南京市中考数学试卷及答案资料

合集下载

2024年南京中考数学试卷

2024年南京中考数学试卷

选择题:下列哪个数集包含了所有的整数?A. 自然数集B. 有理数集C. 整数集(正确答案)D. 实数集已知三角形的内角和为180°,若其中一个角为60°,另一个角为45°,则第三个角为:A. 75°(正确答案)B. 60°C. 45°D. 90°下列哪个图形是中心对称图形但不是轴对称图形?A. 正方形B. 等腰三角形C. 平行四边形(正确答案)D. 圆下列哪个式子表示的是二次根式的最简形式?A. √18B. √(2/3)C. √0.5D. √10(正确答案)在平面直角坐标系中,点A(-2, 3)关于y轴的对称点的坐标是:A. (2, -3)B. (2, 3)(正确答案)C. (-2, -3)D. (3, -2)下列哪个不等式组的解集是x < -1?A. { x < -2, x > -3 }B. { x < -1, x > -2 }(正确答案)C. { x > -1, x < 0 }D. { x < 1, x > -2 }下列哪个函数是一次函数?A. y = x2B. y = 1/xC. y = 2x + 1(正确答案)D. y = 2已知圆的半径为r,则圆的面积为:A. 2πrB. πr2(正确答案)C. πrD. 2rπ在一次数学测试中,全班平均分为78分,如果某同学的分数是85分,那么这个分数:A. 低于平均分B. 高于平均分(正确答案)C. 等于平均分D. 无法判断。

2020年江苏省南京市中考数学试卷原卷附解析

2020年江苏省南京市中考数学试卷原卷附解析

2020年江苏省南京市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.今年我市约有36000名学生参加初中毕业会考,为了了解这36000名学生的数学成绩,准备从中随机抽取1200 名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为( )A .136000B .11200C .150D .1302.若 3x=4y ,则x :y 等于( )A .3 : 4B .4 : 3C .11:34 D .11:43 3.把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,展开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是( ) A .(10213)+ cm B .(1013)+cm C .22cmD .18cm4.下列各组多项式中,没有公因式的一组是( )A .ax bx -与by ay -B .268xy y +与43y x --C .ab ac -与ab bc -D .3()a b y -与2()b a x - 5.一个晴箱里装有 10 个黑球,8 个白球, 12个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是( )A . 13B .18C .415D .411 6.如图,直线AB 、CD 相交于点O .OE 平分∠AOD ,若∠BOC =80°,则∠AOE 的度数是( )A .40°B .50°C .80°D . 100°7. m 箱橘子a (kg ),则 3箱橘子的重量是( )A .3a m (kg )B .3m a (kg )C .3am (kg )D .3a m(kg ) 3cm 3cm二、填空题8.在 Rt △ABC 中,锐角α的邻边是3,对边是则4,则tan α= . 9.己在同一直角坐标系中,函数11(0)y k x k =≠的图象与22(0)k y k x=≠的图象没有公共点,则12k k .(填“>”、“=”或“<”)10.如图,四边形ABCD 的对角线AC ,BD 交于点O ,EF 过点O ,若OA=OC ,OB=OD ,则图中全等的三角形有_ _ _对.11.如图,AB ∥CD ,若∠ABE=120°,∠DCE=35°,则∠BEC= .12.认真观察图中的 4个图中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征.特征 1: ;特征2: .13.请你从式子24a ,2()x y -,1,2b 中,任意选两个式子作差,并将得到的式子进行因式分解: . 14.三个同学对问题“若方程组111222a x b yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 . 解答题15.已知x+y=6,xy=4,则x 2y+xy 2的值为 .16.甲、乙两人环绕长为 400 m 的环形跑道散步一如果两人从同一点背道而行,那么经过2 min 相遇;如果两人从同一点同向而行,那么经过 20 min 相遇,已知甲的速度比乙快,则甲、乙两人散步速度分别为 m/min , m/min.17.如图所示的五家银行行标中,是轴对称图形的有 (填序号).OEFB C A E D 18.上学期期末考试,60名学生中,数学成绩为优秀的有20人,良好的有30人,及格的有10人.如果将其制成扇形统计图,则三个圆心角的度数分别为 、 、 .19.如图是根据某市l999年至2003年工业生产总值绘制的折线统计图.观察统计图可得:增长幅度最大的年份是 年,比它的前一年增加 亿元.工业生产总值,亿元20.如果 -22 元表示亏损 22 元,那么 45 元表示 .三、解答题21.如图,以直角三角形各边为直径的三个半圆围成的两个新月形( 阴影部分)的面积和,与直角三角形的面积有什么关系?为什么?22.已知: 如图, 在梯形ABCD 中, AD ∥BC, AB=CD, E 是底边BC 的中点, 连接AE 、DE. 求证: △ADE 是等腰三角形.23.如图,在□ABCD 中,E 、F 是对角线BD 上的两点,且BE=DF.求证:(1)AE=CF ;(2)AE ∥CF .FC D AEB24.把不等式组21x x ≥-⎧⎨<⎩的解集表示在下面的数轴上:25.某养鱼户搞池塘养鱼.放养鳝鱼苗20000尾,其成活率为70%.随意捞出l0尾鱼,称得每尾的重量(单位:千克)如下:0.8.0.9.1.2,1.3,0.8,1.1,1.0,1.2,0.8,0.9.根据样本平均数估计这塘鱼的总产量是多少千克?若将鱼全部卖出,每千克可获利润1.5元,预计该养鱼户将获利多少元?26.如图,已知AB ∥CD ,∠1 = 53°,∠2 = 67°,试求∠3 的度数.27.用分数或整数表示下列各负整数指数幂的值:(1)32-;(2)31-;(3)3(3)--;(4)20.0l -28.如图所示,已知线段a ,c ,求作Rt △ABC ,使BC=a ,AB=c .29.据丽水市统计局关于经济和社会发展统计公报,丽水市2000~2003年全社会用电量的折线统计图如图所示:2000—2003年萧水市全社会用电量统计图(1)填写统计表:2000--2003年丽水市全社会用电量统计表年份2000200120022003全社会用电量(单位:亿千瓦13.33时)2003年比2001年的用电量增长百分率(保留2个有效数字).30.制作适当的统计图表示下列数据:(1)1 年份195219621970198019902005国内生产总值(亿6791149.32252.74517.818547.9189404元)动物鸡鹅鸭鸽子天数(天)21303016【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.A4.C5.C6.A7.D二、填空题8.49.3< 010.611.12.都是轴对称图形;这些图形的面积都等于4个单位面积13.不唯一.如241(21)(21)a a a -=+- 14.510x y =⎧⎨=⎩15. 2416.110,9017.①②③18.120°, 180°,60°19.2003,4020.盈利 45 元三、解答题21.阴影部分面积之和=直角三角形面积,设直角三角形的斜边为c ,其余两条直角边分别为 a 、b ,则阴影部分面积之和2221111()2222a b c ab πππ=+-- 22211()22a b c ab π=+-+,∵222c a b =+,∴阴影部分面积之和=12ab ,12Rt S ab ∆=, ∴阴影部分面积之和=Rt S ∆.22.证: ∵ABCD 是等腰梯形 ,∴∠B=∠C, AB=CD∵E 是BC 中点 ,∴BE=CE ,∴△ABE ≌△DCE,∴AE=DE∴△AED 是等腰三角形23.利用△ABE ≌△CDF 即可略25.∵0.910x++=0.8+0.9=1.0(千克),∴1.0×20000×70%=14000(千克).∴l4000×1.5=21000(元).∴估计这塘鱼的总产量是l4 000千克,预计该养鱼户将获利21 000元26.60°27.(1)18;(2) 1;(3)127-;(4) 1000028.提示:两种情况29.(1)14.73,17.05,21.92 (2)49%30.(1)可选用折线统计图(图略) (2)可选用条形统计图(图略)。

2020年江苏南京中考数学试卷(解析版)

2020年江苏南京中考数学试卷(解析版)

2020年江苏南京中考数学试卷(解析版)一、选择题(本大题共6小题,每小题2分,共12分)1.计算的结果是( ).A. B. C. D.2.的平方根是( ).A. B. C. D.3.计算的结果是( ).A. B. C. D.4.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,年年末全国农村贫困人口的情况如图所示.人数万年份根据图中提供的信息,下列说法的是( ).错.误.A.年末,农村贫困人口比上年末减少万人B.年末至年末,农村贫困人口累计减少超过万人C.年末至年末,连续年每年农村贫困人口减少万人以上D.为在年末农村贫困人口全部脱贫,今年要确保完成减少万农村贫困人口的任务5.关于的方程(为常数)的根的情况,下列结论中正确的是( ).A.两个正根B.两个负根C.一个正根,一个负根D.无实数根6.如图,在平面直角坐标系中,点在第一象限,⊙与轴、轴都相切,且经过矩形的顶点,与相交于点.若⊙的半径为,点的坐标是,则点的坐标是( ).A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分)7.写出一个负数,使这个数的绝对值小于: .8.若式子在实数范围内有意义,则的取值范围是 .9.纳秒()是非常小的时间单位,.北斗全球导航系统的授时精度优于.用科学记数法表示是 .10.计算的结果是 .11.已知、满足方程组,则的值为 .12.方程的解是 .13.将一次函数的图象绕原点逆时针旋转,所得到的图象对应的函数表达式是 .14.如图,在边长为的正六边形中,点在上,则的面积为 .15.如图,线段、的垂直平分线、相交于点.若,则.16.下列关于二次函数 (为常数)的结论:①该函数的图象与函数的图象形状相同;②该函数的图象一定经过点;③当时,随的增大而减小;④该函数的图象的顶点在函数的图象上.其中所有正确结论的序号是 .三、解答题(本大题共11小题,共88分)17.计算.18.解方程:.19.如图,在上,在上,,,求证:.(1)(2)20.已知反比例函数的图象经过点.求的值.完成下面的解答.解不等式组,解:解不等式①,得 .根据函数的图象,得不等式②的解集 .把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集 .①②(1)21.为了了解某地居民用电量的情况,随机抽取了该地户居民六月份的用电量(单位:)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数根据抽样调查的结果,回答下列问题:该地这户居民六月份的用电量的中位数落在第 组内.(2)估计该地万户居民六月份的用电量低于的大约有多少户.(1)(2)22.甲、乙两人分别从、、这个景点中随机选择个景点游览.求甲选择的个景点是、的概率.甲、乙两人选择的个景点恰好相同的概率是 .23.如图,在港口处的正东方向有两个相距的观测点、.一艘轮船从处出发,沿北偏东方向航行至处,在、处分别测得、.求轮船航行的距离.(参考数据:,,,,,.)北东(1)(2)24.如图,在中,,是上一点,⊙经过点、、,交于点,过点作,交⊙于点.求证:四边形是平行四边形..(1)25.小明和小丽先后从地出发沿同一直道去地.设小丽出发第时,小丽、小明分别为、.与之间的函数表达式是,与之间的函数表达式是.小丽出发时,小明离地的距离为.离.地.的.距.离.(2)小丽出发至小明到达地这段时间内,两人何时相距最近?最近距离是多少?(1)(2)26.如图,在和中,、分别是、上一点,.当时,求证.证明的途径可以用下面的框图表示,请填写其中的空格.当,判断与是否相似,并说明理由.(1)(2)27.如图①,要在一条笔直的路边上建一个燃气站,向同侧的、两个城镇分别铺设管道输送燃气,试确定燃气站的位置,使铺设管道的路线最短.图如图②,作出点关于的对称点,线段与直线的交点的位置即为所求,即在点处建燃气站,所得路线是最短的.为了证明点的位置即为所求,不妨在直线上另外任取一点,连接、,证明.请完成这个证明.图如果在、两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).【答案】解析:,故选.解析:12生态保护区是正方形区域,位置如图③所示.生态保护区图生态保护区是圆形区域,位置如图④所示.生态保护区图D 1.D 2.的平方根为.故答案选:.解析:.故选.解析:可转化为,则,∴方程有两个不等的实数根,∴,,∴异号,∴该方程两根为一正一负.故选.解析:连接、,过点作,,,由题意得,,则,由垂径定理得,则,在直角中,,,B 3.A 4.C 5.A 6.则,则,则,所以.故选.解析:.解析:分式有意义,则,解得.故答案为:.解析:∵,∴.故答案为:.解析:.故答案为:.解析:,由①得:③,由③②得:,解得,将代入①得,(答案不唯一)7.8.9.10.11.①②∴.故答案为:.12.解析:,方程两边同乘得,检验:当时,,∴是原分式方程的解.故答案为:.13.解析:如图:yxO与轴交点为,,将一次函数图象绕原点逆时针旋转,则点对应点,点对应点,∴直线解析式为.故答案为:.14.解析:如图,连接,,∵六边形是正六边形,∴,∵,∴,∴,过点作,∵,,,∴,,∴,∵,∴.故答案为:.15.解析:设于点,于点,连接、,在四边形中,,∴,又∵,,∴,∵垂直平分,垂直平分,∴,,则点是的外心,如图,作以为圆心,为半径的圆,∴.故答案为:.解析:二次函数(是常数),①次函数确定抛物线的方向和大小,两个二次函数都等于,故①正确;②,则,所以该图象一定经过点,故②正确;③题目所给的二次函数解析式为顶点式,,所以抛物线开口向下,对称轴为直线,所以当时,随的增大而减小,故③错误;④该二次函数顶点坐标为,当时,故④正确.故答案为:①②④.解析:.解析:方法一:,,,∴,①②④16..17.,.18.(1)(2),,,∴,,∴方程的解为,.方法二:原方程可以变形为,,,∴,.解析:∵,,,∴≌,∴,∴.解析:将代入得,解得:.,则;函数图象如下所示,当时,,∴当时,随增大而减小,证明见解析.19.(1).(2);;画图见解析;.20.(1)(2)(1)(2)∴当时,取值范围为;不等式解集在数轴上表示为:由图象可知两个不等式解集公共部分为,∴此不等式组解集为.解析:共组数据,∴中位数应该为第个与第个数据之和的平均数,∵第一组有个数据,第二组有个数据,∴中位数在第组.故答案为:.(户).因此,估计该地万户居民六月份的用电量低于的大约有户.解析:甲从、、这三个景点中随机选择个景点,所以可能出现的结果共有种,即、、,这些结果出现的可能性相等.所有结果中,满足甲选择的个景点是、(记为事件)的结果有种,即,所以.由第()问知选择个景点的情况有种:、、则可使用列表法描述甲、乙两人的景点选择乙结果甲(1)(2)户.21.(1).(2)22.由表格可知甲、乙两人景点选择共有种结果,且这些结果出现的可能性相等,满足甲、乙两人在同一个景点(记为事件)的共有种情况,即、、,所以.故答案为:.解析:如图,过点作于点.北东在中,,∴,则,在中,,∴,则,∵,∴,∴,在中,,∴,∵,∴,因此,轮船航行的距离约为..23.(1)证明见解析.24.(1)(2)解析:∵,∴.∵,∴.又,∴.∴.又,∴四边形是平行四边形.如图,连接.∵,,∴.∵四边形是⊙的内接四边形,∴.∵,∴.∴.∴.∴.解析:(2)证明见解析.(1)(2)小丽出发第时,两人相距最近,最近距离是.25.(1)(2)(1)(2)当时,,,∴小丽出发时,小明离地:米.小丽小明米米令,即,解得,(舍),即小明分钟到达地,设小丽出发第时,两人相距,那么,即,其中,恒成立,∴时,有最小值为,也就是说,当小丽出发第时,两人相距最近,最近距离是.解析:;.方法一:如图所示,过点、分别作,,交于点,交于点.图∵,∴,∴,同理,(1);.(2),证明见解析.26.又,∴,∴,同理,∴,即,∴,又,∴,∴,∴,∵,∴,同理,∴,又,∴.方法二:如图所示,过点、分别作,,交延长线于点,交于点.图不妨设,∵,即,∴,即,∵,∴,∴,同理,,∵,∴,∴,,∴,∴,∴,∴,,又∵,,∴,,∴,∴,又∵,∴.(1)证明见解析.12(2)如图②所示,图线即为所求.生态保护区图在点处建燃气站,铺设管道的最短路线是(如图②,其中是正方形的顶点).如图③显示即为所求.27.(1)1(2)解析:如图①,连接,图∵点,关于对称,点在上,∴,∴.同理:.∵,∴.引理,在如图的“飞镖”多边形中,满足:.如图,延长交于点,生态保护区图在点处建燃气站,铺设管道的最短路线是(如图③,其中、都与圆相切).2在中,,即,在中,,∴,即,∴.到的最短路线是,理由同()中的将军饮马;在上所在直线左边任意位置时,到的最短距离都是,如图,生态保护区若经过点再到,则最短距离应该是,根据引理中的形状,,故是到的最短距离.若不与圆相切,例如到图中位置再到,则根据两点之间线段最短,.同理,若不与圆相切,则,故、与圆相切时,到,到距离最短;若路线不经过弧,而是经过圆外的一点,则经过到的最小值为,延长、交于点,连接、、,设圆半径为,则,,显然,所以,,根据引理中的飞镖型,,所以经过时路线最短.生态保护区扇形扇形。

