稳恒电流的磁场(习题答案)

合集下载

大学物理稳恒磁场习题及答案 (1)

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dI j n dS ⊥=v v,单位是:安培每平方米(A/m 2) 。

2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d Sv的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。

3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。

4、一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。

5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰v v Ñ=____μ0I __;对环路b :d B l ⋅⎰vv Ñ=___0____; 对环路c :d B l ⋅⎰v v Ñ =__2μ0I __。

6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。

二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. B. C. D.( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R120πμ C .0 D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。

11稳恒电流和稳恒磁场习题解答讲解

11稳恒电流和稳恒磁场习题解答讲解

第十一章 稳恒电流和稳恒磁场一 选择题1. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(如图)产生的磁感应强度B 的大小为( )A. l I μπ420B. lIμπ20 C .lIμπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应强度由)cos (cos π4210θθμ-=dIB ,可得 lIl IB BC π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里lI l I B CD π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里合磁感应强度 lIB B B CD BC π420μ=+=所以选(A )2. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的地方是:( )A. x =2的直线上B. 在x >2的区域C. 在x <1的区域D. 不在x 、y 平面上 解:本题选(A )3. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?( )A. Ⅰ区域B. Ⅱ区域 C .Ⅲ区域D .Ⅳ区域E .最大不止一个解:本题选(B )选择题2图Ⅰ Ⅱ Ⅲ Ⅳ 选择题3图选择题1图4. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知:( )A. ∮L B ·d l =0,且环路上任意一点B =0B. ∮L B ·d l =0,且环路上任意一点B ≠0C. ∮L B ·d l ≠0,且环路上任意一点B ≠0D. ∮L B ·d l ≠0,且环路上任意一点B =常量解:本题选(B )5. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r >R )的磁感应强度为B e ,则有:( )A. B t 、B e 均与r 成正比B. B i 、B e 均与r 成反比C. B i 与r 成反比,B e 与r 成正比D. B i 与r 成正比,B e 与r 成反比解:导体横截面上的电流密度2πR IJ =,以圆柱体轴线为圆心,半径为r的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=r <R ,I r B e ⋅=⋅0π2μ, rIB e π20μ=所以选(D )6. 有三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从相同的高度自由下落,在下落过程中带电质点b 、c 分别进入如图所示的匀强电场与匀强磁场中,设它们落到同一水平面的动能分别为E a 、E b 、E c ,则( )A. E a <E b =E cB. E a =E b =E cC. E b >E a =E cD. E b >E c >E a解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c所以选(C )7. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是:( )A. OaB. ObC. Oc D . Od解:根据B F ⨯=v q ,从图示位置出发,带负选择题7图c dba B O• B× × × × × × Ea bc 选择题6图 选择题4图电粒子要向下偏转,所以只有Oc 、Od 满足条件,又带电粒子偏转半径Bqm R v=,22k 22qB m E R =∴,质量相同、带电量也相等的粒子,动能大的偏转半径大,所以选Oc 轨迹所以选(C )8. 如图,一矩形样品,放在一均匀磁场中,当样品中的电流I 沿X 轴正向流过时,实验测得样品A 、A '两侧的电势差V A -V A '>0,设此样品的载流子带负电荷,则磁场方向为:( )A . 沿X 轴正方向B .沿X 轴负方向C .沿Z 轴正方向D .沿Z 轴负方向 解:本题选(C )9. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将:( )A. 绕I 2旋转B. 向左运动C. 向右运动D. 向上运动E. 不动 解:圆形电流左半圆和右半圆受到长直电流安培力的方向均向右,所以圆形电流将向右运动所以选(C )二 填空题1. 成直角的无限长直导线,流有电流I =10A ,在直角决定的平面内,距两段导线的距离都是a =20cm 处的磁感应强度B = 。

习题第06章(稳恒磁场)-参考答案.

习题第06章(稳恒磁场)-参考答案.

