x =-在区间()2,+∞上的最小值,综合可得出实数a 的取值范围.【详解】(1)()()23x f x m e x =-+,()()32x f x m e x '∴=-+,则()033f m '=-=,解得6m =, 因此,()23x f x e x +=;(2)①当2x =时,则()()223x f x e x x g x =+≥=成立,此时a R ∈; ②当2x >时,由题意得32xe a x ≤-恒成立, 令()32xe h x x =-,其中2x >,得()min a h x ≤,以下只需求()min h x . ()()()2332x e x h x x -'=-,当23x <<时,()0h x '<,()h x 单调递减;当3x >时,()0h x '>,()h x 单调递增.所以()()3min 33h x h e ==,所以33a e ≤. 综上所述,实数a 的取值范围是(3,3e ⎤-∞⎦. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.23.(1)答案见解析;(2)22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭. 【分析】 (1)先对函数求导,然后分0a >和0a <两种情况,解不等式()0f x '<,()0f x '>,可求出函数的单调区间;(2)函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,然后分0a >和0a <两种情况讨论即可得答案【详解】(1)()(1)x f x ae x '=-,若0a >,由()0f x '<,得1x <;由()0f x '>,得1,()x f x >∴的递减区间为(,1)-∞,递增区间为(1,)+∞.若0a <,由()0f x '<,得1x >;由()0f x '>,得1,()x f x <∴的递减区间为(1,)+∞,递增区间为(,1)-∞.(2)22()()2(2)2x g x f x x x ae x x x =+-=-+-,()()(1)22(1)2x x g x ae x x x ae '=-+-=-+.2()(2)2x g x ae x x x ∴=-+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,当1x =时,1(1)20h ae =+≠,即2a e ≠-. ∴①当0a >时,()20x h x ae =+>,此时无零点;②当0a <且2a e≠-时,2()0,()h x ae h x '=<∴为减函数. 又2ln 2ln 20a h ae a ⎛⎫- ⎪⎝⎭⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭,∴总存在唯一实数2ln a ⎛⎫- ⎪⎝⎭,使()0h x =. 综上,()g x 有两个极值点实数a 的取值范围22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭. 【点睛】 关键点点睛:此题考查导数的应用,考查利用导数求函数的单调区间,考查导数与极值,第2问解题的关键是将函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,从而分情况讨论即可,考查数学转化思想,属于中档题24.(1)27y x =+;(2)1,2⎛⎫+∞ ⎪⎝⎭.【分析】(1)求出导函数()'f x ,得切线斜率(0)f ',从而可得切线方程;(2)求出()'f x ,求出()0f x '=的两根1a和2,根据两根的大小讨论()f x 的极值,由2是极小值点得出a 的范围.【详解】本题考查利用导数研究函数性质.解析(1)若1a =,()2()57x f x x x e =-+,所以()2()32x f x x x e '=-+,所以(0)2 f '=,又(0)7f =,因此曲线()y f x =在(0,(0))f 处的切线方程为27y x =+.(2)2()(21)2(1)(2)x x f x ax a x e ax x e '⎡⎤=-++=--⎣⎦,令()0 f x '=,得1x a =或2x =, 若102a <<,即12a > 则当1,2x a ⎛⎫∈⎪⎝⎭时,()0f x '<,当(2,)x ∈+∞时,()0f x '>, 所以()f x 在2x =处取得极小值.. 若12a ≤,且0a ≠,则当(0,2)x ∈时,112ax x ≤<, 所以10ax ,同时20x -<,所以()0f x '>,从而2x =不是()f x 的极小值点.. 综上可知,a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.【点睛】本题考查导数的几何意义,考查由极值点求参数范围.掌握极值的定义是解题关键.方法是:求出导函数()'f x ,确定()0f x '=的根,然后由根分实数为若干个区间,讨论各区间中()'f x 和正负,得单调区间,若在0x 左侧递减,右侧递增,则0x 是极小值点,若在0x 左侧递增,右侧递减,则0x 是极大值点.25.(1)函数()x f x e x =-的单调递增区间为()0,∞+;单调递减区间为(),0-∞;(2)2,4e ⎛⎤-∞ ⎥⎝⎦. 【分析】(1)当12a =时,()x f x e x =-,利用导数可求得函数()f x 的单调递增区间和递减区间;(2)由参变量分离法得出min2x e a x ⎛⎫≤ ⎪⎝⎭,利用导数求出函数()xe g x x =在区间[]2,3上的最小值,由此可得出实数a 的取值范围.【详解】(1)当12a =时,()x f x e x =-,()1x f x e '=-, 令()0f x '=,得0x =.令()0f x '>,得0x >:令()0f x '<,得0x <.所以函数()xf x e x =-的单调递增区间为()0,∞+,单调递减区间为(),0-∞; (2)()202xxe f x e ax a x =-≥⇔≤对任意的[]2,3x ∈恒成立,即min 2x e a x ⎛⎫≤ ⎪⎝⎭, 设()xe g x x =﹐则()()21x e x g x x-'=,显然当[]2,3x ∈时()0g x '>恒成立. ()g x ∴在[]2,3单调递增,()n 2mi ()22g x g e ∴==, 22224e e a a ∴≤⇒≤,所以2,4 e a ⎛⎤∈-∞ ⎥⎝⎦. 【点睛】 结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.26.(1)89;(2)存在,12a =. 【分析】(1)由1a =,求导()22f x x x '=-,利用导数的几何意义求得曲线()y f x =在点()()1,1f 处的切线方程,再求得切线的x 轴、y 轴上的截距,代入三角形的面积公式求解. (2)求导()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =,然后分022a <<,22a ≥,由()f x 在[]0,2上的最小值为56求解. 【详解】(1)当1a =时,()32113f x x x =-+,()22f x x x '=-, 所以()11f '=-,又()113f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()113y x -=--, 即3340x y +-=,直线3340x y +-=在x 轴、y 轴上的截距均为43, 所以三角形的面积为14482339S =⨯⨯=. (2)()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =.当022a <<,即01a <<时,当[]0,2x a ∈时,()0f x '≤,()f x 单调递减;当[]2,2x a ∈时.()0f x '≥,()f x 单调递增.则()()33min 8524136f x f a a a ==-+=,解得12a =, 当22a ≥,即1a ≥时,当[]0,2x ∈时,()0f x '≤,()f x 单调递减,则()()min 8524136f x f a ==-+=,解得17124a =<,舍去. 综上:存在12a =,使得()f x 在[]0,2上的最小值为56. 【点睛】方法点睛:(1)求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.(2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(包含答案解析)(4)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(包含答案解析)(4)

一、选择题1.已知,a b ∈R ,若函数()e =-x f x a bx 存在两个零点1x ,2x ,且210x x >>,则下列结论可能成立的是( ). A .0ae b >> B .0ae b >> C .0b ae >> D .0ae b >> 2.若函数11()ln x x f x x x e e m --+=-+++有零点,则实数m 的取值范围是( )A .(,3]-∞-B .(,1]-∞-C .[1,)-+∞D .[3,)+∞3.在数学的研究性学习中,常利用函数的图象研究函数的性质,也利用函数的解析式研究函数的性质,下列函数的解析式(其中 2.71828e =⋅⋅⋅为自然对数的底数)与所给图象最契合的是( )A .22sin 1xy x =+B .221xy x =+C .x xx xe e y e e ---=+ D .x xx xe e y e e--+=- 4.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π5.已知曲线1C :()xf x xe =在0x =处的切线与曲线2C :()()ln a xg x a x=∈R 在1x =处的切线平行,令()()()h x f x g x =,则()h x 在()0,∞+上( )A .有唯一零点B .有两个零点C .没有零点D .不确定6.某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812863y x x =-+-,则该生产厂家获取的最大年利润为( )A .300万元B .252万元C .200万元D .128万元7.函数()()()()22ln 00x x x f x x e x -⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()()2240f x af x a a -+-=有四个不等的实数根,则实数a 的取值范围为( ) A .()0,4B .()(),44,-∞⋃+∞C .(){}4,04-D .(){},44-∞-8.函数()f x =的值域是( )A .0,3⎡⎢⎣⎦B .3⎛⎫∞ ⎪ ⎪⎝⎭C .(D .)+∞9.已知函数2()f x x m =+与函数1()ln3g x x x =--,1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( ) A .5ln )4[2,2+ B .5[2ln 2,ln 2)4-+ C .5(ln 2,2ln 2)4+-D .(]2ln2,2-10.若函数()()11xf x e a x =--+在(0,1)上不单调,则a 的取值范围是( )A .()2,1e +B .[]2,1e +C .(][),21,e -∞⋃++∞D .()(),21,e -∞⋃++∞11.设函数()f x 的定义域为R ,其导函数是()f x ',若()()()20,01'+<=f x f x f ,则不等式()2xf x e ->的解集是( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0-∞12.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有2()()0f x xf x '+>,且(1)0f -=,则使得()0f x >成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-二、填空题13.已知函数()()1ln 1xf x x x+=>,若对任意两个不同的1x ,2x ,都有()()1212ln ln f x f x k x x -≤-成立,则实数k 的取值范围是________________14.已知函数)(f x 的定义域为R ,且)(12f -=.若对任意x ∈R ,)(2f x '>,则)(24f x x >+的解集为______.15.若函数()231xf x e x mx =+-+在(],3-∞上单调递减,则实数m 的取值范围为______.16.已知函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,且当2x ≠,其导数()f x '满足()()2xf x f x ''<,若()30f =,则不等式()0xf x >的解集为__________.17.已知函数,0()(1),0xlnx x f x e x x >⎧=⎨+⎩,若函数()()()F x f x c c R =-∈恰有3个零点,则实数c 的取值范围是________.18.如图,两条距离为4的直线都与y 轴平行,它们与抛物线()22014y px p =-<<和圆()2249x y -+=分别交于A ,B 和C ,D ,且抛物线的准线与圆相切,则22AB CD ⋅的最大值为______.19.已知函数()f x 是定义在区间()0,∞+)上的可导函数,若对()0,x ∀∈+∞()()20xf x f x '+>恒成立,则不等式()()()202020202019201920192020x f x f x ++<+的解集为______.20.过点(2,0)且与曲线y =1x相切的直线的方程为________ 三、解答题21.已知函数32()2f x x ax bx =+++在1x =-处取得极值7. (1)求,a b 的值;(2)求函数()f x 在区间[2,2]-上的最大值 22.已知函数1()2ln 2f x x x x x=--+. (Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)设函数()'()g x f x =('()f x 为()f x 的导函数),若方程()g x a =在1,e⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,求实数a 的取值范围. 23.(1)证明下列不等式:1x e x ≥+;(2)求函数32()39f x x x x =--的极值.24.已知函数()(0)xaxf x a e =≠. (1)当1a =时,求函数()y f x =在[0,2]上的最大值和最小值;(2)求函数()f x 的单调区间.25.已知函数()ln af x x x x=--. (1)当2a =-时,求函数()f x 的极值;(2)若()2f x x x >-在()1,+∞上恒成立,求实数a 的取值范围.26.已知函数()()213ln 22f x x x ax a R =+-+∈. (1)若()f x 在1x =处的切线过点()2,2,求a 的值;(2)若()f x 恰有两个极值点1x ,()212x x x <,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意将问题转化为方程xb e a x=在0,上有两个实数根,进而令()(),0,xe g x x x=∈+∞,再研究函数()g x 的单调性得0b e a >>,进而分0a >和0a <讨论即可得答案. 【详解】解:当0a =时,函数()f x 只有一个零点,故0a ≠,因为函数()e =-xf x a bx 存在两个零点1x ,2x ,且210x x >>所以方程xb e a x=在0,上有两个不相等的实数根.令()(),0,x e g x x x =∈+∞,()()21'x x e g x x-=, 所以当()1,∈+∞x 时()'0g x >,()0,1∈x 时()'0g x <,故函数()(),0,xe g x x x=∈+∞在1,上单调递增,在0,1上单调递减;所以()()min 1g x g e ==,所以0be a>>, 当0a >时,0b ae >>,当0a <时,0b ae <<. 故选:D.【点睛】本题考查利用导数研究函数零点问题,解题的关键在于将问题转化为方程xb e a x=在0,上有两个不相等实数根,进而令()g x 研究函数的单调性即可.考查运算求解能力与化归转化思想,是中档题.2.A解析:A【分析】设11()ln e e x x g x x x --+=-++,则函数11()ln x x f x x x e e m --+=-+++有零点转化为函数()g x 的图象与直线y m =-有交点,利用导数判断函数()g x 的单调性,即可求出.【详解】设11()ln e e x x g x x x --+=-++,定义域为()0,∞+,则111()1e e x x g x x--+'=-+-,易知()'g x 为单调递增函数,且(1)0,g '= 所以当(0,1)x ∈时,()0g x '<,()g x 递减; 当(1,)x ∈+∞时, ()0g x '>, ()g x 递增,所以 ()(1)3,g x g ≥= 所以3m -≥,即3m ≤-.故选:A . 【点睛】本题主要考查根据函数有零点求参数的取值范围,意在考查学生的转化能力,属于基础题.3.B解析:B 【分析】分析合选项中函数值符号、单调性、奇偶性,并与题中的函数图象作比较,由此可得出合适的选项. 【详解】对于A 选项,当2x ππ<<时,22sin 01xy x =<+,与题中函数图象不符; 对于B 选项,设()221xf x x =+,该函数的定义域为R , ()()()222211xxf x f x x x --==-=-+-+,函数()221x f x x =+为奇函数, 当0x >时,()2201xf x x =>+,()()()()()22222222142111x x x f x xx+--'==++,由()0f x '>,可得11x -<<;由()0f x '<,可得1x <-或1x >.所以,函数()f x 的单调递减区间为(),1-∞-、()1,+∞,单调递增区间为()1,1-, 与题中函数图象相符;对于C 选项,()()()2222212121111x x x xx x x x x x x x x x xe e e e e e e y e e e e e e e e-----+---=+====-++++, 所以,函数x xx xe e y e e---=+为R 上的增函数,与题中函数图象不符; 对于D 选项,对于函数x xx xe e y e e--+=-,0x x e e --≠,可得0x ≠,该函数的定义域为{}0x x ≠,与题中函数图象不符. 故选:B. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.4.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r =代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=, 底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r rππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S rππ-'=<可得02r <<, 所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.5.A解析:A 【分析】先对函数()xf x xe =和()ln a xg x x=求导,根据两曲线在1x =处的切线平行,由导数的几何意义求出a ,得到函数()()()ln xh x f x g x e x ==,对其求导,利用导数的方法判定单调性,确定其在()0,∞+上的最值,即可确定函数零点个数. 【详解】∵()xf x xe =,∴()()1xf x x e '=+,又()ln a x g x x =,∴()2ln a a xg x x -'=, 由题设知,()()01f g '=',即()02ln1101a a e -+=,∴1a =, 则()()()ln ln xx xh x f x g x xe e x x==⋅=, ∴()()ln 1ln xx xx x e e h x e x x x+=='+,0x >, 令()ln 1m x x x =+,0x >,则()ln 1m x x '=+,当10,e x ⎛⎫∈ ⎪⎝⎭时,()0m x '<,即函数()ln 1m x x x =+单调递减;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0m x '>,即函数()ln 1m x x x =+单调递增;∴在()0,∞+上()m x 的最小值为1110m e e⎛⎫=-> ⎪⎝⎭, ∴()0m x >,则()0h x '>,∴()h x 在()0,∞+上单调递增,且()10h =.()h x 在()0,∞+上有唯一零点,故选:A . 【点睛】 思路点睛:利用导数的方法判定函数零点个数时,一般需要先对函数求导,利用导数的方法判定函数单调性,确定函数极值和最值,即可确定函数零点个数.(有时也需要利用数形结合的方法进行判断)6.C解析:C 【分析】求得函数的导数,得到函数的单调性,进而求解函数的最大值,即可得到答案. 【详解】由题意,函数31812863y x x =-+-,所以281y x '=-+,当09x <<时,0y '>,函数()f x 为单调递增函数; 当9x >时,0y '<,函数()f x 为单调递减函数,所以当9x =时,y 有最大值,此时最大值为200万元,故选C. 【点睛】本题主要考查了利用导数研究函数的单调性与最值问题,其中解答中熟记函数的导数在函数中的应用,准确判定函数的单调性是解答的关键,着重考查了推理与计算能力,属于基础题.7.C解析:C 【分析】作出函数()f x 的大致图象,令()t f x =,则原问题可转为关于t 的方程2240t at a a -+-=有2个不等实根1t 和2t ,结合()f x 的图象可确定1t 和2t 符合两种情形:10t =,24t =或()10,4t ∈,()()2,04,t ∈-∞+∞,最后分两类讨论即可求得a 的取值范围. 【详解】当0x ≥时,()22xf x x e-=,∴()()222xf x x xe-'=-,∴当02x <<时,()0f x '>,()f x 单调递增; 当2x >时,()0f x '<,()f x 单调递减, 函数()f x 的大致图象如图所示:令()t f x =, 当0t =或4时,方程()t f x =有2个实根; 当()(),04,t ∈-∞+∞,方程()t f x =有1个实根.当t ∈(0,4)时,方程t =f (x )有3个实根; 则关于x 的方程()()2240fx af x a a -+-=有四个不等的实数根可等价于关于t 的方程2240t at a a -+-=有2个不等实根1t 和2t .∴1t 和2t 可符合两种情形:10t =,24t =或1t ∈(0,4),()()2,04,t ∈-∞+∞.若10t =,24t =,则124a t t =+=;若1t ∈(0,4),()()2,04,t ∈-∞+∞,设g (t )=t 2﹣at +4a ﹣a 2,则g (0)•g (4)<0,∴()()22416440a aa a a -⋅-+-<,解得40a .综上,实数a 的取值范围为(){}4,04-.故选:C .【点睛】本题考查方程根的问题,利用导数研究函数的单调性与最值,考查学生的数形结合思想、转化与化归思想、逻辑推理能力和运算能力,属于中档题.8.A解析:A 【分析】求出函数的定义域,然后求出导函数,确定单调性,得值域. 【详解】由21020x x ⎧-≥⎨+≠⎩得11x -≤≤,22222(2)121()(2)1xx x x f x x x -⋅+---'==+-当112x -≤<-时,()0f x '>,()f x 递增,112x -<≤时,()0f x '<,()f x 递减, 所以12x =-时,max1134()322f x -==-+(1)(1)0f f -==, 所以()f x 的值域是30,3⎡⎢⎣⎦.故选:A . 【点睛】本题考查用导数求函数的值域,解题方法是由导数确定函数的单调性,得出最大值和最小值,得值域.9.A解析:A 【分析】将问题转化为()()f x g x =-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,令()()()h x f x g x =+,将问题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定区间端点值和最值,由此构造不等式求得结果. 【详解】()f x 与()g x 在1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,()()f x g x ∴=-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,即221ln3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤⎢⎥⎣⎦上恰有两个不同的解, 令()2ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x---+'=+-==, ∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当()1,2x ∈时,()0h x '>,()h x ∴在1,12⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增,又15ln 224h m ⎛⎫=--+⎪⎝⎭,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1,22⎡⎤⎢⎥⎣⎦上恰有两个零点,则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡⎫+⎪⎢⎣⎭.