南京市中考数学试卷含详细解版

南京市中考数学试卷含详细解版

江苏省南京市初中毕业生学业考试数学试题一. 选择题(本大题共6小题,每小题2分,共12分) 1.计算︱- 5+3︱的结果是()A. - 2B. 2C. - 8D. 8考点:有理数的加法;绝对值. 分析:先计算﹣5+3,再求绝对值即可. 解答:解:原式=|﹣2| =2. 故选B . 点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数. 2.计算(-xy ³)²的结果是( ) A. x ²y 6 B. -x ²y 6 C. x ²y 9 D. -x ²y 9 考点:幂的乘方与积的乘方. 分析:根据幂的乘方和积的乘方的运算方法:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数);求出计算(﹣xy 3)2的结果是多少即可. 解答:解:(﹣xy 3)2 =(﹣x )2•(y 3)2 =x 2y 6,即计算(﹣xy 3)2的结果是x 2y 6. 故选:A . 点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn(m ,n 是正整数);②(ab )n =a n b n (n 是正整数).3.如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是()A. AE EC = 12B.DE BC = 12C.△ADE 的周长△ABC 的周长 = 13D. △ADE 的面积△ABC 的面积 = 13考点:相似三角形的判定与性质. 分析:第3题图DA CE由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选C.点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.4.某市底机动车的数量是2×106辆,新增3×105辆.用科学记数法表示该市底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:底机动车的数量为:3×105+2×106=2.3×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.估计5 -12介于( )A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间考点:第6题图MGFE O CD BA N估算无理数的大小. 分析:先估算的范围,再进一步估算,即可解答.解答: 解:∵ 2.235, ∴﹣1≈1.235, ∴≈0.617,∴介于0.6与0.7之间,故选:C . 点评:本题考查了估算有理数的大小,解决本题的关键是估算的大小.6.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为() A. 133B. 92C.4313D.2 5考点:切线的性质;矩形的性质. 分析:连接OE ,OF ,ON ,OG ,在矩形ABCD 中,得到∠A=∠B=90°,CD=AB=4,由于AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE ,FBGO 是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果. 解答:解:连接OE ,OF ,ON ,OG , 在矩形ABCD 中,∵∠A=∠B=90°,CD=AB=4,∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点, ∴∠AEO=∠AFO=∠OFB=∠BGO=90°, ∴四边形AFOE ,FBGO 是正方形, ∴AF=BF=AE=BG=2, ∴DE=3,∵DM 是⊙O 的切线, ∴DN=DE=3,MN=MG , ∴CM=5﹣2﹣MN=3﹣MN ,在R t △DMC 中,DM 2=CD 2+CM 2, ∴(3+NM )2=(3﹣NM )2+42,∴NM=,∴DM=3=,故选A.点评:本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.二.填空题(本大题共10小题,每小题2分,共20分)7.4的平方根是;4的算术平方根是.考点:算术平方根;平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.点评:此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.8.若式子x+1在实数范围内有意义,则x的取值范围是.考点:二次根式有意义的条件.分析:根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解答:解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.计算5×153的结果是.考点:二次根式的乘除法.分析:直接利用二次根式的性质化简求出即可.解答:解:=×=5.故答案为:5. 点评:此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键. 10.分解因式(a - b )(a - 4b )+ab 的结果是 .考点:因式分解-运用公式法. 分析:首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可. 解答:解:(a ﹣b )(a ﹣4b )+ab =a 2﹣5ab+4b 2+ab =a 2﹣4ab+4b 2 =(a ﹣2b )2.故答案为:(a ﹣2b )2. 点评:此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.不等式组⎩⎨⎧2x +1>-12x +1 < 3的解集是 .考点:解一元一次不等式组. 分析:分别解每一个不等式,再求解集的公共部分. 解答:解:,解不等式①得:x >﹣1, 解不等式②得:x <1,所以不等式组的解集是﹣1<x <1. 故答案为:﹣1<x <1. 点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 . 考点:根与系数的关系;一元二次方程的解. 分析:利用一元二次方程的根与系数的关系,两根的和是﹣m ,两个根的积是3,即可求解. 解答:解:设方程的另一个解是a ,则1+a=﹣m ,1×a=3,解得:m=﹣4,a=3.故答案是:3,﹣4.点评:本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.13.在平面直角坐标系中,点A的坐标是(2,-3),作点A关于x轴的对称点,得到点A',再作点A'关于y轴的对称点,得到点A'',则点A''的坐标是( , ).考点:关于x轴、y轴对称的点的坐标.分析:分别利用x轴、y轴对称点的性质,得出A′,A″的坐标进而得出答案.解答:解:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.点评:此题主要考查了关于x轴、y轴对称点的性质.(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.工种人数每人每月工资元电工 5 7000木工 4 6000瓦工 5 50001名.与调整前相比,该工程队员工月工资的方差 (填“变小”,“不变”或“变大”).考点:方差.分析:利用已知方差的定义得出每个数据减去平均数后平方和增大,进而得出方差变大.解答:解:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:增大.点评:此题主要考查了方差的定义,正确把握方差中每个数据的意义是解题关键.15.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E= °.1y=考点:圆内接四边形的性质. 分析:连接CE ,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD ,然后求解即可. 解答:解:如图,连接CE ,∵五边形ABCDE 是圆内接五边形, ∴四边形ABCE 是圆内接四边形, ∴∠B+∠AEC=180°, ∵∠CED=∠CAD=35°, ∴∠B+∠E=180°+35°=215°. 故答案为:215.点评:本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.16.如图,过原点O 的直线与反比例函数y 1、y 2的图像在第一象限内分别交于点A 、B ,且A 为OB 的中点.若函数y 1= 1x ,则y 2与x 的函数表达式是 .考点:反比例函数与一次函数的交点问题. 分析:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,由于点A 在反比例函数y 1=上,设A (a ,),求得点B 的坐标代入反比例函数的解析式即可求出结果. 解答:解:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D , ∵点A 在反比例函数y 1=上, ∴设A (a ,),∴OC=a ,AC=, ∵AC ⊥x 轴,BD ⊥x 轴, ∴AC ∥BD ,∴△OAC ∽△OBD , ∴,∵A 为OB 的中点, ∴=,∴BD=2AC=,OD=2OC=2a , ∴B (2a ,), 设y 2=, ∴k=2a •=4,∴y 2与x 的函数表达式是:y=. 故答案为:y=.点评:本题主要考查了待定系数法求反比例函数,相似三角形的判定和性质,反比例函数中k的几何意义要注意数形结合思想的运用. 三. 解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1) - 1 ≥ 3x +2,并把它的解集在数轴上表示出来.考点: 解一元一次不等式;在数轴上表示不等式的解集. 分析:不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可. 解答:第17题图–1–2–31230解:去括号,得2x+2﹣1≥3x+2, 移项,得2x ﹣3x ≥2﹣2+1, 合并同类项,得﹣x ≥1, 系数化为1,得x ≤﹣1,这个不等式的解集在数轴上表示为:点评:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 18.(7分)解方程2x -3 = 3x考点:解分式方程. 专题: 计算题. 分析:观察可得最简公分母是x (x ﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程两边同乘以x (x ﹣3),得2x=3(x ﹣3). 解这个方程,得x=9.检验:将x=9代入x (x ﹣3)知,x (x ﹣3)≠0. 所以x=9是原方程的根. 点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.19.(7分)计算⎝⎛⎭⎫2a ²-b ² - 1a ² - ab ÷ aa +b考点:分式的混合运算. 分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可. 解答:解:(﹣)÷=[﹣]×=[﹣]×=×=.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD = CD BD. (1) 求证:△ACD ∽ △CBD ; (2) 求∠ACB 的大小.考点:相似三角形的判定与性质. 分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD ;(2)由(1)知△ACD ∽△CBD ,然后根据相似三角形的对应角相等可得:∠A=∠BCD ,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°. 解答:(1)证明:∵CD 是边AB 上的高, ∴∠ADC=∠CDB=90°,∵=.∴△ACD ∽△CBD ;(2)解:∵△ACD ∽△CBD , ∴∠A=∠BCD ,在△ACD 中,∠ADC=90°, ∴∠A+∠ACD=90°, ∴∠BCD+∠ACD=90°, 即∠ACB=90°. 点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.21.(8分)为了了解某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合抽样结果,得到下列统计图.第20题图A(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较与抽样学生50米跑成绩合格率情况,写出一条正确的结论.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据“教育部门从这三类学生群体中各抽取了10%的学生进行检测”,可得100000×10%,即可得到本次检测抽取了大、中、小学生共多少名,再根据扇形图可得小学生所占45%,即可解答;(2)先计算出样本中50米跑成绩合格的中学生所占的百分比,再乘以10万,即可解答;(3)根据条形图,写出一条即可,答案不唯一.解答:解:(1)100000×10%=10000(人),10000×45%═4500(人).故答案为:10000,4500;(2)100000×40%×90%=3600(人).故答案为:3600;(3)例如:与相比,该市大学生50米跑成绩合格率下降了5%(答案不唯一).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.考点:列表法与树状图法.专题:计算题.分析:(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.解答:解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.23.(8分)如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km /h 和36km /h .经过0.1h ,轮船甲行驶至B 处,轮船乙行驶至D 位,测得∠DBO=58°,此时B 处距离码头O 有多远?(参考数据:sin 58° ≈ 0.85,cos 58° ≈ 0.53,tan 58° ≈ 1.60)考点:解直角三角形的应用.分析:设B 处距离码头Oxkm ,分别在Rt △CAO 和Rt △DBO 中,根据三角函数求得CO 和DO ,再利用DC=DO ﹣CO ,得出x 的值即可.解答:解:设B 处距离码头Oxkm ,在Rt △CAO 中,∠CAO=45°, 东北O B A∴CO=AO •tan ∠CAO=(45×0.1+x )•tan45°=4.5+x ,在Rt △DBO 中,∠DBO=58°,∵tan ∠DBO=,∴DO=BO •tan ∠DBO=x •tan58°,∵DC=DO ﹣CO ,∴36×0.1=x •tan58°﹣(4.5+x ),∴x=≈=13.5.因此,B 处距离码头O 大约13.5km .点评:本题考查了解直角三角形的应用,熟练掌握三角形中的边角关系是解题的关键.24.(8分)如图,AB ∥ CD ,点E 、F 分别在AB 、CD 上,连接EF ,∠AEF 、∠CFE 的平分线交于点G ,∠BEF 、∠DFE 的平分线交于点H .(1) 求证:四边形EGFH 是矩形.(2) 小明在完成(1)的证明后继续进行了探索.过G 作MN ∥ EF ,分别交AB 、CD 于点M 、N ,过H 作PQ ∥ EF ,分别交AB 、CD 于点P 、Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.考点:菱形的判定;全等三角形的判定与性质;矩形的判定.分析:(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH 是矩形;(2)利用菱形的判定方法首先得出要证▱MNQP 是菱形,只要证MN=NQ ,再证∠MGE=∠QFH 得出即可.解答:(1)证明:∵EH 平分∠BEF ,∴∠FEH=∠BEF ,∵FH 平分∠DFE ,小明的证明思路 由AB ∥CD ,MN ∥EF ,PQ ∥EF ,易证四边形MNQP 是平行四边形.要证▱MNQP 是菱形, 只要证NM=NQ .由已知条件 , MN ∥ EF ,可证NG = NF ,故只要证 GM = FQ ,即证△MGE ≌△QFH .易证 , , 故只要证 ∠MGE = ∠QFH ,∠QFH = ∠GEF ,∠QFH=∠EFH , 第24题图P H G A D C∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∴∠EFG=∠AEF,∵EH平分∠BEF,∴∠FEH=∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形;(2)解:答案不唯一:由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,故只要证GM=FQ,即证△MGE≌△QFH,易证 GE=FH、∠GME=∠FGH.故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.点评:此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题关键.25.(10分)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)DA考点:作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质.分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A 为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可.解答:解:满足条件的所有图形如图所示:点评:此题主要考查了作图﹣应用与设计作图,关键是掌握等腰三角形的判定方法.26.(8分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB.(2)连接OE,交CD于点F,OE ⊥ CD.求证:△ABE是等边三角形.考点:圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.(第26题)EOCABD分析:(1)根据圆内接四边形的性质可得∠A+∠BCD=180°,根据邻补角互补可得∠DCE+∠BCD=180°,进而得到∠A=∠DCE ,然后利用等边对等角可得∠DCE=∠AEB ,进而可得∠A=∠AEB ;(2)首先证明△DCE 是等边三角形,进而可得∠AEB=60°,再根据∠A=∠AEB ,可得△ABE 是等腰三角形,进而可得△ABE 是等边三角形.解答:证明:(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE ,∵DC=DE ,∴∠DCE=∠AEB ,∴∠A=∠AEB ;(2)∵∠A=∠AEB ,∴△ABE 是等腰三角形,∵EO ⊥CD ,∴CF=DF ,∴EO 是CD 的垂直平分线,∴ED=EC ,∵DC=DE ,∴DC=DE=EC ,∴△DCE 是等边三角形,∴∠AEB=60°,∴△ABE 是等边三角形.点评:此题主要考查了等边三角形的判定和性质,以及圆内接四边形的性质,关键是掌握圆内接四边形对角互补.27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义.(2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?x /kgy /元D B120 C 60 A考点:二次函数的应用.分析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.解答:解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,∴当x90时,W=﹣0.6(90﹣65)2+2535=2160,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.点评:本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.。

中考数学试题及解析 江苏南京-解析版

中考数学试题及解析 江苏南京-解析版

江苏省南京市初中毕业生学业考试数学一、选择题(本大题共6小题,每小题2分,共12分)1A .3B .-3C .±3D .【答案】A .【考点】算术平方根。

【分析】利用算术平方根的定义,直接得出结果 2.下列运算正确的是A .a 2+a 3=a 5B .a 2•a 3=a 6C .a 3÷a 2=aD .(a 2)3=a 8 【答案】C .【考点】指数运算法则。

【分析】a 3÷a 2=a= a 3-2= a3.在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%.则该市65岁及以上人口用科学记数法表示约为 A .0.736×106人 B .7.36×104人 C .7.36×105人 D .7.36×106 人 【答案】C .【考点】科学记数法。

【分析】利用科学记数法的定义,直接得出结果:8000000×9.2%=736000=7.36×105.4.为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是A .随机抽取该校一个班级的学生B .随机抽取该校一个年级的学生C .随机抽取该校一部分男生D .分别从该校初一、初二、初三年级中各班随机抽取10%的学生 【答案】D .【考点】随机抽样样本的抽取。

【分析】D 是最合适的.5.如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是【答案】B .【考点】图形的展开与折叠。

【分析】只有B 才能通过折叠围成只有一个底的三棱柱.6.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2, 函数y =x 的图象被⊙P 的弦AB的长为a 的值是 A. B.2 C.D.2+ 【答案】B .【考点】弦心距, 四点共圆,300和450直角三角形.A .B .D .【分析】连结PA,PB ,过点P 作PE ⊥AB 于E, 作PF ⊥X 轴于F,交AB 于G, 在 Rt PAE ∆中,2 1.AE PA PE ==⇒=,,,,,PE AB PF OF P O F E ⊥⊥∴ 四点共圆045EPG EPG GOF ∆∠=∠= 在中PG ⇒= 2.FGO FG OG a PG FG ∆== 在中|因此=+二、填空题(本大题共10小题,每小题2分,共20分)7.-2的相反数是________. 【答案】2.【考点】相反数。

2023年江苏省南京市中考数学试卷+答案解析

2023年江苏省南京市中考数学试卷+答案解析

2023年江苏省南京市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷.用科学记数法表示3830000是()A. B. C. D.2.整数a满足,则a的值为()A.3B.4C.5D.63.若一个等腰三角形的腰长为3,则它的周长可能是()A.5B.10C.15D.204.甲、乙两地相距100km,汽车从甲地匀速行驶到乙地,则汽车行驶的时间单位:与行驶速度单位:之间的函数图象是()A. B. C. D.5.我国南宋数学家秦九韶的著作《数书九章》中有一道问题:“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何?”问题大意:如图,在中,里,里,里,则的面积是()A.80平方里B.82平方里C.84平方里D.86平方里6.如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cmB.40cmC.42cmD.45cm二、填空题:本题共10小题,每小题3分,共30分。

7.计算:____;____.8.若式子在实数范围内有意义,则x的取值范围是_______.9.计算的结果是_______________.10.分解因式的结果是___________.11.计算的结果是__________________.12.某校九年级有8个班级,人数分别为37,a,32,36,37,32,38,若这组数据的众数为32,则这组数据的中位数为______.13.甲车从A地出发匀速行驶,它行驶的路程单位:与行驶的时间单位:之间的函数关系如图所示.甲车出发后,乙车从A地出发沿同一路线匀速行驶.若乙车经过追上甲车,则乙车的速度单位:的取值范围是___________________.14.在平面直角坐标系中,点O为原点,点A在第一象限,且若反比例函数的图象经过点A,则k的取值范围是___________________.15.如图,与正六边形ABCDEF的边CD,EF分别相切于点C,若,则的半径长为___________________.16.如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在处,,垂足为若,,则__________________三、解答题:本题共11小题,共88分。

江苏省南京市2021年中考数学试卷真题(word版,含答案解析)

江苏省南京市2021年中考数学试卷真题(word版,含答案解析)