第六章 稳恒磁场思考题6-1 为什么不能把磁场作用于运动电荷的力的方向,定义为磁感强度的方向?答:对于给定的电流分布来说,它所激发的磁场分布是一定的,场中任一点的B 有确定的方向和确定的大小,与该点有无运动电荷通过无关。

而运动电荷在给定的磁场中某点 P 所受的磁力F ,无论就大小或方向而言,都与运动电荷有关。

当电荷以速度v 沿不同方向通过P 点时,v 的大小一般不等,方向一般说也要改变。

可见,如果用v 的方向来定义B 的方向,则B 的方向不确定,所以我们不能把作用于运动电荷的磁力方向定义为磁感应强度B 的方向。

6-2 从毕奥-萨伐尔定律能导出无限长直电流的磁场公式aIB πμ2=。

当考察点无限接近导线(0→a )时,则∞→B ,这是没有物理意义的,如何解释?答:毕奥-萨伐尔定律是关于部分电流(电流元)产生部分电场(dB )的公式,在考察点无限接近导线(0→a )时,电流元的假设不再成立了,所以也不能应用由毕奥-萨伐尔定律推导得到的无限长直电流的磁场公式aIB πμ2=。

6-3 试比较点电荷的电场强度公式与毕奥-萨伐尔定律的类似与差别。

根据这两个公式加上场叠加原理就能解决任意的静电场和磁场的空间分布。

从这里,你能否体会到物理学中解决某些问题的基本思想与方法?答:库仑场强公式0204dqr dE rπε=,毕奥一萨伐定律0024Idl r dB r μπ⨯= 类似之处:(1)都是元场源产生场的公式。

一个是电荷元(或点电荷)的场强公式,一个是电流元的磁感应强度的公式。

(2)dE 和dB 大小都是与场源到场点的距离平方成反比。

(3)都是计算E 和B 的基本公式,与场强叠加原理联合使用,原则上可以求解任意分布的电荷的静电场与任意形状的稳恒电流的磁场。

不同之处: (1)库仑场强公式是直接从实验总结出来的。

毕奥一萨伐尔定律是从概括闭合电流磁场的实验数据间接得到的。

(2)电荷元的电场强度dE 的方向与r 方向一致或相反,而电流元的磁感应强度dB 的方向既不是Idl 方向,也不是r 的方向,而是垂直于dl 与r 组成的平面,由右手螺旋法则确定。

大学物理练习题答案完美生活答案 06稳恒电流的磁场、电磁感应定律

大学物理练习题答案完美生活答案 06稳恒电流的磁场、电磁感应定律

dt
a
⎞ ⎟⎠
=
n
μ0 2π
l
I
⎛ ⎜⎝
1 R

1 R+
a
⎞ ⎟⎠
dR dt
=
μ0 2π
l
I
⎛ ⎜⎝
1 d

d
1 +
a
⎞ ⎟⎠
v
=

2× 10−7×5 Nhomakorabea0×
0.4
×
2
×
⎛ ⎜⎝
1 0.20

0.20
1 +
0.20
⎞ ⎟⎠
成绩:
r d I
= 2 ×10−6(V ) ………4 分
方法二、相当于四段导体切割磁力线在瞬间,线圈产生的电动势等效于并接的两电动势。 距离长直导线为 r 处的磁感应强度为:
势。若若线圈保持不动,而长直导线中的电流变为交变电流 i = 10 sin (100π t ) A i=10,求线圈中的感应电动
势。(不计线圈的自感) 解:(1)方法(一)如图,距离长直导线为 r 处的磁感应强度为:
B = μ0i ,………2 分 2πr
选回路的绕行方向为顺时针方向,则通过窄条
6
专业班级: 面积 ds 的磁通量为:
d l
I
a
5
专业班级:
学号:
姓名:
在竖直方向的分量为 B .求ab两端间的电势差Ua −Ub .
解: Ob 间的动生电动势:
∫ ∫ ε1
=
4L 0
5