故选:A . 【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.10.A解析:A 【分析】求导得()1xf x e a '=-+,原问题可转化为()'f x 在(0,1)上有变号零点,由于()'f x 单调递增,只需满足()()010f f ''<,解之即可. 【详解】 解:()(1)1x f x e a x =--+,()1x f x e a '∴=-+,若()f x 在(0,1)上不单调,则()'f x 在(0,1)上有变号零点,又()f x '单调递增,()()010f f ''∴<,即(11)(1)0a e a -+-+<,解得21a e <<+.a ∴的取值范围是(2,e +1).故选:A . 【点睛】本题考查利用导数研究函数的单调性、零点存在定理,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.11.D解析:D 【分析】构造新函数2()()xg x ef x =,求导后可推出()g x 在R 上单调递减,而2()x f x e ->可等价于20()1(0)x e f x e f >=,即()(0)g x g >,故而得解. 【详解】 令2()()xg x ef x =,则2()[2()()]xg x e f x f x ''=+,2()()0f x f x +'<,()0g x '∴<,即()g x 在R 上单调递减,(0)1f =,2()x f x e -∴>可等价于20()1(0)x e f x e f >=,即()(0)g x g >,0x ∴<,∴不等式的解集为(,0)-∞.故选:D . 【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.12.B解析:B 【分析】根据条件构造函数2()()g x x f x =,求函数的导数,判断函数的单调性,将不等式进行转化求解. 【详解】由题意,设2()()g x x f x =,则2'()2()()[2()'()]g x xf x x f x x f x xf x =+=+, 因为当0x >时,有2()'()0f x xf x +>, 所以当0x >时,'()0g x >,所以函数2()()g x x f x =在(0,)+∞上为增函数,因为(1)0f -=,又函数()f x 是偶函数,所以(1)(1)0f f =-=,所以(1)0g =,而当()0>g x 时,可得1x >,而()0>g x 时,有()0f x >, 根据偶函数图象的对称性,可知()0f x >的解集为()(),11,-∞-⋃+∞, 故选B. 【点睛】该题考查的是与导数相关的构造新函数的问题,涉及到的知识点有函数的求导公式,应用导数研究函数的单调性,解相应的不等式,属于中档题目.二、填空题13.【分析】先对求导判断其单调性不妨设可对原不等式去绝对值得等价于构造函数可得在单调递增分离得由即可求解【详解】当时所以所以在单调递减不妨设则所以等价于即设则所以在单调递增对于恒成立所以可得对于恒成立设解析:1,e ⎡⎫+∞⎪⎢⎣⎭【分析】先对()f x 求导判断其单调性,不妨设121x x <<,可对原不等式去绝对值得()()1122ln ln f x k x f x k x +≤+,等价于()()1122ln ln f x k x f x k x +≤+,构造函数()()ln g x f x k x =+,可得()()ln g x f x k x =+在()1,+∞单调递增,()0g x '≥,分离得ln xk x ≥,由maxln x k x ⎛⎫≥ ⎪⎝⎭即可求解. 【详解】()()2211ln ln x x x x f x x x ⋅-+-'==, 当1x >时,ln 0x >,所以()0f x '<, 所以()1ln xf x x+=在()1,+∞单调递减, 不妨设121x x <<,则()()120f x f x ->,12ln ln 0x x -<,所以()()1212ln ln f x f x k x x -≤-等价于()()()1221ln ln f x f x k x x -≤-, 即()()1122ln ln f x k x f x k x +≤+, 设()()ln g x f x k x =+,则()()12g x g x <, 所以()()1ln ln ln xg x f x k x k x x+=+=+在()1,+∞单调递增,()22ln ln 0x k kx xg x x x x --'=+=≥对于()1,x ∈+∞恒成立, 所以ln 0kx x -≥,可得ln xk x≥对于()1,x ∈+∞恒成立, 设()ln xh x x=,只需()max k x h ≥, ()221ln 1ln x xx x h x x x ⋅--'==, 当1x e <<时()0h x '>,()ln xh x x=单调递增, 当x e >时,()0h x '<,()ln xh x x=单调递减, 所以()()max ln 1e h x h e e e===,所以1k e ≥,故答案为:1,e ⎡⎫+∞⎪⎢⎣⎭【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可.14.【分析】构造函数利用导数研究函数的单调性即可得结论【详解】设则因为对任意所以所以对任意是单调递增函数因为所以由可得则的解集故答案为:【点睛】本题主要考查不等式的求解利用条件构造函数利用导数研究函数的 解析:)(1,-+∞【分析】构造函数)(()24g x f x x =--,利用导数研究函数的单调性即可得结论. 【详解】设)(()24g x f x x =--,则)(()2g x f x ='-', 因为对任意x ∈R ,)(2f x '>,所以()0g x '>, 所以对任意x ∈R , ()g x 是单调递增函数,因为)(12f -=,所以)((1)124440g f -=-+-=-=, 由()()10g x g >-=,可得1x >-, 则)(24f x x >+的解集()1,-+∞.故答案为:()1,-+∞. 【点睛】本题主要考查不等式的求解,利用条件构造函数、利用导数研究函数的单调性是解决本题的关键.15.【分析】根据函数在上单调递减由恒成立求解【详解】因为函数在上单调递减所以恒成立;令在上单调递增所以实数的取值范围为故答案为:【点睛】方法点睛:恒成立问题的解法:(1)若在区间D 上有最值则;;(2)若解析:)336,e ⎡++∞⎣【分析】根据函数()231xf x e x mx =+-+在(],3-∞上单调递减,由()0f x '≤,(],3x ∈-∞恒成立求解. 【详解】()320x f x e x m '=+-≤,因为函数()231xf x e x mx =+-+在(],3-∞上单调递减,所以32x e x m +≤,(],3x ∈-∞恒成立;令32xy e x =+在(],3-∞上单调递增,3max 36y e =+,所以实数m 的取值范围为)336,e ⎡++∞⎣. 故答案为:)336,e ⎡++∞⎣ 【点睛】方法点睛:恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.16.【分析】由可得对称轴是由可得从而得出判断的单调区间再结合即可得不等式的解集【详解】因为函数对定义域内内的任意都有所以对称轴是因为满足即所以当时单调递增当时单调递减又因为所以时时时当与同号时所以的解集 解析:()(),01,3-∞⋃【分析】由()()4f x f x =-,可得()f x 对称轴是2x =,由()()2xf x f x ''<可得()()20x f x '-<,从而得出判断()f x 的单调区间,再结合()30f =,即可得不等式()0xf x >的解集.【详解】因为函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-, 所以()f x 对称轴是2x =,因为()f x '满足()()2xf x f x ''<,即()()20x f x '-<, 所以当2x <时()0f x '>,()f x 单调递增, 当2x >时()0f x '<,()f x 单调递减, 又因为()()130f f ==,所以1x <时,()0f x <,13,x <<时,()0f x >,3x >时,()0f x <, 当x 与()f x 同号时,()0xf x >, 所以()0xf x >的解集为:()(),01,3-∞⋃, 故答案为:()(),01,3-∞⋃ 【点睛】本题主要考查了函数的对称性和单调性,导数的符号决定原函数的单调性,根据单调性解不等式,属于中档题.17.【分析】利用导数判断出函数的单调区间作出函数的图象数形结合即可得解;【详解】解:当时函数单调递增;当时则时且时时故当时在上单调递减在上单调递增在处取极小值极小值为;作出函数的图象如图:函数恰有3个零解析:()2,0e --【分析】利用导数判断出函数()f x 的单调区间,作出函数()f x 的图象,数形结合即可得解; 【详解】解:当0x >时,函数()f x lnx =单调递增;当0x 时,()(1)xf x e x =+,则()(2)0x f x e x '=+=时,2x =-,且2x <-时,()0f x '<,20x -<时,()0f x '>,故当0x 时,()f x 在(,2)-∞-上单调递减,在(2,0)-上单调递增,()f x 在2x =-处取极小值,极小值为2(2)f e --=-; 作出函数()f x 的图象如图:函数()()()F x f x c c R =-∈恰有3个零点,等价于函数()f x 与y c =的图象有且仅有3个零点,由图可知,20e c --<<, 故答案为:()2,0e --. 【点睛】本题考查函数零点与方程根的关系,涉及利用导数判断函数单调性,数形结合思想等,属于中档题.18.【分析】先设直线的方程为再利用直线与圆锥曲线的位置关系将用表示再利用导数求函数的最值即可得解【详解】解:由抛物线的准线与圆相切得或7又∴设直线的方程为则直线的方程为则设令得;令得即函数在为增函数在为解析:【分析】先设直线AB 的方程为()03x t t =-<<,再利用直线与圆锥曲线的位置关系将AB CD ⋅用t 表示,再利用导数求函数的最值即可得解. 【详解】解:由抛物线的准线与圆相切得12p=或7,又014p <<,∴2p =. 设直线AB 的方程为()03x t t =-<<,则直线CD 的方程为4x t =-,则)03AB CD t ⋅==<<.设()()()2903f t t tt =-<<,()2'93f t t=-,令()'0f t >,得0t <<()'0f t <3t <<.即函数()f t 在(为增函数,在)为减函数,故()maxf t f ==22AB CD ⋅的最大值为28⨯=故答案为: 【点睛】本题考查了利用导数求函数的最值,重点考查了运算能力,属中档题.19.【分析】令求的导数根据条件可知从而判断单调递增将不等式化为即可求解【详解】令因为的定义域为所以函数的定义域也为则所以函数在上单调递增又可以化为即所以所以故不等式的解集为故答案为:【点睛】本题考查利用 解析:()2020,1--【分析】令()2()g x x f x =,求()g x 的导数'()g x ,根据条件可知'()0g x >,从而判断()g x 单调递增,将不等式化为()()20202019g x g +<即可求解. 【详解】令()2()g x x f x =,因为()f x 的定义域为()0,∞+,所以函数()g x 的定义域也为()0,∞+,则()()()()()2220g x xf x x f x x f x xf x '''=+=+>⎡⎤⎣⎦,所以函数()g x 在()0,∞+上单调递增, 又()()()202020202019201920192020x f x f x ++<+可以化为()()()222020202020192019x f x f ++<,即()()20202019g x g +<,所以020202019x <+<, 所以20201x -<<-, 故不等式的解集为()2020,1--. 故答案为:()2020,1--. 【点睛】本题考查利用函数的单调性解不等式,构造函数求导是解题的关键,属于中档题.20.【解析】试题分析:设切点为所以切点为由点可知直线方程为考点:1直线方程;2导数的几何意义解析:20x y +-=. 【解析】试题分析:设切点为()0000220000111,2y x y y y x x x x -∴==-'∴-=-,所以切点为()1,1,由点()2,0可知直线方程为20x y +-= 考点:1.直线方程;2.导数的几何意义三、解答题21.(1)39a b =-⎧⎨=-⎩;(2)max ()7f x =.【分析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到32()392f x x x x =--+,导数的方法研究其单调性,进而可求出最值. 【详解】(1)因为32()2f x x ax bx =+++,所以2()32f x x ax b '=++,又函数32()2f x x ax bx =+++在1x =-处取得极值7,(1)17(1)320f a b f a b -=+-=⎧⎨-=-+='⎩,解得39a b =-⎧⎨=-⎩;, 所以3()3693(3)(1)f x x x x x '=--=-+, 由()0f x '>得3x >或1x <-;由()0f x '<得13x ;满足题意;(2)又[2,2]x ∈-,由(1)得()f x 在(2,1)x ∈--上单调递增,在(1,2)x ∈-上单调递减, 因此max ()(1)7f x f =-=. 【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值. 22.(1)220x y --=;(2)2(2,1]e -. 【分析】(1)求出()'f x ,计算(1)f '得切线斜率,从而得切线议程;(2)对()g x 求导,确定()g x 的单调性,极值,得()g x 的变化趋势,从而可得结论. 【详解】(1)由已知2211()2ln 212ln 1f x x x x x '=+-+=++, 所以(1)2f '=,又(1)0f =,所以切线议程为2(1)y x =-,即220x y --=;(2)由(1)21()2ln 1g x x x =++,定义域为(0,)+∞,33222(1)(1)()x x g x x x x -+'=-=, 所以在(0,1)x ∈时,()0g x '<,()g x 递减,(1,)x ∈+∞时,()0g x '>,()g x 递增, 所以1x =时,()g x 取得极小值也是最小值(1)2g =,211g e e ⎛⎫=- ⎪⎝⎭,x →+∞时,()g x →+∞, 所以方程()g x a =在1,e ⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,则实数a 的取值范围是2(2,1]e -.【点睛】方法点睛:本题考查导数的几何意义,考查用导数研究方程根的分布.根据方程根的个数求参数范围问题,一般方法是数形结合思想,把问题转化为函数图象与直线的交点问题,可利用导数研究出函数的性质,如单调性,极值,确定函数的变化趋势,然后利用函数的图象得出参数范围.23.(1)证明见解析;(2)极大值为5,极小值为27-. 【分析】(1)设()1x f x e x =--,则'()1x f x e =-,由'()0f x =得0x =,分析函数的单调性,可求得函数的最值,不等式可得证;(2)对函数求导,求出函数()y f x =的极值点,分析函数的单调性,可求得函数的极值. 【详解】解:(1)证明:设()1x f x e x =--,则'()1x f x e =-,由'()0f x =得0x =, 所以当0x <时,'()0f x <,当0x >时,'()0f x >,所以()f x 在(),0-∞单调递减,在()0,∞+单调递增,所以()(0)0f x f ≥=,即10x e x --≥,所以1x e x ≥+;(2)32()39f x x x x =--2()3693(1)(3)f x x x x x ==+'---,令()0f x '=,得1x =-或3x =,则所以当时函数取极大值为,当时函数取极小值为;【点睛】关键点点睛:本题考查利用导数证明不等式和求函数在定区间上的极值,关键在于构造函数,分析其导函数的符号,得出原函数的单调性. 24.(1)最大值为1e,最小值分别为0;(2)答案见解析. 【分析】(1)当1a =时,()xxf x e =,对其求导,利用导函数得符号判断()y f x =在[0,2]上的单调性,即可求得最值; (2)对()f x 求导可得()1()xa x f x e-'=,讨论0a >和0a <,由()0f x '>可得单调递增区间,由()0f x '<,可得单调递减区间. 【详解】(1)当1a =时,()x x f x e =,所以21()x xx xe xe xf x e e --'==. 令()0f x '=,得1x =. 当01x ≤<时,()0f x '>;当12x <≤时,()0f x '<.所以()y f x =在()0,1单调递增,在()1,2单调递减, 所以当1x =时,()f x 取最大值1(1)f e=. 又因为(0)0f =,22(2)f e =,所以函数()x xf x e =的最大值和最小值分别为1e,0. (2)因为()1()xa x f x e-'=. 当0a >时,由()0f x '>,得1x <;由()0f x '<,得1x >,此时函数()x xf x e=的单调递增区间为(,1)-∞,单调递减区间为(1,)+∞; 当0a <时,由()0f x '>,得1x >;由()0f x '<,得1x <.此时函数()x xf x e=的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞ 综上所述:当0a >时,函数()x xf x e =的单调递增区间为(,1)-∞,单调递减区间为(1,)+∞; 当0a <时,函数()x xf x e=的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞.【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数在区间[],a b 上单调递增或递减,则()f a 与()f b 一个为最大值,另一个为最小值;(2)若函数在区间[],a b 内有极值,则要先求出函数在[],a b 上的极值,再与()f a ,()f b 比较,最大的为最大值,最小的为最小值;(3)函数()f x 在区间(),a b 上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.25.(1)极小值为3ln 2-,无极大值;(2)(],1-∞. 【分析】(1)对函数求导,因式分解求得()0f x '=的根,列表判断单调性与极值;(2)将()2f x x x >-转化为3ln a x x x <-在()1,+∞上恒成立,令新的函数()g x ,然后求导以及二次求导以后判断单调性与极值,求出()g x 的最小值即可. 【详解】解:(1) 由2a =-,得()2ln f x x x x=+-,定义域为()0,∞+,()()()2222212121x x x x f x x x x x-+--'=--==, 令()0f x '=,得2x =(或1x =-舍去),列表:所以f x 的极小值为23ln 2=-f ,无极大值.(2)由2ln a x x x x x -->-,得2ln a x x x<-, 问题转化为3ln a x x x <-在()1,+∞上恒成立,记()()3ln ,1,g x x x x x =-∈+∞,即min ()a g x <在()1,+∞上恒成立,则()()2231ln 3ln 1g x x x x x '=-+=--, 令()23ln 1h x x x =--,则()21616x h x x x x -'=-=, 由1x >,知2610x ->,即()0h x '>,所以()h x 在()1,+∞上单调递增,()()120h x h >=>,即()0g x '>,所以()g x 在()1,+∞上单调递增,()()11g x g >=,由()a g x <在()1,+∞上恒成立,所以1a ≤.【点睛】方法点睛:导函数中两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.26.(1)1;(2)()2,+∞.【分析】(1)利用在某点处切线方程的求法可表示出()f x 在1x =处的切线方程,代入()2,2即可求得结果;(2)求导后,令()21g x x ax =-+,分别在0∆≤和0∆>两种情况下,根据()0g x =根的情况,确定()g x 的正负,进而得到()f x 单调性,从而确定符合题意的范围.【详解】(1)()f x 定义域为()0,∞+,()1f x x a x'=+-,则()12f a '=-,()12f a =-,()f x ∴在1x =处的切线方程为()()()221y a a x --=--,又切线过()2,2,2a a ∴=-,解得:1a =.(2)由(1)知:()()2110x ax f x x a x x x-+'=+-=>, 令()21g x x ax =-+,则24a ∆=-, ①当0∆≤,即22a -≤≤时,()0g x ≥恒成立,()0f x '∴≥在()0,∞+上恒成立, 此时()f x 在()0,∞+上单调递增,无极值,不合题意;②当0∆>,即2a <-或2a >时,令()0g x =,解得:12a x =,22a x += ⑴若2a <-,则10x <,20x <,()0g x ∴>在()0,∞+上恒成立,()0f x '∴≥在()0,∞+上恒成立,此时()f x 在()0,∞+上单调递增,无极值,不合题意;⑵若2a >,则120x x <<,∴当()10,x x ∈和()2,x +∞时,()0f x '>;当()12,x x x ∈时,()0f x '<;()f x ∴在()10,x 和()2,x +∞上单调递增,在()12,x x 上单调递减,()f x ∴恰有两个极值点12,x x ,符合题意;综上所述:a 的取值范围为()2,+∞.【点睛】思路点睛:本题考查根据极值点个数求解参数范围的问题,求解此类问题的关键是将问题转化为导函数零点个数的讨论问题,需注意的是在导函数有零点的情况下,需结合定义域确定零点是否满足定义域要求.。

北师大数学选修同步作业:第4章 导数应用 作业 含解析

北师大数学选修同步作业:第4章 导数应用 作业 含解析