江苏省南京市2021年中考数学试卷一、单选题(共6题;共12分)1.截至2021年6月8日,31个省(自治区,直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗超过800000000次,用科学记数法表示800000000是()A. 8×108B. 0.8×109C. 8×109D. 0.8×1010【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:800000000= 8×108;故答案为:A.【分析】根据科学记数法的表示形式为:a×10n,其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1.2.计算(a2)3⋅a−3的结果是()A. a2B. a3C. a5D. a9【答案】B【考点】同底数幂的乘法,幂的乘方【解析】【解答】解:原式= a6·a−3=a3;故答案为:B.【分析】利用幂的乘方,底数不变,指数相乘,先算乘方运算,再利用同底数幂相乘的法则进行计算.3.下列长度的三条线段与长度为5的线段能组成四边形的是()A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,2【答案】 D【考点】三角形三边关系【解析】【解答】A、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故答案为:D.【分析】利用较小的三条线段之和大于最长的线段,再对各选项逐一判断即可.4.北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00,小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A. 10:00B. 12:00C. 15:00D. 18:00【答案】C【考点】正数和负数的认识及应用【解析】【解答】解:由北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,所以A. 当北京时间是10:00时,莫斯科时间是5:00,不合题意;B. 当北京时间是12:00时,莫斯科时间是7:00,不合题意;C. 当北京时间是15:00时,莫斯科时间是10:00,符合题意;D. 当北京时间是18:00时,不合题意.故答案为:C【分析】抓住已知条件:北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,再对各选项逐一判断.5.一般地,如果 x n =a (n 为正整数,且 n >1 ),那么x 叫做a 的n 次方根,下列结论中正确的是( )A. 16的4次方根是2B. 32的5次方根是 ±2C. 当n 为奇数时,2的n 次方根随n 的增大而减小D. 当n 为奇数时,2的n 次方根随n 的增大而增大【答案】 C【考点】有理数的乘方【解析】【解答】A. ∵24=16 (−2)4=16 , ∴ 16的4次方根是 ±2 ,故不符合题意;B. ∵25=32 , (−2)5=−32 , ∴ 32的5次方根是2,故不符合题意;C.设 x =√23,y =√25,则 x 15=25=32,y 15=23=8,∴x 15>y 15, 且 x >1,y >1,∴x >y,∴ 当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由 C 的判断可得: D 错误,故不符合题意.故答案为:C.【分析】根据正数的偶次方根有两个,它们互为相反数,可对A 作出判断;利用正数的奇次方根是正数,可对B 作出判断;根据当n 为奇数时,2的n 次方根随n 的增大而减小,可对C ,D 作出判断. 6.如图,正方形纸板的一条对角线重直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是( )A. B. C. D.【答案】C【考点】正方形的性质,中心投影【解析】【解答】A.因为正方形纸板重直于地面,故不能产生正方形的投影,不符合题意B.因为正方形的对角线互相垂直,中心投影后,影子的对角线仍然互相垂直,不符合题意C.影子的对角线仍然互相垂直,故形状可以是CD.中心投影物体的高和影长成比例,正方形对边相等,故D选项不符合题意故答案为:C.【分析】观察图形,根据正方形纸板放置的位置,可知不能产生正方形的投影,可对A作出判断;中心投影后,影子的对角线仍然互相垂直,可对B,C作出判断;中心投影物体的高和影长成比例,正方形对边相等,可对D作出判断.二、填空题(共10题;共11分)7.−(−2)=________;−|−2|=________.【答案】2;-2【考点】相反数及有理数的相反数,绝对值及有理数的绝对值【解析】【解答】解:−(−2)=2;−|−2|=-2.故答案为2,-2.【分析】利用相反数的意义和绝对值的性质,进行计算即可.8.若式子√5x在实数范围内有意义,则x的取值范围是________.【答案】x≥0【考点】二次根式有意义的条件【解析】【解答】解:由题意得5x≥0,解得x≥0.故答案为:x≥0【分析】利用二次根式有意义的条件:被开方数是非负数,可得到关于x的不等式,然后求出不等式的解集.9.计算√8−√92的结果是________.【答案】√22【考点】二次根式的加减法【解析】【解答】解:原式= 2√2−32√2=√22;故答案为:√22.【分析】先将各个二次根式化成最简二次根式,再合并同类二次根式即可.10.设x1,x2是关于x的方程x2−3x+k=0的两个根,且x1=2x2,则k=________.【答案】2【考点】一元二次方程的根与系数的关系【解析】【解答】解:由根与系数的关系可得:x1+x2=3,x1·x2=k,∵x1=2x2,∴3x2=3,∴x2=1,∴x1=2,∴k=1×2=2;故答案为:2.【分析】利用一元二次方程根与系数的关系求出x1+x2和x1·x2的值;再结合已知条件可求出k的值.11.如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是________.【答案】6【考点】坐标与图形性质,三角形的中位线定理【解析】【解答】设点A的横坐标为a,点B的横坐标是b;∵O点的横坐标是0,C的横坐标是1 ,C,D是AO,AB的中点(a+0)=1得a=2∴12(2+b)=4得b=6∴12∴点B的横坐标是6.故答案为6.【分析】设点A的横坐标为a,点B的横坐标是b;利用线段的中点坐标,可求出点a,b的值;或利用已知条件可得到CD是△AOB的中位线,由此可证得OB=2CD;再利用点C,D的横坐标可得到CD的长,由此可求出OB的长,即可得到点B的横坐标.⌢的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O 12.如图,AB是⊙O的弦,C是AB的半径为________ cm.【答案】5【考点】勾股定理,垂径定理【解析】【解答】解:连接OA,∵C是AB⌢的中点,∴OC⊥AB∴AD=1AB=4cm2设⊙O的半径为R,∵CD=2cm∴OD=OC−CD=(R−2)cm在RtΔOAD中,OA2=AD2+OD2,即R2=42+(R−2)2,解得,R=5即⊙O的半径为5cm故答案为:5【分析】利用OA,利用垂径定理可证得OC⊥AB,同时可求出AD的长,设圆的半径为R,可表示出OD 的长;再利用勾股定理建立关于R的方程,解方程求出R的值.13.如图,正比例函数y=kx与函数y=6的图象交于A,B两点,BC//x轴,AC//y轴,则xS△ABC=________.【答案】12【考点】反比例函数与一次函数的交点问题,三角形的面积【解析】【解答】解:设A(t,6t),∵正比例函数y=kx与函数y=6x的图象交于A,B两点,∴B(-t,- 6t),∵BC//x轴,AC//y轴,∴C(t,- 6t),∴S△ABC=12BC⋅AC=12[t−(−t)][6t−(−6t)]=t⋅12t=12;故答案为:12.【分析】利用函数解析式设A(t,6t),再根据两函数图象交于点A,B,利用反比例函数的对称性,可表示出点B的坐标,从而可得到点C的坐标;然后利用三角形的面积公式,可求出△ABC的面积. 14.如图,FA,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=________ °.【答案】180【考点】三角形内角和定理,切线的性质【解析】【解答】如图:过圆心连接五边形ABCDE的各顶点,则∠OAB+∠OBC+∠OCD+∠ODE+∠OEA=∠OBA+∠OCB+∠ODC+∠OED+∠OAE=12(5−2)×180°=270°∴∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=5×90°−(∠OAB+∠OBC+∠OCD+∠ODE+∠OEA)=450°−270°=180°.故答案为:180°.【分析】过圆心连接五边形ABCDE的各顶点,利用三角形的内角和定理,可求出∠OAB+∠OBC+∠OCD+∠ODE+∠OEA;再利用切线的性质可求出∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ的值.15.如图,在四边形ABCD中,AB=BC=BD.设∠ABC=α,则∠ADC=________(用含α的代数式表示).【答案】180°−12α【考点】三角形内角和定理,等腰三角形的性质【解析】【解答】解:在△ABD中,AB=BD∴∠A=∠ADB= 12(180°−∠ABD)=90°−12∠ABD在△BCD中,BC=BD∴∠C=∠BDC= 12(180°−∠CBD)=90°−12∠CBD∵∠ABC=∠ABD+∠CBD=α∴∠ADC=∠ADB+∠CBD= 90°−12∠ABD+90°−12∠CBD= 180°−12(∠ABD+∠CBD)= 180°−12∠ABC= 180°−12α故答案为:180°−12α.【分析】在△ABD中,利用等腰三角形的性质及三角形的内角和定理可表示出∠ADB,在△BCD中,利用等腰三角形的性质及三角形的内角和定理可表示出∠BDC;再根据∠ADC=∠ADB+∠CBD,将其代入可表示出∠ADC.16.如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E,若AB=3,BC=4,BB′=1,则CE的长为________.【答案】98【考点】平行四边形的性质,相似三角形的判定与性质,旋转的性质,三角形全等的判定(AAS)【解析】【解答】解:过点C作CM// C′D′交B′C′于点M,∵平行四边形ABCD绕点A逆时针旋转得到平行四边形AB′C′D′∴AB=AB′,AD=AD′,∠B=∠AB′C′=∠D=∠D′,∠BAD=∠B′AD′∴∠BAB′=∠DAD′,∠B=∠D′∴ΔABB′∽ΔADD′∴BB′DD′=ABAD=ABBC=34,∵BB′=1∴DD′=43∴C′D=C′D′−DD′=CD−DD′=AB−DD′=3−4 3=5 3∵∠AB ′C =∠AB ′C ′+∠CB ′M =∠ABC +∠BAB ′∴∠ CB ′M =∠BAB ′∵ B ′C =BC −BB ′=4−1=3∴ B ′C =AB∵ AB =AB ′∴∠ ABB ′=∠AB ′B =∠AB ′C ′∵ AB ′//C ′D ′ , C ′D ′//CM∴ AB ′//CM∴∠ AB ′C ′=∠B ′MC∴∠ AB ′B =∠B ′MC在 ΔABB ′ 和 ΔB ′MC 中,{∠BAB ′=∠CB ′M∠AB ′B =∠B ′MC AB =B ′C∴ ΔABB ′≅ΔB ′CM∴ BB ′=CM =1∵ CM//C ′D∴△ CME ∽ΔDC ′E∴ CM DC ′=CE DE =153=35 ∴ CE CD =38∴ CE =38CD =38AB =38×3=98故答案为: 98 .【分析】过点C 作CM// C ′D ′ 交 B ′C ′ 于点M ,利用旋转的性质可得AB=AB ',AD=AD ',同时可证得两平行四边形的对角相等,由此可推出∠BAB '=∠DAD ',∠B=∠D ',可推出△ABB '∽△ADD ',利用相似三角形的对应边成比例,可得出对应边的比;从而可求出DD '的值,即可求出CD ',B 'C ;再证明△CME ∽△DC 'E ,利用相似三角形的性质可求出CE 的长. 三、解答题(共11题;共87分)17.解不等式 1+2(x −1)≤3 ,并在数轴上表示解集.【答案】 解: 1+2(x −1)≤3去括号: 1+2x −2≤3移项: 2x ≤3−1+2合并同类项:2x≤4化系数为1:x≤2解集表示在数轴上:【考点】解一元一次不等式,在数轴上表示不等式的解集【解析】【分析】利用去括号的法则,先去括号,在移项,合并同类项,然后将x的系数化为1,将其解集在数轴上表示出来.18.解方程2x+1+1=xx−1.【答案】解:2x+1+1=xx−1,2(x−1)+(x+1)(x−1)=x(x+1),2x−2+x2−1=x2+x,x=3,检验:将x=3代入(x+1)(x−1)中得,(x+1)(x−1)≠0,∴x=3是该分式方程的解【考点】解分式方程【解析】【分析】方程两边同时乘以(x+1)(x-1),将分式方程转化为整式方程,再求出整式方程的解;然后检验可得方程的根.19.计算(ab2+ab −2a+b+ba2+ab)÷a−bab.【答案】解:原式= (ab(a+b)−2a+b+ba(a+b))⋅aba−b= (a2ab(a+b)−2abab(a+b)+b2ab(a+b))⋅aba−b= a2−2ab+b2ab(a+b)⋅ab a−b= (a−b)2ab(a+b)⋅ab a−b= a−ba+b【考点】分式的混合运算【解析】【分析】将括号里的分式通分计算,再将分式除法转化为乘法运算,然后约分化简.20.如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF//CD,交BD的延长线于点F.(1)求证△AOB≌△DOC;(2)若AB=2,BC=3,CE=1,求EF的长.【答案】(1)证明:∵OA=OD,∠ABO=∠DCO,又∵∠AOB=∠DOC,∴△AOB≌△DOC(AAS)(2)解:∵△AOB≌△DOC(AAS),AB=2,BC=3,CE=1∴AB=DC=2,BE=BC+CE=3+1=4,∵EF//CD,∴△BEF∽△BCD,∴EFCD =BEBC,∴EF2=43,∴EF=83,∴EF的长为83【考点】相似三角形的判定与性质,三角形全等的判定(AAS)【解析】【分析】(1)图形中隐含对顶角相等,因此利用AAS可证得结论.(2)利用全等三角形的对应边相等,可求出DC,BE的长;再由EF∥CD可证得△BEF∽△BCD,利用相似三角形的对应边成比例,可得比列式,代入计算求出EF的长.21.某市在实施居民用水定额管理前,对居民生活用水情况进行了调查,通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如下表:(1)求这组数据的中位数.已知这组数据的平均数为9.2t,你对它与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?【答案】(1)解:由表格数据可知,位于最中间的两个数分别是6.4和6.8,∴中位数为: 6.4+6.8=6.6(t),2而这组数据的平均数为9.2t,它们之间差异较大,主要是因为它们各自的特点决定的,主要原因如下:①因为平均数与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动;主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。

2023年江苏省南京市中考数学试卷甲卷附解析

2023年江苏省南京市中考数学试卷甲卷附解析

2023年江苏省南京市中考数学试卷甲卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型. 若圆的半径为 r ,扇形的半径为 R ,扇形的圆心角等于120°,则r 与R 之间的关系是( ) A .R=2rB .3R r =C .R=3rD .R =4r2.关于二次函数y =-12 x 2,下列说法不正确的是( ) A .图像是一条抛物线 B .有最大值0 C .图像的对称轴是y 轴 D .图像都在x 轴的下方 3.下列命题为真命题的是( )A .三角形的中位线把三角形的面积分成相等的两部分B .对角线相等且相互平分的四边形是正方形C .关于某直线对称的两个三角形是全等三角形D .一组对边平行,另一组对边相等的四边形一定是等腰梯形 4.如图,在等腰梯形ABCD 中,AD ∥BC ,∠C=60°,则∠1=( ) A .30° B .45° C .60° D .80° 5.一梯形两底为10和16,一腰长为8,则另一腰长a 的取值范围是( ) A .2<a<14 B .2<a<26 C .6<a<18 D .6<a<26 6.在平面直角坐标系中,点(-2,m-2)在第三象限,则m 的取值范围是( )A .m>2B .m<2C .m<-2D .m ≤27. 小王身上只有 2元和 5元两种面值的人民币,他买一件学习用品要支付27元,则付款的( ) A .1种B .2种C .3种D .4种8.下列计算结果正确的是( ) A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a9.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能..与其自身重合的是( ) A .72B .108C .144D .21610.下列计算中,错误..的是( ) A .33354a a a -=B .236m n m n +⋅=C .325()()()a b b a a b -⋅-=-D .78a a a ⋅= 11.如图所示,△DEF 是由边长为2 cm 的等边△ABC 平移3cm 得到的,则AD 为( )A .1 cmB .2 cmC .3 cmD .无法确定12.图(1)、图 (2)分别是2005~2008年我国某省初中在校生人数和初中学校数目统计图,由图可知,2005~2008年,该省初中( )A .在校生人数逐年增加,学校数也逐年增加B .在校生人数逐年增加,学校数逐年减少C .在校生人数逐年减少,学校数也逐年减少D .在校生人数逐华减少,学校数逐年增加 13.下列说法中,正确的是( ) A .a -是负数B .a 一定是非负数C .不论a 是什么数,都有11a a⋅=D .7a一定是分数 二、填空题14. 如图,点0是△ABC 的内心,内切圆与各边相切于点 D .E 、F ,则图中相等的线段(除半径外 )是: , , .15.如图所示,在四边形ABCD 中.对角线AC ,BD 互相平分且交于点0,MN 经过点O ,若AB=8 cm ,AD=6 cm ,ON=4 cm ,则四边形BCMN 的周长是 cm .16.一元二次方程29x =的跟是 . 17.抛掷两枚硬币,出现一正一反的概率 . 18.a 、b 是不同的有理数,若0ab =,则 ;若0ab=,则 . 19.填一填:+ (-5) = +3;(-14)+ =-3;37+ =-1.三、解答题20.如图,△ADE ∽△ABC ,写出相等的对应角和对应边成比例的比例式.21.某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类. 在“读书月”活动期间,为了解图书的借阅情况,图书管理员对本月各类图书的借阅量进行统计,图①和图②是图书管理员通过采集数据后,绘制的频数分布表和频数分布直方图的部分内容. 请你根据图表中提供的信息,解答以下问题:(1)请完成图①的频率分布表; (2)补全图②的频数分布直方图;(3)近期该学校准备采购 1 万册图书,如果要保持各类图书的频率不变,请你估算“数学”类图书应采购多少册较合适?22.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:(1)△ABC的面积;(2)△ABC的周长;(3)点C到AB边的距离.BCA23.一个包装盒的表面展开图如图.(1)描述这个包装盒的形状;(2)画出这个包装盒的三视图,并标注相应尺寸;(3)求这个包装盒的容积(纸板厚度忽略不计).24.用总长为20 m 的篱笆围成一长方形场地.(1)写出长方形面积S(m 2)与一边x(m)之间的函数解析式和自变量X 的取值范围; (2)分别求当x=2,5,8时,函数S 的值.25.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为 ; (2)画出小鱼向左平移3格后的图形.26.某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜600个,在西瓜上市前该瓜农随机摘下了l0个成熟的西瓜,称重如下: 西瓜质量(kg) 5.4 5.3 5.O 4.8 4.4 4.0 西瓜数量(个)1232111个西瓜质量的众数和中位数分别是 和 ;(2)计算这10个西瓜的平均质量,并根据计算结果估计这亩地共可收获西瓜约为多少kg?27.有一道题“先化简,再求值:22241244x x x x x -+÷+--(),其中3x =-把“3x =3x =事?28.如图所示,图①,图②分别是6×6正方形网格上两个轴对称图形(阴影部分),其面积分别为S A ,S B (网格中最小的正方形面积为l 平方单位). 请观察图形并解答下列问题:(1)填空:S A:S B的值是.(2)请你在图③的网格上画出一个面积为8个平方单位的轴对称图形.29.互为余角的两个角的差为 40°,求较小角的补角的度数.30.某车间60名工人,生产某种由一个螺栓及两个螺母组成的配套产品,每人每天平均生产螺栓l4个或螺母20个,问怎样分配工人,才能使生产出的螺栓螺母恰好配套?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.C4.C5.A6.B7.C8.C9.B10.B11.C12.B13.B二、填空题 14.AD =AF ,BD =BE ,CE=CF.15.22 cm16.3x =±17.1218. a=0或b= 0,a=019.8,11,107-三、解答题 20.∠EAD 与∠CAB ,∠AED 与∠C ,∠ADE 与∠E 是对应角; 对应边的比例式是AD AE DEAB AC BC-=21.(1)0.25,100 (2)略 (3)500册22.(1)27,(2)13105++,(3)13137 23.(1)长方体(2)略(3)850cm 324.(1)210S x x =-+(0<x<10);(2)16,25,1625.(1)16;(2)图略26.(1)5. 0 kg ,5.0 kg (2)4. 9 kg ,2940 kg27.222222241444(4)42444x x x x x x x x x x x --+++÷=⨯-=++---(),因为x =x =2x 的值均为3,原式的计算结果都是7,所以把“x =x =28.(1)9:11;(2)略29.设较小的角为x ,则这个角的余角为 90°-x .于是有90°-x =40°,∴x =25°,因此这个角的补角为 180°- 25°= 155°. 答:较小角的补角为 15530.安排25人生产螺栓,35人生产螺母,才能使生产出的螺栓、螺母刚好配套.。