×
B)id l
=
4L 0
5
ω Bldl
=
1ωB( 4 25

《大学物理》习题册题目及答案第12单元稳恒电流的磁场

《大学物理》习题册题目及答案第12单元稳恒电流的磁场

第12单元 稳恒电流的磁场 第七章 静电场和恒定磁场的性质(三)磁感应强度序号序号 学号学号 姓名姓名 专业、班级专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是:向的半球壳表面的磁通量的大小是: (A) Wb 2a R p(B) Wb 2b R p (C) Wb 2c R p (D) Wb 2abc R p[ B ]2. ]2. 若要使半径为若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.07.0××105- T T,则铜线中需,则铜线中需要通过的电流为要通过的电流为((μ0=4π×107-T ·m ·A 1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. [ B ]3. 一载有电流一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r)(R=2r),,两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B 沿图中闭合路径L 的积分l B d ×ò等于等于(A)I 0m(B)I 031m (C) I041m(D)I032m[ D ]5. [ D ]5. 有一由有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0abcdI L1201I 2I 1R 2R二 填空题1.1.一无限长载流直导线,通有电流一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度强度 B B 的大小为aIp m 830。

《稳恒电流的磁场》选择题解答与分析

《稳恒电流的磁场》选择题解答与分析
答案:(B) 参考解答:
由毕奥-萨伐尔定律 d B 0 I d l r /(4r 3 ) ,知答案(B)正确。
a d
b I dl
c
选择(A)给出下面的分析:
dq ˆ r 4 0 r 2 0 I d l r 电流元磁场公式: d B 4r 3
点电荷电场公式: d E
比较 d B d B x iˆ d B y ˆ j, d B x

0 I d ly 4r 3
0 I d l
4 ( x y
2 2 3 z2 ) 2
y.
对于所有错误选择,给出下面的资料:
0 I d l r 毕奥-萨伐尔定律: d B ,涉及矢量的叉乘,其基本运算公式: 4r 3 ˆ ˆ ˆa ˆ ˆ ˆ 设: a a1i 2 j a 3 k , b b1i b2 j b3k
对所有错误的选择,进入下一题: 1.1 在阴极射线管的上方放置一根载流直导线,导线平行于射 线管轴线,电流方向如图所示,阴极射线向什么方向偏转?当 电流 I 反向后,结果又将如何?
I
参考解答: 电流产生的磁场在射线管内是指向纸面内的,由 F ev B 知,阴极射线(即电 子束)将向下偏转.当电流反方向时,阴极射线将向上偏转. 进入下一题:
3. 关于磁感应强度方向的定义,以下说法,正确的是 (A) 能把磁场作用于运动电荷的力的方向,定义为磁感应强度的方向. (B) 不能把磁场作用于运动电荷的力的方向,定义为磁感应强度的方向. 答案:(B) 参考解答: 因为磁力的方向还随电荷运动速度方向而不同,因而在磁场中同一点运动电荷受 力的方向是不确定的.
6
B
3. 如图,一条任意形状的载流导线位于均匀磁场中,试证明 导线 a 到 b 之间的一段上所受的安培力等于载同一电流的直 导线 ab 所受的安培力. 参考解答: 证:由安培定律

大学物理练习题答案完美生活答案 06稳恒电流的磁场、电磁感应定律

大学物理练习题答案完美生活答案 06稳恒电流的磁场、电磁感应定律
L5
ε2 =
∫ (υ × B)idl = ∫ ω Bldl = 2ω B( 5 L)
0 0
L5
1
1
2
=
1 ω BL2 50
a点电势高于O点.
∴ U a − U b = ε 2 − ε1 =
1 16 15 3 ω BL2 − ω BL2 = − ω BL2 = − ω BL2 50 50 50 10
6.如图所示,一无限长直导线通有电流 I=5.0A,一矩形单匝线圈与此长直导线共面。设矩形线圈以 V=2.0m/s 的速度垂直于长直导线向右运动。已知:l=0.40m, a=0.20m, d=0.20m,求矩形线圈中的感应电动 势。若若线圈保持不动,而长直导线中的电流变为交变电流 i = 10 sin ( 100π t ) A i=10,求线圈中的感应电动 势。 (不计线圈的自感) 解: (1)方法(一)如图,距离长直导线为 r 处的磁感应强度为:
ε1r1 ε2r2
R1 R2 R4
ε3r3 A
R3 B
1. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,
3
专业班级:
学号:
姓名:
成绩:
1 由实线表示), AB = EF = R ,大圆弧 BC 的半径为R,小圆弧 DE 的半径为 R ,求圆心O 处 2
的磁感强度 B 的大小和方向.
解:解:(1) AB , CD , EF 三条直线电流在O 点激发的磁场零;
2
专业班级: 正)为 (D) (A)
学号:
姓名:
成绩:
π r 2 B . . (B) 2π r 2 B .(C) −π r 2 B sin α . (D) −π r 2 B cos α

