2017年数学花园探秘迎春杯四年级初赛试题 解析

合集下载

2017迎春杯初赛4年级B卷解析

2017迎春杯初赛4年级B卷解析

2017年“数学花园探秘”科普活动四年级组初试试卷B 解析(测评时间:2016年12月4日9:00—10:00)一.填空题Ⅰ(每小题8分,共32分)1. 算式(201799)44-⨯÷的计算结果是_________.【答案】44 【考点】基础计算【解析】原式=(2017-81)÷44=1936÷44=442. 著名奥斯卡获奖影片《返老还童》中,本杰明•巴顿1919年出生时是一个80岁的小老头,但巴顿每过1年就年轻1岁.1930年,巴顿遇到了当年6岁的小女孩黛西,黛西每过1年长大1岁.影片的最后,0岁的小巴顿在黛西怀里安然的睡去.那么,这个时候黛西_________岁. 【答案】75【考点】年龄问题【解析】1919年-1930年经过了11年,在1930年巴顿有80-11=69(岁),他衰减到0岁需要经过69年,此时黛西年龄增加69岁,所以黛西那个时候69+6=75(岁)3. 如右图所示,风车村的村旗是一个风车的图案.请你数一数,这个风车中共有_________个三角形. 【答案】20【考点】图形计数【解析】图像具有对称性,所以可根据对称来计数。

这个风车的重复图形可看作如图1的一片。

其中有624=C 个三角形。

那么4片有4×6=24(个)三角形,但其中阴影三角形在两片中重复计算过,如图2,每两片有一个重复,所以去掉重复计算的有4个三角形,所以原图中有24-4=20个三角形。

4. “迎”、“春”和“杯”表示三个连续的整数,满足“迎”<“春”<“杯”<20.如果“迎”和“杯”的乘积的个位数字是9,那么,这3个整数的乘积是_________. 【答案】990图1图2【考点】分解因数【解析】乘积的个位数字是9,9=1×9=3×3,连续的三个整数不可能出现两个个位一样的数,所以迎”和“杯”的个位一定是1和9,考虑“迎”<“春”<“杯”<20,所以“迎”、“春”、“杯”个位分别为9,0,1。

2017年 四年级初赛B卷 解析

2017年 四年级初赛B卷 解析

第十五届“走进美妙的数学花园”上海初赛四年级试卷一、填空题(每小题8分,共40分)1、24点游戏,用适当的运算符号(包括括号)把3,3,9,9这四个数字组成一个算式,使结果等于24.____________答案:3×9−9÷3=24或9×9÷3−3=24答案不唯一,答对一种即可得分2、每个月的周一,周二,周三,周四,周五,周六,周日都有4天或5天,某月,周三比其他日期恰好都多一天,这个月28日是星期___________.答案:二解析:该月必为二月,且有29天,1号和29号都是周三,故28号为周二。

3、右图中共有个长方形.答案:21解析:(1+2+3)×(1+2)+3=214、一堆棋子有黑白两色,黑棋子个数是白棋子的2倍,现在从这堆棋子中每次取出黑子5个,白子3个,若干次后,白字恰好取完,而黑子还有11个,白棋子原有 _____个.答案:33解析:若每次数白子3个,黑子6个,白字取完时,黑子也恰好取完,但每次取个黑子,最后剩下11个黑子,说明取了11次,所以白子原有3×11=33(个)5、2017除以9余1,2017年的每一天都可以用一个八位数表示,比如2017年1月8日可以表示为20170108,这个数除以9余1,2017年全年365天都用八位数表示,期中能被9整除的八位数共有个.答案:39解析:实际上只要满足表示月份日期的四位数除以9余8即可,分月枚举;0107 ,0116,0125,0206,0215,0224,0306,0314,0323,0404,0413,0422,0503,0512,0521,0530,0602,0611,0620,0629,0701,0710,0719,0728,0809,0818,0827,0908,0917,0926,1007,1016,1025,1106,1115,1124,1205,1214,1223二.填空题(每小题10分,共50分)6、两个长方形如右图摆放,M为AD的中点,三角形AGM是等腰直角三角形,阴影部分的面积是35,长方形AEFG的面积是答案:42.解析:分割法,阴影部分可以分割成5个与△AGM一样的等腰直角三角形,长方形AEFG的面积为35÷5×6=42。

迎春杯-数学花园探秘

迎春杯-数学花园探秘

2018年数学花园探秘(迎春杯)各年级网考考试安排及各年级考纲考试时间:小学3年级:2017 年11月27日(周一)晚上19:30-20:30小学4年级:2017 年11月28日(周二)晚上19:30-20:30小学5年级:2017 年11月29日(周三)晚上19:30-20:30小学6年级:2017 年11月30日(周四)晚上19:30-20:30初一、初中年级组:2017 年12月1日(周五)晚上19:30-20:30赛前练习:完成报名后,进入网考活动页,点击“赛前练习”可进行模拟测试,此功能考前30分钟关闭。

正式考试:考试入口即报名时的活动页。

在考试时间范围内,点击“进入考场”开始考试。

在考试期间,可任意作答或修改答案,可以随时交卷,交卷之后不得再次进入考场、做题。

注意:考试时间结束,系统将自动全部提交试卷。

成绩查询:成绩查询入口即报名时的活动页。

各年级网络考试成绩将于12月8日12:00公布,可从“作业帮”进行查询。

(一)小学中年级组1. 数. 整数的四则运算、运算定律、简便计算,等差数列求和,整除概念,数的整除特征,带余除法,平均数,整数的奇偶性质,小数的意义、性质和加减法,分数的初步认识(不要求运算) ,数位,十进制表示法2. 几何. 基本图形,图形的拼组(分、合、移、补),图形的变换,折叠与展开, 角的概念和度量,长方形、正方形的周长和面积,平行四边形、梯形的概念和周长计算,轴对称现象、画对称轴3. 应用题. 植树问题, 年龄问题, 鸡兔同笼, 盈亏问题, 行程问题4. 几何计数(数图形),加法原理,乘法原理,抽屉原理,找规律,归纳,统计,数字谜5. 生活数学. 钟表,时间,人民币,位置与方向,长度、质量的单位(二)小学高年级组1. 数. 整数、分数、小数概念和性质,四则运算,速算,数列(等比、等差),取整运算,新运算,数字谜, 数阵图2. 数论. 约数,倍数,质数,合数,质因数分解,最大公约数,最小公倍数,互质,奇偶,整除带余除法,抽屉原理3. 应用问题. 植树、和差、倍数、盈亏、鸡兔同笼、平均、归一、还原、年龄、行程、钟表、工程、溶液等问题,简易方程.4. 平面几何. 简单平面图形(点、直线、线段、圆、圆弧、角、三角形、四边形、多边形),对称,勾股定理,图形的度量.5. 立体几何. 简单立体图形(长方体、正方体、圆柱、圆锥、球),立体图形的表面、展开、视图.6. 扩展. 最大、最小问题,分类和计数(排列组合),容斥原理.(三)初一组1. 小学组的内容.2. 有理数的概念和运算,数轴,绝对值.3. 代数式,整式及其运算,乘法公式,不等式.4. 方程及应用,一次方程的整数解.5. 统计图表.6. 简单逻辑推理.(四)初二组1. 初一组的内容.2. 平方根、立方根、实数3. 代数式:整式的加减乘除、乘法公式、提取公因式法、因式分解的简单应用、分式加减乘除、整数指数幂、分式方程4. 一次方程组、一元一次不等式(组)5. 平面直角坐标系、一次函数、反比例函数6. 全等三角形、多边形及其内角和、镶嵌、.平移、旋转、平行四边形的性质与判别,菱形、矩形、正方形、梯形的概念与计算7. 逻辑问题、数论初步、应用问题2015年“迎春杯”科普活动全国组委会2014年9月。

2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)

2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)