2022年江苏省南京市中考数学真题试卷附解析

2022年江苏省南京市中考数学真题试卷附解析

2022年江苏省南京市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图1表示正六棱柱形状的高大建筑物,图2表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在( ) A .P 区域B .Q 区域C .M 区域D .N 区域2.已知关于x 的一元二次方程221()04x R r x d -++=无实数根,其中 R 、r 分别是⊙O 1、⊙O 2的半径,d 为两圆的圆心距,则⊙O 1、⊙O 2的位置关系为( ) A .外切B .内切C .外离D .外切或内切3.在拼图游戏中,从如图左边的四张纸片中,任取两张纸片,能拼成如图右边的“小房子”的概率等于( ) A .1B . 12C .13D .234.小明和五名女同学和另四名男同学玩丢手帕游戏,小明随意将手帕丢在一名同学的后面,那么这名同学是女生的概率是( ) A .59B .49C .12D . 455.如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC 的大小是 ( ) A .40°B .45°C .50°D .60°6.一个跳水运动员从10米高台上跳水,他每一时刻所在的高度(单位:米)与所用时间(单位:秒)的关系是h =-5(t -2)(t +1).则运动员起跳到入水所用的时间( ) A .-5B .-1C .1D . 27.下列说法中,正确的个数是( )①样本的方差越小,波动性越小,说明样本稳定性越好;②一组数据的方差一定是正数;③一组数据的方差的单位与原数据的单位是一致的; ④一组数据的标准差越大,则这组数据的方差一定越大. A .1个B .2个C .3个D .4个8.若))(3(152n x x mx x ++=-+,则m 的值为 ( ) A .5-B .5C .2-D .29.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,•除颜色外其他全部相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的概率为15%和45%,则口袋中白色球的个数很可能是( ) A .6 B .16C .18D .2410.如图,在△ABC 中,DE 是边AB 的垂直平分线,BC=8cm ,AC=5cm 则△ADC 的周长为( ) A .14 cm B .13 cm C .11 cm D .9 cm11.下面的图表是护士统计的一位病人一天的体温变化情况:时间 6:00 10:00 14:00 18:00 22:00 体温/℃37.638.338.039.137.9通过图表,估计这个病人下午16:00时的体温是( ) A .38.0℃ B .39.1℃ C .37.6℃ D .38.6℃ 12.16的平方根是±4,用算式表示正确的是( ) A .164=± B .164±= C .164±=± D .164±=± 13.若a a ±=-时,a 是( )A . 全体实数B . 正实数C .负实数D .零 二、填空题14. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .15.如图,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则DE = . 16.如图,用一个半径为R ,圆心角为90°的扇形做成一个圆锥的侧面,•设圆锥底面半径为r ,则R :r=________.17.已知△ABC ,可以画△ABC 的外接圆且只能画 个;对于给定的⊙O ,可以画⊙O 的个内接三角形.18.如图,矩形纸片ABCD 中,AD=9,AB=3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为________.19.如图,直线 DE 经过点 A ,且∠1 =∠B ,∠2=50°,则∠3= .20.长、宽分别为a 、b 的矩形硬纸片拼成的一个“带孔”正方形如图所示.利用面积的不同表示方法,写出一个代数恒等式 . 21.如图,(1)能用一个大写字母表示的角是 ; (2)以A 为顶点的角是 ;(3)图中共有 个角(小于平角的角),它们分别是 .22.如果2x =-是方程10kx k +-=的解,那么k = . 23.比较大小:310.三、解答题24.如图,甲转盘被分成 3 个面积相等的扇形,乙转盘被分成 4 个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(),x y 落在第二象限内的概率; (2)直接写出点(),x y 落在函数1y x=-图象上的概率.25.某科技馆座落在山坡M 处,从山脚A 处到科技馆的路线如图所示.已知A 处海拔高度 为103.4m ,斜坡AB 的坡角为30,40m AB =,斜坡BM 的坡角为18,60m BM =,那么科技馆M 处的海拔高度是多少?(精确到0.1m )(参考数据:sin180.309= cos180.951= tan180.324=)26. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若AB=2 , AC=3. 求:(1)∠A 的度数; (2) ⌒CD 的长; (3)弓形CBD 的面积.27. 四张大小、质地均相同的卡片上分别标有数字1,2,3,4,5,6,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张卡片(不放回),再从桌子上剩下的5张中随机抽取第二张卡片.(1)用画状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况; (2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?28.如图,AD 平分∠BAC ,AB =AC ,则BD =CD ,试说明理由.29.配套的桌椅高度之间存在着一定的数量关系. 现测得两套不同的标准桌椅,相应的高度为:桌高 75.0 cm,椅子高 40. 5 cm;桌高70.2cm,椅子高37.5 cm.已知配套的桌高 y(cm)与椅子高 x(cm)之间存在的关系为y ax b=+.现有一套办公桌椅,椅子高为 44 cm,办公桌高为 80. 5 cm .请你判断一下这套办公桌椅是否配套.30.小惠的牡丹卡上还有余款 260 元,小惠想买一件衬衣和一件连衣裙,衬衣价格为 98 元/件,连衣裙价格为 180 元/件,小惠用牡丹卡购买这两件商品会透支吗?用有理数加法说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.A5.B6.D7.B8.C9.B10.B11.D12.C13.D二、填空题 14.(2+15.12516. 417.1,无数18.10 19.50°20.ab b a b a 4)()(22=--+(答案不唯一)21.(1)∠C 、∠B (2)∠CAD 、∠DAB 、∠CAB (3)7;∠B 、∠C 、∠l 、∠2、∠CAD 、∠DAB 、∠CAB22.-l23.<三、解答题 24.解:由题意,画树状图:由上图可知,点P (x,y )的坐标共有12种等可能的结果,其中点(x,y )落在第二象限的共有2种,∴点P (点(x,y )落在第二象限)=61. (2)点P (点(x,y )落在xy 1-=图象上)=41123=.25.解:过B 向水平线AC 作垂线BC ,垂足为C ,过M 向水平线BD 作垂线MD , 垂足为D ,则11402022BC AB ==⨯=. sin18MD BM =600.309=⨯18.54=.∴科技馆M 处的海拔高度是:103.42018.54141.94141.9(m)++=≈. 26.(1)30度;(2)π32;(3)4331-π.27.(1)略 (2)1528.△ABD ≌△ACD (SAS ),则BD=CD .29.配套30.会透支。

2022年南京市中考数学试题及答案

2022年南京市中考数学试题及答案

2022年南京市中考数学试题及答案南京市2022年中考数学试题一、选择题 [2分×12=24分]1.如果a与-2互为倒数,那么a是 [ ] A、-2 B、-1 C、1 D、22.比-1大1的数是 [ ] A、-2 B、-1 C、0 D、13.计算:x^3·x^2的结果是 [ ] A、x^9 B、x^8 C、x^6 D、x^54.9的算术平方根是 [ ] A、-3 B、3 C、±3 D、无解5.反比例函数y=-2的图象位于 [ ] A、第一、二象限 B、第一、三象限 C、第二、三象限 D、第二、四象限6.二次函数y=(x-1)^2+2的最小值是 [ ] A、-2 B、2 C、-1D、17.在比例尺为1:的工程示意图上,将于2022年9月1日正式通车的南京地铁一号线[奥体中央至迈皋桥段]的长度约为54.3cm,它的实际长度约为 [ ] A、0.2172km B、2.172km C、21.72km D、217.2km8.以下四个几何体中,主视图、左视图与俯视图是全等图形的几何体是 [ ] A、球 B、圆柱 C、三棱柱 D、圆锥9.如图,在△ABC中,AC=3,BC=4,AB=5,那么tanB 的值是 [ ] A、3/4 B、4/3 C、3/5 D、4/510.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是 [ ] A、1/4 B、1/2 C、3/4 D、111.如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,那么树的高度为 [ ] A、4.8m B、6.4m C、8m D、10m12.右图是甲、乙两户居民家庭全年支出费用的扇形统计图。

根据统计图,下面对全年食品支出费用判断正确的选项是[ ] A、甲户比乙户多 B、乙户比甲户多 C、甲、乙两户一样多D、无法确定哪一户多二、填空题 [3分×4=12分]13.10在两个连续整数a和b之间,a<10<b,那么a,b的值分别是_____。

2024学年江苏省南京市高二上学期期中考数学试题及答案

2024学年江苏省南京市高二上学期期中考数学试题及答案

南京市2023-2024学年度第一学期期中调研测试高二数学2023.11注意事项:1.本试卷共6页,包括单项选择题(第1题~第8题)、多项选择题(第9题~第12题)、填空题(第13题~第16题)、解答题(第17题~第22题)四部分.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的学校、姓名、考生号填涂在答题卡上指定的位置.3.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上指定位置,在其他位置作答一律无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某工厂生产A,B,C三种不同型号的产品,它们的产量之比为2:3:5,用分层抽样的方法抽取一个容量为n的样本.若样本中A型号的产品有20件,则样本容量n为A.50B.80C.100D.2002.已知复数z0=3+i,其中i为虚数单位,复数z满足zz0=3z+z0,则z=A.1-3i B.1+3i C.3+i D.3-i 3.已知圆C1:x2+y2-x-ay=0与圆C2:x2+y2-2x-4y+2=0的公共弦所在直线与x轴垂直,则实数a的值为A.-4 B.-2 C.2 D.4 4.《数书九章》天池测雨:今州郡都有天池盆,以测雨水.但知以盆中之水为得雨之数.不知器形不同,则受雨多少亦异,未可以所测,便为平地得雨之数,即平地降雨量等于盆中积水体积除以盆口面积.假令器形为圆台,盆口径(直径)一尺四寸,底径(直径)六寸、深一尺二寸,接雨水深六寸(一尺等于十寸),则平地降雨量为A.1 B.2 C.3 D.45.已知cos x+sin x=23,则sin2xcos(x-\f(π,4))=A.-716B.-726C.-76D.-736.在平面直角坐标系xOy中,已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F 2,A 为双曲线右支上一点,连接AF 1交y 轴于点B .若△ABF 2为等边三角形,则双曲线C 的离心率为A .23B .32C .3D .3327.在平面直角坐标系xOy 中,P 为直线3x +4y +1=0上一点.若向量a =(3,4),则向量OP→在向量a 上的投影向量为A .-15B .(-35,-45)C .(-325,-425)D .无法确定8.已知函数f (x )=sin(ωx +φ)(ω>0).若 x ∈R ,f (x )≤f (π3),且f (x )在(0,π)上恰有1个零点,则实数ω的取值范围为A .(0,32]B .(34,32]C .(34,94]D .(32,94]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某研究小组依次记录下10天的观测值:26,28,22,24,22,78,32,26,20,22,则A .众数是22B .80百分位数是28C .平均数是30D .前4个数据的方差比最后4个数据的方差小10.声音是由物体的振动产生的声波,一个声音可以是纯音或复合音,复合音由纯音合成,纯音的函数解析式为y =A sin ωx .设声音的函数为φ(x ),音的响度与φ(x )的最大值有关,最大值越大,响度越大;音调与φ(x )的最小正周期有关,最小正周期越大声音越低沉.假设复合音甲的函数解析式是f (x )=sin x +12sin2x ,纯音乙的函数解析式是g (x )=32sin ωx (ω>0),则下列说法正确的有A .纯音乙的响度与ω无关B .纯音乙的音调与ω无关C .若复合音甲的音调比纯音乙的音调低沉,则ω>1D .复合音甲的响度与纯音乙的响度一样大11.在平面直角坐标系xOy 中,抛物线C :y 2=4x 的焦点为F ,A (x 1,y 1),B (x 2,y 2),D (x 3,y 3)为抛物线C 上的任意三点(异于O 点),FA → +FB → +FD →=0,则下列说法正确的有A .设A ,B 到直线x =-1的距离分别为d 1,d 2,则d 1+d 2<AB B .FA +FB +FD =6C .若FA ⊥FB ,则FD =ABD .若直线AB ,AD ,BD 的斜率分别为k AB ,k AD ,k BD ,则1k AB +1k AD +1k BD =012.在长方体ABCD −A 1B 1C 1D 1中,AB =8,AD =6,点E 是正方形BCC 1B 1内部或边界上异于点C 的一点,则下列说法正确的有A .若D 1E ∥平面ABB 1A 1,则E ∈C 1CB .设直线D 1E 与平面BCC 1B 1所成角的最小值为θ,则tan θ=223C .存在E ∈BB 1,使得∠D 1EC >π2D .若∠D 1EC =π2,则EB 的最小值为35-3三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中,已知点M (2,3)和N (4,0),点Q 在x 轴上.若直线MQ 与直线MN 的夹角为90°,则点Q 的坐标为▲________.14.在△ABC 中,AB =36,∠ABC =45°,∠BAC =75°,D 是射线BC 上一点,且CD =10,则AD =▲________.15.某商场为了促销,每天会在上午和下午各举办一场演出活动,两场演出活动相互独立.每个时段演出的概率分别如下:若某顾客打算第二天11:00抵达商场并逛3.5小时后离开,则他当天能观看到演出的概率为▲________.16.已知向量a =(1,3),b =(1,0),|a -c |=12,则向量b ,c 最大夹角的余弦值为▲________.上午演出时段9:00-9:3010:00-10:3011:00-11:30下午演出时段14:00-14:3015:00-15:3016:00-16:30相应的概率161213四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f(x)=sin x cos x-sin2x+t(x∈R)的最大值为2 2.(1)求f(x)的解析式;(2)若 x∈[π12,π2],f(x)-m≤0,求实数m的最小值.18.(本小题满分12分)在平面直角坐标系xOy中,已知圆C的圆心在l:x-2y=0上,且圆C与x轴相切,直线l1:x-ay=0(a∈R),D(6,0).(1)若直线l1与圆C相切,求a的值;(2)若直线l1与圆C相交于A,B两点,将圆C分成的两段弧的弧长之比为1∶3,且DA=DB,求圆C的方程.19.(本小题满分12分)如图,一个质地均匀的正二十面体骰子的各面上标有数字0~9这10个数字(相对的两个面上的数字相同),抛掷这个骰子,并记录下朝上一面(与地面或桌面平行)的数字.记事件A1为“抛两次,两次记录的数字之和大于16”,记事件A2为“抛两次,两次记录的数字之和为奇数”,事件A3为“抛两次,第一次记录的数字为奇数”.(1)求P(A1),P(A2);(2)判断事件A1A2与事件A3是否相互独立,并说明理由.20.(本小题满分12分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,AB → ·AC →=b 2-12ab .(1)求角C 的大小;(2)若△ABC 的面积为32,且CM → =2MB → ,AN → =3NM → ,求|CN →|的最小值.21.(本小题满分12分)如图,在所有棱长都等于1的三棱柱ABC -A 1B 1C 1中,∠ABB 1=π2,∠B 1BC =π3.(1)证明:A 1C 1⊥B 1C ;(2)求直线BC 与平面ABB 1A 1所成角的大小.22.(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且焦距为23,椭圆C 的上顶点为B ,且BF 1→ ·BF 2→=-2.(1)求椭圆C 的方程;(2)若直线l 过点A (2,-1),且与椭圆C 交于M ,N 两点(不与B 重合),直线BM 与直线BN 分别交直线x =4于P ,Q 两点.判断是否存在定点G ,使得点P ,Q 关于点G 对称,并说明理由.(第21题图)南京市2023-2024学年度第一学期期中学情调研测试高二数学参考答案 2023.11一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上. 1.C2.A 3.D 4.B 5.D6.C7.C 8.B二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得5分,部分选对得2分,不选或有错选的得0分. 9.ACD10.AC11.BCD12.ABD三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上. 13.(12,0)14.1415.4916.15-38四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分10分)解:(1)f (x )=sin x cos x -sin 2x +t =12sin2x -1-cos2x2+t ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分=12sin2x +12cos2x -12+t =22sin(2x +π4)-12+t .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为f (x )的最大值为22,所以22-12+t =22,解得t =12,所以f (x )=22sin(2x +π4).∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分(2)由(1)可知f (x )=22sin(2x +π4),当x ∈[π12,π2]时,5π12≤2x +π4≤5π4,当2x +π4=π2时,即x =π8时,f (x )max =22.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分因为f (x )-m ≤0恒成立,所以m ≥f (x )max 恒成立,即m ≥22恒成立,因此m 的最小值为22.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分18.(本小题满分12分)解:(1)因为圆心C 在直线l 上,可设C (2m ,m ),m ≠0.因为圆C 与x 轴相切,所以r =|m |.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分又因为直线l 1与圆C 相切,所以|m |=|2m -am |a 2+1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为m ≠0,解得a =34.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分(2)因为A ,B 把圆C 分成的两段弧长之比为1∶3,所以弦AB 所对劣弧圆心角为2π×14=π2,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分所以圆心C 到l 1的距离d 等于圆C 半径的22倍,即22|m |=|2m -am |a 2+1,由(1)得m ≠0,解得a =1或a =7. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分又因为DA =DB ,所以AB 的垂直平分线经过D (6,0)和圆心C (2m ,m ),所以m2m -6=-a ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分所以,当a =1时,m =2,圆C 方程为(x -4)2+(y -2)2=4,当a =7时,m =145,圆C 方程为(x -285)2+(y -145)2=19625.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分19.(本小题满分12分)解:若用(i ,j )表示第一次抛掷骰子数字为i ,用j 表示第二次抛掷骰子数字为j ,则样本空间Ω={(i ,j )|0≤i ≤9,0≤j ≤9,i ,j ∈Z },共有100种等可能的样本点. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分(1)A 1={(8,9),(9,8),(9,9)},∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分所以P (A 1)=3100.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为 A 2={(0,1),(0,3)…(9,8)}共有50个样本点,所以P (A 2)=50100=12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分(2)因为A 1A 2={(8,9),(9,8)},所以P (A 1A 2)=2100=150.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分因为A 3={(1,0),(1,1)…(9,9)},共有50个样本点,所以P (A 3)=50100=12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分因为A 1A 2A 3={(9,8)},所以P (A 1A 2A 3)=1100.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分因为P (A 1A 2)P (A 3)=150×12=P (A 1A 2A 3),所以事件A 1A 2与事件A 3独立.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分20.(本小题满分12分)解:(1)方法1因为AB → ·AC → =b 2-12ab ,所以bc cos A =b 2-12ab .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分由余弦定理得bc ×b 2+c 2-a 22bc =b 2-12ab ,化简得b 2+a 2-c 22ab =12,所以cos C =12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为C 为△ABC 内角,所以C =π3.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分方法2因为AB → ·AC →=b 2-12ab ,所以bc cos A =b 2-12ab .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分由正弦定理得sin B sin C cos A =sin 2B -12sin A sin B .因为B 为△ABC 内角,所以sin B ≠0,所以sin C cos A =sin B -12sin A .因为A +B +C =π,所以sin C cos A =sin(A +C )-12sin A ,即sin C cos A =sin A cos C +cos A sin C -12sin A ,化简得sin A cos C =12sin A .因为A 为△ABC 内角,所以sin A ≠0,所以cos C =12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为C 为△ABC 内角,所以C =π3.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分(2)因为S △ABC =12ab sin C =32,所以ab =2.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分因为CM → =2MB → ,AN → =3NM → ,所以CN → =CA → +AN → =CA → +34AM → =CA → +34(CM →-CA → )=14CA → +34CM → =14CA → +12CB →,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分从而|C N → |2=(14CA → +12CB → )2=116b 2+14a 2+14CA → ·CB→=116b 2+14a 2+14∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分≥2116b 2×14a 2+14=34.当且仅当116b 2=14a 2,即a =1,b =2时取等号.所以|C N →|的最小值为32.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分21.(本小题满分12分)(1)证明:连接AB 1,在△ABB 1中,∠ABB 1=π2,AB =BB 1=1,所以AB 1=2,在△BCB 1中,∠B 1BC =π3,BC =BB 1=1,所以B 1C =1,所以在△ACB 1中,AB 1=2,B 1C =1,AC =1,所以AB 12=AC 2+B 1C 2,所以AC ⊥B 1C .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分又因为在三棱柱ABC -A 1B 1C 1中,AC ∥A 1C 1,所以A 1C 1⊥B 1C .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分(2)方法1解:连接AB 1,A 1B ,交于点O ,连接BC 1,连接CO .在边长都为1的正方形A 1ABB 1中,O 是AB 1的中点,又因为B 1C =AC =1,所以CO ⊥AB 1. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分因为四边形B 1BCC 1边长都为1,所以B 1C ⊥BC 1.由(1)知B 1C ⊥A 1C 1.又因为A 1C 1∩BC 1=C 1,A 1C 1,BC 1⊂平面A 1BC 1,所以B 1C ⊥平面A 1BC 1.因为A 1B ⊂平面A 1BC 1,所以B 1C ⊥A 1B .因为在边长都为1的四边形A 1ABB 1中,A 1B ⊥AB 1.又因为AB 1∩B 1C =B 1,AB 1,B 1C ⊂平面AB 1C ,所以A 1B ⊥平面AB 1C .因为CO ⊂平面AB 1C ,所以CO ⊥A 1B . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分又因为A 1B ∩AB 1=O ,A 1B ,AB 1⊂平面A 1ABB 1,所以CO ⊥平面A 1ABB 1,所以∠CBO 即为直线BC 与平面ABB 1A 1所成的角. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分在边长都为1的四边形A 1ABB 1中,∠ABB 1=π2,所以BO =22.因为BC =1,所以cos ∠CBO =22,所以∠CBO =π4,所以直线BC 与平面ABB 1A 1所成角的大小为π4. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分方法2解:取AB 1中点O ,连接BO ,CO .在△ACB 1中,AC =B 1C =1,所以CO ⊥AB 1, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分在边长都为1的正方形A 1ABB 1中,BO =22,A 1B =2.又因为AC 2+B 1C 2=A 1B 2,所以△ACB 1为直角三角形,所以CO =22.在△ACB 1中,CO 2+BO 2=BC 2,所以CO ⊥BO .…………………………………………8分又因为AB 1∩BO =O ,AB 1,BO 平面A 1ABB 1,所以CO ⊥平面A 1ABB 1,所以∠CBO 即为直线BC 与平面ABB 1A 1所成的角.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分在边长都为1的四边形A 1ABB 1中,∠ABB 1=π2,所以BO =22.因为BC =1,所以cos ∠CBO =22,所以∠CBO =π4,所以直线BC 与平面ABB 1A 1所成角的大小为π4.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分22.(本小题满分12分)解:(1)因为BF 1→ =(-3,-b ),BF 2→=(3,-b ),所以BF 1→ ·BF 2→=b 2-3=-2,所以b 2=1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分因为c =3,所以a 2=4,所以椭圆C 的方程为x 24+y 2=1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分(2)设直线MN 的方程为y =k (x -2)-1,M (x 1,y 1),N (x 2,y 2),联立{x 2+4y 2=4,y =k (x -2)-1,消去y 得,(1+4k 2)x 2-8k (1+2k )x +16k 2+16k =0,所以x 1+x 2=8k (1+2k )1+4k 2,x 1x 2=16k 2+16k 1+4k 2,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分直线BM 的方程为y =y 1-1x 1x +1,直线BN 的方程为y =y 2-1x 2x +1,设P ,Q 两点的纵坐标分别为y P ,y Q ,所以y P =4×y 1-1x 1+1,y Q =4×y 2-1x 2+1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分因为y P +y Q =4×(y 2-1x 2+y 1-1x 1)+2=4×[k (x 2-2)-2x 2+k (x 1-2)-2x 1]+2=4×(2k -2k +2x 2-2k +2x 1)+2=4×[2k -(2k +2)x 1+x 2x 1x 2]+2∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分=4×[2k -(2k +2)8k (1+2k )16(k +k 2)]+2=4×[2k -(2k +1)]+2=-2,所以y P +y Q 2=-1,所以存在G (4,-1),使得点P ,Q 关于点G 对称.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分。