第十一章稳恒电流的磁场(一)作业答案

第十一章稳恒电流的磁场(一)作业答案

一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线aIB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220∙=R I B电荷转动形成的电流:πωωπ22q q T q I === 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为(A))(20b a I+πμ. (B)b ba aI+πln20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I +πμ. 解法:【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式和圆弧电流产生磁场公式可得【 】自测提高7、边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为当正方形绕AC 轴旋转时,一个点电荷在O 旋转产生电流,在O 点产生的总磁感小为O 点产生的磁感应强度的大小为基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。

大学物理稳恒磁场习题及答案

大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。

《大学物理》习题册题目及答案第12单元 稳恒电流的磁场

《大学物理》习题册题目及答案第12单元 稳恒电流的磁场

第12单元 稳恒电流的磁场第七章 静电场和恒定磁场的性质(三)磁感应强度序号 学号 姓名 专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是: (A) Wb 2a R π(B) Wb 2b R π (C) Wb 2c R π(D) Wb 2abc R π[ B ]2. 若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.0×105- T ,则铜线中需要通过的电流为(μ0=4π×107-T ·m ·A1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r),两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B沿图中闭合路径L 的积分l B d ⋅⎰等于(A)I 0μ(B)I 031μ (C) I 041μ(D)I 032μ[ D ]5. 有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0二 填空题1.一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度 B 的大小为aIπμ830。

3.半径为0.5cm 的无限长直圆柱形导体上,沿轴线方向均匀地流着I=3A 的电流,作一个半径r=5cm 、长l=5cm 且与电流同轴的圆柱形闭合曲面S ,则该曲面上的磁感应强度 B 沿曲面的⎰=⋅Sd s B _______0_________________________。

稳恒磁场一章习题解答

稳恒磁场一章习题解答

稳恒磁场一章习题解答习题9—1 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。

正确的图是:[ ]解:根据安培环路定理,容易求得无限长载流空心圆柱导体的内外的磁感应强度分布为rIa b r a r I B 2)(2)(0022220 )()()(b r b r a a r 所以,应该选择答案(B)。

习题9—2 如图,一个电量为+q 、质量为m 的质点,以速度v沿X 轴射入磁感应强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x =0延伸到无限远,如果质点在x =0和y =0处进入磁场,则它将以速度v从磁场中某一点出来,这点坐标是x =0和[ ]。

(A) qBm y v。

(B) qB m y v2 。

(C) qB m y v 2。

(D) qBm y v。

解:依右手螺旋法则,带电质点进入磁场后将在x >0和y >0区间以匀速v 经一个半圆周而从磁场出来,其圆周运动的半径为qBm R vr BO a b (A) (B) B a b r O B r O a b (C) B Or a b(D) 习题9―1图习题9―2图因此,它从磁场出来点的坐标为x =0和qBm y v2 ,故应选择答案(B)。

习题9—3 通有电流I 的无限长直导线弯成如图三种形状,则P ,Q ,O 各点磁感应强度的大小B P ,B Q ,B O 间的关系为[ ]。

(A) O Q P B B B 。

(B) O P Q B B B 。

(C) P O Q B B B 。

(D) P Q O B B B说明:本题得通过计算才能选出正确答案。

对P 点,其磁感应强度的大小 aI B P 20 对Q 点,其磁感应强度的大小 )221(2180cos 45cos 4135cos 0cos 4000a I a I a I B Q对O 点,其磁感应强度的大小 )21(2424000a I a I aIB O 显然有P Q O B B B ,所以选择答案(D)。