2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是.3.如图中共有个平行四边形.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔只.(注:蜘蛛有8只脚)5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有名同学.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了只羊.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是.(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为平方厘米.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有种不同的走法.2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)参考答案与试题解析一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是3434 .【分析】根据乘法的分配律简算即可.【解答】解:67×67﹣34×34+67+34=67×(67+1)﹣34×34+34=67×2×34﹣34×34+34=101×34=3434故答案为:3434.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是14 .【分析】由于0<C×D<100,所以1900<×<2017,根据130×13=1690,140×14=1960,150×15=2250,即可得出结论.【解答】解:由于0<C×D<100,所以1900<×<2017,因为130×13=1690,140×14=1960,150×15=2250,所以=14,进一步可得C×(14+D)=57,C=3,D=5.故答案为14.【点评】本题考查位值原则,考查学生的计算能力,确定1900<×<2017是关键.3.如图中共有15 个平行四边形.【分析】把图中的平行四边形分三类计数:①单个的(红色);②两个组成的(蓝色);③6部分组成的(黄色).【解答】解:根据分析可得,①单个的(红色)有:4个;②两个组成的(蓝色)有8个;③6部分组成的(黄色)有:3个;共有:4+8+3=15(个);答:图中共有 15个平行四边形.故答案为:15.【点评】本题要注意按顺序分类计数,防止遗漏.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔40 只.(注:蜘蛛有8只脚)【分析】每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,从而可得原有动物共5份,即可得出结论.【解答】解:每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,把增加的蜘蛛当作1份,那么原蜘蛛数量也是1份,走了的兔子数量是2份,原有兔子数量为4份,则原有动物共5份,是50只,1份有10只,所以原有兔子4×10=40只.故答案为40.【点评】本题考查差倍问题,考查学生转化问题的能力,确定要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍是关键.5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差9900 .【分析】将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列和与原数列的和相差所有奇数项的和的99倍,即可得出结论.【解答】解:设这个等差数列的奇数项分别为a1,a3,a5,…,公差为d,那么将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列可以表示为a1×100+a1+d,a2×100+a2+d,…,所以新数列的和与原数列的和相差99×(a1+a3+a5+…),由于奇数项的和为100,所以99×(a1+a3+a5+…)=99×100=9900,故答案为9900.【点评】本题考查等差数列,考查学生的计算能力,确定合并后的四位数列和与原数列的和相差所有奇数项的和的99倍是关键.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是13 .【分析】骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7~15进行分拆,即可得出结论.【解答】解:骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7=1+2+7,8=6+2,9=6+3,10=6+4,11=6+5,12=6+2+4,14=6+5+3,15=4+5+6,13无法拆出,即在1~15中,不可能看到的点数和是13.故答案为13.【点评】本题考查筛选与枚举,考查学生分析解决问题的能力,解题的关键是从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有7 名同学.【分析】由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.进而推出总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学.【解答】解:由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.第一轮只能在最中间放1枚棋子,此时将格子分为前半部分和后半部分,那么第二轮在每一部分的中间,都可以放1枚棋子,总共可以放2枚,此时将格子分成了4,第三轮在每一部分的中间,都可以放1枚棋子,总共可以放4枚,以此类推,总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学,棋子分布依次为:1,651,33,651,17,33,49,651,9,17,25,33,41,49,57,65,…故答案为7.【点评】本题考查找规律,考查枚举与筛选,解题的关键是若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了10 只羊.【分析】如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元,两次变化都是两只山羊的价钱,变化的总价格应该相等,即可得出结论.【解答】解:假设蕾蕾买了x只羊,原平均价格为a元,买2只山羊,每只羊的平均价格会增加60元,总价格增加60x+2(a+60)元;少买2只山羊,那么每只羊的平均价格会减少90元,总价格减少90x+2(a﹣90)元,两次变化都是两只山羊的价钱,应该相等,所以60x+2(a+60)=90x+2(a﹣90),解得x=10,故答案为10.【点评】本题考查等量关系与方程,考查学生分析解决问题的能力,正确建立等量关系是关键.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是41016 .(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)【分析】画出12月份值班表,分析A在12月份中第2,6,10次值班日期依次为4,10,16,即可得出结论.【解答】解:12月份值班表如下:由E说的话可知,25日A和E都值班,又由D的话可知D和E永远在一起,那么可以判断5日这一竖列值班人为A,D,E.由C的话可知,3日他不值班,由于每天必须有3人值班,所以D,E中必须有一个,又因为D,E在一起,所以3日这一竖列,D,E都值班.通过A的话判断,A,B在周末值班的日子比C,D,E多,统计出每一列中的周末数量,为2,1,2,2,2,每人都要在三列中值班,若要A,B比其他人多,那么1那一列必须是C,D,E值班,每天都要有3人值班,D,E现在已经排满,因此第1,4列为A,B,C值班.还剩第3列没有排完,B要跟每个人都搭配过,因此此处为B.A在12月份中第2,6,10次值班日期依次为4,10,16,故五位数为41016.故答案为41016.【点评】本题考查逻辑推理,考查学生分析解决问题的能力,确定A在12月份中第2,6,10次值班日期依次为4,10,16是关键.10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为84 平方厘米.【分析】如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半,即可得出结论.【解答】解:如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半为12×4÷2=24平方厘米,那么△ABC面积为3×24+12=84平方厘米.故答案为84.【点评】本题考查面积的计算,考查补形方法的运用,正确补形是关键.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有1476 种不同的走法.【分析】考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对,分别求出各种情况的不同的走法,即可得出结论.【解答】解:考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对.相邻:如1与2,那么下一步都顺时针走,可变为2与3,都逆时针走,变为6与1,一个顺时针,一个逆时针变为2与1或6与3,都有3种可能相邻,1种可能相对;相隔:如1与3,那么下一步可能变为2与4,6与2,6与4,都有3种可能相邻;相对:如1与4,那么下一步可能变为2与3,6与5,6与3,2与5,即有2种相邻的可能和2种相对的可能.假设警察初始房间为1,小偷与其相邻可能为2或6,那么3次之后不相遇的走法有2×(27+9+6+6+6+2+4+4)=128种相隔⇌3相隔⇌9相隔⇌27相隔.假设警察初始房间为1,小偷与其相邻可能为3或5,那么3次之后不相遇的走法有2×27=54种,假设警察初始房间为1,小偷与其相对为4,那么3次之后不相遇的走法有18+6+4+4+12+4+8+8=64种,综上所述,警察若初始位置为1,满足题目条件的走法有128+54+64+246种,那么警察初始位置还能选择2~6,因此共有246×6=1476种走法.故答案为1476.【点评】本题考查排列组合知识的运用,考查分类讨论的数学思想,正确分类讨论是关键.。

迎春杯历年题目分类解析

迎春杯历年题目分类解析

“迎春杯”历年题目分类解析(四年级)(学而思名师解题)1答案:5操作问题:将1、3、5、7、9 称为奇数格,将2、4、6、8称为偶数格。

开始时奇数格总和比偶数格总和大5, 而每一次变化并不影响这个结果所以A=5点评:操作题目,要寻找不变量,进行突破2答案:161提示:从里到外层数逐渐增加,差值逐渐增大,表n可以看成是n层,可以得到:N=1S1=1N=2S2=1+8X1X2N=3S3=1+8X(1X2+2X3)N=4S4=1+8X(1X2+2X3+3X4)=161N=5S5=1+8X(1X2+2X3+3X4+4X5)N=6S6=1+8X(1X2+2X3+3X4+4X5+5X6)=561由于差值逐渐增大,差值为400的情况只可能出现在前面,所以N=4符合要求。

题目:3答案:2346奇数位和是2345×1005,每个偶数位比它对应的奇数位大1,所以1005个偶数位比1005个奇数位大1005,那么偶数位和是2345×1005+1005=2346×1005,平均数自然是23464答案:30点评:此题难度不大,通过奇偶分析可得5个连续数应为3偶2奇,不难通过尝试得到4+5+6=7+8,结果是30题目:10月16日试题答案:第一题:446点评:排成一排,空隙数量比球多一个,所以去掉1红之后1红—2黄—6蓝(2008-1)÷9×2=446第二题:60点评:一笔画问题结合行程,难度不大,只需算出总路程即可,图中共4个奇点,而A进A出的要所有点均是偶点,需要多走两条连接奇点的线才能保证所有点都变成偶点,那么需要多走两次260 即(480×3+200×3+260×4+260×2)÷60=60(分)注:在高年级学过勾股定理之后,260米的边长是可以计算出来的,不需题目给出条件10月17日试题:10月17日试题答案:第一题:28第二题:2682(其它年级所占的是5份少78人,标准和差倍)10月21日试题:10月21日试题答案:第一题:20第二题:49点评:从这两天可以看出,应用题在迎春杯中考察还是相对简单的,如果孩子能够熟练掌握方程,做出第一、第二档的应用题应该难度不大10月22日试题:第一题:24第二题:30点评:这两道题都是标准的列方程解应用题,在四年级迎春杯初赛中,题号比较靠前的应用题请特别注意方程的应用10月23日试题:10月23日试题答案:第一题:48(提示:画线段图,最后三段剩下的刚好是等差数列,公差是两段线段)第二题:21(提示:1个男生会有左右两个牵手,共60次牵手,男女牵手共18次,男男牵手则有(60-18)÷2=21(次)那么就会分成21组,此题难度还是比较大的)10月24日试题:10月24日试题答案:第一题:7提示:此题考察鸡兔同笼多个动物打包思想有四脚蛇是双头龙的2倍,把2个四脚蛇和1个双头龙打1个包作为新动物,包是4头12脚发现4头12脚正好是4只三脚猫,所以包的新动物和三脚猫一样,这三个动物和一起算做1个,其实本题相当于对三脚猫和独角兽做鸡兔同笼,可求出独角兽的只数(160-58)÷(3-1)=5158-51=7第二题:英语提示:应用题和逻辑推理结合问题,采取枚举法,让9本分别是数学、语文、英语、历史,进行尝试计算,只有9本是英语书时4个数不重复,其余均有重复10月28日试题——数字谜今天开始进入数字谜阶段~中年级最重要的是加法数字谜!10月28日试题答案:第一题:10第二题:3010月29日试题:10月31日题目1.(2013年四年级组第9题)2.(2013年三年级组第6题)10月31日答案1、20342、3135(提示:这两道题都可以通过尝试得到,但如果掌握弃9法的话,做出来将会非常简单)1.2.11月4日题目——计数篇1.(2013四年级第6题)2.(2013三年级第10题)(此题难度很大,当年正确率不超过1%)11月4日答案1、7(特别提示:本题当年答案5也算作正确了,因为4=1+3,6=1+5这两组偶数不算作和)2、3211月5日答案1、62、21000昨天这两道题目不难哈!~ 11月6日题目11月6日答案:1、30(提示:实际操作法很有效哦!)2、30(提示:湖人只能在第6场或第7场获胜,所以比分是4:2或4:3,之后用树形图方法分两类讨论)11月7日题目:11月8日试题答案:第一题:18种第二题:25128(提示:这道题方法真的是一点一点算的,没有特别简单的解法,类似的题目华杯总决赛也考过,而且数比今天这个还大!)11月11日试题——逻辑推理11月13日试题:(点评:这次的两道题都是从六年级的考题当中摘下来的,难度虽然很大,但从知识点上四年级绝对可以)1、2、7192511月14日题目:11月14日答案11月18日题目(标准鸡兔同笼)(从本周开始,做一些杯赛最爱考的配套类型题目哈)1、在某电视机厂质量检测评比中,每生产出一台合格电视机记5分,每生产出一台不合格电视机扣10分。