江苏省南京市2020年中考数学试题(Word版,含答案与解析)

江苏省南京市2020年中考数学试题(Word版,含答案与解析)

江苏省南京市2020年中考数学试卷一、选择题(共6题;共12分)1.计算3−(−2)的结果是()A. -5B. -1C. 1D. 5【答案】 D【考点】有理数的减法【解析】【解答】解:3−(−2)=3+2=5.故答案为:D.【分析】利用有理数的减法法则转化为加法,再计算即可.2.3的平方根是()A. 9B. √3C. −√3D. ±√3【答案】 D【考点】平方根【解析】【解答】∵(±√3)2=3∴3的平方根是±√3.故答案为:D.【分析】直接根据平方根的概念即可求解.3.计算(a3)2÷a2的结果是()A. a3B. a4C. a7D. a8【答案】B【考点】同底数幂的乘法,幂的乘方【解析】【解答】解:(a3)2÷a2=a6÷a2=a4.故答案为:B.【分析】先计算幂的乘方,再计算同底数幂的除法,从而可得答案.4.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,2012−2019年年末全国农村贫困人口的情况如图所示,根据图中提供的信息,下列说法错误的是()A. 2019年末,农村贫困人口比上年末减少551万人B. 2012年末至2019年末,农村贫困人口累计减少超过9000万人C. 2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D. 为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村人口的任务【答案】A【考点】条形统计图【解析】【解答】A、1660-551=1109,即2019年末,农村贫困人口比上年末减少1109万人,故本选项推断不合理,符合题意;B、2012年末至2019年末,农村贫困人口累计减少:9899-551=9348,所以超过9000万人,故本选项推断合理,不符合题意;C、9899-8249=1650,8249-7017=1232,7017-5575=1442,5575-4335=1240,4335-3046=1289,3046-1660=1386,1660-551=1109,所以连续7年每年农村贫困人口减少1000万人以上,故本选项推理合理,不符合题意;D、根据2012~2019年年末全国农村贫困发生率统计图,知:2019年末,还有551万农村人口的脱贫任务,故本选项推理合理,不符合题意;故答案为:A.【分析】用2018年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断A;用2012年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断B;根据2012~2019年年末全国农村贫困发生率统计图,通过计算即可判断C;根据2012~2019年年末全国农村贫困发生率统计图,即可判断D.5.关于x的方程(x−1)(x+2)=ρ2(ρ为常数)根的情况下,下列结论中正确的是()A. 两个正根B. 两个负根C. 一个正根,一个负根D. 无实数根【答案】C【考点】一元二次方程根的判别式及应用,一元二次方程的根与系数的关系【解析】【解答】解:(x−1)(x+2)=ρ2,整理得:x2+x−3−ρ2=0,∴Δ=12−4(−3−ρ2)=4ρ2+13>0,∴方程有两个不等的实数根,设方程两个根为x1、x2,∵x1+x2=−1,x1x2=−3−p2∴两个异号,而且负根的绝对值大.故答案为:C.【分析】先将方程整理为一般形式,再根据根的判别式得出方程由两个不等的实数根,然后又根与系数的关系判断根的正负即可.6.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D,若⊙P的半径为5,点A的坐标是(0,8),则点D的坐标是()A. (9,2)B. (9,3)C. (10,2)D. (10,3)【答案】A【考点】坐标与图形性质,矩形的性质,切线的性质【解析】【解答】设切点分别为G,E,连接PG,PE,PC,PD,并延长EP交BC与F,则PG=PE=PC=5,四边形OBFE是矩形.∵OA=8,∴CF=8-5=3,∴PF=4,∴OB=EF=5+4=9.∵PF过圆心,∴DF=CF=3,∴BD=8-3-3=2,∴D(9,2).故答案为:A.【分析】在Rt△CPF中根据勾股定理求出PF的长,再根据垂径定理求出DF的长,进而求出OB,BD的长,从而求出点D的坐标.二、填空题(共10题;共10分)7.写出一个负数,使这个数的绝对值小于3________.【答案】-1【考点】绝对值及有理数的绝对值,有理数大小比较【解析】【解答】解:∵|-1|=1,1<3,∴这个负数可以是-1.故答案为:-1(答案不唯一).【分析】根据绝对值的定义及有理数的大小比较方法求解即可.8.若式子1−1x−1在实数范围内有意义,则x的取值范围是________.【答案】x≠1【考点】分式有意义的条件【解析】【解答】解:由题意得:x−1≠0,∴x≠1,故答案为:x≠1【分析】由分式有意义的条件可得答案.9.纳秒(ns)是非常小的时间单位,1ns=10−9s,北斗全球导航系统的授时精度优于20ns,用科学记数法表示20ns是________.【答案】2×10−8s【考点】科学记数法—表示绝对值较小的数【解析】【解答】∵1ns=10−9s,∴20ns=20×10-9s,用科学记数法表示得2×10−8s,故答案为:2×10−8s.【分析】根据科学记数法的表示形式进行表示即可.10.计算√3√3+√12的结果是________.【答案】13【考点】二次根式的性质与化简【解析】【解答】√3√3+√12=√3√3+2√3 =√33√3=13, 故答案为: 13 .【分析】先化成最简二次根式,再根据二次根式的加减法法则计算出分母,最后约分即可.11.已知x 、y 满足方程组 {x +3y =−12x +y =3,则 x +y 的值为________. 【答案】 1【考点】解二元一次方程组【解析】【解答】解: {x +3y =−1①2x +y =3②① ×2 得: 2x +6y =−2 ③③-②得: 5y =−5,∴y =−1,把 y =−1 代入①:∴x −3=−1,∴x =2,所以方程组的解是: {x =2y =−1, ∴x +y =1.故答案为:1【分析】先解方程组求解 x,y ,从而可得答案.12.方程 x x−1=x−1x+2 的解是________.【答案】 x =14【考点】解分式方程【解析】【解答】解: ∵x x−1=x−1x+2∴(x −1)2=x(x +2),∴x 2−2x +1=x 2+2x,∴4x =1,∴x =14. 经检验: x =14 是原方程的根.故答案为: x =14 .【分析】去分母,把分式方程化为整式方程,再解整式方程并检验即可.13.将一次函数 y =−2x +4 的图象绕原点O 逆时针旋转 90∘ ,所得到的图像对应的函数表达式是________.x+2【答案】y=12【考点】一次函数图象与几何变换,待定系数法求一次函数解析式【解析】【解答】∵一次函数的解析式为y=−2x+4,∴设与x轴、y轴的交点坐标为A(2,0)、B(0,4),∵一次函数y=−2x+4的图象绕原点O逆时针旋转90∘,∴旋转后得到的图象与原图象垂直,旋转后的点为A1(0,2)、B1(-4,0),,b=2,令y=ax+b,代入点得a=12∴旋转后一次函数解析式为y=1x+2.2x+2.故答案为y=12【分析】根据一次函数互相垂直时系数之积等于-1,进而得出答案;14.如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为________.【答案】2√3【考点】圆内接正多边形【解析】【解答】解:如图,连接BF,过A作AG⊥BF于G,∵正六边形ABCDEF,∴AB=AF=FE=2,∠A=120°=∠ABC=∠AFE,∴∠ABF=∠AFB=30°,BG=FG,∴∠CBF=∠BFE=90°,AG=AB•sin30°=1,BG=AB•cos30°=√3,∴CB//EF,BF=2√3,∴S△PEF=1×2×2√3=2√3.2故答案为:2√3.【分析】如图,连接BF 过A作AG⊥BF于G,利用正六边形的性质求解BF的长,利用BF与EF 上的高相等,从而可得答案.15.如图,线段AB、BC的垂直平分线l1、l2相交于点O,若∠1=39°,则∠AOC=________.【答案】78°【考点】垂线,三角形的外角性质,线段垂直平分线的性质【解析】【解答】如图,连接BO并延长,∵l1、l2分别是线段AB、BC的垂直平分线,∴OA=OB,OB=OC,∠ODG=∠OEF=90 °,∴∠A=∠ABO,∠C=∠CBO,∴∠2=2∠A,∠3=2∠C,∠OGD=∠OFE=90 °-39 °=51 °,∴∠AOC=∠2+∠3=2(∠A+∠C),∵∠OGD=∠A+∠AOG,∠OFE=∠C+∠COF,∴∠AOG =51 °-∠A,∠COF =51 °-∠C,而∠AOG+∠2+∠3+∠COF+∠1=180 °,∴51 °-∠A+2∠A+2∠C+51 °-∠C+39 °=180 °,∴∠A+∠C=39 °,∴∠AOC=2(∠A+∠C)=78 °,故答案为:78 °.【分析】如图,利用线段垂直平分线的性质结合三角形外角性质得到∠AOC=∠2+∠3=2(∠A+∠C),再利用垂直的定义结合三角形外角性质得到∠AOG =51 °-∠A,∠COF =51 °-∠C,利用平角的定义得到∠AOG+∠2+∠3+∠COF+∠1=180 °,计算即可求解.16.下列关于二次函数y=−(x−m)2+m2+1(m为常数)的结论,①该函数的图象与函数y=−x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图像上,其中所有正确的结论序号是________.【答案】 ①②④【考点】二次函数图象的几何变换,二次函数y=ax^2+bx+c 的图象,二次函数y=ax^2+bx+c 的性质【解析】【解答】 ∵ 当 m >0 时,将二次函数 y =−x 2 的图象先向右平移m 个单位长度,再向上平移 m 2+1 个单位长度即可得到二次函数 y =−(x −m)2+m 2+1 的图象;当 m <0 时,将二次函数 y =−x 2 的图象先向左平移 −m 个单位长度,再向上平移 m 2+1 个单位长度即可得到二次函数 y =−(x −m)2+m 2+1 的图象∴ 该函数的图象与函数 y =−x 2 的图象形状相同,结论①正确对于 y =−(x −m)2+m 2+1当 x =0 时, y =−(0−m)2+m 2+1=1即该函数的图象一定经过点 (0,1) ,结论②正确由二次函数的性质可知,当 x ≤m 时,y 随x 的增大而增大;当 x >m 时,y 随x 的增大而减小 则结论③错误y =−(x −m)2+m 2+1 的顶点坐标为 (m,m 2+1)对于二次函数 y =x 2+1当 x =m 时, y =m 2+1即该函数的图象的顶点 (m,m 2+1) 在函数 y =x 2+1 的图象上,结论④正确综上,所有正确的结论序号是①②④故答案为:①②④.【分析】①两个二次函数可以通过平移得到,由此即可得两个函数的图象形状相同;②求出当 x =0 时,y 的值即可得;③根据二次函数的增减性即可得;④先求出二次函数 y =−(x −m)2+m 2+1 的顶点坐标,再代入函数 y =x 2+1 进行验证即可得.三、解答题(共11题;共71分)17.计算: (a −1+1a+1)÷a 2+2a a+1【答案】 解: (a −1+1a+1)÷a 2+2a a+1 =(a−1)(a+1)+1a+1⋅a+1a 2+2a =a 2a+1⋅a+1a(a+2)=a a+2 .【考点】分式的混合运算【解析】【分析】先把括号里通分,再把除法转化为乘法,然后约分化简即可.18.解方程: x 2−2x −3=0 .【答案】 解:因式分解得:(x+1)(x-3)=0,即x+1=0或x-3=0,解得:x 1=-1,x 2=3【考点】因式分解法解一元二次方程【解析】【分析】将方程的左边因式分解后即可求得方程的解19.如图,点D 在AB 上,点E 在AC 上,AB=AC ,∠B=∠C .求证:BD=CE.【答案】 解:在△ABE 与△ACD 中,{∠A =∠AAB =AC ∠B =∠C,∴△ACD ≌△ABE (ASA ),∴AD=AE (全等三角形的对应边相等),∴AB-AD=AC-AE ,即:BD=CE.【考点】全等三角形的判定与性质【解析】【分析】首先利用ASA 判断出 △ACD ≌△ABE ,根据全等三角形的对应边相等得出 AD=AE ,然后根据等式的性质,由等量减去等量差相等得出 BD=CE.20.已知反比例函数 y =k x的图象经过点 (−2,−1) (1)求k 的值(2)完成下面的解答解不等式组 {2−x >1①k x >1② 解:解不等式①,得________.根据函数 y =k x 的图象,得不等式②得解集________.把不等式①和②的解集在数轴上表示出来________从中可以找出两个不等式解集的公共部分,得不等式组的解集________.【答案】 (1)解:因为点 (−2,−1) 在反比例函数 y =k x 的图像上,所以点 (−2,−1) 的坐标满足 y =k x ,即 −1=k −2 ,解得 k =2 ;(2)x <1;0<x <2;;0<x <1【考点】在数轴上表示不等式组的解集,解一元一次不等式组,反比例函数的图象,待定系数法求反比例函数解析式【解析】【分析】(2)解: {2−x >1①k x>1② , 解不等式①,得 x <1 ;∵y=1时,x=2,∴根据函数 y =k x 的图象,得不等式②得解集 0<x <2 .把不等式①和②的解集在数轴上表示出来:从中可以找出两个不等式解集的公共部分,得不等式组的解集为 0<x <1 .【分析】(1)利用待定系数法求解即可;(2)根据移项、合并同类项、系数化为1求出不等式①的解集;根据反比例函数的图像求出不等式②的解集,进而求出公共部分即可.21.为了了解某地居民的用电量情况,随机抽取了该地200户居民六月份的用电量(单位: kW ⋅ℎ )进行调查,整理样本数据得到下面的频数分布表:根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第________组内.(2)估计该地1万户居民六月份的用电量低于 178kW ⋅ℎ 的大约有多少户.【答案】(1)2×10000=7500(户)(2)解:50+100200因此,估计该地1万户居民六月的用电量低于178kW⋅ℎ的大约有7500户.【考点】用样本估计总体,频数(率)分布表,中位数【解析】【解答】解:(1)将200个数据按大小顺序排列最中间两个数即第100和101个数,它们的平均数即为中位数,这两个数都落在第2组,故答案为:2;【分析】(1)将200个数据按大小顺序排列最中间两个数的平均数即为中位数,进而可解决问题;(2)求出用电量低于178kW⋅ℎ的户数的百分比,根据总户数求出答案..22.甲、乙两人分别从A、B、C这3个景点随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率.(2)甲、乙两人选择的2个景点恰好相同的概率是________.【答案】(1)解:用列表法表示所有可能出现的结果如下:(2)13【考点】列表法与树状图法,概率公式【解析】【解答】解:(2)共有9种可能出现的结果,其中选择A、B的有2种,∴P(A、B)= 2;9.故答案为:13【分析】(1)列举出所有可能出现的结果,利用概率公式求解即可;(2)根据树状图求得恰好只有两人选择相同的情况,再根据概率公式求解即可.23.如图,在港口A处的正东方向有两个相距6km的观测点B、C,一艘轮船从A处出发,北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°,∠C=37°求轮船航行的距离AD (参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】解:如图,过点D作DH⊥AC,垂足为H在RtΔDCH中,∠C=37°∵tan37°=DHCH∴CH=DHtan37°在RtΔDBH中,∠DBH=45°∵tan45°=DHBH∴BH=DHtan45°∵BC=CH−BH∴DH tan37°−DHtan45°=6∴DH≈18在RtΔDAH中,∠ADH=26°∵cos26°=DHAD∴AD=DHcos26°≈20(km)因此,轮船航行的距离AD约为20km【考点】解直角三角形的应用﹣方向角问题和BH=【解析】【分析】过点D作DH⊥AC,垂足为H,通过解RtΔDCH和RtΔDBH得CH=DHtan37°DH,根据BC=CH−BH求得DH,再解RtΔDAH求得AD即可.tan45°24.如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF//BC,交⊙O于点F,求证:(1)四边形DBCF是平行四边形(2)AF=EF【答案】(1)证明:∵AC=BC,∴∠BAC=∠B,∵DF//BC,∴∠ADF=∠B,又∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD//CF,四边形DBCF是平行四边形.(2)证明:如图,连接AE∵∠ADF=∠B,∠ADF=∠AEF∴∠AEF=∠B四边形AECF是⊙O的内接四边形∴∠ECF+∠EAF=180°∵BD//CF∴∠ECF+∠B=180°∴∠EAF=∠B∴∠AEF=∠EAF∴AF=EF【考点】平行线的性质,平行四边形的判定,圆内接四边形的性质【解析】【分析】(1)利用等腰三角形的性质证明∠BAC=∠B,利用平行线证明∠ADF=∠B,利用圆的性质证明∠BAC=∠CFD,再证明BD//CF,即可得到结论;(2)如图,连接AE,利用平行线的性质及圆的基本性质∠AEF=∠B,再利用圆内接四边形的性质证明∠EAF=∠B,从而可得结论.25.小明和小丽先后从A地出发同一直道去B地,设小丽出发第xmin时,小丽、小明离地的距离分别为y m1、y m2,y1与x之间的数表达式y1=−180x+2250,y2与x之间的函数表达式是y2=−10x2−100x+2000.(1)小丽出发时,小明离A地的距离为________ m.(2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?【答案】(1)250(2)解:设小丽出发第x min 时,两人相距Sm,则S=−180x+2250−(−10x2−100x+2000)即S=10x2−80x+250其中0≤x≤10因此,当x=−b2a =−−802×10=4时S有最小值,4ac−b24a =4×10×250−(−80)24×10=90也就是说,当小丽出发第4min时,两人相距最近,最近距离是90m【考点】二次函数的其他应用【解析】【解答】解:(1)当x=0时,y1=2250,y2=2000∴y1- y2=2250-2000=250(m)故答案为:250【分析】(1)由x=0时,根据y1- y2求得结果即可;(2)求出两人相距的函数表达式,求出最小值即可.26.如图,在△ABC和△A′B′C′中,D、D′分别是AB、A′B′上一点,ADAB =A′D′A′B′.(1)当CDC′D′=ACA′C′=ABA′B′时,求证:△ABC~△A′B′C′证明的途径可以用如框图表示,请填写其中的空格E′(2)当CDC′D′=ACA′C′=BCB′C′时,判断△ABC与△A′B′C′是否相似,并说明理由【答案】(1)解:∵ADAB =A′D′A′B′,∴ABA′B′=ADA′D′,∵CDC′D′=ACA′C′=ABA′B′,∴CDC′D′=ACA′C′=ADA′D′,∴△ADC~△A′D′C′,∴∠A=∠A′,∵ACA′C′=ABA′B′,∴△ABC~△A′B′C′,故答案为:CDC′D′=ACA′C′=ADA′D′,∠A=∠A′;(2)解:如图,过点D、D′分别作DE∥BC,D′E′∥B′C′,DE交AC于点E,D′E′交A′C′于点E′,∵DE∥BC,∴△ADE~△ABC,∴ADAB =DEBC=AEAC,同理:A′D′A′B′=D′E′B′C′=A′E′A′C′,又ADAB =A′D′A′B′,∴DEBC =D′E′B′C′,∴DED′E′=BCB′C′,同理:AEAC =A′E′A′C′,∴AC−AEAC =A′C′−A′E′A′C′,即ECAC =E′C′A′C′,∴ECE′C′=ACA′C′,又CDC′D′=ACA′C′=BCB′C′,∴CDC′D′=DED′E′=ECE′C′,∴△DCE~△D′C′E′,∴∠CED=∠C′E′D′,∵DE∥BC,∴∠CED+∠ACB=180°,同理:∠CED′+∠A′CB′=180°,∴∠ACB=∠A′C′B′,又ACA′C′=BCB′C′,∴△ABC~△A′B′C′.【考点】相似三角形的判定与性质【解析】【分析】(1)根据CDC′D′=ACA′C′=ABA′B′=ADA′D′证得△ADC~△A′D′C′,推出∠A=∠A′,再证明结论;(2)作DE∥BC,D′E′∥B′C′,利用三边对应成比例证得DCE~△D′C′E′,再推出∠ACB=∠A′C′B′,证得ACA′C′=BCB′C′,即可证明△ABC~△A′B′C′.27.如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别发铺设管道输送燃气,试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A′,线A′B与直线l的交点C的位置即为所求,即在点C 处建气站,所得路线ACB是最短的,为了让明点C的位置即为所求,不妨在l直线上另外任取一点C′,连接AC′,BC′,证明AC+CB<AC′+C′B,请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域请分别始出下列两种情形的铺设管道的方案(不需说明理由),①生市保护区是正方形区城,位置如图③所示②生态保护区是圆形区域,位置如图④所示.【答案】(1)证明:如图,连接A′C∵点A、A′关于l对称,点C在l上∴A′C=CA,∴CA+CB=A′C+CB=A′B,同理AC′+C′B=A′C′+C′B,在ΔA′C′B中,有A′B<A′C′+C′B∴AC+CB<AC′+C′B;(2)解:①在点C处建燃气站,铺设管道的最短路线是AC+CD+DB(如图,其中D是正方形的顶点).⌢+EB(如图,其中CD、BE都与圆相切).②在点C处建燃气站,铺设管道的最短路线是AC+CD+DE【考点】轴对称的应用-最短距离问题【解析】【分析】(1)连接A′C,利用垂直平分线的性质,得到A′C=CA,利用三角形的三边关系,即可得到答案;(2)由(1)可知,在点C处建燃气站,铺设管道的路线最短.分别对①、②的道路进行设计分析,即可求出最短的路线图.。