课时作业(二十)1.函数f(x)=x3+3x2+3x-a的极值点的个数()A.2B.1C.0 D.由a确定答案 C解析f′(x)=3x2+6x+3=3(x2+2x+1)=3(x+1)2≥0恒成立.f(x)单调,故无极值点.2.若函数y=e x+mx有极值,则实数m的取值范围()A.m>0 B.m<0C.m>1 D.m<1答案 B解析y′=e x+m,则e x+m=0必有根,∴m=-e x<0.3.当函数y=x·2x取极小值时,x=()A.1ln2B.-1ln2C.-ln2 D.ln2答案 B解析由y=x·2x,得y′=2x+x·2x·ln2.令y′=0得2x(1+x·ln2)=0.∵2x>0,∴x=-1ln2.4.已知函数f(x)=x3-px2-qx的图象与x轴相切于(1,0),则极小值为()A.0 B.-427C.-527D.1 答案 A解析f′(x)=3x2-2px-q,由题知f′(1)=3-2p-q=0.又f(1)=1-p-q=0,联立方程组,解得p=2,q=-1.∴f(x)=x3-2x2+x,f′(x)=3x2-4x+1.由f′(x)=3x2-4x+1=0,解得x =1或x =13.经检验知x =1是函数的极小值点, ∴f(x)极小值=f(1)=0.5.如果函数y =f(x)的导函数的图象如图所示,给出下列判断:①函数y =f(x)在区间⎝⎛⎭⎫-3,-12内单调递增; ②函数y =f(x)在区间⎝⎛⎭⎫-12,3内单调递减; ③函数y =f(x)在区间(4,5)内单调递增; ④当x =2时,函数y =f(x)有极小值; ⑤当x =-12时,函数y =f(x)有极大值.则上述判断中正确的是( ) A .①② B .②③ C .③④⑤ D .③答案 D解析 当x ∈(-3,-2)时,f ′(x)<0,f(x)单调递减,①错;当x ∈⎝⎛⎭⎫-12,2时,f ′(x)>0,f(x)单调递增,当x ∈(2,3)时,f ′(x)<0,f(x)单调递减,②错;当x =2时,函数y =f(x)有极大值,④错;当x =-12时,函数y =f(x)无极值,⑤错.故选D.6.已知e 为自然对数的底数,设函数f(x)=(e x -1)(x -1)k (k =1,2),则( ) A .当k =1时,f(x)在x =1处取到极小值 B .当k =1时,f(x)在x =1处取到极大值 C .当k =2时,f(x)在x =1处取到极小值 D .当k =2时,f(x)在x =1处取到极大值 答案 C解析 当k =1时,f(x)=(e x -1)(x -1),f ′(x)=xe x -1,f ′(1)≠0,故A 、B 两项错;当k =2时,f(x)=(e x -1)(x -1)2,f ′(x)=(x 2-1)e x -2x +2=(x -1)[(x +1)e x -2],故f ′(x)=0有一个根为x 1=1,另一根x 2∈(0,1).当x ∈(x 2,1)时,f ′(x)<0,f(x)递减,当x ∈(1,+∞)时,f ′(x)>0,f(x)递增,∴f(x)在x =1处取得极小值.故选C. 7.函数f(x)=x 3-3bx +3b 在(0,1)内有极小值,则( ) A .0<b <1 B .b <1 C .b >0 D .b <12答案 A解析 f(x)在(0,1)内有极小值,则f ′(x)=3x 2-3b 在(0,1)上先负后正,∴f ′(0)=-3b <0. ∴b >0,f ′(1)=3-3b >0,∴b <1. 综上,b 的范围为0<b <1.8.已知函数f(x)=x(lnx -ax)有两个极值点,则实数a 的取值范围是( ) A .(-∞,0) B.⎝⎛⎭⎫0,12 C .(0,1) D .(0,+∞)答案 B解析 f ′(x)=(lnx -ax)+x ⎝⎛⎭⎫1x -a =lnx -2ax +1,由题意知f ′(x)=0有两解,即lnx -2ax +1=0有两解,也即y =lnx +1与y =2ax 恰有两个交点,若直线y =2ax 恰与曲线y =lnx +1相切于(x 0,y 0), 且y ′=1x,则⎩⎪⎨⎪⎧1x 0=2a ,y 0=2ax 0,y 0=lnx 0+1,解得2a =1,画图知要使y =lnx +1与y =2ax 的图象恰有两个交点只需0<2a<1,即0<a<12.故选B.9.函数y =sinx +cosx 在[0,π]上的极大值为________. 答案2解析 因为y ′=cosx -sinx ,x ∈[0,π],令y ′=0, 即cosx -sinx =0,得x =π4.当x ∈⎣⎢⎡⎦⎥⎤0,π4时,y ′≥0,当x ∈⎝ ⎛⎦⎥⎤π4,π时,y ′<0,所以函数y =sinx +cosx 在x =π4处取极大值,极大值为y = 2.10.若函数f(x)=x 2+ax +1在x =1处取得极值,则a =________.答案 3解析 f ′(x)=(x 2+a )′·(x +1)-(x 2+a )·(x +1)′(x +1)2=2x·(x +1)-(x 2+a )·1(x +1)2=x 2+2x -a(x +1)2, 因为函数f(x)在x =1处取得极值, 所以f ′(1)=3-a4=0,解得a =3.11.设函数f(x)=x·(x -c)2在x =2处有极大值,则c =________. 答案 6解析 f ′(x)=3x 2-4cx +c 2,∵f(x)在x =2处有极大值,∴f ′(2)=0,即 c 2-8c +12=0,解得c 1=2,c 2=6.当c =2,则f ′(x)=3x 2-8x +4=(3x -2)(x -2), x >2时,f ′(x)>0,f(x)递增不合题意, ∴c ≠2,∴c =6.12.若x =1和x =2是函数f(x)=alnx +bx 2+x 的两个极值点,则b -a =________. 答案 1213.求函数f(x)=lnxx的极值.解析 函数f(x)=lnxx 的定义域为(0,+∞),由导数公式表和求导法则,得f ′(x)=1-lnxx 2.令f ′(x)=0,解得x =e. 下面分两种情况讨论: (1)当f ′(x)>0时,0<x<e ; (2)当f ′(x)<0时,x>e.当x 变化时,f ′(x)与f(x)的变化情况如下表:故当x =e 时函数取得极大值,且极大值为f(e)=1e ,无极小值.14.试讨论函数f(x)=e x (x 2+ax +1)的极值. 解析 f ′(x)=e x [x 2+(a +2)x +a +1], 令f ′(x)=0得x 1=-1,x 2=-1-a. ①当a =0时无极值;②当a>0时,f(x)与f ′(x)的变化情况如下表.--(a +2); 极小值为f(-1)=2-ae.③当a<0时f(x)与f ′(x)的变化情况如下表故极大值为f(-1)=2-ae ;极小值为f(-1-a)=e -1-a (a +2). 15.已知函数f(x)=x 2-alnx(a ∈R ).(1)当a =1时,求函数f(x)在点x =1处的切线方程; (2)求函数f(x)的极值;(3)若函数f(x)在区间(2,+∞)上是增函数,试确定a 的取值范围. 解析 (1)a =1,f(x)=x 2-lnx ,f ′(x)=2x -1x ,f ′(1)=1,又f(1)=1, ∴切线方程为y =x.(2)定义域为(0,+∞),f ′(x)=2x -ax ,当a ≤0时,f ′(x)>0恒成立,f(x)不存在极值. 当a>0时,令f ′(x)=0,得x =2a 2,当x>2a 2时,f ′(x)>0,当x<2a 2时f ′(x)<0, ∴当x =2a 2时,f(x)有极小值a 2-a 2ln a2.(3)∵f(x)在(2,+∞)上递增,∴f ′(x)=2x -ax ≥0对x ∈(2,+∞)恒成立,即a ≤2x 2恒成立.∴a ≤8.16.已知函数f(x)=x 2-alnx(a ∈R ).(1)当a =1时,求函数f(x)在点x =1处的切线方程; (2)求函数f(x)的极值;(3)若函数f(x)在区间(2,+∞)上是增函数,试确定a 的取值范围. 解析 (1)当a =1时,f(x)=x 2-lnx ,f ′(x)=2x -1x ,f ′(1)=1,又f(1)=1,∴切线方程为y =x.(2)定义域为(0,+∞),f ′(x)=2x -ax ,当a ≤0时,f ′(x)>0恒成立,f(x)不存在极值.当a>0时,令f ′(x)=0,得x =2a 2,当x>2a 2时,f ′(x)>0,当0<x<2a2时,f ′(x)<0, ∴当x =2a 2时,f(x)有极小值a 2-a 2ln a 2.(3)∵f(x)在(2,+∞)上递增,∴f ′(x)=2x-ax ≥0对x ∈(2,+∞)恒成立,即a ≤2x 2恒成立.∴a ≤8.1.已知对任意实数x ,有f(-x)=-f(x).g(-x)=g(x)且x>0时,f ′(x)>0,g ′(x)<0,则x<0时( )A .f ′(x)>0,g ′(x)>0B .f ′(x)>0,g ′(x)<0C .f ′(x)<0,g ′(x)>0D .f ′(x)<0,g ′(x)<0答案 A解析 奇函数f(x)在y 轴两侧的单调性相同,偶函数g(x)在y 轴两侧的单调性相反故选A. 2.已知f(x)=ax+bx2+1,且a>0.(1)求证:f(x)有极大值、极小值点各一个; (2)当极大值为1,极小值为-1时,求a ,b 的值. 解析 (1)证明:f ′(x)=a (x 2+1)-2x (ax +b )(x 2+1)2=-ax 2-2bx +a (x 2+1)2,令f ′(x)=0,即ax 2+2bx -a =0.∵Δ=4b 2+4a 2>0,故方程有两个不等实根,记为x 1,x 2,不妨设x 1<x 2,当x 变化时,f ′(x),f(x)的变化情况如下表:x (-∞,x 1)x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x) - 0 + 0 - f(x)极小值极大值(2)由(1)可知⎩⎪⎨⎪⎧f (x 1)=ax 1+b x 12+1=-1,f (x 2)=ax 2+bx 22+1=1⇒⎩⎪⎨⎪⎧-x 12-1=ax 1+b ,x 22+1=ax 2+b.①②两式相加,得x 22-x 12=a(x 1+x 2)+2b.③ 又x 1+x 2=-2ba ,代入③,得x 22-x 12=a ⎝⎛⎭⎫-2ba +2b =0, ∴x 22-x 12=0,(x 2-x 1)(x 2+x 1)=0. 而x 1<x 2,∴x 2+x 1=0.∴b =0. 代入,得a(x 2-1)=0.∵a >0,∴x 1=-1,x 2=1.代入①得a =2. ∴a =2,b =0.。

北师大数学选修同步作业:第4章 导数应用 作业23 含解析

北师大数学选修同步作业:第4章 导数应用 作业23 含解析

课时作业(二十三)1.设底为等边三角形的直棱柱的体积为V ,那么其表面积最小时,底面边长为( ) A.3V B.32V C.34V D .23V答案 C解析 设底面边长为x ,则表面积 S =32x 2+43V x (x >0),S ′=3x2(x 3-4V). 令S ′=0,得唯一极值点x =34V.2.用边长为48 cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒,所做的铁盒容积最大时,在四角截去的正方形的边长为( ) A .6 B .8 C .10 D .12答案 B3.用长度为l 的铁丝围成长方形,则围成的长方形的最大面积为( ) A.l 22 B.l 24 C.l 28 D.l 216答案 D解析 设长方形一边为x.则另一边为l -2x2.S =x·l -2x 2=-x 2+l 2x.S ′=-2x +l 2. 令S ′=0得x =l4.∴S 最大=-⎝⎛⎭⎫l 42+l 2·l 4=l216.4.一周长为l 的扇形,当面积达到最大值时,扇形的半径的( ) A.l 3 B.l 6 C.l 4D.l 8答案 C解析 设半径为r ,则弧长为l -2r. S 扇=12·弧长·半径=12(l -2r)·r =-r 2+l 2r.令S ′扇=-2r +l 2=0,得r =l 4.5.以长为10的线段AB 为直径作半圆,则它的内接矩形的面积的最大值为( ) A .10 B .15 C .25 D .50答案 C6.已知f(x)=2x 3-6x 2+m(m 为常数)在[-2,2]上f(x)≤3恒成立,那么在[-2,2]上,f(x)min ( ) A .≤-37 B .≤-5 C .≥-37 D .≥-5 答案 A解析 f ′(x)=6x 2-12x =6x(x -2), 当x ∈[-2,0]时f ′(x)≥0, 当x ∈[0,2]时f ′(x)≤0. ∴f(x)min =f(0)=m ,∴m ≤3.又∵f(-2)=-40+m ,f(2)=-8+m , ∴f(x)min =f(-2)=-40+m ≤-37.7.海轮每小时使用的燃料费与它的航行速度的立方成正比,已知某海轮的最大航速为30海里/时,当速度为10海里/时,它的燃料费是每小时25元,其余费用(无论速度如何)都是每小时400元.如果甲、乙两地相距800海里,那么要使该海轮从甲地航行到乙地的总费用最低,它的航速应为( ) A .30海里/时 B .25海里/时 C .20海里/时 D .10海里/时 答案 C8.如果函数f(x)=13x 3-a 2x 满足:对于任意的x 1、x 2∈[0,1],都有|f(x 1)-f(x 2)|≤1恒成立,那么实数a 的取值范围是( ) A.⎣⎡⎦⎤-233,233 B.⎝⎛⎭⎫-233,233C.⎣⎡⎭⎫-233,0∪⎝⎛⎦⎤0,233 D.⎝⎛⎭⎫-233,0∪⎝⎛⎭⎫0,233 答案 A解析 方法一:(赋值法)令a =0,233可知选A 项方法二:对于任意的x 1,x 2∈[0,1]都有|f(x 1)-f(x 2)|≤1恒成立,只需f(x)max -f(x)min ≤1即可.f ′(x)=x 2-a 2=(x +a)(x -a),当|a|≥1时,f ′(x)≤0,函数f(x)=13x 3-a 2x 在[0,1]上单调递减;当|a|<1时,函数f(x)=13x 3-a 2x 在[0,|a|]上单调递减,在[|a|,1]上单调递增,故有⎩⎪⎨⎪⎧|a|≥1,a 2-13≤1或⎩⎪⎨⎪⎧|a|<1,f (0)-f (|a|)≤1,f (1)-f (|a|)≤1,解得a ∈⎣⎡⎦⎤-233,233,选A. 9.某人要购买8件礼物,分成两次购买,商家规定每次购买礼物付款金额为当次购买礼物数量的三次方,若使购买礼物付款额最省,此人每次购买礼物的数量分别为________件和________件. 答案 4 410.内接于半径为R 的球且体积最大的圆柱体的高为________. 答案233R 解析 作轴截面如图,设圆柱高为2h ,则底面半径为R 2-h 2,圆柱体体积为V =π(R 2-h 2)·2h =2πR 2h -2πh 3. 令V ′=0,得2πR 2-6πh 2=0. ∴h =33R ,即当2h =233R 时,圆柱体的体积最大. 11.电动自行车的耗电量y 与速度x 之间有关系y =13x 3-392x 2-40x(x>0),为使耗电量最小,则速度应定为________. 答案 40解析 由y ′=x 2-39x -40=0,得x =-1或x =40.由于0<x<40时,y ′<0;由x>40时,y ′>0. 所以当x =40时,y 有最小值.12.如图,两个工厂A 、B 相距0.6 km ,变电站C 距A 、B 都是0.5 km ,计划铺设动力线,先由C 沿AB 的垂线至D ,再与A 、B 相连,D 点选在距AB________km 处时,动力线最短.答案310解析 设CD ⊥AB ,垂足为E ,DE 的长为x km. 由AB =0.6,AC =BC =0.5,得AE =EB =0.3. ∴CE =AC 2-AE 2=0.52-0.32=0.4.∴CD =0.4-x , AD =BD =AE 2+DE 2=0.32+x 2=0.09+x 2.∴动力线总长l =AD +BD +CD =20.09+x 2+0.4-x.令l ′=2·2x 20.09+x 2-1=2x -0.09+x 20.09+x 2=0, 即2x -0.09+x 2=0.解得x =310(∵x >0). 当x <310时,l ′<0;当x >310时,l ′>0. ∴l 在x =310时有最小值. 13.某单位用2 160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建为x(x ≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)解析 设楼房每平方米的平均综合费用为f(x)元,则f(x)=(560+48x)+2 160×10 0002 000x=560+48x +10 800x (x ≥10,x ∈N *)f ′(x)=48-10 800x 2.令f ′(x)=0,得x =15. 当x>15时,f ′(x)>0; 当10<x<15时,f ′(x)<0. 因此,当x =15时,f(x)取最小值f(15)=2 000(元).答:为了楼房每平方米的平均综合费用最少,该楼房应建为15层.14.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.解析 (1)设隔热层厚度为x cm ,由题设,每年能源消耗费用为C(x)=k3x +5,再由C(0)=8,得k =40,因此C(x)=403x +5.而建造费用为C 1(x)=6x.最后得隔热层建造费用与20年的能源消耗费用之和为 f(x)=20C(x)+C 1(x)=20×403x +5+6x =8003x +5+6x(0≤x ≤10).(2)f ′(x)=6- 2 400(3x +5)2,令f ′(x)=0,即 2 400(3x +5)2=6, 解得x 1=5或x 2=-253(舍去).当0<x<5时,f ′(x)<0,当5<x<10,f ′(x)>0,故x =5是f(x)的最小值点,对应的最小值为f(5)=6×5+80015+5=70.当隔热层修建5 cm 厚时,总费用达到最小值70万元.15.甲、乙两地相距s 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b(b>0);固定部分为a 元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶?解析 (1)依题意汽车从甲地匀速行驶到乙地所用的时间为s v ,全程运输成本为y =a·s v +bv 2·sv =s ⎝⎛⎭⎫a v +bv ,∴所求函数及其定义域为 y =s ⎝⎛⎭⎫a v +bv ,v ∈(0,c]. (2)由题意s ,a ,b ,v 均为正数. y ′=s ⎝⎛⎭⎫b -av 2=0得v =a b. 但v ∈(0,c]. ①若ab≤c ,则当v =ab 时,全程运输成本y 最小; ②若ab>c ,则v ∈(0,c],此时y ′<0,即y 在(0,c]上为减函数.所以当v =c 时,y 最小. 综上可知,为使全程运输成本y 最小. 当ab≤c 时,行驶速度v =a b; 当ab>c 时,行驶速度v =c. 16.请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x(cm).(1)若广告商要求包装盒的侧面积S(cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的的容积V(cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.思路 用x 表示包装盒的高度与底面边长,则(1)包装盒的面积S 是关于x 的二次函数,可通过配方求最值;(2)包装盒的容积V 是关于x 的三次函数,可通过导数求最大值. 解析 设包装盒的高为h(cm),底面边长为a(cm). 由已知得a =2x ,h =60-2x2=2(30-x),0<x<30.(1)S =4ah =8x(30-x)=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值. (2)V =a 2h =22(-x 3+30x 2), V ′=62x(20-x).由V ′=0得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12,即包装盒的高与底面边长的比值为12.1.(2019·课标全国Ⅱ,文)曲线y =2sinx +cosx 在点(π,-1)处的切线方程为( ) A .x -y -π-1=0 B .2x -y -2π-1=0 C .2x +y -2π+1=0 D .x +y -π+1=0答案 C解析 依题意得y ′=2cosx -sinx ,y ′|x =π=(2cosx -sinx)|x =π=2cos π-sin π=-2,因此所求的切线方程为y +1=-2(x -π),即2x +y -2π+1=0.故选C. 2.(2018·课标全国Ⅱ)函数f(x)=e x -e -x x 2的图象大致为( )答案 B解析 函数f(-x)=e -x -e x(-x )2=-e x -e -xx 2=-f(x),则函数f(x)为奇函数,图象关于原点对称,排除A ,当x =1时,f(1)=e -1e >0,排除D.当x →+∞时,f(x)→+∞,排除C.故选B.3.(2017·浙江)函数y =f(x)的导函数y =f ′(x)的图象如图所示,则函数y =f(x)的图象可能是( )答案 D解析 根据题意,已知导函数的图象有三个零点,一负二正,且每个零点的两边导函数值的符号相反,因此函数f(x)在这些零点处取得极值,排除A 、B ;记导函数f ′(x)的零点从左到右分别为x 1,x 2,x 3,又在(-∞,x 1)上f ′(x)<0,在(x 1,x 2)上f ′(x)>0,所以函数f(x)在(-∞,x 1)上单调递减,排除C.故选D.4.(2015·陕西)设f(x)=x -sinx ,则f(x)( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数答案 B解析 易得f(x)是奇函数,由f ′(x)=1-cosx ≥0恒成立,可知f(x)是增函数.故选B. 5.(2016·课标全国Ⅰ)若函数f(x)=x -13sin2x +asinx 在(-∞,+∞)单调递增,则a 的取值范围是( ) A .[-1,1] B.⎣⎡⎦⎤-1,13 C.⎣⎡⎦⎤-13,13 D.⎣⎡⎦⎤-1,-13 答案 C解析 函数f(x)=x -13sin2x +asinx 在(-∞,+∞)单调递增,等价于f ′(x)=1-23cos2x +acosx=-43cos 2x +acosx +53≥0在(-∞,+∞)恒成立.设cosx =t ,则g(t)=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.故选C.6.(2015·课标全国Ⅱ)设函数f ′(x)是奇函数f(x)(x ∈R )的导函数,f(-1)=0,当x>0时,xf ′(x)-f(x)<0,则使得f(x)>0成立的x 的取值范围是( ) A .(-∞,-1)∪(0,1) B .(-1,0)∪(1,+∞) C .(-∞,-1)∪(-1,0) D .(0,1)∪(1,+∞)答案 A解析 令F(x)=f (x )x ,因为f(x)为奇函数,所以F(x)为偶函数,由于F ′(x)=xf ′(x )-f (x )x 2,当x>0时,xf ′(x)-f(x)<0,所以F(x)=f (x )x 在(0,+∞)上单调递减,根据对称性,F(x)=f (x )x 在(-∞,0)上单调递增,又f(-1)=0,f(1)=0,数形结合可知,使得f(x)>0成立的x 的取值范围是(-∞,-1)∪(0,1).故选A.7.(2017·天津,文)已知a ∈R ,设函数f(x)=ax -lnx 的图象在点(1,f(1))处的切线为l ,则l 在y 轴上的截距为________. 答案 1解析 因为f ′(x)=a -1x ,所以f ′(1)=a -1,又f(1)=a ,所以切线l 的方程为y -a =(a -1)(x-1),令x =0,得y =1.8.(2018·课标全国Ⅱ)曲线y =2ln(x +1)在点(0,0)处的切线方程为________. 答案 y =2x解析 ∵y =2ln(x +1),∴y ′=2x +1.当x =0时,y ′=2,∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x.9.(2018·课标全国Ⅱ,文)已知函数f(x)=13x 3-a(x 2+x +1).(1)若a =3,求f(x)的单调区间; (2)证明:f(x)只有一个零点.解析 (1)当a =3时,f(x)=13x 3-3x 2-3x -3,f ′(x)=x 2-6x -3.令f ′(x)=0,解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x)>0; 当x ∈(3-23,3+23)时,f ′(x)<0.故f(x)在(-∞,3-23),(3+23,+∞)上单调递增;在(3-23,3+23)上单调递减. (2)证明:由于x 2+x +1>0,所以f(x)=0等价于x 3x 2+x +1-3a =0.设g(x)=x 3x 2+x +1-3a ,则g ′(x)=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x)=0,所以g(x)在(-∞,+∞)上单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点. 又f(3a -1)=-6a 2+2a -13=-6⎝⎛⎭⎫a -162-16<0,f(3a +1)=13>0,故f(x)有一个零点.综上,f(x)只有一个零点.10.(2017·北京)已知函数f(x)=e x cosx -x. (1)求曲线y =f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解析 (1)因为f(x)=e x cosx -x ,所以f ′(x)=e x (cosx -sinx)-1,又因为f(0)=1,f ′(0)=0,所以曲线y =f(x)在点(0,f(0))处的切线方程为y =1.(2)设h(x)=e x (cosx -sinx)-1,则h ′(x)=e x (cosx -sinx -sinx -cosx)=-2e x sinx.当x ∈⎝ ⎛⎭⎪⎫0,π2时,h ′(x)<0, 所以h(x)在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减. 所以对任意x ∈⎣⎢⎡⎦⎥⎤0,π2有h(x)≤h(0)=0, 即f ′(x)≤0,所以函数f(x)在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减, 因此f(x)在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为f(0)=1, 最小值为f ⎝ ⎛⎭⎪⎫π2=-π2. 11.(2017·课标全国Ⅰ,文)已知函数f(x)=e x (e x -a)-a 2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a 的取值范围.解析 (1)函数f(x)的定义域为(-∞,+∞),f ′(x)=2e 2x -ae x -a 2=(2e x +a)(e x -a). ①若a =0,则f(x)=e 2x 在(-∞,+∞)上单调递增.②当a>0,则由f ′(x)=0得x =lna.当x ∈(-∞,lna)时,f ′(x)<0;当x ∈(lna ,+∞)时,f ′(x)>0.故f(x)在(-∞,lna)上单调递减,在(lna ,+∞)上单调递增.③若a<0,则由f ′(x)=0得x =ln ⎝⎛⎭⎫-a 2.当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x)<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x)>0. 故f(x)在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增. (2)①若a =0,则f(x)=e 2x ,所以f(x)≥0.②若a>0,则由(1)得,当x =lna 时,f(x)取得最小值,最小值为f(lna)=-a 2lna.从而当且仅当-a 2lna ≥0,即当0<a ≤1时,f(x)≥0.③若a<0,则由(1)得,当x =ln ⎝⎛⎭⎫-a 2时,f(x)取得最小值,最小值为f ⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2=a 2⎣⎡⎦⎤34-ln ⎝⎛⎭⎫-a 2.从而当且仅当a 2⎣⎡⎦⎤34-ln ⎝⎛⎭⎫-a 2≥0,即当a ≥-2e 34时,f(x)≥0. 综上,a 的取值范围是[-2e 34,1].12.(2018·课标全国Ⅰ,文)已知函数f(x)=ae x -lnx -1.(1)设x =2是f(x)的极值点,求a ,并求f(x)的单调区间;(2)证明:当a ≥1e时,f(x)≥0. 解析 (1)∵函数f(x)=ae x -lnx -1,∴x >0,f ′(x)=ae x -1x, ∵x =2是f(x)的极值点,∴f ′(2)=ae 2-12=0,解得a =12e 2, ∴f(x)=12e 2e x -lnx -1,∴f ′(x)=12e 2e x -1x, 当0<x <2时,f ′(x)<0,当x >2时,f ′(x)>0,∴f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)证明:当a ≥1e 时,f(x)≥e x e-lnx -1, 设g(x)=e x e -lnx -1,则g ′(x)=e x e -1x, 当0<x <1时,g ′(x)<0,当x >1时,g ′(x)>0,∴x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0,时,f(x)≥0.∴当a≥1e。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(有答案解析)(3)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(有答案解析)(3)