2017年全国迎春杯小学中年级决赛A卷竞赛数学试卷(解析)

2017年全国迎春杯小学中年级决赛A卷竞赛数学试卷(解析)

价格减少90x + 2(a − 90) 元,两次变化都是两只山羊的价钱,应该相等,那么
,解得 . 60x + 2(a + 60) = 90x + 2(a − 90)
x = 10
9. 现有A、B、C 、D、E 五名诚实的安保在2016年12月1日~5日各值班3天,每天恰有3位安保值班,每位安保值班安排5天
E :圣诞节(12月25日)那天我和A都值班了.
那么,安保A在1 2 月份中第2 次、第6 次、第1 0 次值班日期顺次排列组成的五位数是

(如A第2次、第6次、第10次值班分别在12月3、12、17日,则答案为31217 )
答案
41016
解 析 12月份值班表如下:
由E 说的话可知,2 日 5 A 和E 都值班,又由D的话可知D和E 永远在一起,那么可以判断5日这一竖列值班人为 A ,D和E . 由C 的话可知,3日他不值班,由于每天必须有3人值班,所以D和E 中必须有一个,又因 为D和E 一起,所以3日这一竖列,D和E 都值班. 通过A 的话判断,A 和B 在周末值班的日子比C ,D和E 多,统计出每一列中的周末数量,为2,1,2,2,2 .每人都要在三列中值班,若要A 和B 比其他人多,那么1那一列必须是C ,D和E 值班. 每天都要有3人值班,D和E 现在已经排满,因此第1列,第4列为A ,B 和C 值班. 还剩第3列没有排完,B 要跟每个人都搭配过,因此此处为B . A 在12月份中第2 次、第6 次、第10次值班日期日期依次为4 ,10,16,五位数为41016.
得每个格子中都恰好放了一枚棋子,那么共有
名同学.
答案 7
解 析 由题意可知,若相邻两枚棋子之间有偶数个空格子,刖无法再往其中放棋子,那么若想要在每个格子中都放 上棋子,每次放完相邻两棋子间空格教应为奇教.第一轮只能在最中间放1 枚棋子,此时将格子分为了前半

全国“数学花园探秘”(原迎春杯)数学竞赛(2017)

全国“数学花园探秘”(原迎春杯)数学竞赛(2017)

全国“数学花园探秘”(原“迎春杯”)数学竞赛(2017年)一、填空题I(每小题8分,共32分)1.算式123+4-56÷7×8-9的计算结果是____。

2.如图,小鱼老师在为圣诞树准备装饰物,每个树顶需要放一颗幸运星,每一层树的两侧需要各放1个许愿球,一共3层。

小鱼老师数了数,许愿球比幸运星多40个。

那么,小鱼老师装饰了棵圣诞树。

3.题图中,共有个三角形。

4.下左图是小佳画的一个戴帽子的小人儿,下右图是帽子图,这个帽子是由6个完全一样的长方形拼成的。

如果这6个长方形的长都是6,那么,这个帽子图形的周长是____。

二、填空题Ⅱ(每小题10分,共40分)5.盒子里有一些黑球和白球。

如果将黑球数量变成原来的4倍,总球数将会变成原来的2倍。

那么,如果将白球数量变成原来的4倍,总球数将会变成原来的倍。

6.在题图的加法竖式中,6个汉字恰好代表6个连续的数字。

那么,花园探秘所代表的四位数是。

7.马戏团的38只小狗排成两排,其中有16只头向南尾向北,其余的都是头向北尾向南。

如果第一排小狗统统向后转,两排中头向南尾向北的小狗就一样多了。

那么,第一排有只小狗。

8.在空格里填人数字1~6,使得每行、每列和每个由粗线画出的2×3小长方形内数字不重复,并且在图中连续的灰线上,任意相邻的两个格中数的差都是1(下右图是一个例子)。

那么,将下左图的空格补充完整后,最后一行从左到右前五个数组成的五位数是。

三、填空题Ⅲ(每小题12分,共48分)9.将2017进行如下操作:每次操作将这个数末两位数字的乘积写在这个数的后面。

例如:对2017进行3次操作,结果将依次得到20177、2017749、201774936。

那么,如果对2017进行123次操作,操作后所得到结果的末两位数字依次组成的两位数是。

10.如图,在格子左端小格内有一颗棋子,右端有星星的小格是终点,现在按照如下规则走到终点:(1)每次操作走1~6格;(2)每次操作开始时,棋子都必须往右走,如果走到头,步数尚未用完,则调转方向,直到这次操作的步数走完(例:从C开始走5格会走到D);(3)某一次操作完成后,恰好到达终点就算胜利。