2022年江苏省南京市中考数学(word版有解析)

2022年江苏省南京市中考数学(word版有解析)

2022年江苏省南京市中考数学试卷一、选择题〔本大题共6小题,每题2分,共12分。

在每题所给出的四个选项中,恰有一项为哪一项符合题目要求的〕1.计算12+〔﹣18〕÷〔﹣6〕﹣〔﹣3〕×2的结果是〔〕A.7B.8C.21D.36【解析】原式=12+3+6=21,应选C.2.计算106×〔102〕3÷104的结果是〔〕A.103B.107C.108D.109【解析】106×〔102〕3÷104=106×106÷104=106+6﹣4=108.应选C.3.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是〔〕A.三棱柱B.四棱柱C.三棱锥D.四棱锥【解析】四棱锥的底面是四边形,侧面是四个三角形,底面有四条棱,侧面有4条棱,应选D.4.假设<a<,那么以下结论中正确的选项是〔〕A.1<a<3B.1<a<4C.2<a<3D.2<a<4【解析】∵1<2,3<4,又∵<a<,∴1<a<4,应选B.5.假设方程〔x﹣5〕2=19的两根为a和b,且a>b,那么以下结论中正确的选项是〔〕A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根【解析】∵方程〔x﹣5〕2=19的两根为a和b,∴a﹣5和b﹣5是19的两个平方根,且互为相反数,∵a>b,∴a﹣5是19的算术平方根,应选C.6.过三点A〔2,2〕,B〔6,2〕,C〔4,5〕的圆的圆心坐标为〔〕A.〔4,〕B.〔4,3〕C.〔5,〕D.〔5,3〕【解析】A〔2,2〕,B〔6,2〕,C〔4,5〕,∴AB的垂直平分线是x==4,设直线BC的解析式为y=kx+b,把B〔6,2〕,C〔4,5〕代入上式得,解得,∴y=﹣x+11,设BC的垂直平分线为y=x+m,把线段BC的中点坐标〔5,〕代入得m=,∴BC的垂直平分线是y=x+,当x=4时,y=,∴过A、B、C三点的圆的圆心坐标为〔4,〕.应选A.二、填空题〔本大题共10小题,每题2分,共20分〕7.计算:|﹣3|=3;=3.【解析】|﹣3|=3,==3,故答案为:3,3.8.2022年南京实现GDP约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是 1.05×104.【解析】10500=1.05×104.故答案为:1.05×104.9.假设分式在实数范围内有意义,那么x的取值范围是x≠1.【解析】由题意得x﹣1≠0,解得x≠1.故答案为:x≠1.10.计算+×的结果是6.【解析】原式=2+=2+4=6.故答案为6.11.方程﹣=0的解是x=2.【解析】﹣=0,方程两边都乘以x〔x+2〕得:2x﹣〔x+2〕=0,解得:x=2,检验:当x=2时,x〔x+2〕≠0,所以x=2是原方程的解,故答案为:x=2.12.关于x的方程x2+px+q=0的两根为﹣3和﹣1,那么p=4,q=3.【解析】∵关于x的方程x2+px+q=0的两根为﹣3和﹣1,∴﹣3+〔﹣1〕=﹣p,〔﹣3〕×〔﹣1〕=q,∴p=4,q=3.故答案为:4;3.13.如图是某市2022﹣2022年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是2022年,私人汽车拥有量年增长率最大的是2022年.【解析】由条形统计图可得:该市私人汽车拥有量年净增量最多的是2022年,净增183﹣150=33〔万辆〕,由折线统计图可得,私人汽车拥有量年增长率最大的是:2022年.故答案为:2022,2022.14.如图,∠1是五边形ABCDE的一个外角,假设∠1=65°,那么∠A+∠B+∠C+∠D=425°.【解析】∵∠1=65°,∴∠AED=115°,∴∠A+∠B+∠C+∠D=540°﹣∠AED=425°,故答案为:425.15.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.假设∠D=78°,那么∠EAC=27°.【解析】∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=〔180°﹣∠D〕=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,故答案为:27.16.函数y1=x与y2=的图象如下列图,以下关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是〔2,4〕,其中所有正确结论的序号是①③.【解析】①由图象可以看出函数图象上的每一个点都可以找到关于原点对称的点,故正确;②在每个象限内,不同自变量的取值,函数值的变化是不同的,故错误;③结合图象的2个分支可以看出,当x=2时,y=2+=4,即在第一象限内,最低点的坐标为〔2,4〕,故正确;∴正确的有①③.故答案为:①③.三、解答题〔本大题共11小题,共88分〕17.〔7分〕计算〔a+2+〕÷〔a﹣〕.【解】〔a+2+〕÷〔a﹣〕===.18.〔7分〕解不等式组请结合题意,完成此题的解答.〔1〕解不等式①,得x≥﹣3,依据是:不等式的根本性质.〔2〕解不等式③,得x<2.〔3〕把不等式①、②和③的解集在数轴上表示出来.〔4〕从图中可以找出三个不等式解集的公共局部,得不等式组的解集﹣2<x<2.【解】〔1〕解不等式①,得x≥﹣3,依据是:不等式的根本性质.〔2〕解不等式③,得x<2.〔3〕把不等式①,②和③的解集在数轴上表示出来.〔4〕从图中可以找出三个不等式解集的公共局部,得不等式组的解集为:﹣2<x<2,故答案为:〔1〕x≥﹣3、不等式的性质3;〔2〕x<2;〔3〕﹣2<x<2.19.〔7分〕如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF,EF、BD相交于点O,求证:OE=OF.【解】证明:方法1,连接BE、DF,如下列图:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OF=OE.方法2,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵∠ODE=∠OBF,AE=CF,∴DE=BF,在△DOE和△BOF中,,∴△DOE≌△BOF〔AAS〕,∴OE=OF.月收入/元45000 18001000550480340300220人数 1 1 1 3 6 1 11 1〔1〕该公司员工月收入的中位数是3400元,众数是3000元.〔2〕根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为适宜?说明理由.【解】〔1〕共有25个员工,中位数是第13个数,那么中位数是3400元;3000出现了11次,出现的次数最多,那么众数是3000.故答案为3400;3000;〔2〕用中位数或众数来描述更为恰当.理由:平均数受极端值45000元的影响,只有3个人的工资到达了6276元,不恰当;21.〔8分〕全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,答复以下问题:〔1〕甲家庭已有一个男孩,准备再生一个孩子,那么第二个孩子是女孩的概率是;〔2〕乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【解】〔1〕第二个孩子是女孩的概率=;故答案为;〔2〕画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.22.〔8分〕“直角〞在初中几何学习中无处不在.如图,∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角〔仅限用直尺和圆规〕.【解析】〔1〕如图1,在OA,OB上分别,截取OC=4,OD=3,假设CD的长为5,那么∠AOB=90°〔2〕如图2,在OA,OB上分别取点C,D,以CD为直径画圆,假设点O在圆上,那么∠AOB=90°.23.〔8分〕张老师方案到超市购置甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购置品种,每减少购置1个甲种文具,需增加购置2个乙种文具.设购置x个甲种文具时,需购置y个乙种文具.〔1〕①当减少购置1个甲种文具时,x=99,y=2;②求y与x之间的函数表达式.〔2〕甲种文具每个5元,乙种文具每个3元,张老师购置这两种文具共用去540元.甲、乙两种文具各购置了多少个?【解】〔1〕①∵100﹣1=99,∴x=99,y=2,故答案为99,2.②由题意y=2〔100﹣x〕=﹣2x+200,∴y与x之间的函数表达式为y=﹣2x+200.〔2〕由题意,解得,答:甲、乙两种文具各购置了60个和80个.24.〔8分〕如图,PA,PB是⊙O的切线,A,B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.〔1〕求证:PO平分∠APC;〔2〕连接DB,假设∠C=30°,求证:DB∥AC.【证明】〔1〕如图,连接OB,∵PA,PB是⊙O的切线,∴OA⊥AP,OB⊥BP,又OA=OB,∴PO平分∠APC;〔2〕∵OA⊥AP,OB⊥BP,∴∠CAP=∠OBP=90°,∵∠C=30°,∴∠APC=90°﹣∠C=90°﹣30°=60°,∵PO平分∠APC,∴∠OPC=∠APC==30°,∴∠POB=90°﹣∠OPC=90°﹣30°=60°,又OD=OB,∴△ODB是等边三角形,∴∠OBD=60°,∴∠DBP=∠OBP﹣∠OBD=90°﹣60°=30°,∴∠DBP=∠C,∴DB∥AC.25.〔8分〕如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?〔参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75〕【解】如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH==,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴=,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E处距离港口A有35km.26.〔8分〕函数y=﹣x2+〔m﹣1〕x+m〔m为常数〕.〔1〕该函数的图象与x轴公共点的个数是D.A.0B.1C.2D.1或2〔2〕求证:不管m为何值,该函数的图象的顶点都在函数y=〔x+1〕2的图象上.〔3〕当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.【解】〔1〕∵函数y=﹣x2+〔m﹣1〕x+m〔m为常数〕,∴△=〔m﹣1〕2+4m=〔m+1〕2≥0,那么该函数图象与x轴的公共点的个数是1或2,应选D;〔2〕证明:y=﹣x2+〔m﹣1〕x+m=﹣〔x﹣〕2+,把x=代入y=〔x+1〕2得:y=〔+1〕2=,那么不管m为何值,该函数的图象的顶点都在函数y=〔x+1〕2的图象上;〔3〕设函数z=,当m=﹣1时,z有最小值为0;当m<﹣1时,z随m的增大而减小;当m>﹣1时,z随m的增大而增大,当m=﹣2时,z=;当m=3时,z=4,那么当﹣2≤m≤3时,该函数图象的顶点坐标的取值范围是0≤z≤4.27.〔11分〕折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD〔AB>BC〕〔图①〕,使AB与DC重合,得到折痕EF,把纸片展平〔图②〕.第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB、PC,得到△PBC.〔1〕说明△PBC是等边三角形.【数学思考】〔2〕如图④,小明画出了图③的矩形ABCD和等边三角形PBC.他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.〔3〕矩形一边长为3cm,另一边长为a cm,对于每一个确定的a的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a的取值范围.【问题解决】〔4〕用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm.【解】〔1〕证明:由折叠的性质得:EF是BC的垂直平分线,BG是PC的垂直平分线,∴PB=PC,PB=CB,∴PB=PC=CB,∴△PBC是等边三角形.〔2〕解:以点B为中心,在矩形ABCD中把△PBC逆时针方向旋转适当的角度,得到△P1BC1;再以点B为位似中心,将△P1BC1放大,使点C1的对称点C2落在CD上,得到△P2BC2;如图⑤所示;〔3〕解:此题答案不唯一,举例如图⑥所示;〔4〕解:如图⑦所示:△CEF是直角三角形,∠CEF=90°,CE=4,EF=1,∴∠AEF+∠CED=90°,∵四边形ABCD是正方形,∴∠A=∠D=90°,AD=CD,∴∠DCE+∠CED=90°,∴∠AEF=∠DCE,∴△AEF∽△DCE,∴=,设AE=x,那么AD=CD=4x,∴DE=AD﹣AE=3x,在Rt△CDE中,由勾股定理得:〔3x〕2+〔4x〕2=42,解得:x=,∴AD=4×=.故答案为:.。