一、选择题1.定义在R 上的偶函数()f x 的导函数为(),f x '若对任意的0x >的实数,都有:()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的取值范围为( )A .{}1xx ≠±∣ B .(-1,1) C .()(),11,-∞-+∞D .(-1,0)()0,1⋃2.将一个边长为a 的正方形铁片的四角截去四个边长相等的小正方形,做成一个无盖方盒.若该方盒的体积为2,则a 的最小值为( )A .1B .2C .3D .3.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f << B .()()()623428f f f << C .()()()346229f f f <<D .()()()286234f f f <<4.已知定义在R 上的函数()f x 满足()()f x f x '<-,则下列式子成立的是( ) A .(2020)(2021)f ef > B .(2020)(2021)f ef < C .(2020)(2021)ef f > D .(2020)(2021)ef f <5.已知函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围为( ) A .34a ≤-B .1a ≤-C .1a ≤D .01a ≤≤6.若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( ) A .(0)(0)-∞+∞,, B .(0)(3)-∞⋃+∞,, C .(0)+∞,D .(3)+∞,7.已知实数2343a e =,4565b e =,6787c e =,那么a ,b ,c 大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>8.某企业拟建造一个容器(不计厚度,长度单位:米),该容器的底部为圆柱形,高为l ,底面半径为r ,上部为半径为r 的半球形,按照设计要求容器的体积为283π立方米.假设该容器的建造费用仅与其表面积有关,已知圆柱形部分每平方米建造费用为3万元,半球形部分每平方米建造费用为4万元,则该容器的建造费用最小时,半径r 的值为( )A .1B C D .29.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( )A .12B .12-C .12+D .2310.已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( )A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫--⎪⎝⎭11.已知函数31()sin xxf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是( )A .1[,1]2- B .1[1,]2-C .1(,1][,)2-∞-⋃+∞D .1(,][1,)2-∞-⋃+∞12.设()f x 是定义在R 上的偶函数,()f x '为其导函数,()20f =,当0x >时,有()()'>xf x f x 恒成立,则不等式()0xf x <的解集为( )A .()2,2-B .()(),20,2-∞-C .()()2,00,2-D .()()2,02,-+∞二、填空题13.已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是_______.14.已知函数()2ln ()x ax a a x x R f =--∈的图象与x 轴交于不同两点,则实数a 的取值范围为______.15.设函数()f x 是定义在R 上的偶函数,'()f x 为其导函数,当0x >时,()()0xf x f x +>',且(2)0f =,则不等式()0f x >的解集为__________.16.函数21f xx x 的极大值为_________.17.已知函数()21ln 2f x a x x =+(0a >),若对任意两个不相等的正实数12,x x 都有()()12124f x f x x x ->-恒成立,则实数a 的取值范围是_____.18.函数()cos f x x x =+在()0,π上的极大值为M ,极小值为N ,则M N +=__________.19.已知函数()xe f x mx x=-(e 为自然对数的底数),若()0f x <在0,上有解,则实数m 的取值范围是______.20.过点(2,0)且与曲线y =1x相切的直线的方程为________ 三、解答题21.已知函数32()2f x x ax bx =+++在1x =-处取得极值7. (1)求,a b 的值;(2)求函数()f x 在区间[2,2]-上的最大值 22.已知函数()(2)(0)x f x ae x a =-≠. (1)求()f x 的单调区间;(2)若函数2()()2g x f x x x =+-有两个极值点,求实数a 的取值范围.23.已知a 为实数,()()()24f x x x a =--.(1)若1x =-是函数()f x 的极值点,求()f x 在[]2,2-上的最大值和最小值; (2)若()f x 在(],2-∞-和[)2,+∞上都是递增的,求a 的取值范围. 24.已知函数()e xaf x x =+,其中a R ∈,e 是自然对数的底数. (1)当1a =-时,求函数()f x 在区间[)0,+∞上的零点个数; (2)若()2f x >对任意的实数x 恒成立,求a 的取值范围. 25.已知函数2()ln (0)f x x a x a =->.(1)若2a =,求曲线()y f x =的斜率等于3的切线方程; (2)若()y f x =在区间1,e e ⎡⎤⎢⎥⎣⎦上恰有两个零点,求a 的取值范围.26.已知函数2()ln ()f x x ax x a R =-+∈. (Ⅰ)若3a =,求函数()f x 的单调递增区间; (Ⅱ)令21()()2g x f x x ax =-+,若()g x 的最大值为1-,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出0x <的取值范围. 【详解】当0x >时,由2()()20f x xf x +'-<可知:两边同乘以x 得:22()()20xf x x f x x +'-< 设:22()()g x x f x x =-则2()2()()20g x xf x x f x x '=+'-<,恒成立:()g x ∴在(0,)+∞单调递减,由()()21x f x f -21x <-()()2211x f x x f ∴-<-即()()1g x g < 即1x >;当0x <时,函数是偶函数,同理得:1x <-综上可知:实数x 的取值范围为(-∞,1)(1-⋃,)+∞, 故选:C 【点睛】关键点点睛:主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,属于中档题.2.C解析:C 【分析】设出小正方形的边长,表示出方盒的体积,然后求导,判断出单调性,然后求解最大值即可. 【详解】设截去的小正方形边长为x ,则方盒高为x ,底边长为2a x -,所以()22,0,2a V a x x x ⎛⎫=-⋅∈ ⎪⎝⎭,则()224(2)(2)(6)V a x x a x x a x a '=-+-=--,令0V '=,得2a x =(舍) 或6a x =,当06ax <<时,0V '>,单调递增;当62a a x <<时,0V '<,单调递减;由题意,则23max 2263627a a a a V V a ⎛⎫⎛⎫==-⋅=≥ ⎪ ⎪⎝⎭⎝⎭,则3a ≥,故a 的最小值为3. 故选:C. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.3.B解析:B 【分析】 构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论. 【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>, 所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<, 故选:B.4.A解析:A 【分析】构造函数()()xg x e f x =,求导判定函数单调性,根据单调性得(2020)(2021)g g >化简即可. 【详解】解:依题意()()0f x f x '+<,令()()xg x e f x =,则()(()())0xg x f x f x e ''=+<在R 上恒成立, 所以函数()()xg x e f x =在R 上单调递减, 所以(2020)(2021)g g >即20202021(2020)(2021)(2020)(2021)e e e f f f f >⇒>故选:A. 【点睛】四种常用导数构造法:(1)对于不等式()()0f x g x ''+> (或0<) ,构造函数()()()F x f x g x =+. (2)对于不等式()()0f x g x ''->(或0<) ,构造函数()()()F x f x g x =-.(3)对于不等式()()0f x f x '+>(或0<) ,构造函数()()xF x e f x =.(4)对于不等式()()0f x f x '->(或0<) ,构造函数()()xf x F x e =. 5.B解析:B 【分析】 由函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,知'0y ≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,分离参数,求最值得答案. 【详解】 因为函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增, 所以22'20a x x ay x x x--=--=≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以222(1)1a x x x ≤-=--在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以1a ≤-, 故选:B. 【点睛】方法点睛:该题考查的是有关根据函数在给定区间上单调增求你参数的取值范围的问题,解题方法如下:(1)利用函数在给定区间上单调递增,得到其导数大于等于零在给定区间上恒成立; (2)求导;(3)分离参数,求最小值,得结果.6.C解析:C 【分析】构造函数()()3xxg x e f x e =⋅--,解不等式()0g x >即可,对()g x 求导得()[()()1]0x g x e f x f x ''=+->,可得()g x 在R 上单调递增,且(0)0g =,根据单调性可得0x >,即得正确答案. 【详解】令()()3x xg x e f x e =⋅--,则()()()[()()1]0xxxxg x e f x e f x e e f x f x '''=⋅+⋅-=+->, 所以()g x 在R 上单调递增, 又因为0(0)(0)30g e f e =⋅--=, 所以()0>g x ⇒0x >,即不等式的解集是(0)+∞,, 故选:C【点睛】关键点点睛:本题的关键点是构造函数()()3xxg x e f x e =⋅--,所要解的不等式等价于()0g x >,且(0)0g =,所以()()0g x g >,因此需要对()g x 求导判断单调性即可. 7.C解析:C 【分析】根据所给实数的表达式进行构造函数,然后利用导数判断出函数的单调性,最后利用函数的单调性进行判断即可. 【详解】构造函数'()(2)()(1)xxf x x e f x x e =-⇒=-,当1x >时,'()0,()f x f x <单调递减, 当1x <时,'()0,()f x f x >单调递增.因为2342()33a e f ==,4564()55b e f ==,6786()77c e f ==,246357<<, 所以642()()()753f f f >>,即c b a >>.故选:C 【点睛】关键点睛:根据几个实数的特征构造函数,利用导数判断其单调性是解决此类问题的关键.8.C解析:C 【分析】根据体积公式用r 表示出l ,得出费用关于r 的函数,利用导数求出函数的极小值点即可. 【详解】解:由题意知2323142282333V r l r r l r πππππ=+⨯=+=, 故33322222282282282333333V r r r l r r r r r πππππ---===-=, 由0l >可知r <. ∴ 建造费用()3222221282562344611723r y rl r r r r r r rπππππππ-=+⨯+⨯⨯=⨯+=+,(0r <<,则()3221445614r y r r rπππ-'=-=.当(r ∈时,0y '<,r ∈时,0y '>.当r =.故选:C . 【点睛】本题考查数学建模能力,利用导数求解最值问题,考查运算能力,是中档题.9.C解析:C 【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<,则2661y p p '=-+-6(p p =--- 则函数y在33(0,),(,1)66-+单调递减,在33(,66-+单调递增,故函数在36p =+处取得极大值,也是最大值. 故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.10.B解析:B 【分析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解.【详解】 已知函数321()13f x x ax x =+++,则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a -≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.11.B解析:B 【分析】利用函数的奇偶性将函数转化为f (M )≤f (N )的形式,再利用单调性脱去对应法则f ,转化为一般的二次不等式求解即可. 【详解】由于()31sin xx f x x x e e=-+-,,则f (﹣x )=﹣x 3sin x ++e ﹣x ﹣e x =﹣f (x ),故函数f (x )为奇函数.故原不等式f (a ﹣1)+f (2a 2)≤0,可转化为f (2a 2)≤﹣f (a ﹣1)=f (1﹣a ),即f (2a 2)≤f (1﹣a );又f '(x )=3x 2﹣cosx+e x +e ﹣x ,由于e x +e ﹣x ≥2,故e x +e ﹣x ﹣cosx>0,所以f '(x )=3x 2﹣cosx+e x +e ﹣x ≥0恒成立,故函数f (x )单调递增,则由f (2a 2)≤f (1﹣a )可得,2a 2≤1﹣a ,即2a 2+a ﹣1≤0, 解得112a -≤≤, 故选B . 【点睛】本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题.12.B解析:B 【分析】 构造函数()()f xg x x=,易知()g x 在()0,∞+上单调递增,由()f x 是定义在R 上的偶函数可推出()g x 是定义在()(),00,-∞⋃+∞上的奇函数,故()g x 在(),0-∞上也单调递增,且()()220g g =-=.而不等式()0xf x <的解可等价于即()0g x <的解,从而得解. 【详解】解:设()()f x g x x =,0x ≠,则()()()'2xf x f x g x x-'=, ∵当0x >时,有()()'xf x f x >恒成立,∴当0x >时,()0g x '>,()g x 在()0,∞+上单调递增,∵()f x 是定义在R 上的偶函数, ∴()()()()f x f x g x g x x x--===---,即()g x 是定义在()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上也单调递增. 又()20f =,∴()()2202f g ==,∴()20g -=. 不等式()0xf x <的解可等价于即()0g x <的解, ∴02x <<或2x <-, ∴不等式的解集为()(),20,2-∞-.故选:B . 【点睛】本题主要考查函数奇偶性的应用,考查函数的单调性,利用了构造思想,导函数的运用,属于中档题.二、填空题13.【分析】首先求函数的导数由条件是函数的唯一极值点说明在无解或有唯一解求实数的取值【详解】∵∴∴x =1是函数f (x )的唯一极值点在上无解或有唯一解x=1①当x=1为其唯一解时k=e 令当时即h(x)的单 解析:(,]e -∞【分析】首先求函数的导数2(1)()()x x e kx f x x'--=,由条件1x =是函数()f x 的唯一极值点,说明0-=x e kx 在()0,x ∈+∞无解,或有唯一解1x =,求实数k 的取值. 【详解】∵()(ln )x e f x k x x x =+-,∴22(1)1(1)()()(1)x x x e x e kx f x k x x x'---=+-= ∴x =1是函数f (x )的唯一极值点,0x x e k ∴-=在(0,)x ∈+∞上无解,或有唯一解x =1,①当x =1为其唯一解时,k =e ,令()(0)x h x e ex x =->,()xh x e e '=-,当(0,1)x ∈时,()0h x '<,即h (x )的单调递减区间为(0,1), 当(1,)x ∈+∞时,()0h x '>,即()h x 的单调递增区间为(1,)+∞, ∴()h x 在x =1处,取得极小值, ∴k =e 时,x =1是f (x )的唯一极值点;②当xe k x=在(0,)x ∈+∞上无解,设()x e g x x =则2(1)()x e x g x x'-=, 当(0,1)x ∈时,()0g x '<,即g (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0g x '>,即()g x 的单调递增区间为(1,)+∞, ∴()g x 在x =1处,取得极小值,也是其最小值,min ()(1)g x g e ==,又k xe x=在(0,)x ∈+∞上无解,e k ∴<,综上k e ≤ 故答案为:(,]e -∞. 【点睛】易错点睛:本题考查根据函数的极值点求参数的取值范围,容易忽略k e =的情况,此时x e ex ≥恒成立.14.【分析】先由题意得到关于的方程在上有两不等实根即在上有两不等实根令对其求导判定其单调性以及的取值情况即可得出结果【详解】因为函数的图象与x 轴交于不同两点所以关于的方程在上有两不等实根即在上有两不等实 解析:1a >【分析】先由题意,得到关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a +=在()0,∞+上有两不等实根,令()2ln x x g x x +=,对其求导,判定其单调性,以及()g x 的取值情况,即可得出结果. 【详解】因为函数()2ln ()x ax a a x x R f =--∈的图象与x 轴交于不同两点,所以关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a+=在()0,∞+上有两不等实根,令()2ln x x g x x +=,则()2ln x x g x x +=与直线1y a =有两个不同交点,又()()24311ln 212ln x x x x x x x g x x x ⎛⎫+-+⋅ ⎪--⎝⎭'==, 令()12ln h x x x =--,则()210h x x'=--<在()0,∞+上恒成立,则()12ln h x x x =--在()0,∞+上单调递减,又()10h =,所以当()0,1x ∈时,()0h x >,即()312ln 0x xg x x--'=>,则()g x 单调递增; 当()1,x ∈+∞时,()0h x <,即()312ln 0x xg x x--'=<,则()g x 单调递减; 所以()()max 110g x g ==>,又211101eg e e -⎛⎫=< ⎪⎝⎭,所以存在01,1x e ⎛⎫∈ ⎪⎝⎭,使得()0g x =; 因此当()00,x x ∈时,()0g x <;当()0,1x x ∈时,()0g x >; 又当1x >时,ln 0x >,所以()0g x >; 因此,为使()2ln x x g x x +=与直线1y a =有两个不同交点,只需101a<<,解得1a >. 故答案为:1a >. 【点睛】 思路点睛:利用导数的方法处理由函数零点个数求参数问题时,一般需要根据函数零点个数,得到对应方程的根的个数,再分离参数,构造新的函数,对新函数求导,利用导数的方法判定其单调性,确定函数的取值情况,进而可求出结果.(也可利用数形结合的方法求解)15.【详解】设则恒成立所以函数在上是增函数又因为是定义在上的偶函数所以上上的奇函数所以函数在上是增函数因为所以即所以化为当时不等式等价于即解得;当时不等式等价于即解得;综上不等式的解集为点睛:本题考查了 解析:(,2)(2,)-∞-+∞【详解】设()()g x xf x =,则()()()0g x f x xf x ''=+>恒成立, 所以函数()g x 在(0,)+∞上是增函数,又因为()f x 是定义在R 上的偶函数,所以()()g x xf x =上R 上的奇函数, 所以函数()g x 在(,0)-∞上是增函数,因为()20f =,所以()20f -=,即()()20,20g g =-=, 所以()0xf x >化为()0g x >,当0x >时,不等式()0f x >等价于()0g x >,即()()2g x g >,解得2x >; 当0x <时,不等式()0f x >等价于()0g x <,即()()2g x g <-,解得2x <-; 综上,不等式()0f x >的解集为(,2)(2,)-∞-+∞.点睛:本题考查了与函数有关的不等式的求解问题,其中解答中涉及到利用条件构造新函数和利用导数研究函数的单调性,以及根据单调性和奇偶性的关系对不等式进行转化,解答中一定要注意函数值为零时自变量的取值,这是题目的一个易错点,试题综合性强,属于中档试题.16.【分析】利用导数研究函数的单调性由此可求得该函数的极大值【详解】定义域为令可得或当或时此时函数单调递增;当时此时函数单调递减所以函数在处取得极大值且极大值为故答案为:【点睛】本题考查利用导数求解函数 解析:427【分析】利用导数研究函数21f x x x 的单调性,由此可求得该函数的极大值.【详解】()()21f x x x =-,定义域为R ,()()()()()2121311f x x x x x x '=-+-=--.令()0f x '=,可得13x =或1x =. 当13x <或1x >时,()0f x '>,此时,函数21f x x x 单调递增;当113x <<时,()0f x '<,此时,函数21f x x x 单调递减.所以,函数21f xx x 在13x =处取得极大值,且极大值为21114133327f ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭. 故答案为:427. 【点睛】本题考查利用导数求解函数的极值,考查计算能力,属于中等题.17.【分析】设由题意得令则所以函数是增函数原问题转化为恒成立然后利用参变分离法有恒成立运用配方法求出函数在上的最大值即可【详解】若对任意两个不相等的正实数都有恒成立不妨设所以即令则所以函数在单调递增则恒解析:[)4,+∞【分析】设12x x >,由题意得()()112244f x x f x x >--,令()()24l 12n 4g x f x x a x x x =-=+-,则()()12g x g x >,所以函数()g x 是增函数,原问题转化为()40,0()a g x x x x'=+-≥>恒成立,然后利用参变分离法,有2,)40(a x x x ≥-+>恒成立,运用配方法求出函数24y x x =-+在(0,)+∞上的最大值即可.【详解】若对任意两个不相等的正实数12,x x 都有()()12124f x f x x x ->-恒成立,不妨设12x x >所以()()121244f x f x x x >--,即()()112244f x x f x x >--,令()()24l 12n 4g x f x x a x x x =-=+-,则()()12g x g x >,所以函数()g x 在(0,)+∞单调递增, 则()40,0()ag x x x x'=+-≥>恒成立,所以2,)40(a x x x ≥-+>恒成立, 又函数()224244y x x x =-+=--+≤,当2x =时,等号成立, 所以4a ≥, 所以实数a 的取值范围是[)4,+∞. 故答案为:[)4,+∞. 【点睛】本题考查了导数在函数单调性中的应用,本题采用参变分离法,将其转化为函数的最值问题是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.18.【分析】直接求导再判断函数单调性进而求出极值即可【详解】因为令解得或当时单调递增;当时单调递减;当时单调递增所以极大值极小值则故答案为:【点睛】本题考查函数的导数的应用函数的极值以及求法考查分析问题解析:2【分析】直接求导,再判断函数单调性,进而求出极值即可. 【详解】因为()sin (0)f x x x π'<<,令()0f x '=,解得3x π=或23x π=, 当(0,)3x π∈时,()0f x '>,()f x 单调递增;当(,)33x π2π∈时,()0f x '<,()f x 单调递减;当2(,)3x ππ∈时,()0f x '>,()f x 单调递增,所以极大值()cos 333M f πππ==+=极小值222()cos 333N f πππ=+,则M N +==,故答案为:2. 