2015-2017迎春杯初赛试题

2015-2017迎春杯初赛试题

2015年“数学花园探秘”科普活动四年级组初试试卷B(测评时间:2014年12月20日10:30—11:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题Ⅰ(每小题8分,共32分)1. 计算191729174825⨯+⨯+⨯=________.2. 在下面算式的每个方框中填入一个适当的数字,使得乘法竖式成立.两个乘数之和是________.3. 最大的四位数比最大的两位数多________倍.4. 数一数,右图中共有________个三角形.二.填空题Ⅱ(每小题10分,共40分)5. 五个人站成一排,每人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴________号帽子.6. 豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄和为59岁,5年后,全家年龄和为97岁.豆豆妈妈今年________岁.7. 在下图中可以取出一个由三个小方格组成的“L ”形,现在要求取出的都是全白色的,共有________种不同的取法(允许“L ”形旋转).8. 5×5的方格中每一个数字,代表四周画实线的数目,例如:0的四周不能画有任何实线,画出实线不能交叉,也不能有分岔,并在最后成为一个不间断的封闭回路.在没有数字的地方,画线的数目没有任何限制.若方格中每个小正方形的边长均为1,那么最后封闭图形的周长是________.三.填空题Ⅲ(每小题12分,共48分)9. 甲、乙、丙三人从A 地出发前往B 地.甲8:00出发,乙8:20出发,丙8:30出发.他们行进的速度相同.丙出发10分钟后,甲到B 地的距离恰好是乙到B地距离的一半.这时丙距B 地2015米.那么A 、B 两地相距________米.10. 中央电视台总部大楼的平面设计图初稿如图所示.图中ABCDEF 是面积为60的正六边形,G 、H 、I 、J 分别是AB 、CD 、DE 、F A 边上的中点,那么阴影部分的面积是________.11. 图书馆用4500元购进《庄子》《孔子》《孟子》《老子》《孙子》5种图书共计300本.它们的单价(指一本的价格)分别为10元、20元、15元、30元、12元.其中《庄子》和《孔子》的本数一样多,《孙子》比《老子》的4倍还多15本.这批图书中,《孙子》共有________本.12. 请参考《2015年“数学花园探秘”科普活动初赛试题评选方法》作答.F E C 2 0 2 12 3 2 3 0 2 332016年“数学花园探秘”科普活动四年级组初试试卷C(测评时间:2015年12月19日10:30—11:30)一.填空题Ⅰ(每小题8分,共32分)1.计算:12+34×15-78,所得结果是__________.2.甲、乙、丙、丁和小强坐成一排,相邻两人之间的距离都是1米..甲做在离乙、丙距离相等的座位上,丁坐在离甲、丙距离相等的座位上,那么小强与甲之间的距离是__________米.3.如图,在一个长宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是_______平方厘米.4.有一棵神奇的树上长了60个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个.但如果某天树上的果子数量少于这一天本应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按原规律进行新的一轮.如此继续,那么第________天树上的果子会都掉光.二.填空题II(每小题10分,共40分)5.如右图,图中正方形的边长依次是2,4,6,8,10,阴影部分的面积是__________.6.一副扑克牌去除大小王后有4种花色共52张牌,每种花色各有13张,牌面分别是1至13.菲菲从中取出2张红桃,3张黑桃,4张方块,5张梅花.如果菲菲取出的这14张扑克牌的牌面之和恰好是35,那么其中有__________张是1.7.甲、乙、丙、丁四人参加了一次考试.甲、乙的成绩和比丙、丁的成绩和高17分.甲比乙低4分,丙比丁高5分.四人中最高分比最低分高__________分.8.用4种不同的颜色给圆圈涂色(4种颜色可以不全用),要求有线直接相连的两个圆圈的颜色不同,则共有_________种不同的涂色方法.三.填空题Ⅲ(每小题12分,共48分)9.甲、乙、丙、丁、戊五位同学在某次数学竞赛中获得了前5名(无并列),照相时站成一排,他们如下各说了一句话..甲说:与我相邻的2位同学的名次都比我靠后;乙说:与我相邻的2位同学的名次都与我的名次相邻;丙说:我右边的所有同学(至少1位)的名次都比我靠前;丁说:我左边的所有同学(至少1位)的名次都比我靠后;戊说:我站在右数第2位..已知他们都是诚实的孩子,甲、乙、丙、丁、戊分别获得第A、B、C、D、E名,那么五位数ABCDE 是.10.在空格里填入数字2,0,1,5,或者空着不填.使得每行和每列都各有一个2,0,1,5.要求相同的数字不能对角相邻.问:第五行前五个位置依次是:_______(空格用9表示)11.有一种新型的解题机器人,它会做题,但是有智商余额的限制.每次做题都会用它的智商余额减去这个题的分值,消耗掉与分值相同的智商余额.当它做对一道题的时候,它的智商余额就会增加1,当它的智商余额小于正在做的题的分值时,将解题失败.那么如果小鹏用一台初始智商上限为25的解题机器人,做一套分值分别为1~10的题,最多能得到_________分.12.请参考《2016年“数学花园探秘”科普活动初赛试题评选方法》作答.2017年“数学花园探秘”科普活动四年级组初试试卷C(测评时间:2016年12月3日10:30—11:30)一.填空题Ⅰ(每小题8分,共32分)1.算式20171012751⨯-+⨯的计算结果是_________.2.一筐水果中,恰好有一半数量是苹果.如果吃掉苹果数量的一半,筐中只剩下60个水果.那么,这时筐子中还有_________个苹果.3.用“2”“0”“1”“7”“+”“-”“´”各一个(数字和算符都可以交换顺序),组成算式的最小的自然数结果是_________.4.右图中,共有_________个三角形.二.填空题Ⅱ(每小题10分,共40分)5.小华通常让手机一直开着.如果她手机开着而不通话,电池可维持24小时.如果她连续使用手机通话,电池只能持续3小时.从她最后一次充满电算起,她手机已经持续开机9小时,在这段期间内,她已经用了60分钟来通话.如果她不再使用手机通话,而让手机持续开着,那么,电池还能再维持_________个小时.6.如右图,正六边形ABCDEF的面积是120平方厘米,以G、H、I为中心的三个小正六边形边长是正六边形ABCDEF边长的一半,那么,三角形GHI的面积是_________平方厘米.7.小欧有一袋糖,共120块.他第一天吃了1块糖,之后每天都比前一天多吃2块或3块糖,第11天恰好吃完.那么,在这11天中,他至少有天是比前一天多吃2块糖的.〖答案〗错题,请忽略8.在左图空格里填入数字1~4,使得每行、每列和每个由粗线围成的2×2的宫内数字不重复.圆圈里如果填入的是奇数,则表示与圆圈所在格有公共点的格(除本身以外)中填入的数有多少个是奇数;圆圈里如果填入的是偶数,则表示与圆圈所在格有公共点的格(除本身以外)中填入的数有多少个是偶数.那么,第一行四个数字从左到右组成的四位数是_________.(右图是一个例子,圆圈中的3,表示它四周有1、1、3共3个奇数)三.填空题Ⅲ(每小题12分,共48分)9. 桌上有1个电子显示器(0~9数字显示如左下图),小花和小黄面对面坐在桌子两侧,若从他们各自的角度看到的都是数字不重复的不含0的六位数(例如:小花看到的281906,那么小黄将会看到906182,显示如右下图),并且这两个数差的末四位恰好是2017(大减小),那么,这两个六位数中较大的数后五位从左至右是_________.10. 有两种卡片各10张,其中一种卡片两面分别写着1和3;另外一种卡片两面分别写着2和5.佳佳、俊俊每人随机拿走了10张卡片,并让它们随机摆放,并各自计算了自己10张卡片向上的数字之和,发现佳佳比俊俊的和大1;两人又将各自所有卡片翻转,再次计算各自10张卡片向上的数字之和,发现佳佳的和变小了10,而俊俊的和变小了14.那么,翻转之后,俊俊有_________张卡片是数字2向上的.11. 如右图,图中每个小正三角形的面积是1平方厘米.将面积是36平方厘米的正三角形“窝瓜”图片沿虚线剪成10块,要求其中2块是面积为6平方厘米的正六边形,另外8块是面积为3平方厘米的等腰梯形.那么,共有_________种不同的剪法.12. 你认为本试卷中一道最佳试题是第__________题(答题范围为01~11);你认为本试卷整体的难度级别是__________(最简单为“1”,最难为“9”,答题范围为1~9); 你认为本试卷中一道最难试题是第__________题;(答题范围为01~11).(所有答题范围内的作答均可得分,所有的评定都将视为本人对本试卷的有效评定,不作答或者超出作答范围不得分.)。

迎春杯2017年四年级初赛(解析)

迎春杯2017年四年级初赛(解析)
9. 甲、乙、丙、丁共有糖果 17 颗,他们有如下的对话: 甲对乙说:“如果我给你 1 颗糖,我们的糖果数就相同了”; 乙对甲说:“如果你给我 2 颗糖,我的糖果数就是你的 3 倍了”
优 丙对甲说:“如果我给你 3 颗糖,你的糖果数就是我的 3 倍了”
丁对甲说:“如果你给我 4 颗糖,我的糖果数就是你的 4 倍了” 结果发现:糖果数是奇数的人说的都是对的,而糖果数是偶数的人说的都是错的.
【答案】829 【解析】根据操作,每四次后数值加 10,根据操作顺序,这列数的个位只能为,1, 1 2 3 ,
1 2 0 3 ,1 2 0 1 4 ,所以最小得到的是 2071,共 (2071 1) 10 207 个周期,所以这 个数是第 207 4 1 829 个数.
而 4. 在右面的乘法竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么,四位
数 迎接夏天 代表_________. 【答案】1024
迎春
×
春天
学 【解析】“迎”“接”“晚”为 1,0,9,因为“春”乘“春”个位为“春”,“春”不为 1 和
0,所以“春”为 5 或 6,若“春”为 5,则“天”只能为 0,矛盾;所以“春”为 6,
培 设甲、乙、丙、丁依次拥有 A、B、C、D 颗,那么,四位数 ABCD =_________.
【答案】3158 【解析】(1)若丁为奇数,则丁说真话,他获得 4 颗后仍为奇数,则与他为甲的 4 倍矛盾.所以丁
为偶数,说假话.
思 (2)若甲为偶数,由乙说的可知乙也为偶,由丙说的可知丙也为偶,则四人总数为偶数,与
你认为本试卷中一道最难试题是第__________题;(答题范围为 01~11). (所有答题范围内的作答均可得分,所有的评定都将视为本人对本试卷的有效评定,不作答或

2020年“春笋杯”数学花园探秘科普活动试卷(小中组决赛a卷)(1)

2020年“春笋杯”数学花园探秘科普活动试卷(小中组决赛a卷)(1)