【】江苏省南京市2022年中考数学试题及答案解析

【】江苏省南京市2022年中考数学试题及答案解析

2021-2021年中考(zhōnɡ kǎo)数学试卷一、选择题:本大题共有(ɡònɡ yǒu)6小题,每小题3分,共18分1.4的平方根是()A.±2 B.﹣2 C.2 D.2.人体中红细胞的直径约为0.0000077m,将数0.0000077用科学(kēxué)记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣73.下列图案中,既是轴对称图形(túxíng)又是中心对称图形的是()A.B.C.D.4.如图所示的几何体,它的左视图(shìtú)与俯视图都正确的是()A.B.C.D.5.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.56.实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣二、填空题:本大题共10小题,每小题3分,共30分7.(﹣)0等于.8.函数中,自变量x的取值范围是.9.抛掷一枚质地均匀的正方体骰子1枚,朝上一面的点数为偶数的概率是.10.五边形的内角和是°.11.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为.12.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.13.如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好(qiàhǎo)经过AC的中点O,则△ABC平移的距离为cm.14.方程(fāngchéng)2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个(yīɡè)解,则m的值为.15.如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过(jīngguò)圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分(bù fen)的面积为.16.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为.三、解答题17.计算或化简:(1)﹣(3+);(2)(﹣)÷.18.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18 a围棋类14 0.28喜剧类8 0.16国画类 b 0.20根据以上信息完成下列问题:(1)直接写出频数(pín shù)分布表中a的值;(2)补全频数(pín shù)分布直方图;(3)若全校共有学生(xué sheng)1500名,估计该校最喜爱围棋的学生大约有多少人?19.一只不透明的袋子中装有3个球,球上分别标有数字0,1,2,这些球除了数字外其余都相同,甲、以两人玩摸球游戏,规则如下:先由甲随机摸出一个(yīɡè)球(不放回),再由乙随机摸出一个球,两人摸出的球所标的数字之和为偶数时则甲胜,和为奇数时则乙胜.(1)用画树状图或列表的方法(fāngfǎ)列出所有可能的结果;(2)这样的游戏规则是否公平?请说明理由.20.随着互联网的迅速发展,某购物网站的年销售额从2021年的200万元增长到2021年的392万元.求该购物网站平均每年销售额增长的百分率.21.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.22.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)23.如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD 于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;(2)若PF:PC=1:2,AF=5,求CP的长.24.如图,点A(m,4),B(﹣4,n)在反比例函数(hánshù)y=(k>0)的图象上,经过点A、B的直线(zhíxiàn)与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接(liánjiē)OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.25.已知正方形ABCD,P为射线(shèxiàn)AB上的一点,以BP为边作正方形BPEF,使点F在线段CB 的延长线上,连接EA、EC.(1)如图1,若点P在线段(xiànduàn)AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.参考答案与试题解析一、选择题:本大题共有6小题,每小题3分,共18分1.4的平方根是()A.±2 B.﹣2 C.2 D.【考点(kǎo diǎn)】平方根.【分析】直接利用平方根的定义分析得出(dé chū)答案.【解答(jiědá)】解:4的平方根是:± =±2.故选:A.2.人体中红细胞的直径约为0.0000077m,将数0.0000077用科学(kēxué)记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣7【考点(kǎo diǎn)】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077=7.7×10﹣6,故选:C.3.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形.是中心对称图形,故错误;B、是轴对称图形,又是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形.不是中心对称图形,故错误.故选B.4.如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.【考点】简单组合体的三视图.【分析】该几何体的左视图为一个矩形,俯视图为矩形.【解答】解:该几何体的左视图是边长分别为圆的半径和厚的矩形,俯视图是边长分别为圆的直径和厚的矩形,故选D.5.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.5【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、方差和平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【解答】解:这组数据的平均数是:(﹣1﹣1+4+2)÷4=1;﹣1出现了2次,出现的次数最多,则众数是﹣1;把这组数据(shùjù)从小到大排列为:﹣1,﹣1,2,4,最中间的数是第2、3个数的平均数,则中位数是=0.5;这组数据(shùjù)的方差是: [(﹣1﹣1)2+(﹣1﹣1)2+(4﹣1)2+(2﹣1)2]=4.5;则下列结论(jiélùn)不正确的是D;故选D.6.实数(shìshù)a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣【考点】非负数的性质(xìngzhì):算术平方根;非负数的性质:偶次方.【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得, +(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=.故选B.二、填空题:本大题共10小题,每小题3分,共30分7.(﹣)0等于1.【考点】零指数幂.【分析】依据零指数幂的性质求解即可.【解答】解:由零指数幂的性质可知:(﹣)0=1.故答案为:1.8.函数中,自变量x的取值范围是.【考点】函数自变量的取值范围;分式有意义的条件.【分析】根据分式有意义的条件是分母不为0;令分母为0,可得到答案.【解答】解:根据题意得2x﹣3≠0,解可得x≠,故答案为x≠.9.抛掷一枚质地均匀的正方体骰子1枚,朝上一面的点数为偶数的概率是.【考点】概率公式.【分析】根据概率公式(gōngshì)知,6个数中有3个偶数,故掷一次骰子,向上一面的点数为偶数的概率是.【解答】解:根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中(qízhōng)有3种为向上一面的点数为偶数,故其概率(gàilǜ)是=.故答案(dáàn)为:.10.五边形的内角(nèi jiǎo)和是540°.【考点】多边形内角与外角.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.11.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为1:9.【考点】相似三角形的判定与性质.【分析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE:S△ABC=(AD:AB)2=1:9,故答案为:1:9.12.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于20°.【考点】等边三角形的性质;平行线的性质.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案(dáàn)为20°.13.如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应(duìyìng)位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为 2.5cm.【考点】平移(pínɡ yí)的性质.【分析(fēnxī)】根据平移的性质:对应线段平行,以及三角形中位线定理可得B′是BC的中点,求出BB′即为所求.【解答(jiědá)】解:∵将△ABC沿BC方向平移至△A′B′C′的对应位置,∴A′B′∥AB,∵O是AC的中点,∴B′是BC的中点,∴BB′=5÷2=2.5(cm).故△ABC平移的距离为2.5cm.故答案为:2.5.14.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.15.如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为π.【考点(k ǎo di ǎn)】扇形面积的计算.【分析(f ēnx ī)】通过解直角三角形可求出∠AOB=30°,∠COD=60°,从而可求出∠AOC=150°,再通过证三角形全等找出S 阴影(y īny ǐng)=S 扇形(sh àn x ín ɡ)OAC ,套入扇形(sh àn x ín ɡ)的面积公式即可得出结论. 【解答】解:在Rt △ABO 中,∠ABO=90°,OA=2,AB=1,∴OB==,sin ∠AOB==,∠AOB=30°.同理,可得出:OD=1,∠COD=60°.∴∠AOC=∠AOB+=30°+180°﹣60°=150°.在△AOB 和△OCD 中,有,∴△AOB ≌△OCD (SSS ).∴S 阴影=S 扇形OAC .∴S 扇形OAC =πR 2=π×22=π. 故答案为:π.16.二次函数y=x 2﹣2x ﹣3的图象如图所示,若线段AB 在x 轴上,且AB 为2个单位长度,以AB 为边作等边△ABC ,使点C 落在该函数y 轴右侧的图象上,则点C 的坐标为 (1﹣,﹣3) .【考点】二次函数的性质.【分析】△ABC 是等边三角形,且边长为2,所以该等边三角形的高为3,又点C 在二次函数上,所以令y=±3代入解析式中,分别求出x 的值.由因为使点C 落在该函数y 轴右侧的图象上,所以x <0.【解答】解:∵△ABC 是等边三角形,且AB=2,∴AB 边上的高为3,又∵点C 在二次函数图象上,∴C 的坐标为±3,令y=±3代入y=x 2﹣2x ﹣3,∴x=1或0或2∵使点C 落在该函数y 轴右侧的图象上,∴x <0,∴x=1﹣,∴C(1﹣,﹣3).故答案(dáàn)为:(1﹣,﹣3)三、解答(jiědá)题17.计算(jì suàn)或化简:(1)﹣(3+);(2)(﹣)÷.【考点(kǎo diǎn)】二次根式的加减法;分式的混合运算.【分析】(1)先化成最简二次根式,再去括号、合并(hébìng)同类二次根式即可;(2)先将括号内的分式通分,进行减法运算,再将除法转化为乘法,然后化简即可.【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;(2)(﹣)÷=(﹣)•=•=.18.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18 a围棋类14 0.28喜剧类8 0.16国画类b新课标第一网0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?【考点】频数(率)分布直方图;用样本估计(gūjì)总体;频数(率)分布表.【分析】(1)首先根据(gēnjù)围棋类是14人,频率是0.28,据此即可求得总人数,然后利用18除以总人数即可求得a的值;(2)用50乘以0.20求出b的值,即可解答(jiědá);(4)用总人数1500乘以喜爱围棋的学生(xué sheng)频率即可求解.【解答(jiědá)】解:(1)14÷0.28=50(人),a=18÷50=0.36.(2)b=50×0.20=10,如图,(3)1500×0.28=428(人),答:若全校共有学生1500名,估计该校最喜爱围棋的学生大约有428人.19.一只不透明的袋子中装有3个球,球上分别标有数字0,1,2,这些球除了数字外其余都相同,甲、以两人玩摸球游戏,规则如下:先由甲随机摸出一个球(不放回),再由乙随机摸出一个球,两人摸出的球所标的数字之和为偶数时则甲胜,和为奇数时则乙胜.(1)用画树状图或列表的方法列出所有可能的结果;(2)这样的游戏规则是否公平?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)根据列表,可得答案;(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等.【解答】解:列举所有可能:甲0 1 2乙 1 0 02 2 1(2)游戏不公平,理由如下:由表可知甲获胜的概率=,乙获胜的概率=,乙获胜的可能性大,所以游戏(yóuxì)是公平的.20.随着互联网的迅速发展,某购物网站的年销售额从2021年的200万元增长(zēngzhǎng)到2021年的392万元.求该购物网站平均每年销售额增长的百分率.【考点(kǎo diǎn)】一元二次方程的应用.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题(běntí),如果设平均增长率为x,根据“从2021年的200万元增长到2021年的392万元”,即可得出方程.【解答(jiědá)】解:设该购物网站平均每年销售额增长的百分率为x,根据题意,得:200(1+x)2=392,解得:x1=0.4,x2=﹣2.4(不符合题意,舍去).答:该购物网站平均每年销售额增长的百分率为40%.21.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.【考点】相似三角形的判定与性质;角平分线的定义.【分析】(1)由AB=AC,AD平分∠CAE,易证得∠B=∠DAG=∠CAG,继而证得结论;(2)由CG⊥AD,AD平分∠CAE,易得CF=GF,然后由AD∥BC,证得△AGF∽△BGC,再由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵AD平分∠CAE,∴∠DAG=∠CAG,∵AB=AC,∴∠B=∠ACB,∵∠CAG=∠B+∠ACB,∴∠B=∠CAG,∴∠B=∠CAG,∴AD∥BC;(2)解:∵CG⊥AD,∴∠AFC=∠AFG=90°,在△AFC和△AFG中,,∴△AFC≌△AFG(ASA),∴CF=GF,∵AD∥BC,∴△AGF∽△BGC,∴GF:GC=AF:BC=1:2,∴BC=2AF=2×4=8.22.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线(hángxiàn)MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果(jiē guǒ)精确到0.1千米)【考点(kǎo diǎn)】解直角三角形的应用.【分析】过B作BE⊥AD于E,三角形的内角和得到∠ADB=45°,根据(gēnjù)直角三角形的性质得到AE=2.BE=2,求得AD=2+2,即可得到(dé dào)结论.【解答】解:过B作BE⊥AD于E,∵∠NAD=60°,∠ABD=75°,∴∠ADB=45°,∵AB=6×=4,∴AE=2.BE=2,∴DE=BE=2,∴AD=2+2,∵∠C=90,∠CAD=30°,∴CD=AD=1+.23.如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD 于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;(2)若PF:PC=1:2,AF=5,求CP的长.【考点】直线(zhíxiàn)与圆的位置关系.【分析(fēnxī)】(1)结论:AB是⊙O切线,连接DE,CF,由∠FCD+∠CDF=90°,只要证明∠ADF=∠DCF即可解决问题.(2)只要(zhǐyào)证明△PCF∽△PAC,得=,设PF=a.则PC=2a,列出方程(fāngchéng)即可解决问题.【解答(jiědá)】解:(1)AB是⊙O切线.理由:连接DE、CF.∵CD是直径,∴∠DEC=∠DFC=90°,∵∠ACB=90°,∴∠DEC+∠ACE=180°,∴DE∥AC,∴∠DEA=∠EAC=∠DCF,∵∠DFC=90°,∴∠FCD+∠CDF=90°,∵∠ADF=∠EAC=∠DCF,∴∠ADF+∠CDF=90°,∴∠ADC=90°,∴CD⊥AD,∴AB是⊙O切线.(2)∵∠CPF=∠CPA,PCF=∠PAC,∴△PCF∽△PAC,∴=,∴PC2=PF•PA,设PF=a.则PC=2a,∴4a2=a(a+5),∴a=,∴PC=2a=.24.如图,点A(m,4),B(﹣4,n)在反比例函数(hánshù)y=(k>0)的图象(tú xiànɡ)上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接(liánjiē)OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.【考点(kǎo diǎn)】反比例函数与一次函数的交点问题.【分析(fēnxī)】(1)先把A点坐标代入y=求出k的值得到反比例函数解析式为y=,然后把B(﹣4,n)代入y=可求出n的值;(2)利用反比例函数图象上点的坐标特征得到4m=k,﹣4n=k,然后把两式相减消去k即可得到m+n的值;(3)作AE⊥y轴于E,BF⊥x轴于F,如图,利用正切的定义得到tan∠AOE==,tan∠BOF==,则+=1,加上m+n=0,于是可解得m=2,n=﹣2,从而得到A(2,4),B(﹣4,﹣2),然后利用待定系数法求直线AB的解析式.【解答】解:( 1)当m=2,则A(2,4),把A(2,4)代入y=得k=2×4=8,所以反比例函数解析式为y=,把B(﹣4,n)代入y=得﹣4n=8,解得n=﹣2;(2)因为点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,所以4m=k,﹣4n=k,所以4m+4n=0,即m+n=0;(3)作AE⊥y轴于E,BF⊥x轴于F,如图,在Rt△AOE中,tan∠AOE==,在Rt△BOF中,tan∠BOF==,而tan∠AOD+tan∠BOC=1,所以(suǒyǐ)+=1,而m+n=0,解得m=2,n=﹣2,则A(2,4),B(﹣4,﹣2),设直线(zhíxiàn)AB的解析式为y=px+q,把A(2,4),B(﹣4,﹣2)代入得,解得,所以(suǒyǐ)直线AB的解析式为y=x+2.25.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段(xiànduàn)CB 的延长线上,连接EA、EC.(1)如图1,若点P在线段(xiànduàn)AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.【考点】四边形综合题.【分析】(1)根据正方形的性质和全等三角形的判定定理证明△APE≌△CFE,根据全等三角形的性质证明结论;(2)①根据正方形的性质、等腰直角三角形的性质解答;②根据PE∥CF,得到=,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.【解答】解:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,,∴△APE≌△CFE,∴EA=EC;(2)①∵P为AB的中点(zhōnɡ diǎn),∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分(píngfēn)∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴=,即=,解得,a=b;作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.内容总结(1)B、是轴对称图形,又是中心对称图形.故正确。