大学物理《稳恒电流的磁场》习题答案

大学物理《稳恒电流的磁场》习题答案

第14章 稳恒电流的磁场 参考答案一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).B I R2,沿y 轴正向; (9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度)221()]4/([03⋅π=b I B μ1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图θd d d KR s K I ==2/32220])cos ()sin [(2)sin (d d θθθμR R R I B +=32302d sin R KR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S Bd 2Φr r I R Rd 220⎰π=μ2ln 20π=I μ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+I μ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.1 m解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F FN , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 重力矩 αραρs i n s i n 2121gSa a a gS a M +⋅=αρsin 22g Sa =B 2d l磁力矩ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M = 所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρT7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =. 根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.I 2I 1A DC8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。

14 稳恒电流的磁场习题详解

14 稳恒电流的磁场习题详解

习题三一、选择题1.如图3-1所示,两根长直载流导线垂直纸面放置,电流I 1 =1A ,方向垂直纸面向外;电流I 2 =2A ,方向垂直纸面向内,则P 点的磁感应强度B r的方向与x 轴的夹角为[] (A )30˚; (B )60˚; (C )120˚; (D )210˚。

答案:A解:如图,电流I 1,I 2在P 点产生的磁场大小分别为1212,222I IB B d d ππ==,又由题意知12B B =;再由图中几何关系容易得出,B 与x 轴的夹角为30º。

2.如图3-2所示,一半径为R 的载流圆柱体,电流I 均匀流过截面。

设柱体内(r < R )的磁感应强度为B 1,柱体外(r > R )的磁感应强度为B 2,则 [ ](A )B 1、B 2都与r 成正比; (B )B 1、B 2都与r 成反比;(C )B 1与r 成反比,B 2与r 成正比; (D )B 1与r 成正比,B 2与r 成反比。

答案:D解:无限长均匀载流圆柱体,其内部磁场与截面半径成正比,而外部场等效于电流集中于其轴线上的直线电流磁场,所以外部磁场与半径成反比。

3.关于稳恒电流磁场的磁场强度H v,下列几种说法中正确的是 [ ](A )H v仅与传导电流有关。

(B )若闭合曲线内没有包围传导电流,则曲线上各点的H v必为零。

(C )若闭合曲线上各点H v均为零,则该曲线所包围传导电流的代数和为零。

图3-12I 1I(D )以闭合曲线L为边缘的任意曲面的H v通量均相等。

答案:C解:若闭合曲线上各点H ϖ均为零,则沿着闭合曲线H ϖ环流也为零,根据安培环路定理,则该曲线所包围传导电流的代数和为零。

4.一无限长直圆筒,半径为R ,表面带有一层均匀电荷,面密度为σ,在外力矩的作用下,这圆筒从t=0时刻开始以匀角加速度α绕轴转动,在t 时刻圆筒内离轴为r 处的磁感应强度B r的大小为 [ ](A )0; (B )0R t μσα; (C )0R t r μσα; (D )0rt Rμσα。

大学物理习题答案稳恒电流的磁场

大学物理习题答案稳恒电流的磁场

第十章 稳恒电流的磁场1、四条相互平行的无限长直载流导线,电流强度均为I ,如图放置,若正方形每边长为2a ,求正方形中心O 点的磁感应强度的大小和方向。

解:43210B B B B B r r r r r +++=无限长载流直导线产生的磁感应强度 rI2B 0πμ=由图中的矢量分析可得a 2I a 2I22B B 0042πμ=πμ=+a I45cos a2I 2B 0000πμ=⋅πμ= 方向水平向左2、把一根无限长直导线弯成图 (a)、(b) 所示形状,通以电流I ,分别求出O 点的磁感应强度B 的大小和方向。