2017年“迎春杯”数学花园探秘科普活动试卷(小中组决赛A卷)一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是.3.如图中共有个平行四边形.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔只.(注:蜘蛛有8只脚)5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有名同学.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了只羊.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是.(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为平方厘米.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有种不同的走法.2017年“迎春杯”数学花园探秘科普活动试卷(小中组决赛A卷)参考答案与试题解析一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是3434.【解答】解:67×67﹣34×34+67+34=67×(67+1)﹣34×34+34=67×2×34﹣34×34+34=101×34=3434故答案为:3434.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是14.【解答】解:由于0<C×D<100,所以1900<×<2017,因为130×13=1690,140×14=1960,150×15=2250,所以=14,进一步可得C×(14+D)=57,C=3,D=5.故答案为14.3.如图中共有15个平行四边形.【解答】解:根据分析可得,①单个的(红色)有:4个;②两个组成的(蓝色)有8个;③6部分组成的(黄色)有:3个;共有:4+8+3=15(个);答:图中共有15个平行四边形.故答案为:15.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔40只.(注:蜘蛛有8只脚)【解答】解:每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,把增加的蜘蛛当作1份,那么原蜘蛛数量也是1份,走了的兔子数量是2份,原有兔子数量为4份,则原有动物共5份,是50只,1份有10只,所以原有兔子4×10=40只.故答案为40.5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差9900.【解答】解:设这个等差数列的奇数项分别为a1,a3,a5,…,公差为d,那么将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列可以表示为a1×100+a1+d,a2×100+a2+d,…,所以新数列的和与原数列的和相差99×(a1+a3+a5+…),由于奇数项的和为100,所以99×(a1+a3+a5+…)=99×100=9900,故答案为9900.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是13.【解答】解:骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7=1+2+7,8=6+2,9=6+3,10=6+4,11=6+5,12=6+2+4,14=6+5+3,15=4+5+6,13无法拆出,即在1~15中,不可能看到的点数和是13.故答案为13.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有7名同学.【解答】解:由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.第一轮只能在最中间放1枚棋子,此时将格子分为前半部分和后半部分,那么第二轮在每一部分的中间,都可以放1枚棋子,总共可以放2枚,此时将格子分成了4,第三轮在每一部分的中间,都可以放1枚棋子,总共可以放4枚,以此类推,总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学,棋子分布依次为:1,651,33,651,17,33,49,651,9,17,25,33,41,49,57,65,…故答案为7.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了10只羊.【解答】解:假设蕾蕾买了x只羊,原平均价格为a元,买2只山羊,每只羊的平均价格会增加60元,总价格增加60x+2(a+60)元;少买2只山羊,那么每只羊的平均价格会减少90元,总价格减少90x+2(a﹣90)元,两次变化都是两只山羊的价钱,应该相等,所以60x+2(a+60)=90x+2(a﹣90),解得x=10,故答案为10.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;黑豆网https://黑豆网是国内不错的在线观看电影的网站,涵盖电影,电视剧,综艺,动漫等在线观看资源!D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是41016.(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)【解答】解:12月份值班表如下:由E说的话可知,25日A和E都值班,又由D的话可知D和E永远在一起,那么可以判断5日这一竖列值班人为A,D,E.由C的话可知,3日他不值班,由于每天必须有3人值班,所以D,E中必须有一个,又因为D,E在一起,所以3日这一竖列,D,E都值班.通过A的话判断,A,B在周末值班的日子比C,D,E多,统计出每一列中的周末数量,为2,1,2,2,2,每人都要在三列中值班,若要A,B比其他人多,那么1那一列必须是C,D,E值班,每天都要有3人值班,D,E现在已经排满,因此第1,4列为A,B,C值班.还剩第3列没有排完,B要跟每个人都搭配过,因此此处为B.A在12月份中第2,6,10次值班日期依次为4,10,16,故五位数为41016.故答案为41016.10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为84平方厘米.【解答】解:如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半为12×4÷2=24平方厘米,那么△ABC面积为3×24+12=84平方厘米.故答案为84.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有1476种不同的走法.【解答】解:考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对.相邻:如1与2,那么下一步都顺时针走,可变为2与3,都逆时针走,变为6与1,一个顺时针,一个逆时针变为2与1或6与3,都有3种可能相邻,1种可能相对;相隔:如1与3,那么下一步可能变为2与4,6与2,6与4,都有3种可能相邻;相对:如1与4,那么下一步可能变为2与3,6与5,6与3,2与5,即有2种相邻的可能和2种相对的可能.假设警察初始房间为1,小偷与其相邻可能为2或6,那么3次之后不相遇的走法有2×(27+9+6+6+6+2+4+4)=128种相隔⇌3相隔⇌9相隔⇌27相隔.假设警察初始房间为1,小偷与其相邻可能为3或5,那么3次之后不相遇的走法有2×27=54种,假设警察初始房间为1,小偷与其相对为4,那么3次之后不相遇的走法有18+6+4+4+12+4+8+8=64种,综上所述,警察若初始位置为1,满足题目条件的走法有128+54+64+246种,那么警察初始位置还能选择2~6,因此共有246×6=1476种走法.故答案为1476.。

2017年奥数(迎春杯)决赛试卷分析

2017年奥数(迎春杯)决赛试卷分析

2017年奥数(迎春杯)决赛试卷分析2017 年 1 ⽉ 1 ⽇是2017年奥数(迎春杯)决赛的⽇记,前天得到⼩学⾼年组的试卷,试着分析⼀下。

试题及其详细的解题⽅法和能⼒分析附在后⾯,解的仓促,如有错误、或有更好⽅法,请⼀定留⾔告诉我哈。

整体印象:难度⼤,时间少。

要得⾼分得经过⾼强度的训练。

知识点分布情况:数论:4题分数和百分数:3题⼏何:2题数学游戏:2题逻辑推理:1题排列组合:1题⾏程问题:1题最重要的能⼒:数感代数思维逻辑推理理解与分析能⼒2017 年"数学花园探秘"科普活动⼩学⾼年级组决赛试卷A(测评时间:2017 年 1 ⽉ 1 ⽇ 8:00—9:30)⼀.填空题Ⅰ(每⼩题 8 分,共 40 分)【分析】63+1= 64能⼒和知识:灵活使⽤运算定律完成分数的运算。

2. ⼀个边长为 100 厘⽶的正五边形和五个扇形拼成如图的"海螺",那么这个图形的周长是________厘⽶(π取 3.14).【分析】周长由5个圆弧加⼀个线段构成。

5个圆弧的半径分别是100、200、300、400、500cm,圆⼼⾓是:180-108=72度。

线段的长度是500cm。

所以,其周长为=0=2384(cm)能⼒和知识:正多边形的内⾓不规则图形的周长计算⽅法圆弧的周长计算⽅法3. 在 2016 年⾥约奥运会⼥排决赛中,中国队战胜了塞尔维亚队获得冠军.统计 4 局⽐赛中中国队的得分,发现前 2 局的得分之和⽐后 2 局的得分之和少 12%,前 3 局的得分之和⽐后 3 局的得分之和少 8%.已知中国队在第 2 局和第 3 局中各得了 25 分,那么中国队在这 4 局中的得分总和为________ 分.【分析】因为第2局和第3局得分⼀样。

所以,前 2 局的得分之和⽐后 2 局的得分之和少的就是"第四局和第1局差"。

同理,前 3 局的得分之和⽐后 3 局的得分之和少的也是"第四局和第1局差"设,第四局得x分,则有(x+25)4%x=1X=25所以,第⼀局得分25-(25+25)=19(分)四局总得分:能⼒和知识:使⽤百分数⽐较多少使⽤⽅程解决问题4. 右⾯三个算式中,相同汉字代表相同数字,不同汉字代表不同数字;那么四位数"李⽩杜甫"=________.【分析】因为"李⽩杜甫诗"代表5个不同的数字。

2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)

2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)

2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是.3.如图中共有个平行四边形.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔只.(注:蜘蛛有8只脚)5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有名同学.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了只羊.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是.(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为平方厘米.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有种不同的走法.2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)参考答案与试题解析一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是3434 .【分析】根据乘法的分配律简算即可.【解答】解:67×67﹣34×34+67+34=67×(67+1)﹣34×34+34=67×2×34﹣34×34+34=101×34=3434故答案为:3434.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是14 .【分析】由于0<C×D<100,所以1900<×<2017,根据130×13=1690,140×14=1960,150×15=2250,即可得出结论.【解答】解:由于0<C×D<100,所以1900<×<2017,因为130×13=1690,140×14=1960,150×15=2250,所以=14,进一步可得C×(14+D)=57,C=3,D=5.故答案为14.【点评】本题考查位值原则,考查学生的计算能力,确定1900<×<2017是关键.3.如图中共有15 个平行四边形.【分析】把图中的平行四边形分三类计数:①单个的(红色);②两个组成的(蓝色);③6部分组成的(黄色).【解答】解:根据分析可得,①单个的(红色)有:4个;②两个组成的(蓝色)有8个;③6部分组成的(黄色)有:3个;共有:4+8+3=15(个);答:图中共有 15个平行四边形.故答案为:15.【点评】本题要注意按顺序分类计数,防止遗漏.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔40 只.(注:蜘蛛有8只脚)【分析】每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,从而可得原有动物共5份,即可得出结论.【解答】解:每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,把增加的蜘蛛当作1份,那么原蜘蛛数量也是1份,走了的兔子数量是2份,原有兔子数量为4份,则原有动物共5份,是50只,1份有10只,所以原有兔子4×10=40只.故答案为40.【点评】本题考查差倍问题,考查学生转化问题的能力,确定要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍是关键.5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差9900 .【分析】将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列和与原数列的和相差所有奇数项的和的99倍,即可得出结论.【解答】解:设这个等差数列的奇数项分别为a1,a3,a5,…,公差为d,那么将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列可以表示为a1×100+a1+d,a2×100+a2+d,…,所以新数列的和与原数列的和相差99×(a1+a3+a5+…),由于奇数项的和为100,所以99×(a1+a3+a5+…)=99×100=9900,故答案为9900.【点评】本题考查等差数列,考查学生的计算能力,确定合并后的四位数列和与原数列的和相差所有奇数项的和的99倍是关键.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是13 .【分析】骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7~15进行分拆,即可得出结论.【解答】解:骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7=1+2+7,8=6+2,9=6+3,10=6+4,11=6+5,12=6+2+4,14=6+5+3,15=4+5+6,13无法拆出,即在1~15中,不可能看到的点数和是13.故答案为13.【点评】本题考查筛选与枚举,考查学生分析解决问题的能力,解题的关键是从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有7 名同学.【分析】由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.进而推出总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学.【解答】解:由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.第一轮只能在最中间放1枚棋子,此时将格子分为前半部分和后半部分,那么第二轮在每一部分的中间,都可以放1枚棋子,总共可以放2枚,此时将格子分成了4,第三轮在每一部分的中间,都可以放1枚棋子,总共可以放4枚,以此类推,总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学,棋子分布依次为:1,651,33,651,17,33,49,651,9,17,25,33,41,49,57,65,…故答案为7.【点评】本题考查找规律,考查枚举与筛选,解题的关键是若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了10 只羊.【分析】如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元,两次变化都是两只山羊的价钱,变化的总价格应该相等,即可得出结论.【解答】解:假设蕾蕾买了x只羊,原平均价格为a元,买2只山羊,每只羊的平均价格会增加60元,总价格增加60x+2(a+60)元;少买2只山羊,那么每只羊的平均价格会减少90元,总价格减少90x+2(a﹣90)元,两次变化都是两只山羊的价钱,应该相等,所以60x+2(a+60)=90x+2(a﹣90),解得x=10,故答案为10.【点评】本题考查等量关系与方程,考查学生分析解决问题的能力,正确建立等量关系是关键.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是41016 .(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)【分析】画出12月份值班表,分析A在12月份中第2,6,10次值班日期依次为4,10,16,即可得出结论.【解答】解:12月份值班表如下:由E说的话可知,25日A和E都值班,又由D的话可知D和E永远在一起,那么可以判断5日这一竖列值班人为A,D,E.由C的话可知,3日他不值班,由于每天必须有3人值班,所以D,E中必须有一个,又因为D,E在一起,所以3日这一竖列,D,E都值班.通过A的话判断,A,B在周末值班的日子比C,D,E多,统计出每一列中的周末数量,为2,1,2,2,2,每人都要在三列中值班,若要A,B比其他人多,那么1那一列必须是C,D,E值班,每天都要有3人值班,D,E现在已经排满,因此第1,4列为A,B,C值班.还剩第3列没有排完,B要跟每个人都搭配过,因此此处为B.A在12月份中第2,6,10次值班日期依次为4,10,16,故五位数为41016.故答案为41016.【点评】本题考查逻辑推理,考查学生分析解决问题的能力,确定A在12月份中第2,6,10次值班日期依次为4,10,16是关键.10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为84 平方厘米.【分析】如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半,即可得出结论.【解答】解:如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半为12×4÷2=24平方厘米,那么△ABC面积为3×24+12=84平方厘米.故答案为84.【点评】本题考查面积的计算,考查补形方法的运用,正确补形是关键.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有1476 种不同的走法.【分析】考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对,分别求出各种情况的不同的走法,即可得出结论.【解答】解:考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对.相邻:如1与2,那么下一步都顺时针走,可变为2与3,都逆时针走,变为6与1,一个顺时针,一个逆时针变为2与1或6与3,都有3种可能相邻,1种可能相对;相隔:如1与3,那么下一步可能变为2与4,6与2,6与4,都有3种可能相邻;相对:如1与4,那么下一步可能变为2与3,6与5,6与3,2与5,即有2种相邻的可能和2种相对的可能.假设警察初始房间为1,小偷与其相邻可能为2或6,那么3次之后不相遇的走法有2×(27+9+6+6+6+2+4+4)=128种相隔⇌3相隔⇌9相隔⇌27相隔.假设警察初始房间为1,小偷与其相邻可能为3或5,那么3次之后不相遇的走法有2×27=54种,假设警察初始房间为1,小偷与其相对为4,那么3次之后不相遇的走法有18+6+4+4+12+4+8+8=64种,综上所述,警察若初始位置为1,满足题目条件的走法有128+54+64+246种,那么警察初始位置还能选择2~6,因此共有246×6=1476种走法.故答案为1476.【点评】本题考查排列组合知识的运用,考查分类讨论的数学思想,正确分类讨论是关键.。