2020年江苏省南京市中考数学试卷及答案解析

2020年江苏省南京市中考数学试卷及答案解析

2020年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)计算3﹣(﹣2)的结果是()A.﹣5B.﹣1C.1D.52.(2分)3的平方根是()A.9B.√3C.−√3D.±√33.(2分)计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a84.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.(2分)关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根6.(2分)如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若⊙P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3: . 8.(2分)若式子1−1x−1在实数范围内有意义,则x 的取值范围是 . 9.(2分)纳秒(ns )是非常小的时间单位,1ns =10﹣9s .北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 s . 10.(2分)计算√3√3+√12的结果是 .11.(2分)已知x 、y 满足方程组{x +3y =−1,2x +y =3,,则x +y 的值为 .12.(2分)方程x x−1=x−1x+2的解是 .13.(2分)将一次函数y =﹣2x +4的图象绕原点O 逆时针旋转90°,所得到的图象对应的函数表达式是 .14.(2分)如图,在边长为2cm 的正六边形ABCDEF 中,点P 在BC 上,则△PEF 的面积为 cm 2.15.(2分)如图,线段AB、BC的垂直平分线11、l2相交于点O,若∠1=39°,则∠AOC =.16.(2分)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(a﹣1+1a+1)÷a2+2aa+1.18.(7分)解方程:x2﹣2x﹣3=0.19.(8分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.20.(8分)已知反比例函数y=kx的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组{2−x>1,①kx>1.②解:解不等式①,得.根据函数y=kx的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数18≤x<9350293≤x<1781003178≤x<263344263≤x<348115348≤x<43316433≤x<51817518≤x<60328603≤x<6881根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A 处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)24.(8分)如图,在△ABC 中,AC =BC ,D 是AB 上一点,⊙O 经过点A 、C 、D ,交BC 于点E ,过点D 作DF ∥BC ,交⊙O 于点F . 求证:(1)四边形DBCF 是平行四边形; (2)AF =EF .25.(8分)小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第xmin 时,小丽、小明离B 地的距离分别为y 1m 、y 2m .y 1与x 之间的函数表达式是y 1=﹣180x +2250,y 2与x 之间的函数表达式是y 2=﹣10x 2﹣100x +2000. (1)小丽出发时,小明离A 地的距离为 m .(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少? 26.(9分)如图,在△ABC 和△A 'B 'C '中,D 、D '分别是AB 、A 'B '上一点,AD AB=A′D′A′B′.(1)当CD C′D′=AC A′C′=AB A′B′时,求证△ABC ∽△A 'B 'C .证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CDC′D′=ACA′C′=BCB′C′时,判断△ABC与△A'B'C′是否相似,并说明理由.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.2020年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)计算3﹣(﹣2)的结果是()A.﹣5B.﹣1C.1D.5【解答】解:3﹣(﹣2)=3+2=5.故选:D.2.(2分)3的平方根是()A.9B.√3C.−√3D.±√3【解答】解:∵(±√3)2=3,∴3的平方根±√3.故选:D.3.(2分)计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a8【解答】解:(a3)2÷a2=a3×2÷a2=a6﹣2=a4,故选:B.4.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务【解答】解:A.2019年末,农村贫困人口比上年末减少1660﹣551=1109(万人),此选项错误;B.2012年末至2019年末,农村贫困人口累计减少超过9899﹣551=9348(万人),此选项正确;C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确;故选:A.5.(2分)关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根【解答】解:∵关于x的方程(x﹣1)(x+2)=p2(p为常数),∴x2+x﹣2﹣p2=0,∴△=1+8+4p2=9+4p2>0,∴方程有两个不相等的实数根,∵两个的积为﹣2﹣p2,∴一个正根,一个负根,故选:C.6.(2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)【解答】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP 与CD交于点G,则PE⊥y轴,PF⊥x轴,∵∠EOF=90°,∴四边形PEOF是矩形,∵PE=PF,PE∥OF,∴四边形PEOF为正方形,∴OE=PF=PE=OF=5,∵A(0,8),∴OA=8,∴AE=8﹣5=3,∵四边形OACB为矩形,∴BC=OA=8,BC∥OA,AC∥OB,∴EG∥AC,∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,∴CG=AE=3,EG=OB,∵PE⊥AO,AO∥CB,∴PG⊥CD,∴CD=2CG=6,∴DB=BC﹣CD=8﹣6=2,∵PD=5,DG=CG=3,∴PG=4,∴OB=EG=5+4=9,∴D (9,2).故选:A .二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3: ﹣1(答案不唯一) . 【解答】解:∵一个负数的绝对值小于3, ∴这个负数大于﹣3且小于0,∴这个负数可能是﹣2、﹣1.5、﹣1、…. 故答案为:﹣1(答案不唯一). 8.(2分)若式子1−1x−1在实数范围内有意义,则x 的取值范围是 x ≠1 . 【解答】解:若式子1−1x−1在实数范围内有意义, 则x ﹣1≠0, 解得:x ≠1. 故答案为:x ≠1.9.(2分)纳秒(ns )是非常小的时间单位,1ns =10﹣9s .北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 2×10﹣8 s .【解答】解:20ns =20×10﹣9s =2×10﹣8s ,故答案为:2×10﹣8.10.(2分)计算√3√3+√12的结果是 13 .【解答】解:原式=√3√3+2√3=√33√3=13.故答案为:13.11.(2分)已知x 、y 满足方程组{x +3y =−1,2x +y =3,,则x +y 的值为 1 . 【解答】解:{x +3y =−1①2x +y =3②, ①×2﹣②得:5y =﹣5,解得:y =﹣1,①﹣②×3得:﹣5x =﹣10,解得:x =2,则x +y =2﹣1=1,故答案为1.12.(2分)方程x x−1=x−1x+2的解是 x =14 . 【解答】解:方程x x−1=x−1x+2,去分母得:x 2+2x =x 2﹣2x +1,解得:x =14,经检验x =14是分式方程的解.故答案为:x =14.13.(2分)将一次函数y =﹣2x +4的图象绕原点O 逆时针旋转90°,所得到的图象对应的函数表达式是 y =12x +2 .【解答】解:在一次函数y =﹣2x +4中,令x =0,则y =4,∴直线y =﹣2x +4经过点(0,4),将一次函数y =﹣2x +4的图象绕原点O 逆时针旋转90°,则点(0,4)的对应点为(﹣4,0),旋转后得到的图象与原图象垂直,则对应的函数解析式为:y =12x +b ,将点(﹣4,0)代入得,12×(−4)+b =0, 解得b =2,∴旋转后对应的函数解析式为:y =12x +2,故答案为y =12x +2.14.(2分)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为2√3cm2.【解答】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BE,AB=AF,∴BT=FT,∠BAT=∠F AT=60°,∴BT=FT=AB•sin60°=√3,∴BF=2BT=2√3,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=12•EF•BF=12×2×2√3=2√3,故答案为2√3.15.(2分)如图,线段AB、BC的垂直平分线11、l2相交于点O,若∠1=39°,则∠AOC =78°.【解答】解:过O作射线BP,∵线段AB、BC的垂直平分线11、l2相交于点O,∴AO=OB=OC,∠BDO=∠BEO=90°,∴∠DOE+∠ABC=180°,∵∠DOE+∠1=180°,∴∠ABC=∠1=39°,∵OA=OB=OC,∴∠A=∠ABO,∠OBC=∠C,∵∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,∴∠AOC=∠AOP+∠COP=∠A+∠ABC+∠C=2×39°=78°,故答案为:78°.16.(2分)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是①②④.【解答】解:①∵二次函数y=﹣(x﹣m)2+m+1(m为常数)与函数y=﹣x2的二次项系数相同,∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;②∵在函数y =﹣(x ﹣m )2+m 2+1中,令x =0,则y =﹣m 2+m 2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y =﹣(x ﹣m )2+m 2+1,∴抛物线开口向下,对称轴为直线x =m ,当x >m 时,y 随x 的增大而减小,故结论③错误;④∵抛物线开口向下,当x =m 时,函数y 有最大值m 2+1,∴该函数的图象的顶点在函数y =x 2+1的图象上.故结论④正确,故答案为①②④.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(a ﹣1+1a+1)÷a 2+2a a+1. 【解答】解:原式=(a 2−1a+1+1a+1)÷a(a+2)a+1 =a 2a+1•a+1a(a+2) =a a+2.18.(7分)解方程:x 2﹣2x ﹣3=0.【解答】解:原方程可以变形为(x ﹣3)(x +1)=0x ﹣3=0,x +1=0∴x 1=3,x 2=﹣1.19.(8分)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C ,求证:BD =CE .【解答】证明:在△ABE 与△ACD 中{∠A =∠AAB =AC ∠B =∠C,∴△ABE ≌△ACD .∴AD =AE .∴BD=CE.20.(8分)已知反比例函数y=kx的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组{2−x>1,①kx>1.②解:解不等式①,得x<1.根据函数y=kx的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集0<x<1.【解答】解:(1)∵反比例函数y=kx的图象经过点(﹣2,﹣1),∴k=(﹣2)×(﹣1)=2;(2)解不等式组{2−x>1,①kx>1.②解:解不等式①,得x<1.根据函数y=kx的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示为:∴不等式组的解集为0<x<1,故答案为:x<1,0<x<2,0<x<1.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数18≤x<9350293≤x<1781003178≤x <263 34 4263≤x <348 11 5348≤x <433 1 6433≤x <518 1 7518≤x <603 2 8 603≤x <688 1根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第 2 组内;(2)估计该地1万户居民六月份的用电量低于178kW •h 的大约有多少户.【解答】解:(1)∵有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数,∴该地这200户居民六月份的用电量的中位数落在第2组内;故答案为:2;(2)50+100200×10000=7500(户),答:估计该地1万户居民六月份的用电量低于178kW •h 的大约有7500户.22.(8分)甲、乙两人分别从A 、B 、C 这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A 、B 的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是 13 .【解答】解:甲选择的2个景点所有可能出现的结果如下:(1)共有6种可能出现的结果,其中选择A 、B 的有2种,∴P (A 、B )=26=13;(2)用列表法表示所有可能出现的结果如下:共有9种可能出现的结果,其中选择景点相同的有3种,∴P (景点相同)=39=13. 故答案为:13.23.(8分)如图,在港口A 处的正东方向有两个相距6km 的观测点B 、C .一艘轮船从A处出发,沿北偏东26°方向航行至D 处,在B 、C 处分别测得∠ABD =45°、∠C =37°.求轮船航行的距离AD .(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)【解答】解:如图,过点D 作DH ⊥AC 于点H ,在Rt △DCH 中,∠C =37°,∴CH =DH tan37°,在Rt △DBH 中,∠DBH =45°,∴BH =DH tan45°,∵BC =CH ﹣BH ,∴DHtan37°−DHtan45°=6,解得DH≈18,在Rt△DAH中,∠ADH=26°,∴AD=DHcos26°≈20.答:轮船航行的距离AD约为20km.24.(8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC 于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.【解答】证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE ,∵∠ADF =∠B ,∠ADF =∠AEF ,∴∠AEF =∠B ,∵四边形AECF 是⊙O 的内接四边形,∴∠ECF +∠EAF =180°,∵BD ∥CF ,∴∠ECF +∠B =180°,∴∠EAF =∠B ,∴∠AEF =∠EAF ,∴AE =EF . 25.(8分)小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第xmin 时,小丽、小明离B 地的距离分别为y 1m 、y 2m .y 1与x 之间的函数表达式是y 1=﹣180x +2250,y 2与x 之间的函数表达式是y 2=﹣10x 2﹣100x +2000.(1)小丽出发时,小明离A 地的距离为 250 m .(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少?【解答】解:(1)∵y 1=﹣180x +2250,y 2=﹣10x 2﹣100x +2000,∴当x =0时,y 1=2250,y 2=2000,∴小丽出发时,小明离A 地的距离为2250﹣2000=250(m ),故答案为:250;(2)设小丽出发第xmin 时,两人相距sm ,则s =(﹣180x +2250)﹣(﹣10x 2﹣100x +2000)=10x 2﹣80x +250=10(x ﹣4)2+90, ∴当x =4时,s 取得最小值,此时s =90,答:小丽出发第4min 时,两人相距最近,最近距离是90m .26.(9分)如图,在△ABC 和△A 'B 'C '中,D 、D '分别是AB 、A 'B '上一点,AD AB =A′D′A′B′.(1)当CD C′D′=AC A′C′=AB A′B′时,求证△ABC ∽△A 'B 'C .证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CD C′D′=AC A′C′=BC B′C′时,判断△ABC 与△A 'B 'C ′是否相似,并说明理由. 【解答】(1)证明:∵AD AB =A′D′A′B′, ∴AD A′D′=AB A′B′, ∵CD C′D′=AC A′C′=AB A′B′, ∴CD C′D′=AC A′C′=AD A′D′,∴△ADC ∽△A ′D ′C ,∴∠A =∠A ′,∵AC A′C′=AB A′B′,∴△ABC ∽△A ′B ′C ′.故答案为:CD C′D′=AC A′C′=AD A′D′,∠A =∠A ′.(2)如图,过点D ,D ′分别作DE ∥BC ,D ′E ′∥B ′C ′,DE 交AC 于E ,D ′E ′交A ′C ′于E ′.∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =DE BC =AE AC , 同理,A′D′A′B′=D′E′B′C′=A′E′A′C′, ∵AD AB =A′D′A′B′, ∴DE BC =D′E′B′C′, ∴DE D′E′=BC B′C′,同理,AE AC =A′E′A′C′,∴AC−AE AC =A′C′−A′E′A′C′,即EC AC =E′C′A′C′, ∴EC E′C′=AC A′C′, ∵CD C′D′=AC A′C′=BC B′C′, ∴CD C′D′=DE D′E′=EC E′C′, ∴△DCE ∽△D ′C ′E ′,∴∠CED =∠C ′E ′D ′,∵DE ∥BC ,∴∠CED +∠ACB =90°,同理,∠C ′E ′D ′+∠A ′C ′B ′=180°,∴∠ACB =∠A ′B ′C ′,∵AC A′C′=CB C′B′,∴△ABC ∽△A ′B ′C ′.27.(9分)如图①,要在一条笔直的路边l 上建一个燃气站,向l 同侧的A 、B 两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.【解答】证明:(1)如图②,连接A'C',∵点A,点A'关于l对称,点C在l上,∴CA=CA',∴AC+BC=A'C+BC=A'B,同理可得AC'+C'B=A'C'+BC',∵A'B<A'C'+C'B,∴AC+BC<AC'+C'B;(2)如图③,在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);如图④,̂+EB,(其中CD,BE都与圆相切)在点C出建燃气站,铺设管道的最短路线是ACD+DE。

2022年南京中招数学答案

2022年南京中招数学答案

2022年南京中招数学答案【篇一】:江苏省南京市2022年中考数学试卷(解析版)南京市2022年初中毕业生学业考试数学一.选择题1.为了方便市民出行.提倡低碳交通,近几年南京市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达70000辆.用科学计数法表示70000是A.0。

7105B。

7104答案:B考点:本题考查科学记数法。

解析:科学记数的表示形式为a10n形式,其中1,a,10,n为整数,70000=7104。

故选B。

2.数轴上点A、B表示的数分别是5、-3,它们之间的距离可以表示为A.-3+5B。

-3-5C。

|-3+5|D。

|-3-5|答案:D考点:数轴,数形结合思想。

解析:AB之间的距离为:|-3-5|或|5-(-3)|,所以,选D。

3.下列计算中,结果是a6的是A.答案:D考点:单项式的运算。

解析:A中,不是同类项不能相加减;B中,a2a3=a5,故错误,C中a12a2=a122a10,错误。

D是正确的。

4、下列长度的三条线段能组成钝角三角形的是A.3,4,4B。

3,4,5答案:C考点:构成三角形的条件,勾股定理的应用,钝角三角形的判断。

解析:由两边之和大于第三边,可排除D;由勾股定理:a2b2c2,当最长边比斜边c更长时,最大角为钝角,即满足a2b2c2,所以,选C。

5.己知正六边形的边长为2,则它的内切圆的半径为C。

3,4,6D。

3,4,7B。

a2a3C。

a12a2C。

7105D。

70103D。

A.B。

答案:BC。

2考点:正六边形、正三角形的性质,勾股定理。

解析:如下图,由正六边形的性质知,三角形AOB为等边形三角形,所以,OA=OB=AB=2,AC=1,由勾股定理,得内切圆半径:OC6、若一组数据2,3,4,5,方差与另一组数据5,6,7,8,9的方差相等,则值为A.B。

答案:C考点:数据的方差,一元二次方程。

1解析:数据5,6,7,8,9的的平均数为:7,方差为:(4+1+0+1+4)=2,5141数据2,3,4,5,平均数为:,55C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市2016年初中毕业生学业考试数学一.选择题1.为了方便市民出行.提倡低碳交通,近几年南京市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达70 000辆.用科学计数法表示70 000是A.0.7⨯105 B. 7⨯104 C. 7⨯105 D. 70⨯1032.数轴上点A、B表示的数分别是5、-3,它们之间的距离可以表示为A.-3+5 B. -3-5 C. |-3+5|D. |-3-5|3.下列计算中,结果是6a的是A. B. 23÷ D.a aa a C. 1224、下列长度的三条线段能组成钝角三角形的是A.3,4,4 B. 3,4,5 C. 3,4,6 D. 3,4,75.己知正六边形的边长为2,则它的内切圆的半径为A. B. 3 C. 2 D. 236、若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为A . B. C. 或6 D. 或二.填空题 7. 化简:8=______;38=______.8. 若式子1x x +-在实数范围内有意义,则x 的取值范围是________.9. 分解因式的结果是_______.10.比较大小:5-3________52-.(填“>””<”或“=”号) 11.方程132x x=-的解是_______. 12.设12,x x 是方程的两个根,且12x x +-12x x =1,则12xx +=______,=_______. 13. 如图,扇形OAB 的圆心角为122°,C 是弧AB 上一点,则_____°.14. 如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△ABO ≌△ADO ,下列结论 ①AC ⊥BD ;②CB=CD ;③△ABC ≌△ADC ;④DA=DC ,其中正确结论的序号是_______.15. 如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD.EF是△ODB的中位线,且EF=2,则AC的长为________.16.如图,菱形ABCD的面积为120,正方形AECF的面积为50,则菱形的边长为_______.三.解答题17. 解不等式组并写出它的整数解.18. 计算19. 某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的乘积,得到下列统计图,(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D. 随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数。

20. 我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角。

求证:∠BAE+∠CBF+∠ACD=360°证法1:∵∴∠BAE+∠1 +∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3)360°∵∴∠BAE+∠CBF+∠ACD=540°-180°=360°请把证法1补充完整,并用不同方法完成证法2。

22.某景区7月1日-7月7日一周天气预报如下,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率;(1) 随机选择一天,恰好天气预报是晴;(2) 随机选择连续的两天,恰好天气预报都是晴.23.下图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1) 当速度为50km/h、100km/h时,该汽车的耗油量分别为_____L/km、____L/km.(2) 求线段AB所表示的y与x之间的函数表达式(3) 速度是多少时,该汽车的耗油量最低?最低是多少?24.如图,在四边形ABCD中,E是AD上一点,延长CE到点F,使.(1) 求证:(2) 用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图痕迹,不写作法)。

25.图中是抛物线形拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为,且,,以O为原点,OA所在直线为x轴建立直角坐标系.(1) 求点P的坐标(2) 水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?26.如图,O是△ABC内一点,与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC。

连接DF、EG。

(1) 求证:AB=AC(2) 已知AB=10,BC=12,求四边形DFGE是矩形时的半径.27.(11分)如图,把函数x y =的图像上各点的纵坐标变为原来的2倍,横坐标不变,得到函数x y 2=的图像;也可以把函数x y =的图像上各点的横坐标变为原来的21倍,纵坐标不变,得到函数x y 2=的图像。

类似地,我们可以认识其他函数。

(1)把函数x y 1=的图像上各点的纵坐标变为原来的 倍,横坐标不变,得到函数x y 6=的图像;也可以把函数xy 1=的图像上各点的横坐标变为原来的 倍,纵坐标不变,得到函数xy 6=的图像。

(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长;③向右平移21个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变原来的21倍,纵坐标不变;⑥横坐标变原来的2倍,纵坐标不变。

(ⅰ)函数2x y =的图像上所有的点经过④→②→①,得到函数 的图像; (ⅱ)为了得到函数2)1(412--=x y 的图像,可以把函数2x y -=的图像上所有的点( ) A. ①→⑤→③ B.①→⑥→③ C. ①→②→⑥ D.①→③→⑥(3)函数x y 1=的图像可以经过怎样的变化得到函数4212++-=x x y 的图像?(写出一种即可)南京市2016年初中毕业生学业考试数学一.选择题1.为了方便市民出行.提倡低碳交通,近几年南京市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达70 000辆.用科学计数法表示70 000是 A .0.7⨯105 B. 7⨯104 C. 7⨯105D. 70⨯103答案:B考点:本题考查科学记数法。

解析:科学记数的表示形式为10na ⨯形式,其中1||10a ≤<,n 为整数,70000=7×104。

故选B 。

2.数轴上点A 、B 表示的数分别是5、-3,它们之间的距离可以表示为 A .-3+5 B. -3-5 C. |-3+5| D. |-3-5| 答案:D考点:数轴,数形结合思想。

解析:AB 之间的距离为:|-3-5|或|5-(-3)|,所以,选D 。

3.下列计算中,结果是6a 的是A . B. 23a a C. 122a a ÷D.答案:D考点:单项式的运算。

解析:A 中,不是同类项不能相加减;B 中,23a a =5a ,故错误,C 中122a a ÷=12210a a -=,错误。

D 是正确的。

4、下列长度的三条线段能组成钝角三角形的是A .3,4,4 B. 3,4,5 C. 3,4,6 D. 3,4,7答案:C考点:构成三角形的条件,勾股定理的应用,钝角三角形的判断。

解析:由两边之和大于第三边,可排除D ;由勾股定理:222a b c +=,当最长边比斜边c 更长时,最大角为钝角, 即满足222a b c +<,所以,选C 。

5.己知正六边形的边长为2,则它的内切圆的半径为A . B.C. 2答案:B考点:正六边形、正三角形的性质,勾股定理。

解析:如下图,由正六边形的性质知,三角形AOB 为等边形三角形, 所以,OA =OB =AB =2,AC =1,由勾股定理,得内切圆半径:OC =36、若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为A . B.C. 或6D. 或答案:C考点:数据的方差,一元二次方程。

解析:数据5,6,7,8,9的的平均数为:7,方差为:15(4+1+0+1+4)=2, 数据2,3,4,5,x 的平均数为:14155x +, 因为两组数据的方差相等,所以,15[24()55x --+21()55x -+26()55x -+211()55x -+2144()55x -+]=2 1125[2(4)x ++2(1)x -+2(6)x -+2(11)x -+2(144)x -]=2 解得:x =1或6。

二.填空题7. 8______38______. 答案:2,2考点:算术平方根,三次方根,根式的运算。

解析842=⨯238=28. 若式子1x x -x 的取值范围是________.答案:1x ≥考点:二次根式的意义。

解析:由二次根式的意义,得:10x -≥,解得:1x ≥。

9. 分解因式的结果是_______.答案:()(23)b c a +-考点:因式分解,提公因式法。

解析:原式=()(23)b c a +-10..(填“>””<”或“=”号) 答案:<考点:二次根式的估算。

解析:由于233<0>0,所以,填空“<”。

11.方程132x x=-的解是_______. 答案:3x = 考点:分式方程。

解析:去分母,得:3(2)x x =-,化简,得:3x =,经检验3x =是原方程的解。

12.设12,x x 是方程的两个根,且12x x +-12x x =1,则12x x +=______,=_______. 答案:4,3考点:一元二次方程根与系数的关系。

解析:由韦达定理,得:12124,x x x x m ==,化入:12x x +-12x x =1,得: 4-m =1,解得:m =3,所以填4,3。

13. 如图,扇形OAB 的圆心角为122°,C 是弧AB 上一点,则_____°.答案:119考点:圆内接四边形内角和定理,圆周角定理。

解析:由同弧所对的圆心角等于它所对的圆周角的一半,所以,与∠AOB所对同弧的圆周角度数为12∠AOB=61°,由圆内接四边形对角互补,得:∠ACB=180°-61°=119°。

14. 如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO,下列结论①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC,其中正确结论的序号是_______.答案:①②③考点:三角形全等的判定与性质。

相关文档
最新文档