【点睛】本题考查函数的导数的应用,函数的极值以及求法,考查分析问题解决问题的能力,是中档题.19.【分析】由题意得存在使得即设问题转化为在上的最小值对求导后易得到在上单调递减在上单调递增于是从而得解【详解】解:因为在上有解所以存在使得即设问题转化为在上的最小值当时则在上单调递减当时则在上单调递增解析:2,4e ⎛⎫+∞ ⎪⎝⎭【分析】由题意得,存在(0,)x ∈+∞,使得0x e mx x -<,即2x e m x >,设2()xe g x x =,(0,)x ∈+∞,问题转化为()g x 在(0,)+∞上的最小值,对()g x 求导后,易得到()g x 在(0,2)上单调递减,在(2,)+∞上单调递增,于是min ()(2)g x g =,从而得解【详解】解:因为()0f x <在0,上有解,所以存在(0,)x ∈+∞,使得0x e mx x -<,即2xe m x>,设2()xe g x x =,(0,)x ∈+∞,问题转化为()g x 在(0,)+∞上的最小值,'3(2)()x e x g x x -=, 当02x <<时,'()0g x <,则()g x 在(0,2)上单调递减,当2x >时,'()0g x >,则()g x 在(2,)+∞上单调递增,所以2min()(2)4e g x g ==,所以24e m >,故答案为:2,4e ⎛⎫+∞ ⎪⎝⎭【点睛】此题考查利用导数研究函数的存在性问题,将问题转化为函数的最值问题是解此题的关键,考查转化思想和计算能力,属于中档题20.【解析】试题分析:设切点为所以切点为由点可知直线方程为考点:1直线方程;2导数的几何意义解析:20x y +-=. 【解析】试题分析:设切点为()0000220000111,2y x y y y x x x x -∴==-'∴-=-,所以切点为()1,1,由点()2,0可知直线方程为20x y +-= 考点:1.直线方程;2.导数的几何意义三、解答题21.(1)39a b =-⎧⎨=-⎩;(2)max ()7f x =. 【分析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到32()392f x x x x =--+,导数的方法研究其单调性,进而可求出最值. 【详解】(1)因为32()2f x x ax bx =+++,所以2()32f x x ax b '=++,又函数32()2f x x ax bx =+++在1x =-处取得极值7,(1)17(1)320f a b f a b -=+-=⎧⎨-=-+='⎩,解得39a b =-⎧⎨=-⎩;, 所以3()3693(3)(1)f x x x x x '=--=-+, 由()0f x '>得3x >或1x <-;由()0f x '<得13x ;满足题意;(2)又[2,2]x ∈-,由(1)得()f x 在(2,1)x ∈--上单调递增,在(1,2)x ∈-上单调递减, 因此max ()(1)7f x f =-=. 【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值. 22.(1)答案见解析;(2)22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)先对函数求导,然后分0a >和0a <两种情况,解不等式()0f x '<,()0f x '>,可求出函数的单调区间;(2)函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,然后分0a >和0a <两种情况讨论即可得答案 【详解】(1)()(1)xf x ae x '=-,若0a >,由()0f x '<,得1x <;由()0f x '>,得1,()x f x >∴的递减区间为(,1)-∞,递增区间为(1,)+∞.若0a <,由()0f x '<,得1x >;由()0f x '>,得1,()x f x <∴的递减区间为(1,)+∞,递增区间为(,1)-∞.(2)22()()2(2)2x g x f x x x ae x x x =+-=-+-,()()(1)22(1)2x x g x ae x x x ae '=-+-=-+. 2()(2)2x g x ae x x x ∴=-+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,当1x =时,1(1)20h ae =+≠,即2a e≠-. ∴①当0a >时,()20x h x ae =+>,此时无零点; ②当0a <且2a e≠-时,2()0,()h x ae h x '=<∴为减函数. 又2ln 2ln 20a h ae a ⎛⎫- ⎪⎝⎭⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭,∴总存在唯一实数2ln a ⎛⎫- ⎪⎝⎭,使()0h x =.综上,()g x 有两个极值点实数a 的取值范围22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭. 【点睛】关键点点睛:此题考查导数的应用,考查利用导数求函数的单调区间,考查导数与极值,第2问解题的关键是将函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,从而分情况讨论即可,考查数学转化思想,属于中档题 23.(1)最大值为92,最小值为5027-;(2)[]2,2-.【分析】(1)求出导数,由()10f '-=求出参数值,代入导函数中,求出极值点.比较极值点处函数值与区间端点函数值的大小,得出最值.(2)由导函数为二次函数,且在(],2-∞和[)2,+∞函数值恒大于等于零,结合二次函数图像求解. 【详解】解:(1)由原式的()3244f x x ax x a =--+,∴()2324f x x ax '=--;由()10f '-=,得12a =,此时有()234f x x x '=--; ()10f '-=得43x =或1x =-,故极值点为43x =和1x =- 又450327f ⎛⎫=- ⎪⎝⎭,()912f -=,()20f -=,()20f =,所以()f x 在[]2,2-上的最大值为92,最小值为5027-. (2)()2324f x x ax '=--的图像为开口向上且过点()0,4-的二次函数,由条件知,()2324f x x ax '=--在(],2-∞-和[)2,+∞上恒大于等于零故仅须满足()20f '-≥,()20f '≥, ∴22a -≤≤.所以a 的取值范围为[]2,2-. 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. 24.(1)有1个零点;(2)(,)e +∞. 【分析】(1)求导得到函数的单调性,再利用零点存在性定理得解; (2)分离参变量,不等式恒成立转化为求函数的最值得解. 【详解】(1)当1a =-时,()1e xf x x =-, 则()110e xf x =+>', ∴()f x 在[)0,+∞上单调递增, 又(0)10f =-<,1(1)10ef =->,故0(0,1)x ∃∈,使得()00f x =, ∴函数()f x 在区间[0,)+∞上有1个零点; (2)若()2f x >对任意的实数x 恒成立, 即e (2)xa x >-恒成立,令()e (2)xg x x =-,则()e (1)xg x x '=-, 令()0g x '>,得1x <; 令()0g x '<,得1x >.∴()g x 在(,1)-∞上递增,在(1,)+∞上递减, ∴max [()](1)e g x g ==, ∴a 的取值范围为(e,)+∞. 【点睛】 方法点睛:不等式恒成立问题解决思路:一般参变量分离、转化为最值问题.25.(1)322ln 20x y ---=;(2)(22,e e ⎤⎦.【分析】(1)求出导函数,令()3f x '=求得切点坐标后可得切线方程;(2)求导函数()'f x ,确定()f x 在定义域内只有一个极值点,因此这个极值点必在区间1e e ⎛⎫ ⎪⎝⎭,上,然后得函数在1,e e ⎡⎤⎢⎥⎣⎦上的极小值,由极小值小于0,区间两个端点处函数值大于或等于0可得结论. 【详解】由已知函数()f x 定义域是(0,)+∞,(1)2()2ln f x x x =-,22(1)(1)()2x x f x x x x'+-=-=, 由2()23f x x x'=-=解得2x =(12x =-舍去),又()422ln 2f =-,所以切线方程为(42ln 2)3(2)y x --=-,即322ln 20x y ---=;(2)222()2x x a x a f x x x x x⎛-+ -⎝⎭⎝⎭'=-==, 易知()f x()f x有两个零点,则1e e <<,即2222a e e<<,此时在1e ⎛ ⎝上()0f x '<,()f x递减,在e ⎫⎪⎪⎭上()0f x '>,()f x 递增, ()f x在x =时取得极小值2a f a =-,所以22111ln 0()ln 002f a e ee f e e a e a f a ⎧⎛⎫⎪=-≥ ⎪⎪⎝⎭⎪=-≥⎨⎪⎪=-<⎪⎩解得22e a e <≤.综上a 的范围是(22,e e ⎤⎦.【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的零点问题.函数在某个区间上的零点,解题时先从大处入手,由导数确定函数的极值点,利用单调区间上的零点最多只有一个,因此函数的极值点必在给定区间内,从而缩小参数的a 范围,在此范围内计算()f x 的单调性与极值,结合零点存在定理可得结论.26.(Ⅰ)()10,,1,+2⎛⎫∞ ⎪⎝⎭;(Ⅱ)2.【分析】(Ⅰ)当3a =时,()2()3ln 0f x x x x x =-+>,对()f x 进行求导得()()211()x x f x x--'=,再令()0f x '>,结合定义域0x >,即可求出函数()f x 的单调递增区间;(Ⅱ)根据题意得出()1()=ln 02g x x ax x ->,求导得()()12022a ax g x x x x-'=-=>,分类讨论当0a ≤和0a >时,()g x 的单调区间,从而可求出最大值()max 21g x g a ⎛⎫==- ⎪⎝⎭,即可求得a 的值.【详解】解:(Ⅰ)当3a =时,2()3ln =-+f x x x x ,定义域为()0,∞+,则()()2211123+1()23x x x x f x x x x x---'=-+==, 令()0f x '>,即()()2110x x -->,解得:12x <或1x >, 又()f x 定义域为()0,∞+,所以函数()f x 的单调递增区间为:()10,,1,+2⎛⎫∞ ⎪⎝⎭.(Ⅱ)21()()2g x f x x ax =-+,2()ln ()f x x ax x a R =-+∈, 即()2211()ln =ln ,022g x x ax x x ax x ax x =-+-+->, 所以()()12022a ax g x x x x-'=-=>, 当0a ≤时,则20ax -≥,则()0g x '≥恒成立,则()g x 在()0,∞+上单调递增,所以()g x 无最大值;当0a >时,令()0g x '=,即20ax -=,解得:20x a =>, 令()0g x '>,即20ax ->,解得:2x a <, 令()0g x '<,即20ax -<,解得:2x a >, 又0x ,所以在区间20,a ⎛⎫ ⎪⎝⎭上()g x 单调递增,在区间2,a ⎛⎫+∞ ⎪⎝⎭上()g x 单调递减, 所以当2x a=时,()g x 取得最大值,而()g x 的最大值为1-, 所以()max 22122ln ln 112g x g a a a a a ⎛⎫==-⨯=-=-⎪⎝⎭, 则2ln 0a =,故21a,解得:2a =.【点睛】 关键点点睛:本题考查利用导数法求解函数的单调性和最值,解题的关键在于运用导数求解函数的最大值从而求出参数值,考查运算能力和分类讨论思想.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(3)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(3)

一、选择题1.已知函数()()22ln x x t f x x+-=,若对任意的[]2,3x ∈,()()0f x f x x '+>恒成立,则实数t 的取值范围是( )A .(),2-∞B .5,2⎛⎫-∞ ⎪⎝⎭C .103⎛⎫-∞ ⎪⎝⎭,D .()2,+∞2.已知函数23()2ln (0)xf x x x a a=-+>,若函数()f x 在[]1,2上单调递减,则a 的取值范围是( )A .2,5⎡⎫+∞⎪⎢⎣⎭B .20,5⎛⎤ ⎥⎝⎦C .(0,1]D .[1,)+∞3.已知函数()()2ex x f x x =∈R ,若关于方程()()210f x tf x t -+-=恰好有4个不相等的实根,则实数t 的取值范围为( )A .()24,22,e e ⎛⎫⋃⎪⎝⎭ B .24,1e ⎛⎫⎪⎝⎭C .24,e e ⎛⎫⎪⎝⎭D .241,1e ⎛⎫+ ⎪⎝⎭4.在数学的研究性学习中,常利用函数的图象研究函数的性质,也利用函数的解析式研究函数的性质,下列函数的解析式(其中 2.71828e =⋅⋅⋅为自然对数的底数)与所给图象最契合的是( )A .22sin 1xy x =+B .221xy x =+C .x xx xe e y e e ---=+D .x xx xe e y e e --+=-5.函数2()2ln 1f x ax x =--有两个不同零点,则a 的取值范围为( )A .(,e)-∞B .(0,e)C .(0,1)D .(,1)-∞6.设函数()f x 为偶函数,且当0x ≥时,()cos x f x e x =-,则不等式(21)(2)0f x f x --->的解集为( )A .(1,1)-B .(,3)-∞-C .(3,)-+∞D .(1,)(,1)+∞⋃-∞-7.某企业拟建造一个容器(不计厚度,长度单位:米),该容器的底部为圆柱形,高为l ,底面半径为r ,上部为半径为r 的半球形,按照设计要求容器的体积为283π立方米.假设该容器的建造费用仅与其表面积有关,已知圆柱形部分每平方米建造费用为3万元,半球形部分每平方米建造费用为4万元,则该容器的建造费用最小时,半径r 的值为( ) A .1B .32C .34D .28.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=-的图象如图所示,则下列结论中一定成立的是( )A .()f x 有极大值()2f -B .()f x 有极小值()2f -C .()f x 有极大值()1fD .()f x 有极小值()1f9.已知定义域为R 的函数 f x () 的导函数为'f x () ,且满足'24f x f x ()﹣()> ,若 01f =()﹣ ,则不等式22x f x e +()> 的解集为( )A .∞(0,+)B .1+∞(﹣,)C .0∞(﹣,)D .1(﹣,﹣)∞ 10.函数()f x 是定义在区间()0,∞+上的可导函数,其导函数()f x ',且满足()()20xf x f x '+>,则不等式()()()202020202222020x f x f x ++<+的解集为( )A .{}2018x x <-B .{}20202018x x -<<-C .{}2018x x >-D .{}20200x x -<<11.()f x 是R 上的偶函数,当()0,x ∈+∞时,()()0xf x f x '->,且()30f =,则不等式()0f x x>的解集为( ) A .()3,+∞B .()(),33,-∞-+∞C .()()3,03,-⋃+∞D .()()3,00,3-12.设函数()f x 的定义域为R ,其导函数是()f x ',若()()()20,01'+<=f x f x f ,则不等式()2xf x e ->的解集是( ) A .()0,1 B .()1,+∞ C .()0,∞+ D .(),0-∞二、填空题13.对于函数22,0()12,02x x e x f x x x x ⎧⋅≤⎪=⎨-+>⎪⎩有下列命题: ①在该函数图象上一点(﹣2,f (﹣2))处的切线的斜率为22e -; ②函数f (x )的最小值为2e-; ③该函数图象与x 轴有4个交点;④函数f (x )在(﹣∞,﹣1]上为减函数,在(0,1]上也为减函数. 其中正确命题的序号是_____.14.对于任意12,[1,)x x ∈+∞,当21x x >时,恒有2121(ln ln )2()a x x x x -<-成立,则实数a 的取值范围是___________.15.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________.16.已知函数()()()x f x e x b b R =-∈.若存在1,22x ⎡∈⎤⎢⎥⎣⎦,使得()()0f x xf x '+>,则实数b 的取值范围是____.17.已知函数3223,01()21,1x x m x f x mx x ⎧-+≤≤=⎨-+>⎩,若函数()f x 的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为________.18.若a 是区间[]0,3e 上任意选取的一个实数,则x ea x>对()0,x ∈+∞恒成立的概率为______.19.若函数()()32111562f x x mx n x =-++-+是[]0,1上的单调增函数,其中0m ≥,0n ≥,则()()2268m n +++的最小值为________.20.函数31()3f x x ax =-的极大值为a =__________. 三、解答题21.已知函数()()()2220xf x ax x ea =++>,其中e 是自然对数的底数.(1)若()f x 在[]22-,上是单调增函数,求a 的取值范围; (2)证明:当1a =时,方程()5f x x =+有且只有两个零点.22.已知函数21()ln 2x f x x x -=-.(1)求()f x 的单调区间;(2)设()*ln 1,1,2,k k a n k n n ⎫⎛=+∈=⋅⋅⋅ ⎪⎝⎭N ,在(1)的条件下,求证:123214n n a a a a ++++⋅⋅⋅+<()*n ∈N . 23.已知函数()xax f x e =. (1)当1a =时,判断函数()f x 的单调性; (2)若0a >,函数()()212g x f x x x =+-只有1个零点,求实数a 的取值范围. 24.已知函数()()3f x alnx ax a R =--∈. (1)函数()f x 的单调区间;(2)当1a =-时,证明:当()1x ∈+∞,时,()20f x +>. 25.已知函数()ln xx kf x e +=(k 为常数,e =2.71828…是自然对数的底数),曲线()y f x =在点(1,()1f )处的切线与x 轴平行. (1)求()f x 的单调区间;(2)设()()'g x xf x =,其中()f x '为()f x 的导函数,证明:对任意0x >,()21g x e -<+.26.已知函数()2ln f x x x ax =--.(1)若1a =-,求函数()f x 的单调区间; (2)证明当2a ≥时,关于x 的不等式()2112a f x x x ⎛⎫<---⎪⎝⎭恒成立;【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求导函数()f x ',化简()()0f x f x x'+>得10x t x+->在[]2,3x ∈恒成立,参变分离即可求参数范围. 【详解】∵()2222ln 2x x t f x x-+-'=, ∴对任意的[]2,3x ∈,()()0f x f x x'+>恒成立⇔对任意的[]2,3x ∈,()()0xf x f x '+>恒成立, ⇔对任意的[]2,3x ∈,10x t x+->恒成立, ⇔1x t x+>恒成立, 又()1g x x x =+在[]2,3上单调递增,∴()()225min g x g ==, ∴52t <.则实数t 的取值范围是5,2⎛⎫-∞ ⎪⎝⎭.故选:B 【点睛】对于恒成立问题,常用到以下两个结论: (1)()a f x ≥ 恒成立()max a f x ⇔≥; (2) ()a f x ≤ 恒成立()min a f x ⇔≤.2.D解析:D 【分析】求出()'f x 由()0f x '≤得314x a x ≤-,令1()4g x x x=-,判断出()g x 的单调性并利用单调性可得()g x 的最小值可得答案. 【详解】31()4(0)f x x x a x '=-+>,因为函数()f x 在[]1,2上单调递减, 所以3140x a x -+≤,即314x a x ≤-,令1()4g x x x =-,由于114,y x y x==-在[]1,2都是增函数, 所以1()4g x x x=-在[]1,2单调递增,所以()(1)3g x g ≤=, 所以33a ≤,又0a >,解得1a ≥. 故选:D.【点睛】本题考查了利用函数的单调性求参数的范围问题,关键点是令1()4g x x x=-并求出最小值,考查了学生分析问题、解决问题的能力.3.D解析:D 【分析】求得()f x 的导数,可得单调区间和极值,作出()f x 的图象,将方程()()210f x tf x t -+-=因式分解为()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,则()1f x =或()1f x t =-,从而()1f x t =-有3个实数根,即函数()y f x =与1y t =-有3个交点,数形结合即可得到1t -的取值范围,从而得解; 【详解】解:函数2()x x f x e=的导数为22()xx x f x e -'=, 当02x <<时,()0f x '>,()f x 递增;当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0, 在2x =处取得极大值241e <, 作出()y f x =的图象如下所示,因为()()210fx tf x t -+-=恰好有4个不相等的实根,所以()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,解得()1f x =或()1f x t =-,当()1f x =时,有1个实数解,所以()1f x t =-应有3个实数根,即函数()y f x =与1y t =-有3个交点, 所以2401t e <-<,即2411t e <<+ 故选:D 【点睛】本题考查方程的根的个数问题解法,考查数形结合思想方法,以及导数的运用:求单调区间和极值,考查运算能力.4.B解析:B 【分析】分析合选项中函数值符号、单调性、奇偶性,并与题中的函数图象作比较,由此可得出合适的选项. 【详解】对于A 选项,当2x ππ<<时,22sin 01xy x =<+,与题中函数图象不符; 对于B 选项,设()221xf x x =+,该函数的定义域为R , ()()()222211xxf x f x x x --==-=-+-+,函数()221x f x x =+为奇函数, 当0x >时,()2201xf x x =>+,()()()()()22222222142111x x x f x x x +--'==++,由()0f x '>,可得11x -<<;由()0f x '<,可得1x <-或1x >.所以,函数()f x 的单调递减区间为(),1-∞-、()1,+∞,单调递增区间为()1,1-, 与题中函数图象相符;对于C 选项,()()()2222212121111x x x xx x x x x x x x x x x e e e e e e e y e e e e e e e e -----+---=+====-++++,所以,函数x xx xe e y e e ---=+为R 上的增函数,与题中函数图象不符;对于D 选项,对于函数x xx xe e y e e--+=-,0x x e e --≠,可得0x ≠,该函数的定义域为{}0x x ≠,与题中函数图象不符. 故选:B. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置;(2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.5.C解析:C 【分析】先令()0f x =,分离参数得到22ln 1x a x +=,令()22ln1x g x x+=根据函数有两个不同零点,可得y a =与()22ln 1x g x x+=的图象有两个不同交点,对()g x 求导,判定其单调性,得出最值,画出大致图象,结合图象,即可得出结果. 【详解】因为函数2()2ln 1f x ax x =--有两个不同零点, 所以方程22ln 10ax x --=有两不同实根,即22ln 1x a x+=有两个不同的零点, 令()22ln 1x g x x +=,0x >,则得y a =与()22ln 1x g x x+=的图象有两个不同交点, 因为()()24322ln 124ln x x xx x g x x x ⋅-+⋅-'==,由()0g x '=可得1x =, 当()0,1x ∈时,()0g x '>,则()g x 单调递增; 当()1,x ∈+∞时,()0g x '<,则()g x 单调递减; 所以()()max 11g x g ==,又由()22ln 10x g x x +=>可得x e >;由()22ln 10x g x x +=<可得0x e <<,画出()22ln 1x g x x+=的大致图象如下:由图像可得,当01a <<时,y a =与()22ln 1x g x x +=的图象有两个不同交点, 即原函数有两个不同零点.故选:C. 