2020年“春笋杯”数学花园探秘初赛试卷(四年级b卷)

2020年“春笋杯”数学花园探秘初赛试卷(四年级b卷)

2016年“迎春杯”数学花园探秘初赛试卷(四年级B卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)计算:(18×23﹣24×17)÷3+5,所得结果是.2.(8分)8位老人下两副象棋.8人轮流下,他们从早上8点,一直下到当天下午6点,则平均每个人下了小时.3.(8分)三年级一班期末数学考试中,前10名的成绩恰好构成一个等差数列,已知考试满分100分,每个同学的得分都是整数,而且第3、4、5、6名同学一共得了354分,又知道小悦得了96分,那么第10名同学得了多少分?4.(8分)如图乘法算式中只有四个位置上的数已知,它们分别是2,0,1,6请你在空白位置填上数字,使得算式能够成立.那么乘积为.二、填空题(共4小题,每小题10分,满分40分)5.(10分)羊圈里有若干只鸡和羊.如果一半的鸡被赶出羊圈,则羊圈里剩余的鸡和羊的总腿数恰好是羊圈里鸡的总腿数的2倍;如果有4只羊被赶出羊圈,则羊圈里剩余的鸡和羊的总腿数恰好是羊圈里羊的总腿数的4倍.那么一共有只羊.6.(10分)数列1,1,2,3,5,8,…从第二项起每一项都等于它前面两项之和,这个数列成为斐波那契数列.其中每一项都叫做斐波那契数.可以证明“任意正整数n都可以成若干个不同的斐波那契数之和”,那么把100表示成若干个不同的斐波那契数之和有种表示方法.(只是交换加数的顺序算作同一种)7.(10分)男生戴红帽,女生带黄帽,老师带蓝帽,每人看不到自己的帽子,小强(男生)看到的红帽比黄帽多2顶,小花(女生)看到的黄帽是蓝帽的2倍,老师看到的蓝帽比红帽少11顶,那么其中有名女生.8.(10分)表格中每个字母代表一个数字,不同的字母代表不同数字.每个数的首位不得为零.每一行从左到右的三个数为等差数列,每一列从上到下的三个数也为等差数列,那么五位数=.A BA AAAB CA EFCD GA BDC三、填空题(共3小题,每小题12分,满分36分)9.(12分)A、B两地相距30厘米,甲、乙两根细绳在玩具车的牵引下从A,B两地同时出发相向而行.甲绳长151厘米,前行速度每秒2厘米;乙绳长187厘米,前行速度每秒3厘米.如果出发时两绳尾端同时被点燃,甲绳燃烧速度为每秒1厘米,乙绳燃烧速度为每秒2厘米.两绳从相遇到完全错开共需秒.10.(12分)如图,一个面积为420平方厘米的长方形被四条线段分割成了五个三角形,且这五个三角形的面积S1,S2,S3,S4,S5依次构成等差数列,那么S5是平方厘米.11.(12分)大毛、二毛、三毛兄弟三人,大毛对三毛说:“爸爸36岁时,我的年龄是你的4倍,二毛的年龄是你的3倍.”二毛说:“是啊,那时候我们三人的年龄加起来恰好是爸爸现在年龄的一半.”三毛说:“现在我们父子4人的年龄和已经有108岁了.”那么三毛今年岁.2016年“迎春杯”数学花园探秘初赛试卷(四年级B卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)计算:(18×23﹣24×17)÷3+5,所得结果是7.【解答】解:(18×23﹣24×17)÷3+5=(6×3×23﹣6×4×17)÷3+5=6×(3×23﹣4×17)÷3+5=6×(69﹣68)÷3+5=6÷3+5=7故答案为:7.2.(8分)8位老人下两副象棋.8人轮流下,他们从早上8点,一直下到当天下午6点,则平均每个人下了5小时.【解答】解:12+6﹣8=10(小时),10×4÷8=40÷8=5(小时)答:平均每个人下了5小时.故答案为:5.3.(8分)三年级一班期末数学考试中,前10名的成绩恰好构成一个等差数列,已知考试满分100分,每个同学的得分都是整数,而且第3、4、5、6名同学一共得了354分,又知道小悦得了96分,那么第10名同学得了多少分?【解答】解:设第10名同学得了a分,前10名的成绩由低到高构成的等差数列公差是d,则第3、4、5、6名同学分别得了a+7d、a+6d、a+5d、a+4d,第3、4、5、6名同学一共得分为:(a+7d)+(a+6d)+(a+5d)+(a+4d)=4a+22d=354,整理,可得2a+11d=177…①,设小悦第m名,则1≤m≤10,则a+(10﹣m)d=96…②,②×2﹣①,可得(9﹣2m)d=15,(1)当9﹣2m=3,d=5时,解得,此时a=61;(2)当9﹣2m=5,d=3时,解得,此时a=72;(3)当9﹣2m=1,d=15时,解得,此时小悦第4名,第三名的得分是96+15=111(分),因为111>100,所以不符合题意;综上,可得第10名同学得了61分或72分.答:第10名同学得了61分或72分.4.(8分)如图乘法算式中只有四个位置上的数已知,它们分别是2,0,1,6请你在空白位置填上数字,使得算式能够成立.那么乘积为2205.【解答】解:答:乘积是2205.故答案为:2205.二、填空题(共4小题,每小题10分,满分40分)5.(10分)羊圈里有若干只鸡和羊.如果一半的鸡被赶出羊圈,则羊圈里剩余的鸡和羊的总腿数恰好是羊圈里鸡的总腿数的2倍;如果有4只羊被赶出羊圈,则羊圈里剩余的鸡和羊的总腿数恰好是羊圈里羊的总腿数的4倍.那么一共有10只羊.【解答】解:根据一半的鸡被赶出羊圈,则羊圈里剩余的鸡和羊的总腿数恰好是羊圈里鸡的总腿数的2倍,可知这时鸡的只数是羊只数的2倍设原来有羊x只,则一半的鸡赶出羊圈后,圈里鸡有2x只(x﹣4)×4×(4﹣1)=2x×2(x﹣4)×4×3=4x12x﹣48=4x12x﹣4x=488x=48x=66+4=10(只)答:一共有10只羊.故答案为:10.6.(10分)数列1,1,2,3,5,8,…从第二项起每一项都等于它前面两项之和,这个数列成为斐波那契数列.其中每一项都叫做斐波那契数.可以证明“任意正整数n都可以成若干个不同的斐波那契数之和”,那么把100表示成若干个不同的斐波那契数之和有9种表示方法.(只是交换加数的顺序算作同一种)【解答】解:首先枚举出小于100的斐波那契数.1,1,2,3,5,8,13,21,34,55,89.①100=89+3+8②=89+1+2+8③=89+1+2+3+5④=55+34+1+2+3+5⑤=55+34+1+2+8⑥=55+34+3+8⑦=55+13+21+1+2+3+5⑧=55+13+21+3+8⑨=55+13+21+1+2+8故答案为:97.(10分)男生戴红帽,女生带黄帽,老师带蓝帽,每人看不到自己的帽子,小强(男生)看到的红帽比黄帽多2顶,小花(女生)看到的黄帽是蓝帽的2倍,老师看到的蓝帽比红帽少11顶,那么其中有13名女生.【解答】解:设有x名女生,则有x+3(x+2+1=x+3)名男生,所以(x﹣1)÷2=x+3﹣11+10.5x﹣0.5=x﹣70.5x﹣7=﹣0.50.5x=6.5x=13答:其中有13名女生.故答案为:13.黑豆网https://黑豆网是国内不错的在线观看电影的网站,涵盖电影,电视剧,综艺,动漫等在线观看资源!金马医药招商网:##金马医药招商网是专业提供医药代理招商的资讯信息发布平台,医药代理招商网即医药视频招商网或医药火爆招商网这里提供专业的医药代理招商服务。