解:(a )(b )均可看成由两个半无限长载流直导线1、3和圆弧2组成,且磁感应强度在O 点的方向相同 (a )方向垂直纸面向外。

)38(R16I43R 4I R 4I R 4I B 00000π+πμ=π⋅πμ+πμ+πμ=(b )由于O 点在电流1、3的延长线上,所以0B B 31==r r方向垂直纸面向外。

R8I323R I 4B B 0020μ=π⋅πμ==14(a ) I(b )3、真空中有一边长为l 的正三角形导体框架,另有互相平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连 (如图) 。

已知直导线中的电流为I ,求正三角形中心点O 处的磁感应强度B 。

解:三角形高为 l l360sin h .0==4 它在 θθπμ=θ=d sin R 2Isin dB dB 20x θθπμ−=θ−=d cos R2I cos dB dB 20yRI d sin R2I dB B 20200x x πμ=∫θθπμ∫==π0d cos R2I dB B 020y y =∫∫θθπμ−==π)T (1037.6100.10.5104RI B B 522720x P −−−×=××π××π=πμ==∴轴正方向。

大学物理第七章稳恒磁场习题答案

大学物理第七章稳恒磁场习题答案

第七章 稳恒磁场习题7-1 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为多少?解:取平面S ’与半球面S 构成闭合曲面,根据高斯定理有 0m mS mS ΦΦΦ'=+=2cos mS mS r E ΦΦπα'=-=-球面外法线方向为其正方向7-2 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感应强度各为多少?08IR μ垂直画面向外0022II RR μμπ-垂直画面向里 00+42I IR Rμμπ垂直画面向外 7-3 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。

已知圆环的粗细均匀,求环中心O 的磁感应强度。

解: 如图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

且θ-πθ==21221R R I I 电阻电阻 1I 产生1B 方向⊥纸面向外πθπμ2)2(2101-=R I B2I 产生2B 方向⊥纸面向里πθμ22202R I B =∴1)2(2121=-=θθπI I B B 有0210=+=B B B7-4 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T 。

如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?(已知圆电流轴线上北极点的磁感强度()R IRR IR B 24202/32220μμ=+=)解:9042 1.7310A RBI μ==⨯方向如图所示7-5 有一同轴电缆,其尺寸如题图所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。

试计算以下各处的磁感应强度:(1)r<R 1;(2)R 1<r<R 2;(3)R 2<r<R 3;(4)r>R 3。

解:同轴电缆的电流分布具有轴对称性在电缆各区域中磁感应线是以电缆轴线为对称轴的同心圆。

稳恒磁场习题答案

稳恒磁场习题答案

稳恒磁场习题答案稳恒磁场习题答案磁场是物理学中一个重要的概念,它在我们日常生活中扮演着重要的角色。

稳恒磁场习题是物理学中常见的练习题,通过解答这些习题,我们可以更好地理解磁场的性质和应用。

下面是一些常见的稳恒磁场习题及其答案,希望对大家的学习有所帮助。

1. 一根长直导线产生的磁场强度与距离的关系是怎样的?答:根据安培定律,长直导线产生的磁场强度与距离成反比关系。

即磁场强度随着距离的增加而减小。

2. 一根长直导线中心点的磁场强度为B,如果将导线弯成一个半径为r的圆环,中心点的磁场强度会发生怎样的变化?答:当将导线弯成一个半径为r的圆环后,中心点的磁场强度会变为零。