【点睛】 思路点睛:利用导数的方法研究函数零点个数(方程根的个数)求参数问题时,一般需要先分离参数,根据分离后的结果,构造新的函数,利用导数的方法研究函数单调性,确定函数最值,利用数形结合的方法求解.6.D解析:D 【分析】利用导数判断函数在[)0,+∞的单调性,然后根据奇偶性判断()f x 在(],0-∞的单调性,再利用单调性与奇偶性结合求解不等式. 【详解】当0x ≥时,()cos x f x e x =-,所以()sin xf x e x '=+,因为0x ≥,所以1x e ≥,即()1sin 0f x x '≥+≥,所以函数()f x 在[)0,+∞上单调递增,又因为函数()f x 为R 上的偶函数,所以函数()f x 在(],0-∞上单调递减,在[)0,+∞上单调递增,则不等式(21)(2)0f x f x --->,等价于212x x ->-,所以1x <-或1x >.故选:D. 【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若()f x 为偶函数,则()()()f x f x f x -==. 7.C解析:C 【分析】根据体积公式用r 表示出l ,得出费用关于r 的函数,利用导数求出函数的极小值点即可. 【详解】解:由题意知2323142282333V r l r r l r πππππ=+⨯=+=, 故33322222282282282333333V r r r l r r r r r πππππ---===-=, 由0l >可知r <. ∴ 建造费用()3222221282562344611723r y rl r r r r r r rπππππππ-=+⨯+⨯⨯=⨯+=+,(0r <<,则()3221445614r y r r rπππ-'=-=.当(r ∈时,0y '<,r ∈时,0y '>.当r =.故选:C . 【点睛】本题考查数学建模能力,利用导数求解最值问题,考查运算能力,是中档题.8.A解析:A 【分析】由函数()()1y x f x '=-的图象,可得1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.由此可得函数()f x 的单调性,则答案可求.【详解】解:函数()()1y x f x '=-的图象如图所示,∴1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>. ∴函数()f x 在(),2-∞-上单调递增,在()2,1-上单调递减,在()1,+∞上单调递减. ∴()f x 有极大值()2f -.故选:A . 【点睛】本题考查根据导函数的相关图象求函数的单调区间,考查数形结合思想,是中档题.9.A解析:A 【解析】 设()()22xf x F x e +=,则()()()224xf x f x F x e '--'=,∵f (x )−2f ′(x )−4>0,∴F ′(x )>0,即函数F (x )在定义域上单调递增, ∵f (0)=−1,∴F (0)=1,∴不等式f (x )+2>e 2x 等价为不等式()221e xf x +>等价为F (x )>F (0),解得x >0,故不等式的解集为(0,+∞), 本题选择A 选项.10.B解析:B 【分析】构造新函数()()2g x x f x =,求导后可证明()g x 在()0,∞+上单调递增,而不等式()()()202020202222020x f x f x ++<+可等价于()()20202+<g x g ,故2020020202x x +>⎧⎨+<⎩,解之即可. 【详解】令()()2g x x f x =,则()()()()()222g x xf x x f x x f x xf x ⎡⎤=+='+'⎣'⎦, ∵定义域为()0,∞+,且()()20xf x f x '+>,()0g x '∴>,()g x 在()0,∞+上单调递增,不等式()()()202020202222020x f x f x ++<+等价于()()20202+<g x g ,2020020202x x +>⎧∴⎨+<⎩,解得20202018-<<-x 故选:B 【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.11.C解析:C 【分析】 构造函数()()f xg x x=,求导,利用()g x 的单调性和奇偶性解不等式. 【详解】 设()()f xg x x=(0x ≠), 则()()()2xf x f x g x x'-'=, ∵当()0,x ∈+∞时,()()0xf x f x '->, ∴()0g x '>,即()g x 在()0,∞+上单调递增, 又()f x 是R 上的偶函数, ∴()()()()f x f x g x g x x x--==-=--, 即()g x 是()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上单调递增,∵()30f =, ∴()()()33303f g g -=-=-=. 而不等式()0f x x>等价于()0g x >, ∴30x -<<或3x >. 故选:C. 【点睛】本题主要考查函数的单调性与奇偶性的应用,利用条件构造函数,然后利用导数研究函数的单调性是解决本题的关键,属于中档题.12.D解析:D 【分析】构造新函数2()()xg x ef x =,求导后可推出()g x 在R 上单调递减,而2()x f x e ->可等价于20()1(0)x e f x e f >=,即()(0)g x g >,故而得解. 【详解】 令2()()xg x ef x =,则2()[2()()]xg x e f x f x ''=+,2()()0f x f x +'<,()0g x '∴<,即()g x 在R 上单调递减,(0)1f =,2()x f x e -∴>可等价于20()1(0)x e f x e f >=,即()(0)g x g >,0x ∴<,∴不等式的解集为(,0)-∞.故选:D . 【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.二、填空题13.①②④【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③【详解】x≤0时f(x)=2xexf′(x)=2(1+x )ex 故f′(﹣2)=①正确;且f(解析:①②④ 【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③. 【详解】x ≤0时,f (x )=2xe x ,f ′(x )=2(1+x )e x ,故f ′(﹣2)=22e -,①正确; 且f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增,故x ≤0时,f (x )有最小值f (﹣1)=2e-, x >0时,f (x )=2122x x -+在(0,1)上单调递减,在(1,+∞)上单调递增,故x >0时,f (x )有最小值f (1)=122e->-故f (x )有最小值2e-,②④正确; 令20x x e ⋅=得0x =,令21202x x -+=得x =,故该函数图象与x 轴有3个交点,③错误; 故答案为:①②④ 【点睛】本题考查导数的几何意义,考查利用导数判断函数的单调性、求函数的最值一定注意定义域.14.【分析】构造函数求得的取值范围化简不等式求得的取值范围【详解】构造函数依题意任意当时表示函数在区间上任意两点连线的斜率故当时对于任意当时不等式成立当时对于任意当时不等式恒成立可转化为恒成立故综上所述 解析:(,2]-∞【分析】构造函数()()ln 1f x x x =≥,求得()'fx 的取值范围,化简不等式2121(ln ln )2()a x x x x -<-求得a 的取值范围.【详解】构造函数()()ln 1f x x x =≥,()(]'10,1f x x=∈, 依题意任意12,[1,)x x ∈+∞,当21x x >时,2121ln ln 0,0x x x x ->->,2121ln ln x x x x --表示函数()f x 在区间[1,)+∞上任意两点连线的斜率,故()2121ln ln 0,1x x x x -∈-. 当0a ≤时,对于任意12,[1,)x x ∈+∞,当21x x >时,不等式2121(ln ln )2()a x x x x -<-成立.当0a >时,对于任意12,[1,)x x ∈+∞,当21x x >时,不等式2121(ln ln )2()a x x x x -<-恒成立可转化为2121ln ln 2x x x x a -<-恒成立,故(]21,0,2a a≥∈.综上所述,实数a 的取值范围是(,2]-∞. 故答案为:(,2]-∞ 【点睛】求解不等式恒成立问题,可考虑采用分离常数法,结合导数来求解..15.【分析】由题意可得:有2个不相等的实根也即有2个不相等的实根利用即可求解【详解】由题意可得:有2个不相等的实根也即有2个不相等的实根所以即解得:或故答案为:【点睛】本题主要考查了极值和导数的关系属于 解析:()(),22,-∞-+∞【分析】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,利用0∆>即可求解.【详解】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,所以()()22420a a ∆=+-+>, 即()()2240a a ++->, 解得:2a >或2a <-, 故答案为:()(),22,-∞-+∞【点睛】本题主要考查了极值和导数的关系,属于中档题.16.【详解】解答:∵f(x)=ex(x−b)∴f′(x)=ex(x−b+1)若存在x ∈2使得f(x)+xf′(x)>0则若存在x ∈2使得ex(x−b)+xex(x−b+1)>0即存在x ∈2使得b<成立令解析:83b <【详解】 解答: ∵f(x)=e x (x−b), ∴f′(x)=e x (x−b+1), 若存在x ∈[12,2],使得f(x)+xf′(x)>0, 则若存在x ∈[12,2],使得e x (x−b)+xe x (x−b+1)>0,即存在x ∈[12,2],使得b<221x x x ++ 成立, 令()221,,212x x g x x x +⎡⎤=∈⎢⎥+⎣⎦, 则()()222201x x g x x ++'=>+ ,g(x)在1,22⎡⎤⎢⎥⎣⎦递增,∴g(x)最大值=g(2)=83, 则实数b 的取值范围是83b <17.【分析】利用导数求得在区间上的单调性和最值对分成三种情况进行分类讨论由此求得的取值范围【详解】当时所以在区间上递减最大值为最小值为当时在区间上没有零点在区间上递增而所以在区间上没有零点所以不符合题意解析:1(0,)2【分析】利用导数求得()f x 在区间[]0,1上的单调性和最值,对m 分成0,0,0m m m <=>三种情况进行分类讨论,由此求得m 的取值范围. 【详解】当01x ≤≤时,()()'26661fx x x x x =-=-,所以()f x 在区间[]0,1上递减,最大值为()0f m =,最小值为()11f m =-.当0m <时,()f x 在区间[]0,1上没有零点,在区间()1,+∞上递增, 而2110m -⨯+>,所以()f x 在区间()1,+∞上没有零点.所以0m <不符合题意.当0m =时,3223,01()1,1x x x f x x ⎧-≤≤=⎨>⎩,所以()f x 在区间[)0,+∞上有唯一零点()00f =,所以0m =不符合题意.当0m >时,()f x 在区间[]0,1和区间()1,+∞上递减,要使()f x 的图象与x 轴有且只有两个不同的交点,则需0102110m m m >⎧⎪-≤⎨⎪-⨯+>⎩,解得102m <<.综上所述,m 的取值范围是10,2⎛⎫ ⎪⎝⎭.故答案为:1(0,)2【点睛】本小题主要考查利用导数研究函数的零点,考查分类讨论的数学思想方法,属于中档题.18.【分析】由对恒成立可知只要小于的最小值所以构造函数利用导数求出从而得然后利用区间长度比求出概率即可【详解】设则当时;当时在递减在递增∴∴当时对恒成立故所求概率为故答案为:【点睛】此题考查的是几何概型解析:13【分析】由x e a x >对()0,x ∈+∞恒成立,可知只要a 小于xe x的最小值,所以构造函数()xe f x x=,利用导数求出()()min 1f x f e ==,从而得()0,a e ∈,然后利用区间长度比求出概率即可. 【详解】设()x e f x x =,则()()'21x e x f x x-=,0x >.当01x <<时,()'0f x <;当1x >时,()'0f x >,()f x 在()0,1递减,在()1,+∞递增∴()()min 1f x f e ==,∴当a e <时,xe a x>对()0,x ∈+∞恒成立.故所求概率为1303e e =-. 故答案为:13【点睛】此题考查的是几何概型,不等式恒成立问题,属于基础题.19.49【分析】求出函数的导数根据函数的单调性得到关于的不等式组根据两点间的距离公式求出其最小值即可【详解】若在上递增则故满足条件的平面区域如图示:的几何意义表示和阴影部分的点的距离故到阴影部分的最小值解析:49 【分析】求出函数的导数,根据函数的单调性得到关于m ,n 的不等式组,根据两点间的距离公式求出其最小值即可. 【详解】21()(1)2f x x mx n '=-++-,若()f x 在[0,1]上递增, 则(0)10f n '=-,()11102m n f =-++-',故满足条件112mnnm n⎧⎪⎪⎪⎨⎪⎪-+⎪⎩的平面区域如图示:22(6)(8)m n-+-的几何意义表示(6,8)和阴影部分的点的距离,故(6,8)到阴影部分的最小值是自(6,8)向1n=作垂线,故垂线段是7,故22(6)(8)m n-+-的最小值是49,故答案为:49.【点睛】本题考查了函数的单调性问题,考查导数的应用以及简单的线性规划问题,考查了数学运算能力和数形结合思想.20.3【分析】求导数取导数为0计算代入原函数计算极大值得到答案【详解】函数的极大值为由题意知:当时有极大值所以故答案为3【点睛】本题考查了函数的极大值意在考查学生的计算能力解析:3【分析】求导数,取导数为0,计算x a=.【详解】函数31()3f x x ax=-的极大值为232()f x x a'=-由题意知:0,a x a>⇒=当x a=(3f a=所以3a=故答案为3【点睛】本题考查了函数的极大值,意在考查学生的计算能力.三、解答题21.(1)(]0,1;(2)证明见解析. 【分析】(1)转化为()22140ax a x +++≥在[]22-,上恒成立,利用二次函数知识可求得结果; (2)构造函数()()2225xh x x x e x =++--,利用导数可得()h x 在()0,x -∞上单调递减,在()0,x +∞上单调递增,其中()01,0x ∈-,再根据零点存在性定理可证结论成立. 【详解】(1)因为()f x 在[]22-,上是单调增函数, 所以()()()()2222222140x x xf x ax e ax x e ax a x e '⎡⎤=++++=+++⎦≥⎣在[]22-,上恒成立,又0x e >,所以()22140ax a x +++≥在[]22-,上恒成立. 令()()2214g x ax a x =+++,又0a >,故对称轴为110x a=--<. ①当112a--≤-,即01a <≤时,()g x 在[]22-,上单调递增, 则()()min 244(1)40g x g a a =-=-++=,所以此时()()20g x g ≥-=恒成立. ②当1210a -<--<,即1a >时,()g x 在12,1a ⎡⎤---⎢⎥⎣⎦上单调递减,在11,2a ⎛⎤-- ⎥⎝⎦上单调递增,所以min 1()1g x g a ⎛⎫=-- ⎪⎝⎭()21112114a a a a ⎛⎫⎛⎫=--++--+ ⎪ ⎪⎝⎭⎝⎭1()2a a =-++()21a a-=-0<,所以()0g x ≥在[]22-,上不恒成立,故1a >不合题意, 综上所述,a 的取值范围是(]0,1.(2)因为1a =,设()()2225xh x x x e x =++--,则()()()()2222221441xxxh x x e x x e x x e =++'++-=++-.令()()2441xx x x e ϕ=++-,则()()()()()()2224446842xxxxx x e x x e x x e x x e ϕ=+++'+=++=++,由()()()420xx x x e ϕ'=++=,得4x =-或2x =-.所以4410x e =-=-<极大值,210x =-=-<极小值 因为()1110eϕ-=-<,()030ϕ=>,所以存在()01,0x ∈-,使()00x ϕ=, 当()0,x x ∈-∞时,()0x ϕ<,()0h x '<;当()0,x x ∈+∞时,()0x ϕ>,()0h x '>, 所以()h x 在()0,x -∞上单调递减,在()0,x +∞上单调递增. 又因为()51750h e -=>,()410410h e-=-<,()030h =-<,()1560h e =->, 故根据零点存在定理,可知()0h x =的根()15,4x ∈--,()20,1x ∈, 所以方程()5f x x =+有且只有两个零点. 【点睛】关键点点睛:第(1)问转化为()22140ax a x +++≥在[]22-,上恒成立是解题关键,第(2)问构造函数()()2225xh x x x e x =++--,利用导数研究函数的零点是解题关键.22.(1)()f x 单调递增区间为(0,)+∞,无递减区;(2)证明见解析. 【分析】(1)求导数()'f x ,由()0f x '>确定增区间,由()0f x '<得减区间;(2)由(1)得1x >时,()0f x >,即11ln ()2x x x<-,令1,1,2,,k x k n n =+=,代入后得n 个不等式,相加后可得证明题设结论. 【详解】(1)解:函数()f x 的定义域为(0,)+∞由21()ln 2x f x x x -=-,得()ln 1f x x x '=--令1()ln 1()1g x x x g x x'=--⇒=-()0(1,)()0(0,1)g x x g x x ''>⇒∈+∞<⇒∈即()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故()(1)0f x f '''≥=,于是()f x 单调递增区间为(0,)+∞,无递减区(2)证明:由(1)可知()f x 在(0,)+∞上单调递增函数,又(1)0f =,∴当1x >时,()0f x >,11ln 2x x x ⎫⎛∴<- ⎪⎝⎭1ln 112k k k n k k a n n n k +-⎫⎫⎛⎛∴=+<+- ⎪ ⎪+⎝⎝⎭⎭1(1,2,)2kk k n n n k ⎫⎛=+=⋅⋅⋅ ⎪+⎝⎭123112122111n n n a a a a n n n n n n ⎫⎛∴+++⋅⋅⋅+<++⋅⋅⋅++++⋅⋅⋅+ ⎪+++⎝⎭1121221n n n n ++⋅⋅⋅+++⋅⋅⋅+⎫⎛=+ ⎪+⎝⎭(1)(1)12122214n n n n n n n ++⎫⎛⎪ +=+=⎪ +⎪⎝⎭于是()*123214n n a a a a n ++++⋅⋅⋅+<∈N 得证. 【点睛】关键点点睛:本题考查用导数求单调区间,用导数证明数列不等式.这类问题的解决,通常后一小题需要用到前一小题(或前面所有)的结论,通过变形,赋值等手段进行证明求解.如本题第(1)小题函数单调性得出不等式11ln ()2x x x<-,只要在此不等式中对x 赋值1,1,2,,kx k n n=+=,n 个不等式相加即可.23.(1)当1a =时,函数()f x 在区间(),1-∞上单调递增;在区间1,上单调递减;(2)当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞ ⎪⎝⎭. 【分析】(1)先对函数求导,然后分别由0f x 和0f x 可求出函数的增区间和减区间;(2)由0g x,得1x =,或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论,当ln 1a =可得()g x 只有1个零点,当ln 1a <时,求出()g x 的单调区间,然后讨论其零点,当ln 1a >时,求出()g x 的单调区间,然后讨论其零点,从而可求出实数a 的取值范围 【详解】解:(1)当1a =时,()xxf x e =,定义域为R , 所以()1xxf x e -'=. 当1x <时,0f x ,函数()f x 单调递增; 当1x >时,0fx,函数()f x 单调递减.综上所述,当1a =时,函数()f x 在区间(),1-∞上单调递增; 在区间1,上单调递减.(2)因为0a >,函数()212x ax g x e x x =+-, 所以()()()111x x x a x e a g x x x e e -⎛⎫-'=+-=- ⎪⎝⎭. 当0g x 时,得1x =,或ln x a =.①若ln 1a =,即a e =,则0g x 恒成立,函数()g x 在R 上单调递增,因为()00g =,所以函数()g x 只有1个零点.②若ln 1a <,即0a e <<,当ln x a <时,0g x ,函数()g x 单调递增;当ln 1a x <<时,0g x,函数()g x 单调递减; 当1x >时,0g x ,函数()g x 单调递增.(Ⅰ)当ln 0a <,即01a <<时,()()()ln 001g a g g >=>,又因为()2220a g e =>,所以函数()g x 在区间1,2上有1个零点, 故函数()g x 在R 上至少有2个零点,不符合题意.(Ⅱ)当ln 0a =,即1a =时,()()()ln 001g a g g ==>,又因为()2220g e =>,所以函数()g x 在区间1,2上有1个零点, 故函数()g x 在R 上至少有2个零点,不符合题意.(Ⅲ)当ln 0a >,即1a e <<时,()()()ln 001g a g g >=>,若函数()g x 只有1个零点,需()1102a e g =->, 解得2e a e <<. ③若ln 1a >,即a e >, 当1x <时,0g x ,函数()g x 单调递增;当1ln x a <<时,0g x,函数()g x 单调递减; 当ln x a >时,0g x ,函数()g x 单调递增.所以()()100g g >=,()21ln ln 02g a a => 所以函数()g x 在R 上只有1个零点.综上所述,当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞ ⎪⎝⎭.【点睛】关键点点睛:此题考查导数的应用,利用导数求函数的单调区间和求函数的零点,第二问解题的关键是由0g x 求得1x =或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论函数的单调性,从而由零点的情况求出参数的取值范围,属于中档题24.(1)答案见解析;(2)证明见解析.【分析】(1)求导()()1'(0)a x f x x x -=>,0a >,0a <,0a =讨论,令()'0f x >求解.(2)结合(1)将问题转化为()min 2f x >-求解.【详解】(1)根据题意知,()()1'(0)a x f x x x -=>,当0a >时,当()01x ∈,时,()'0f x >,当()1x ∈+∞,时,()'0f x <, 所以()f x 的单调递增区间为()01,,单调递减区间为()1+∞,; 同理,当0a <时,()f x 的单调递增区间为()1+∞,,单调递减区间为()01,;当0a =时,()3f x =-,不是单调函数,无单调区间.(2)证明:当1a =-时,()ln 3f x x x =-+-,所以12f ,由(1)知()ln 3f x x x =-+-在()1+∞,上单调递增, 所以当()1x ∈+∞,时,()()1f x f >. 即()2f x >-,所以()20f x +>.【点睛】方法点睛:利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,或者函数的最值证明函数h (x )>0,其中一个重要技巧就是找到函数h (x )在什么地方可以等于零,这往往就是解决问题的一个突破口. 25.(1)()f x 的单调递增区间为(0,1),单调递减区间为(1,)+∞;(2)证明见详解.【分析】(1)先利用导数的几何意义列式()01f '=,求得参数1k =,再通过研究导数的正负来判断函数()f x 的单调性即可;(2)根据e 1x >,先进行不等式放缩()1ln g x x x x <--,再令1l ()n x x F x x --=,利用导数证明2l ()1n 1x x F x x e -=--≤+,即得结果.【详解】 解:(1)由ln ()x x k f x e +=,得1l (n )x kx x x x f xe--'=,(0,)x ∈+∞, 由于曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.所以()110k f e -'==,因此1k =. 此时ln 1()x x f x e +=,1ln 1()xx x f x e --'=,(0,)x ∈+∞, 令1()ln 1h x x x =--,(0,)x ∈+∞,则22111()0x h x x x x +'=--=-<, 故1()ln 1h x x x=--在(0,)x ∈+∞上递减,且(1)1ln110h =--=, 故当(0,1)x ∈时,()0h x >,()0f x '>;当(1,)x ∈+∞时,()0h x <,()0f x '<. 因此()f x 的单调递增区间为(0,1),单调递减区间为(1,)+∞;(2)因为1l ()n ()x g x xf x x x x e'==--,0x >即e 1x >,所以()1ln g x x x x <--, 令1l ()n x x F x x --=,(0,)x ∈+∞,则2l (n )F x x --'=, 令()0F x '=得2x e -=,当()20,x e -∈时,()0F x '>,函数()F x 单调递增; 当()2,x e -∈+∞时,()0F x '<,函数()F x 单调递减.故()()22max 1F x F e e --=+=,即2l ()1n 1x x F x x e -=--≤+,所以2()1ln 1g x x x x e -<--≤+,即证()21g x e -<+. 【点睛】利用导数研究函数()f x 的单调性的步骤:①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<③根据不等式解集写出单调区间.26.(1)()f x 的单调递减区间为()1,+∞,函数()f x 的单增区间为()0,1;(2)证明见解析.【分析】(1)利用导数求函数的单调区间;(2)先求出函数()g x 在10,x a ⎛⎫∈ ⎪⎝⎭是增函数,在1,x a ⎛⎫∈+∞ ⎪⎝⎭是减函数,得到函数()g x 的最大值11ln 2g a a a⎛⎫=-⎪⎝⎭,再证明()1ln 02h a a a ⎛⎫=-< ⎪⎝⎭即得解. 【详解】 (1)()()2121210x x f x x x x x-++'=-+=>, 由()0f x '<,得2210x x -->.又0x >,所以1x >,所以()f x 的单调递减区间为()1,+∞,函数()f x 的单增区间为()0,1.(2)令()()()22111ln 1122a g x f x x x x ax a x ⎡⎤⎛⎫=----=-+-+ ⎪⎢⎥⎝⎭⎣⎦, 所以()()()21111ax a x g x ax a x x-+-+'=-+-=, 因为2a ≥,所以()()11a x x a g x x⎛⎫-+ ⎪⎝⎭'=-, 令()0g x '=,得1x a =, 所以当10,x a ⎛⎫= ⎪⎝⎭,()0g x '>, 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<, 因此函数()g x 在10,x a ⎛⎫∈ ⎪⎝⎭是增函数,在1,x a ⎛⎫∈+∞ ⎪⎝⎭是减函数. 故函数()g x 的最大值()2111111ln 11ln 22g a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 令()1ln 2h a a a ⎛⎫=- ⎪⎝⎭,因为()12ln 204h =-<, 又因为()h a 在()0,a ∈+∞是减函数,所以当2a ≥时,()0h a <,即对于任意正数x 总有()0g x <,所以关于x 的不等式恒成立.【点睛】方法点睛:求函数的最值常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法. 要结合已知条件灵活选择方法求解.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》检测(答案解析)