2017年“数学花园探秘”(原迎春杯)官方模考试卷全面评析

2017年“数学花园探秘”(原迎春杯)官方模考试卷全面评析

2017年“数学花园探秘”(原迎春杯)官方模考试卷全面评析11月9日晚19:30-20:30,“迎春杯”初赛模拟考试在世纪金源大饭店宴会厅正式举行。

这是组委会首次举办官方线下模考,考试题目均由“迎春杯命题组”成员提供,为孩子们最后一个月的备考提供目标与方向。

1、题目组成、知识点分析迎春杯初赛的题目组成将与本次模考基本相同,具体如下:一档题:4道,每道8分,共32分涉及知识点:计算,几何计数/简单几何,简单应用题,数字谜;二档题:4道,每道10分,共40分涉及知识点:组合(计数、逻辑推理、数独),数论(整除,因数倍数);三档题:3道,每道题12分,共36分涉及知识点:几何、行程、组合数论等。

我认为这套卷子的难度与迎春杯初赛的难度基本相仿,大家可以在此基础上判断自己迎春杯初赛的成绩。

当然了,你还有一个月的时间进步呢!3、四大考点的重点难点剖析+学习思路这个部分将从“知识点模块”、“每题得分率”、“标准错误答案”等几项数据,简要分析迎春杯的考试重点、难点,给出复习思路,分享一些解题技巧。

本次考试的每题得分率按知识点划分的得分率各分数段人数分布小玮酷评:1、五年级迎春杯第一题必考分数计算,并会在其中包含一些可以巧算的点。

发现不了怎么办?大胆猛算!并且在这里一定一定一定要跟大家强调三遍!做完第一题千万别着急做第二道题,不管第一遍是使用巧算还是猛算,第二遍一定要使用猛算检查。

99%的孩子都能拿分,咱可千万别做个连第一题都做不对的1%!2、咱们虽然从暑假就开始分数计算前提了,但是得分率依然不尽如人意,所以针对这题做错的同学,小玮老师只能说回去再加练1000道。

计算没有捷径,那些技巧与数感都是在一个又一个竖式中积累的。

2) 在右图的正十二边形中,共有_______个等边三角形.小玮酷评:1、一档题中,“几何计数”或“简单几何计算”会二选其一。

追求完美的命题组对几何图形的美感要求极高,这也导致了一档题中的简单几何日渐稀少,逐渐被另一颗冉冉升起的新星考点——正多边形图形计数所替代,所以我们必须熟悉这些正多边形的结构特点,进而拿稳这8分!2、本题让孩子们找的是等边三角形,可以说是图形计数中最有特点也最好找的图形,虽然本题使用的是正十二边行,但实际上难度并不大。

迎春杯历年题目分类解析汇报

迎春杯历年题目分类解析汇报

“迎春杯”历年题目分类解析(四年级)(学而思名师解题)1答案:5操作问题:将1、3、5、7、9 称为奇数格,将2、4、6、8称为偶数格。

开始时奇数格总和比偶数格总和大5, 而每一次变化并不影响这个结果所以A=5点评:操作题目,要寻找不变量,进行突破2答案:161提示:从里到外层数逐渐增加,差值逐渐增大,表n可以看成是n层,可以得到:N=1 S1=1N=2 S2=1+8X1X2N=3 S3=1+8X(1X2+2X3)N=4 S4=1+8X(1X2+2X3+3X4)=161N=5 S5=1+8X(1X2+2X3+3X4+4X5)N=6 S6=1+8X(1X2+2X3+3X4+4X5+5X6)=561由于差值逐渐增大,差值为400的情况只可能出现在前面,所以N=4符合要求。

题目:3答案:2346奇数位和是2345×1005,每个偶数位比它对应的奇数位大1,所以1005个偶数位比1005个奇数位大1005,那么偶数位和是2345×1005+1005=2346×1005,平均数自然是23464答案:30点评:此题难度不大,通过奇偶分析可得5个连续数应为3偶2奇,不难通过尝试得到4+5+6=7+8,结果是30题目:第一题:446点评:排成一排,空隙数量比球多一个,所以去掉1红之后1红— 2黄—6蓝(2008-1)÷9×2=446第二题:60点评:一笔画问题结合行程,难度不大,只需算出总路程即可,图中共4个奇点,而A进A出的要所有点均是偶点,需要多走两条连接奇点的线才能保证所有点都变成偶点,那么需要多走两次260 即(480×3+200×3+260×4+260×2)÷60=60(分)注:在高年级学过勾股定理之后,260米的边长是可以计算出来的,不需题目给出条件10月17日试题:第一题:28第二题:2682(其它年级所占的是5份少78人,标准和差倍)10月21日试题:10月21日试题答案:第一题:20第二题:49点评:从这两天可以看出,应用题在迎春杯中考察还是相对简单的,如果孩子能够熟练掌握方程,做出第一、第二档的应用题应该难度不大10月22日试题:第一题:24第二题:30点评:这两道题都是标准的列方程解应用题,在四年级迎春杯初赛中,题号比较靠前的应用题请特别注意方程的应用10月23日试题:10月23日试题答案:第一题:48(提示:画线段图,最后三段剩下的刚好是等差数列,公差是两段线段)第二题:21(提示:1个男生会有左右两个牵手,共60次牵手,男女牵手共18次,男男牵手则有(60-18)÷2=21(次)那么就会分成21组,此题难度还是比较大的)10月24日试题:10月24日试题答案:第一题:7提示:此题考察鸡兔同笼多个动物打包思想有四脚蛇是双头龙的2倍,把2个四脚蛇和1个双头龙打1个包作为新动物,包是4头12脚发现4头12脚正好是4只三脚猫,所以包的新动物和三脚猫一样,这三个动物和一起算做1个,其实本题相当于对三脚猫和独角兽做鸡兔同笼,可求出独角兽的只数(160-58)÷(3-1)=51 58-51=7第二题:英语提示:应用题和逻辑推理结合问题,采取枚举法,让9本分别是数学、语文、英语、历史,进行尝试计算,只有9本是英语书时4个数不重复,其余均有重复10月28日试题——数字谜今天开始进入数字谜阶段~中年级最重要的是加法数字谜!10月28日试题答案:第一题:10第二题:3010月29日试题:10月31日题目1.(2013年四年级组第9题)2.(2013年三年级组第6题)10月31日答案1、20342、3135(提示:这两道题都可以通过尝试得到,但如果掌握弃9法的话,做出来将会非常简单)1.2.11月4日题目——计数篇1.(2013四年级第6题)2.(2013三年级第10题)(此题难度很大,当年正确率不超过1%)11月4日答案1、7(特别提示:本题当年答案5也算作正确了,因为4=1+3,6=1+5这两组偶数不算作和)2、3211月5日答案1、 62、21000昨天这两道题目不难哈!~ 11月6日题目11月6日答案:1、30(提示:实际操作法很有效哦!)2、30(提示:湖人只能在第6场或第7场获胜,所以比分是4:2或4:3,之后用树形图方法分两类讨论)11月7日题目:11月8日试题答案:第一题:18种第二题:25128(提示:这道题方法真的是一点一点算的,没有特别简单的解法,类似的题目华杯总决赛也考过,而且数比今天这个还大!)11月11日试题——逻辑推理11月13日试题:(点评:这次的两道题都是从六年级的考题当中摘下来的,难度虽然很大,但从知识点上四年级绝对可以)1、2、7192511月14日题目:11月14日答案11月18日题目(标准鸡兔同笼)(从本周开始,做一些杯赛最爱考的配套类型题目哈)1、在某电视机厂质量检测评比中,每生产出一台合格电视机记5分,每生产出一台不合格电视机扣10分。

2017迎春杯初赛四C

2017迎春杯初赛四C

2018年“数学花园探秘”科普活动四年级组初试试卷C卷(测评时间:2017年12月2日 8:30-9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论,我确定以下的答案均为我个人独立完成的结果,否则愿接受本次成绩无效的处罚。