(常考题)北师大版高中数学选修1-1第四章《导数应用》检测(答案解析)

一、选择题1.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .()()0,11,+∞B .()(),11,-∞-+∞C .()(),10,1-∞-⋃D .()()1,01,-⋃+∞2.已知函数3213()32f x x x c =++有3个不同的零点,则c 的取值范围是( ) A .9,02⎛⎫- ⎪⎝⎭ B .4,(0,)3⎫⎛-∞-⋃+∞ ⎪⎝⎭C .4,03⎛⎫-⎪⎝⎭ D .9,(0,)2⎫⎛-∞-⋃+∞ ⎪⎝⎭3.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f << B .()()()623428f f f << C .()()()346229f f f <<D .()()()286234f f f <<4.若函数32()x x x f x e e e a =---存在零点,则实数a 的取值范围为( ) A .[2,)-+∞ B .[,)e C .2[,)e -+∞ D .[1,)-+∞5.已知函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围为( ) A .34a ≤-B .1a ≤-C .1a ≤D .01a ≤≤6.已知函数4213(),42f x x x mx n =-++其中m ,n 为正整数,若函数()f x 有极大值,则m 的值为( ) A .1B .2C .3D .47.已知实数2343a e =,4565b e =,6787c e =,那么a ,b ,c 大小关系为( ) A .a b c >> B .b a c >> C .c b a >> D .a c b >>8.已知函数()()22,02ln ,0xx f x a x x x x -⎧<⎪=⎨++>⎪⎩,若恰有3个互不相同的实数1x ,2x ,3x ,使得()()()1232221232f x f x f x x x x ===,则实数a 的取值范围为( ) A .1a e>-B .10a e-<< C .0a ≥ D .0a ≥或1a e=-9.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 10.对任意0,2x π⎛⎫∈ ⎪⎝⎭,不等式()()sin cos x f x x f x ⋅⋅'<恒成立,则下列不等式错误的是( ) A.34f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭B .()2cos113f f π⎛⎫⋅⎪⎝⎭> C.()14f f π⎛⎫⋅⎪⎝⎭D.426f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭< 11.函数()2xf x ae x =+在R 上有两个零点1x ,2x ,且212x x ≥,则实数a 的最小值为( ) A .ln 22-B .ln 2-C .2e-D .ln 212.设函数()'f x 是奇函数()()f x x R ∈的导函数,(2)0f -=,当0x >时,()()03xf x f x '+>,则使得()0f x >成立的x 的取值范围是( ) A .(,2)(0,2)-∞-⋃ B .(,2)(2,2)-∞--C .(2,0)(2,)-+∞ D .(0,2)(2,)⋃+∞二、填空题13.已知函数2()ln 3mf x x x x x=+-+.若函数()f x 在[1,2]上单调递减,则实数m 的最小值为________.14.对于函数22,0()12,02x x e x f x x x x ⎧⋅≤⎪=⎨-+>⎪⎩有下列命题: ①在该函数图象上一点(﹣2,f (﹣2))处的切线的斜率为22e -; ②函数f (x )的最小值为2e-; ③该函数图象与x 轴有4个交点;④函数f (x )在(﹣∞,﹣1]上为减函数,在(0,1]上也为减函数. 其中正确命题的序号是_____.15.若函数()231xf x e x mx =+-+在(],3-∞上单调递减,则实数m 的取值范围为______.16.已知函数()3x f x e -=,()1ln 22xg x =+,若()()f m g n =成立,则n m -的最小值为______.17.已知函数()31=4f x x 图像上有动点()11,A x y ,函数()2g x x =-图像上有动点()22,B x y .若A B 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至A B 、两点的纵坐标值再次相等,且始终满足212x x -=,则在此运动过程中A B 、两点的距离AB 的取值范围是______.18.已知函数()()ln ,11,1x x x f x x e x ≥⎧=⎨-<⎩,若函数()()()2g x f x f x a =--⎡⎤⎣⎦有6个零点,则实数a 的取值范围是______.19.已知函数f (x )=2,(,0],(0,)x x x e x +∈-∞⎧⎨∈+∞⎩,若存在x 1,x 2(x 2>x 1)满足f (x 1)=f(x 2),则x 2﹣2x 1的取值范围为_____.20.函数3()126f x x x =-++,1,33x ⎡⎤∈-⎢⎥⎣⎦的零点个数是________.三、解答题21.已知函数()323f x x ax x m =-++在3x =处取得极值.(1)求实数a 的值;(2)函数()y f x =有三个零点,求m 的取值范围. 22.已知函数()ln 1f x x =+.(1)直线20l x y -+=:,求曲线()y f x =上的点到直线l 的最短距离; (2)若曲线21()(1)()(03)2g x x a x f x x =-++<<存在两个不同的点,使得在这两点处的切线都与x 轴平行,求实数a 的取值范围.23.已知函数()()()242,f x x x a a R =--∈,()f x '为()f x 的导函数,且()10f '-=.(1)讨论函数()f x 的单调性;(2)求函数()f x 在[]22-,上的最大值和最小值. 24.已知函数()()2xf x e ax a R =-∈.(1)若12a =,求函数()f x 的单调区间 (2)当[]2,3x ∈时,()0f x ≥恒成立,求实数a 的取值范围.25.已知()()2122x f x ax ax x e =-++-. (1)当1a =-时,求()f x 的单调区间 (2)若f (x )存在3个零点,求实数a 的取值范围. 26.已知函数()(1)ln ()af x x a x a x=+-+∈R . (1)讨论函数()f x 的单调性;(2)当0a >时,若()2f x ≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 构造函数()()f xg x x=,分析出函数()g x 为偶函数,且在()0,∞+上为减函数,由()0f x >可得出()00g x x ⎧>⎨>⎩或()0g x x ⎧<⎨<⎩,解这两个不等式组即可得解.【详解】构造函数()()f xg x x=,该函数的定义域为{}0x x ≠, 由于函数()f x 为奇函数,则()()()()()f x f x f x g x g x x x x---====--, 所以,函数()()f xg x x=为偶函数. 当0x >时,()()()20xf x f x g x x'-'=<,所以,函数()g x 在()0,∞+上为减函数, 由于函数()()f xg x x=为偶函数,则函数()g x 在(),0-∞上为增函数. ()10f -=,则()10f =且()00f =,所以,()()110g g -==.不等式()0f x >等价于()()010g x g x ⎧>=⎨>⎩或()()010g x g x ⎧<=-⎨<⎩,解得1x <-或01x <<.因此,不等式()0f x >的解集为()(),10,1-∞-⋃. 故选:C. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.2.A解析:A 【分析】求出三次函数的导数,根据导函数正负情况分析单调性和极值,图象要与x 轴三个交点,据此得出取值范围. 【详解】由条件得2()3(3)f x x x x x '=+=+, 令()0f x '>,可得解集为(,3)(0,)-∞-⋃+∞ 令()0f x '<,可得解集为(3,0)-则()f x 在(,3)-∞-和(0,)+∞上单调递增,在(3,0)-上单调递减,又9(3)2f c -=+,(0)f c =,要使()f x 有3个不同的零点,则902c c <<+,所以902c -<<. 故选:A 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.B解析:B 【分析】 构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论. 【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>,所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<, 故选:B.4.D解析:D 【分析】由题意得32x x x a e e e =--,令32()xxx g x e e e =--,求()g x 的取值范围可得答案.【详解】 由32()0xx x f x ee e a =---=,则32x x x a e e e =--,令32()xxx g x e ee =--,则()()()3223()3211213xxx x x x x x x g x e ee e e e e e e '=--=+-=--,当()0g x '>得0x >,()g x 单调递增,当()0g x '<得0x <,()g x 单调递减, 所以min()(0)1g x g ≥=-,()2215()124x x x x xg x e e e e e ⎡⎤⎛⎫=--=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当x 趋向于正无穷大时,()g x 也趋向于正无穷大, 所以函数()f x 存在零点,则1a ≥-. 故选:D. 【点睛】方法点睛:本题考查函数零点问题.解题方法是把零点个数转化为方程解的个数,再转化为函数图象交点个数,由图象观察所需条件求得结论.考查了分析问题、解决问题的能力.5.B解析:B 【分析】 由函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,知'0y ≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,分离参数,求最值得答案. 【详解】 因为函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增, 所以22'20a x x ay x x x--=--=≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以222(1)1a x x x ≤-=--在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以1a ≤-, 故选:B. 【点睛】方法点睛:该题考查的是有关根据函数在给定区间上单调增求你参数的取值范围的问题,解题方法如下:(1)利用函数在给定区间上单调递增,得到其导数大于等于零在给定区间上恒成立; (2)求导;(3)分离参数,求最小值,得结果.6.A解析:A 【分析】对()f x 进行求导得3()3f x x x m '=-+,构造新函数3()3,h x x x m x R =-+∈,利用导数研究函数()h x 的单调性,结合题意,可知函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,求解不等式且结合m ,n 为正整数,即可得出结果.【详解】 由题可知,4213()42f x x x mx n =-++()x R ∈, 则3()3f x x x m '=-+,设3()3,h x x x m x R =-+∈,则2()33h x x '=-,令2()330h x x '=-=,解得:121,1x x =-=,则当1x <-或1x >时,()0h x '>;当11x -<<时,()0h x '<,所以()h x 在区间()(),1,1,-∞-+∞上单调递增;在区间()1,1-上单调递减, 又因为函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,即()()120120h m h m ⎧-=+>⎪⎨=-<⎪⎩,解得:22m -<<,而m ,n 为正整数,所以m 的值为1.故选:A. 【点睛】关键点点睛:本题考查利用导数研究函数的单调性和极值,从而求参数值,构造新函数且利用导数求出单调区间是解题的关键,考查转化思想和运用能力.7.C解析:C 【分析】根据所给实数的表达式进行构造函数,然后利用导数判断出函数的单调性,最后利用函数的单调性进行判断即可. 【详解】构造函数'()(2)()(1)xxf x x e f x x e =-⇒=-,当1x >时,'()0,()f x f x <单调递减,当1x <时,'()0,()f x f x >单调递增.因为2342()33a e f ==,4564()55b e f ==,6786()77c e f ==,246357<<, 所以642()()()753f f f >>,即c b a >>.故选:C 【点睛】关键点睛:根据几个实数的特征构造函数,利用导数判断其单调性是解决此类问题的关键.8.D解析:D 【分析】根据题意,令()()221,02ln 2,0x x f x xg x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩,得到函数()()2f xg x x =与直线2y =共有三个不同的交点;根据导数的方法,分别判断0x <和0x >时,函数的单调性,以及最值,结合题中条件,即可得出结果. 【详解】因为()()22,02ln ,0xx f x a x x x x -⎧<⎪=⎨++>⎪⎩,令()()221,02ln 2,0x x f x x g x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩, 由题意,函数()()2f x g x x=与直线2y =共有三个不同的交点; 当0x <时,()212x g x x =⋅,则()()()()222232222ln 222ln 22222x x x x x x x x xx g x xx x '-⋅⋅+⋅+'==-=-⋅⋅⋅, 由()3ln 2202x x g x x +'=-=⋅解得222log ln 2x e =-=-; 所以()2,2log x e ∈-∞-时,()0g x '<,即函数()212x g x x =⋅单调递减;()22log ,0x e ∈-时,()0g x '>,即函数()212x g x x =⋅单调递增; 所以()()()()222222min 2log 2212log 2422log 4log ee e g x g e e e -=-==<<⋅-,又2121122122g -⎛⎫-==> ⎪⎝⎭⎛⎫⋅- ⎪⎝⎭,()()271128724927g --==>⋅-, 所以()212x g x x =⋅与直线2y =有且仅有两个不同的交点; 当0x >时,()ln 2xg x a x =++,则()21ln x g x x-'=, 由()21ln 0xg x x-'==得x e =, 所以当()0,x e ∈时,()0g x '>,则函数()ln 2xg x a x=++单调递增; 当(),x e ∈+∞时,()0g x '<,则函数()ln 2xg x a x=++单调递减; 所以()()max 12g x g e a e==++, 又当1≥x 时,()ln 22xg x a a x=++≥+;当01x <<时,()2g x a <+; 当x e ≥时,()ln 22xg x a a x=++>+, 所以为使()ln 2xg x a x=++与直线2y =只有一个交点, 只需122a e ++=或22a +≥,即1a e=-或0a ≥. 故选:D. 【点睛】本题主要考查由方程根的个数求参数,转化为函数交点个数问题求解即可,属于常考题型.9.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a .由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;10.D解析:D 【分析】构造函数()()cos g x f x x =,对其求导后利用已知条件得到()g x 的单调性,将选项中的角代入函数()g x 中,利用单调性化简,并判断正误,由此得出选项. 【详解】解:构造函数()()cos g x f x x =,则()()()cos sin g x x f x x f x ='⋅⋅'-, ∵()()sin cos x f x x f x ⋅⋅'<,∴()()()cos sin 0g x x f x x f x =⋅-⋅''>,即()g x 在0,2x π⎛⎫∈ ⎪⎝⎭上为增函数,由43g g <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即cos cos 4433f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即12423f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,故A 正确;()13g g 由<π⎛⎫⎪⎝⎭,即()1cos1cos 33f fππ⎛⎫ ⎪⎝⎭<,即()2cos113f f π⎛⎫⋅ ⎪⎝⎭>,故B 正确;()14g g π⎛⎫⎪⎝⎭由<,即()cos 1cos144f f <ππ⎛⎫ ⎪⎝⎭()1cos14f f π⎛⎫⎪⎝⎭<,故C 正确;由64g g ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,即cos cos 6644f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<64f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即264f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<, 故错误的是D .故选D .【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有()f x ,也含有其导数()f x '的不等式,根据不等式的结构,构造出相应的函数.如已知是()()0xf x f x -<',可构造()()f x g x x=,可得()()()20xf x f x g x x'-='<.11.B解析:B 【分析】函数()2xf x ae x =+,变形为2x x a e =-,令()2xxg x e =-,利用导数求函数的最值,可得20a e -<<,结合212x x ≥,可得212x x =时,a 取得最小值,再把1x ,2x 代入20x ae x +=,求解1x ,再代入112xae x =-,即可求得a 的最小值【详解】函数()2xf x ae x =+,变形为2x x a e =-,令()2x xg x e =-,得()()21xx g x e-'=, 当(),1x ∈-∞时,0g x ,当()1,∈+∞x 时,0g x ,可得1x =时,函数()g x 取得最小值2e-. 又当x →-∞时,()g x →+∞,当x →+∞时,()0g x <, 且函数()2xf x ae x =+在R 上有两个零点1x ,2x ,得20a e-<<. 由212x x ≥,可得212x x =时,a 取得最小值. 由112xae x =-,222x aex =-,得1214x ae x =-,∴12x e =,解得1ln 2x =.代入112x ae x =-,解得ln 2a =-.∴a 的最小值为ln 2-. 故选:B.【点睛】此题考查利用导数研究函数的单调性与最值,考查化归与转化的数学思想,考查计算能力,属于中档题12.C解析:C 【分析】通过令3()()g x x f x =可知问题转化为解不等式()0>g x ,利用当0x >时32()3()0x f x x f x '+>及奇函数与偶函数的积函数仍为奇函数可知()g x 在(,0)-∞递减、在(0,)+∞上单调递增,进而可得结论.【详解】解:令3()()g x x f x =,则问题转化为解不等式()0>g x , 当0x >时,()3()0xf x f x '+>,∴当0x >时,233()()0x f x x f x +'>,∴当0x >时()0g x '>,即函数()g x 在(0,)+∞上单调递增,又(2)0f -=,()()f x x R ∈是奇函数,()()()()()()()333g x x f x x f x x f x g x ∴-=--=--== 故()g x 为偶函数, f ∴(2)0=,g (2)0=,且()g x 在(,0)-∞上单调递减, ∴当0x >时,()0>g x 的解集为(2,)+∞,当0x <时,()0(2)g x g >=-的解集为(2,0)-,∴使得f ()0x >成立的x 的取值范围是(2-,0)(2⋃,)+∞,故选C . 【点睛】本题考查利用导数研究函数的单调性,考查运算求解能力,构造新函数是解决本题的关键,注意解题方法的积累,属于中档题.二、填空题13.6【分析】求导函数令恒成立变量分离转化为求新函数的最大值【详解】可得令若函数在上单调递减即当时单调增所以函数在上单调递增所以故答案为:6【点睛】关键点睛:变量分离转化为不等式恒成立问题进而求又一函数解析:6 【分析】求导函数()f x ',令()0f x '≤恒成立,变量分离转化为求新函数的最大值. 【详解】21()23mf x x x x'=+--,()0f x '≤,可得3223m x x x ≥-+,令()3223g x x x x =-+,若函数()f x 在[1,2]上单调递减,即()max m g x ≥ 当[1,2]x ∈时,()2661g x x x '=-+单调增,()()266110g x x x g ''=-+≥>,所以函数()g x 在[1,2]上单调递增()()max 26g x g ==,所以6m ≥.故答案为:6 【点睛】关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.14.①②④【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③【详解】x≤0时f(x)=2xexf′(x)=2(1+x )ex 故f′(﹣2)=①正确;且f(解析:①②④ 【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③. 【详解】x ≤0时,f (x )=2xe x ,f ′(x )=2(1+x )e x ,故f ′(﹣2)=22e-,①正确; 且f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增,故x ≤0时,f (x )有最小值f (﹣1)=2e-, x >0时,f (x )=2122x x -+在(0,1)上单调递减,在(1,+∞)上单调递增,故x >0时,f (x )有最小值f (1)=122e->-故f (x )有最小值2e-,②④正确;令20x x e ⋅=得0x =,令21202x x -+=得22x =,故该函数图象与x 轴有3个交点,③错误; 故答案为:①②④ 【点睛】本题考查导数的几何意义,考查利用导数判断函数的单调性、求函数的最值一定注意定义域.15.【分析】根据函数在上单调递减由恒成立求解【详解】因为函数在上单调递减所以恒成立;令在上单调递增所以实数的取值范围为故答案为:【点睛】方法点睛:恒成立问题的解法:(1)若在区间D 上有最值则;;(2)若解析:)336,e ⎡++∞⎣【分析】根据函数()231xf x e x mx =+-+在(],3-∞上单调递减,由()0f x '≤,(],3x ∈-∞恒成立求解. 【详解】()320x f x e x m '=+-≤,因为函数()231xf x e x mx =+-+在(],3-∞上单调递减,所以32x e x m +≤,(],3x ∈-∞恒成立;令32xy e x =+在(],3-∞上单调递增,3max 36y e =+,所以实数m 的取值范围为)336,e ⎡++∞⎣. 故答案为:)336,e ⎡++∞⎣ 【点睛】方法点睛:恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.16.【分析】根据得到mn 的关系利用消元法转化为关于t 的函数构造函数求函数的导数利用导数研究函数的最值即可得到结论【详解】解:不妨设∴()∴即故()令()所以在上是增函数且当时当时即当时取得极小值同时也是 解析:ln21-【分析】根据()()f m g n t ==得到m ,n 的关系,利用消元法转化为关于t 的函数,构造函数,求函数的导数,利用导数研究函数的最值即可得到结论. 【详解】解:不妨设()()f m g n t ==, ∴31ln 22m net -=+=,(0t >) ∴3ln m t -=,即3ln m t =+,122t n e -=⋅,故1223ln t n m e t --=⋅--(0t >),令()1223ln t h t et -=⋅--(0t >),()1212t h t et-'=⋅-,()1221''20t h t e t -=⋅+>所以()h t '在()0,∞+上是增函数,且102h ⎛⎫'= ⎪⎝⎭, 当12t >时,()0h t '>, 当102t <<时,()0h t '<, 即当12t =时,()h t 取得极小值同时也是最小值, 此时1123ln ln 2122h ⎛⎫⎛⎫=-+=-⎪ ⎪⎝⎭⎝⎭,即n m -的最小值为ln21-,故答案为:ln21-. 【点睛】本题考查利用导数求函数的最小值,考查化归转化思想与运算能力,是中档题.17.【分析】根据题意求出从初始位置出发至两点的纵坐标值再次相等时对应的的取值进而求得的取值范围用两点距离公式表示进而表示成关于的函数用导数的观点求的取值范围即可【详解】解:因为动点在函数图像上动点在函数解析:29⎡⎢⎣⎦,【分析】根据题意求出A B 、从初始位置出发至A B 、两点的纵坐标值再次相等时对应的1x 的取值,进而求得1x 的取值范围,用两点距离公式表示AB ,进而表示成关于1x 的函数,用导数的观点求AB 的取值范围即可. 【详解】解:因为动点()11,A x y 在函数()31=4f x x 图像上,动点()22,B x y 在函数函数()2g x x =-图像上,所以311221,24y x y x ==-. 由题知:10x ≥,22x ≥,212x x =+.由当A B 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至A B、两点的纵坐标值再次相等时,得312124x x =-,所以31114x x =,解得10x =或12x =±. 所以,当A B 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至A B 、两点的纵坐标值再次相等时12x =.102x ∴≤≤,AB ∴==[]10,2x =∈设[]21,0,4x t t =∈,则[]0,4AB t =∈. 设()[]2321111,0,44162g t t t t t t t ⎛⎫=-=-+∈ ⎪⎝⎭, 则()23116g t t t ='-+,由0g t 得4t =或43t =. 40,3t ⎡⎤∴∈⎢⎥⎣⎦时,()0g t '>,g t 单调递增;4,43t ⎡⎤∈⎢⎥⎣⎦时,()0g t '<,g t 单调递减; 34t ∴=时,()max 43g t g ⎛⎫= ⎪⎝⎭,此时maxAB ====; 0t =时,()()min 00g t g ==,此时,min 2AB ===.0,9AB ⎡∴∈⎢⎣⎦.故答案为:⎡⎢⎣⎦.【点睛】本题主要考查用导数求最值,考查学生用导数解决问题的能力,属于中档题.18.【分析】当时利用导数法得到函数的单调性与极值再由时作出函数的大致图象令将问题转化为方程有两个不等根且即各有3个根求解【详解】当时所以当时递增当时递减所以当时取得最大值1又当时所以的大致图象如图所示:解析:1,04⎛⎫- ⎪⎝⎭【分析】当1x <时,()()1xf x x e =-,利用导数法得到函数的单调性与极值,再由1≥x 时,()ln f x x =,作出函数()f x 的大致图象,令()f x t =,将问题转化为方程20t t a --=有两个不等根12,t t ,且12,(0,1)t t ∈即()()12,f x t f x t ==各有3个根求解.【详解】当1x <时,()()1xf x x e =-,所以()xf x xe '=-,当0x <时,()0f x '>,()f x 递增,当01x <<时,()0f x '<,()f x 递减, 所以当0x =时, ()f x 取得最大值1, 又当1≥x 时,()ln f x x =, 所以()f x 的大致图象如图所示:令()f x t =,则转化为方程20t t a --=有两个不等根12,t t , 且()()2121,(0,1),,t f x t f t x t ==∈各有3个根, 方程20t t a --=在(0,1)有两个不同的解,设2()g t t t a =--,所以(0)0140(1)0g a a g a =->⎧⎪∆=+>⎨⎪=->⎩,解得104a -<<. 故答案为:1,04⎛⎫- ⎪⎝⎭【点睛】本题主要方程的根与函数的零点问题,利用导数研究函数的单调性与极值,还考查了转化化归思想、数形结合思想和运算求解的能力,属于中档题.19.ln22)【分析】用表示出得出关于的函数根据的范围判断函数单调性得出值域即可【详解】显然由题意可知故由可得故设则在上单调递减又故答案为:【点睛】本题主要考查利用导数研究函数的单调性和最值意在考查学生解析:[ln 2,2) 【分析】用2x 表示出1x ,得出212x x -关于2x 的函数2()g x ,根据2x 的范围,判断函数单调性得出值域即可. 【详解】显然10x ,20x >,由题意可知212x x e +=,故212x x e =-,2212224x x x x e ∴-=-+,由2121x x e +=>可得110x -<,故2120x e -<-,202x ln ∴<, 设()24(02)x g x x e x ln =-+<,则()120x g x e '=-<,()g x ∴在(0,2]ln 上单调递减, 又(0)2g =,(2)2g ln ln =, 2()2ln g x ∴<.故答案为:[2ln ,2). 【点睛】本题主要考查利用导数研究函数的单调性和最值,意在考查学生对这些知识的理解掌握水平.20.0【分析】求得函数的导数求得函数在上单调递增在上单调递减再根据即可判定得到答案【详解】由题意函数可得令即解得所以函数在上单调递增;令即解得或所以函数在上单调递减;又由所以函数图象与轴没有交点即函数没解析:0 【分析】求得函数的导数()3(2)(2)f x x x '=-+-,求得函数()f x 在1[,2)3-上单调递增,在(2,3]上单调递减,再根据1()0,(2)0,(3)03f f f ->>>,即可判定,得到答案.【详解】由题意,函数3()126f x x x =-++,1,33x ⎡⎤∈-⎢⎥⎣⎦, 可得22()3123(4)3(2)(2)f x x x x x '=-+=--=-+-, 令()0f x '>,即(2)(2)0x x +-<,解得22x -<<, 所以函数()f x 在1[,2)3-上单调递增;令()0f x '<,即(2)(2)0x x +->,解得2x <-或2x >, 所以函数()f x 在(2,3]上单调递减; 又由11()460,(2)220,(3)130327f f f -=--+>=>=>, 所以函数图象与x 轴没有交点,即函数()f x 没有零点, 所以函数()f x 的个数为0个. 故答案为:0. 【点睛】本题主要考查了函数零点的个数的判定,以及利用导数研究函数的单调性与极值,其中解答中利用导数求得函数的单调性与极值是解答的关键,着重考查了推理与运算能力.三、解答题21.(1)5a =;(2)13,927⎛⎫- ⎪⎝⎭. 【分析】(1)由条件可知'(3)0f =,求a 后再验证是否满足条件;(2)利用导函数的符号,推出函数的单调性,得到函数的极值,列不等式求解即可. 【详解】(1)()2323f x x ax =-+',由已知得()30f '=,得27630a -+=,5a = (2)()3253f x x x x m =-++,令()231030f x x x '=-+=,得3x =或13x =, 由()0f x '>得3x >或13x <,此时()f x 为增函数, 由()0f x '<得133x <<,此时()f x 为减函数, 即当13x =时,函数()f x 取得极大值,当3x =时,()f x 取得极小值, 即()()39f x f m ==-极小值,()113327f x f m ⎛⎫==+ ⎪⎝⎭极大值, 所以函数()f x 有三个不同零点,因此,只需()10330ff ⎧⎛⎫>⎪ ⎪⎝⎭⎨⎪<⎩,即1302790m m ⎧+>⎪⎨⎪-<⎩,解得13927m -<<, m 的范围是13,927⎛⎫- ⎪⎝⎭.【点睛】方法点睛:该题考查的是有关导数的问题,解题方法如下:(1)根据函数在极值点处导数等于零,求得参数的值,之后需要验证;(2)对函数求导,得到其极值,结合三次函数有三个零点的条件为极大值大于零,极小值小于零,列出不等式组,求得结果. 22.(1;(2)7(1,)3. 【分析】(1)可得与l 平行且与()y f x =相切的切线的切点到直线距离最短,求出切点即可得出;(2)求出()g x 的导数,题目等价于2(1)10x a x -++=在()0,3上有两个不同的根,则列出式子即可求出. 【详解】解:(1)设曲线()y f x =上的点()00,A x y 到直线l 的距离最短,则在点A 的切线与l 平行,001()1f x x ='=,∴01x =,求得01y =, ∴在点A 的切线方程为y x =, ∴点A 到直线l= (2)由题意得21()(1)ln 1(03)2g x x a x x x =-+++<<, ∴21(1)1()(1)x a x g x x a x x-++'=-++=,∵曲线()y g x =上存在两个不同的点,使得在这两点处的切线都与x 轴平行, ∴关于x 的方程()0g x '=,即2(1)10x a x -++=在()0,3上有两个不同的根, 设2()(1)1h x x a x =-++,则()()()()21400101032393110a h a h a ⎧∆=+->⎪=>⎪⎪⎨+<<⎪⎪=-++>⎪⎩,解得713<<a , ∴实数a 的取值范围是7(1,)3. 【点睛】本题考查利用导数解决方程的根的问题,解题的关键是将题目等价为2(1)10x a x -++=在()0,3上有两个不同的根. 23.(1)单调递增区间为][4,1,,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎡⎤-⎢⎥⎣⎦; (2)最大值为9,最小值为10027-. 【分析】(1)先求出()'f x ,由()'10f -=求出a 的值,再由()'0f x >得增区间,()'0f x <得减区间;(2)根据(1)的结论求出函数的极值,与端点处函数值进行比较即可结果. 【详解】(1) 函数()()()242(f x x x a a =--∈ R ),()()()22'2242628f x x x a x x ax ∴=-+-⨯=--.()'10,6280f a -=∴+-=,解得1a =.则()()()232421284,f x x x x x x x =--=--+∈ R .()()()2'6282341f x x x x x =--=-+,令()'0f x =,解得1241,3x x =-=. 由()'0f x >得43x >或1x <-,此时函数单调递增, 由()'0f x <得413x -<<,此时函数单调递减, 即函数的单调递增区间为][4,1,,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎡⎤-⎢⎥⎣⎦. (2)当22x -≤≤时,函数()f x 与()'f x 的变化如下表:由表格可知:当1x =-时,函数f x 取得极大值,19f -=, 当43x =时,函数()f x 取得极小值,4100327f ⎛⎫=- ⎪⎝⎭, 又()()20,20f f -==,可知函数()f x 的最大值为9,最小值为10027-. 【方法点睛】本题主要考查利用导数判断函数的单调性以及函数在闭区间上的最值,属于难题. 求函数()f x 最值的步骤:(1) 确定函数的定义域;(2) 求导数()f x ';(3) 解方程()0,f x '=求出函数定义域内的所有根;(4) 列表检查()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值得函数值与极值的大小24.(1)函数()xf x e x =-的单调递增区间为()0,∞+;单调递减区间为(),0-∞;(2)2,4e ⎛⎤-∞ ⎥⎝⎦. 【分析】 (1)当12a =时,()xf x e x =-,利用导数可求得函数()f x 的单调递增区间和递减区间;(2)由参变量分离法得出min2x e a x ⎛⎫≤ ⎪⎝⎭,利用导数求出函数()xe g x x =在区间[]2,3上的最小值,由此可得出实数a 的取值范围. 【详解】 (1)当12a =时,()x f x e x =-,()1xf x e '=-, 令()0f x '=,得0x =.令()0f x '>,得0x >:令()0f x '<,得0x <.所以函数()xf x e x =-的单调递增区间为()0,∞+,单调递减区间为(),0-∞;(2)()202xxe f x e ax a x =-≥⇔≤对任意的[]2,3x ∈恒成立,即min2x e a x ⎛⎫≤ ⎪⎝⎭,设()xe g x x =﹐则()()21x e x g x x-'=,显然当[]2,3x ∈时()0g x '>恒成立. ()g x ∴在[]2,3单调递增,()n2mi ()22g x g e ∴==,22224e e a a ∴≤⇒≤,所以2,4 e a ⎛⎤∈-∞ ⎥⎝⎦. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.25.(1)在(),1-∞单调递减,在()1+∞,上单调递增;(2)22(2,)(,)e e e +∞.【分析】(1)当1a =-时,()()2122x f x x x x e =-+-,求出导数,令()0f x '>,()0f x '<得出答案.(2)由2x =为()f x 的一个零点,所以方程10(2)2x ax e x -+=≠有2个实数根,即2(2,0)x e a x x =≠有两个实数根,设2()(2,0)x e h x x x =≠,分析出其导数,得出单调性,画出函数图象,由数形结合可得答案. 【详解】(1)当1a =-时,()()2122x f x x x x e =-+- ()()()()1111x x f x x x e x e '=-+-=-+由()0f x '>,得1x >,由()0f x '<,得1x <,所以()f x 在(),1-∞单调递减,在()1+∞,上单调递增 (2)由函数211()(2)(2)22()x x f x ax ax x e x ax e =-++-=--+, 可得()f x 有一个零点2x =, 要使得()f x 有3个零点,即方程10(2)2x ax e x -+=≠有2个实数根,又由方程10(2)2xax e x -+=≠,可化为2(2,0)x e a x x=≠,令2()(2,0)xe h x x x =≠,即函数y a =与()y h x =图象 有两个交点,令22222(1)()0x x x xe e e x h x x x--'===,得1x =, ()h x 的单调性如表:x (,0)-∞(0,1)1 (1,2)(2,)+∞()h x ' - - 0 + + ()h x↘↘极小值↗↗所以函数()f x 在1x =处取得极小值2e ,当0x <时,()0h x <,又2(2)h e =,()h x 的大致图象如图,由函数y a =与()()2y h x x =≠图象有两个交点,根据图象可得22(2,)(,)a e e e ∈+∞所以要使得()f x 有3个零点,则实数a 的取值范围为22(2,)(,)e e e +∞【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 26.(1)答案见解析;(2)1a e ≤≤. 【分析】(1)求出导函数()'f x ,分类讨论确定()0f x '>的解得增区间,同时可由()0f x '<得减区间;(2)由(1)得()f x 的最小值为()f a ,解不等式()2f a ≥可得.【详解】(1)函数定义域为(0,)+∞,由题意221(1)()()1a a x x a f x x x x -+-'=+-=, 当0a ≤时,在0x >时,()0f x '>恒成立,()f x 在(0,)+∞上单调递增,当0a >时,()0f x '>的解为x a >,()0f x '<的解为0x a <<, ()f x 在(,)a +∞上递增,在(0,)a 上递减.(2)由(1)知0a >时,()f x 在(,)a +∞上递增,在(0,)a 上递减.所以min ()()(1)ln 1f x f a a a a ==+-+,()2f x ≥恒成立,则(1)ln 12a a a +-+≥, 即(1)(ln 1)0a a --≤,由于01a <≤时,ln 0≤a ,不等式(1)(ln 1)0a a --≤不成立,所以1ln 1a a ≥⎧⎨≤⎩,解得1a e ≤≤. 【点睛】关键点点睛:本题考查用导数研究函数的单调性,研究不等式恒成立问题.一般地()f x m ≥恒成立等价于min ()f x m ≥,()f x m ≤恒成立,等价于max ()f x m ≤,然后解不等式可得参数范围.或者用分离参数法转化为()k g x ≤(其中k 不参数),则min ()k g x ≤,若()k g x ≥,则max ()x g x ≥.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(二十一)
1.若物体进行s(t)=2(1-t)2的直线运动,则物体开始运动时的瞬时速度为( ) A .0 B .-4 C .4 D .2
答案 B
2.一个物体的运动方程为s =1-t +t 2,其中s 的单位为米,t 的单位是秒,那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒
答案 C
3.放射性元素由于不断有原子放射出微粒子而变成其他元素.其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M 02

t
30,其中
M 0为t =0时铯137的含量.已知t =30时,铯
137含量的变化率是-10ln2(太贝克/年),则M(60)=( ) A .5太贝克 B .75ln2太贝克 C .150ln2太贝克 D .150太贝克
答案 D
4.一个质点做直线运动,从始点起经过t s 后的距离为S =-1
4t 4-4t 3+16t 2,则速度为0的
时刻为( ) A .4 s 末 B .8 s 末
C .0 s 与8 s 末
D .0 s ,4 s ,8 s 末 答案 D
5.一质点沿直线运动,如果由始点起经过t 秒后的距离为s =14t 4-7
3t 3+7t 2-8t ,那么速度为
零的时刻是( ) A .1秒末 B .2秒末 C .2,4秒末 D .1,2,4秒末 答案 D
6.从时间t =0开始的t s 内,通过某导体的电量(单位:C)可由公式q =2t 2+3t 表示,则第5 s 时的电流强度为( ) A .27 C/s B .20 C/s C .25 C/s D .23 C/s 答案 D
7.如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,按顺序与各容器对应的水的高度h与时间t的函数关系图象相对应的一项是()
A.①②③④B.②①③④
C.②①④③D.②④①③
答案 C
8.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,设t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S′(t)的图象大致为()
答案 A
9.球的半径从2增加到3时球的体积的平均膨胀率为______.
答案76 3π
10.某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可近似地表示为y=f(t)
=t2
100,则在时刻t=10 min的降雨强度为________mm/min.
答案1 5
11.一杯80 ℃的热红茶置于20 ℃的房间里,它的温度会逐渐下降,温度T(单位:℃)与时间t(单位:min)之间的关系由函数T=f(t)给出,则①f′(t)的符号为________;
②f(3)=-4的实际意义是________.
答案负在3 min时红茶温度约以4 ℃/min的速率下降
12.半径为r的圆的面积S(r)=πr2,周长C(r)=2πr.若将r看作(0,+∞)上的变量,则(πr2)′=2πr①,
①式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于①的式子:________②,
②式可以用语言叙述为________________________________________________. 答案 ⎝⎛⎭
⎫4
3πR 3′=4πR 2 球的体积函数的导数等于球的表面积函数 13.某厂生产某种产品x 件的总成本c(x)=1 200+2
75x 3(万元),已知产品的单价与产品件数
x 成正比.生产50件这样的产品单价为100万元,产量定为多少时总利润最大?
解析 设单价为a 万元,总利润为y 万元,由已知得a =kx ,把x =50,a =100代入该式得k =2,即a =2x ,所以y =ax -c(x)=2x 2-1 200-2
75x 3(x>0),
令y ′=4x -2
25x 2=0,得x =50或x =0(舍去),
易知x =50是极大值点,也是最大值点. 答:产量定为50件时总利润最大.
14.枪弹在枪筒中的运动可以看作匀加速直线运动,如果它的加速度a =5×105 m/s 2,枪弹从枪口射出所用的时间为1.6×10-
3 s .求枪弹射出枪口时的瞬时速度. 解析 运动方程为s =12at 2=5
2×105t 2.
s ′=5×105t ,将t =1.6×10-3代入,得 s ′=5×105×1.6×10-3=800 m/s.
15.江轮逆水上行300 km ,水速为6 km/h ,船相对于水的速度为x km/h ,已知船航行时每小时的耗油量为0.01 x 2 L ,即与船相对于水的速度的平方成正比.
(1)试写出江轮航行过程中耗油量y 关于船相对于水的速度x 的函数关系式:y =f(x); (2)求f ′(36),并解释它的实际意义(船的实际速度=船相对水的速度-水速).
解析 (1)船的实际速度为(x -6)km/h ,故全程用时300
x -6 h ,所以耗油量y 关于x 的函数关系
式为
y =f(x)=300×0.01x 2x -6=3x 2
x -6(x>6).
(2)f ′(x)=3·2x (x -6)-x 2
(x -6)2
=3x (x -12)(x -6)
2,
f ′(36)=3×36×(36-12)2
(36-6)
=2.88⎝⎛⎭⎫
L km/h ,
f ′(36)表示当船相对于水的速度为36 km/h 时耗油量增加的速度为2.88
L
km/h
,也就是说当船相对于水的速度为36 km/h 时,船的航行速度每增加1 km/h ,耗油量就要增加2.88 L. 16.蜥蜴的体温与阳光的照射有关,其关系为T(t)=120
t +5+15,其中T(t)为体温(单位:℃),
t 为太阳落山后的时间(单位:min)
(1)从t =0 min 到t =10 min ,蜥蜴的体温下降了多少?
(2)从t =0 min 到t =10 min ,蜥蜴的体温下降的平均变化率是多少?它表示什么意义? (3)当t =5 min 时,蜥蜴的体温下降的瞬时变化率是多少?它表示什么意义? 解析 (1)∵T(10)-T(0)=120
10+5+15-⎝⎛⎭⎫1205+15=-16(℃), ∴从t =0 min 到t =10 min ,蜥蜴的体温下降了16 ℃.
(2)从t =0 min 到t =10 min ,蜥蜴的体温下降的平均变化率是:T (10)-T (0)10=-16
10=
-1.6(℃/min).
它表示从t =0 min 到t =10 min 这段时间内,蜥蜴体温平均每分钟下降1.6 ℃. (3)∵T ′(t)=⎝ ⎛⎭⎪⎫
120t +5+15′=
-120(t +5)2
, ∴当t =5 min 时,蜥蜴的体温下降的瞬时变化率为: T ′(5)=-120
10
2=-1.2(℃/min),
它表示t =5 min 时蜥蜴体温的下降速度为1.2 ℃/min.。

相关文档
最新文档