我同意遵守以上协议签名:一.填空题Ⅰ(每小题8分,共32分)1. 算式1202-20×18的计算结果是 .2.今年妹妹5岁,哥哥的年龄是她的2倍,等到哥哥20岁时,妹妹岁.3.蕾蕾对菲菲说:“如果我们家再买6只羊,那么我们家的羊就是你们家的2倍了.”菲菲对蕾蕾说:“如果我们家再买3只羊,那么我们家的羊就是你们家的2倍了.”那么,蕾蕾和菲菲两家一共有只羊.4.右图中,一共可以数出个三角形.二.填空题Ⅱ(每小题10分,共40分)5. 诗人王昌龄、王之涣、高适三人在旗亭比赛作诗.王昌龄只写七言绝句,高适只写五言绝句,王之涣既写七言绝句又写五言绝句.王昌龄和王之涣共写了26首七言绝句,高适和王之涣共写了25首五言绝句,王昌龄和高适写的总数是王之涣的2倍.那么,王之涣一共写了首绝句.6.小喜有刘备、关羽、张飞三张卡牌;小宇有孙权、周瑜、鲁肃、黄盖四张卡牌.刘备和孙权均为2元,其余卡牌1元.如果两人都拿出总价值2元的卡牌进行一次交换,那么,一共有种不同的交换方式.7.右图的乘法竖式中,不同字母表示不同数字.数字0~9的写法已经给出如下,字母A、B、C代表的数字旋转180°之后还是自己,字母D和E代表的数字写法互为左右对称关系.那么,这个乘法算式的计算结果为 .8.学生秋秋和小琴做细胞实验,实验时长6分钟.开始她们每个人的培养皿中都有2个细胞.正常情况下1个细胞1分钟后可分裂成2个,但若操作失误,则会有细胞在此次分裂完成的时候发生死亡.由于操作失误,两人各有1个细胞在实验过程中发生了死亡,最后秋秋的细胞数量比小琴多12个.那么,小琴的细胞是在实验开始分钟后发生死亡的.三.填空题Ⅲ(每小题12分,共48分)9.如图所示,2个相同的小正方形和3个长方形拼成一个大正方形.如果每个小正方形的面积都是16平方厘米,阴影长方形的面积是84平方厘米.那么,大正方形的面积是平方厘米.10.十几个同学面向里围成一圈做游戏.他们从班长起,沿顺时针方向从1开始连续报数,报到8的同学表演一个节目.然后从这个同学起重新从1开始,沿顺时针方向连续报数.直到所有同学都表演过节目为止.已知第一个表演节目的是小明,倒数第二个表演节目的是小明右边和他相邻的小红.那么,做游戏的同学一共有名.11.一个单位正方体的六个面上分别有1,2,3,4,5,6这六个数字.现在这个正方体在一张5×5的纸上从左上角出发,滚动到右下角,且每个小格都正好经过一次.右图中,每格的数字代表正方体滚动到这一格时朝上的面上的数.已知正方体在最开始的格子时,朝上的面是1.那么,开始时下面、左面、右面、前面、后面的数字按照顺序写成一个五位数是 .12.你认为本试卷中一道最佳试题是第题(答题范围为01~11).你认为本试卷整体的难度级别是(最简单为“1”,最难为“9”答题范围为1~9).你认为本试卷中一道最难试题是第题(答题范围为01~11).(所有答题范围内的作答均可得分,所有的评定都将视为本人对本试卷的有效评定,不作答或者超出作答范围不得分.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年“数学花园探秘科普活动”三年级初赛题
(考试时间:2016年12月3日 10:30-11:30)
一、填空题I(每小题8分,共32分)
1.算式123+4-56÷7×8-9的计算结果是_________.
2.如下左图,小鱼老师在为圣诞树准备装饰物,每个树顶需要放一颗幸运星,每一层树的两
侧需要各放一个1个许愿球,一共3层,小鱼老师数了数,许愿球比幸运星多了40个;
那么,小鱼老师装饰了_______棵圣诞树。

第2题图第3题图第4题图
3.上中图中,共有_________个三角形。

4.上右图是小佳画的一个戴帽子小人儿,右边图是帽子图,这个帽子是由6个完全一样的长
方形拼成的,如果这6个长方形的长都是6,那么,这个帽子图形的周长是________.
二、填空题II(每小题10分,共40分)
5.盒子里有一些黑球和白球,如果将黑球数量变成原来的4倍,总球数将会变成原来的2
倍。

那么,如果将白球数量变成原来的4倍,总球数将会变成原来的________倍。

6.在下图的加法竖式中,6个汉字恰好代表6个连续的数字。

那么,花园探秘所代表的四
位数是_________。

第6题图第8题图
7.马戏团的38只小狗排成两排,其中有16只头向南尾向北,其余都是头向北尾向南。


果第一排小狗统统向后转,两排中头向南尾向北的小狗就一样多了。

那么第一排有_____只小狗。

8.如上右图,在空格中填上数字1~6,使得每行、每列和每个由粗线划出的2×3小长方形
内数字不重复,并且在图中连续的灰线上,任意相邻的两个格子中数的差都是1(右边图是一个例子)。

那么,将左图的空格补充完整后,最后一行从左到右前五个数组成的五位数是_________.
三、填空题III(每小题12分,共48分)
9.将2017进行如下操作:每次操作将这个数末两位数的乘积写在这个数的后面。

例如:对
2017进行操作3次操作,结果将依次得到20177、2017749、201774936,那么,如果对2017进行123次操作,操作后所得到结果的末两位数字依次组成的两位数是
__________.
10.如下图,在格子左端小格内有一颗棋子,右端有星星的小格是终点,现在按照如下规则走
到终点:
(1)每次操作走1~6格;
(2)每次操作开始时,棋子都必须往右走,如果走到头,步数尚未完成,则调转方向,直到这次操作的步数走完(例:C开始走5格会走到D)
(3)某一次操作完成后,恰好到达终点就算胜利。

那么恰好三次操作后胜利的走法有_____种。

(从C开始走1格到D和从C开始走5格到D算不同走法)
11.甲、乙、丙、丁四个人各有一些糖果,他们之间对话如下:
甲:如果把我的糖果数量变成和丙一样多,我们4人的平均数会减少2;
乙:如果把我的糖果数量变成和丁一样多,我们4人的平均数会减半;
丙:如果把我的糖果数量变为原来2倍,而甲的数量减半,我们4人的平均数会增加2;
丁:如果把我的糖果数量变为原来2倍,而乙的数量减半,我们4人的平均数恰好会是一个整十数。

事实证明,他们4人中只有糖果数量最少的人说了假话,并且糖果最多人的糖果数恰好是糖果最少人糖果数的3倍,那么,他们4人一共有_________颗糖果。

2017年“数学花园探秘科普活动”三年级初赛参考答案
1.答案:54 分析:计算后得
2.答案:8 分析:每一棵圣诞树上的许愿球比幸运星多5,40÷5=8。

3.答案:16 分析:一个图形的有12个,3个图形组成的大三角形4个。

4.答案:14 分析:从帽子上方可以看出:三个长方形的宽恰好和一个长方形的长相等,
则每个长方形的宽为6÷3+2,然后不难解出帽子图形周长为44.
5.答案:3 分析:设原来黑球数量是1份;第一次黑球增加3份,总数增加了1倍,
可知总数是3份,而白球是3-1=2份;那么,白球变成4倍后,总球数
工2×4+1=9份,9÷3=3倍
6.答案:8354 分析:容易推出“园”=3,如果“探”=4,那么“秘”比”届”大7,
与题中6个连续数字不符,所以“探”=5;可得“届”比“秘”大3,
“花”比“第”大2,根据4和6必须出现在这6个连续数字中开始枚举,
可得7-4=3,8-6=2,“花园探秘”=8354
7.答案:16 分析:未向后转前,第一排头向北小狗数=第二排头向南小狗数
所以,第一排小狗数=第一排头向北小狗数+第一排头向南小狗数
=第二排头向南小狗数+第一排头向南小狗数
=头向南小狗数=16
8.答案:24315
9.答案:32 分析:对2017进行操作并列举向后写的数:7、49、69、18、8、64、
24、8、32、6、12、2、4、8、32……,除去前7次后,6次操作为一
个周期,(123-7)÷6=19……2,所以最后一次操作得到的是32,即末
两位是32
10.答案:25 分析:第一次不能直接走到星星,所以共有5种选择;不论第一次走到
哪个位置,第二次一定会有6种选择,而这6种选择中一定有一种选择
是到终点,属于不合理,共有5种选择合理;而第三次为固定选择,只有
到终点时合理的,所以,总计共有5×5=25种走法。

11.答案:120 分析:由乙的话:甲乙丙丁的平均数=2×甲丙丁丁的平均数,即甲乙丙丁
的和=2×甲丙丁的和,即乙=甲丙丁丁的和,乙大于丁的3倍,与题目条
件不符,所以乙的话一定错,他是糖果最少的人,其余3人的话全对。

由甲丙的话可得:甲比丙多2×4=8,丙比甲的一半多2×4=8,所以甲比
甲的一半多8+8=16,即甲=32,丙=24;
甲不是3的倍数,所以甲不是最多的人,只能丁是最多的人,他是乙的3
倍;由丁说的话:设乙原来的数量是2份,丁是6份;丁变成2倍后是
12份,乙减半后是1份;甲乙丙丁4人总数是56+13份,这是一个整
十数,所以一份量的个位数只能是8,由乙=2份是最少的,那么,只能
1份=8,乙=16,丁=48,四个人的总和是32+16+24+48=120.。

相关文档
最新文档