这是因为在圆环的中心点,由于对称性的原因,导线上的每一段磁场强度都会相互抵消,最终导致中心点的磁场强度为零。

3. 一个平面线圈中心的磁场强度与电流的关系是怎样的?答:根据比奥-萨伐尔定律,平面线圈中心的磁场强度与电流成正比关系。

即磁场强度随着电流的增加而增加。

4. 一个平面线圈中心的磁场强度与线圈的面积的关系是怎样的?答:一个平面线圈中心的磁场强度与线圈的面积成正比关系。

即磁场强度随着线圈的面积的增加而增加。

5. 一个平面线圈中心的磁场强度与距离的关系是怎样的?答:一个平面线圈中心的磁场强度与距离成反比关系。

即磁场强度随着距离的增加而减小。

6. 一个匀强磁场中,一个带电粒子的运动轨迹是怎样的?答:在一个匀强磁场中,一个带电粒子的运动轨迹是一个半径为r的圆。

这是因为带电粒子在匀强磁场中受到洛伦兹力的作用,该力垂直于带电粒子的速度和磁场方向,导致粒子做圆周运动。

7. 在一个匀强磁场中,一个带电粒子的运动速度对轨道半径的影响是怎样的?答:在一个匀强磁场中,一个带电粒子的运动速度对轨道半径没有影响。

这是因为带电粒子的运动速度只会影响圆周运动的周期,而不会影响圆周运动的半径。

8. 一个匀强磁场中,一个带电粒子的运动轨迹会受到哪些因素的影响?答:一个匀强磁场中,一个带电粒子的运动轨迹受到带电粒子的电荷量、质量、速度以及磁场的强度和方向的影响。

第章稳恒磁场习题包含答案

第章稳恒磁场习题包含答案

练习八 磁感应强度 毕奥—萨伐尔定律(黄色阴影表示答案)一、选择题如图所示,边长为l 的正方形线圈中通有电流I: AlI πμ220.(C)lI πμ02(D) 以上均不对.1沿对角线AC 方向经A 点流入一电阻均匀分布的正方形导线框,再由D 点沿对角线BD 方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O 点产生的磁感强度分别用B 1、B 2和B 3表示,则O(A) B = 0. 因为 B 1 = B 2 = B 3 = 0 .(B) B = 0. 因为虽然B 1 ? 0, B 2 ? 0, B 1+B 2 = 0, B 3(C) B ? 0. 因为虽然B 3 = 0, 但 B 1+B 2 ? 0(D) B ? 0. 因为虽然B 1+B 2 = 0, 但 B 3 ? 03. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I 的磁感强度为:B(D) B =3?0I /(3?a ) . . 如图所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于:C(A)R Iπμ20. (B) I 0μ.(D))11(40πμ+RI .二、填空题 如图所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,?aob =180?.则圆心O 点处的磁感强度的大小B = .0图图图图图练习九 毕奥—萨伐尔定律(续)一、选择题1. 在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为?,如图所示. 则通过半球面S 的磁通量为:(A) ?r 2B . (B) 2?r 2B . (C) ??r 2B sin ?. (D) ??r 2B cos ?.如图,载流圆线圈(半径为R )与正方形线圈(边长为a )通有相同电流I ,若两线圈中心O 1与O 2R : a 为(A) 1:1.(B) π2:1. π2 三、计算题1.在无限长直载流导线的右侧有面积为S 1和S2的两个矩形回路, 回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比. (此题作为悬赏题)练习十 安培环路定理图图 图图一、选择题2. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流. 设圆柱体内(r < R )的磁感强度为B 1,圆柱体外(r >R )的磁感强度为B 2,则有:(A) B 1、B 2均与r 成正比. (B) B 1、B 2均与r 成反比.(C) B 1与r 成正比, B 2与r 成反比. (D) B 1与r 成反比, B 2与r 成正比.在图(a )和(b )中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 2和I 2,其分布相同,且均在真空中,但在图(b )中,L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) ⎰⋅1d L l B =⎰⋅2d Ll B , 21P P B B =.(B) ⎰⋅d L l B ?⎰⋅ d L l B , 21P P B B =.(D) ⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠.如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径的积分⎰⋅Ll B d 等于:(A) ?0I . (B) ?0I/3. 0I /4. 2?0I /3 .如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,(B) 0 d =⋅⎰Ll B ,且环路上任意点B =0.(C) 0 d ≠⋅⎰Ll B ,且环路上任意点B ?0.(D) 0 d ≠⋅⎰Ll B ,且环路上任意点B =0.二、填空题两根长直导线通有电流I ,图所示有三种环路对于环路a , =⋅⎰aL l B d ;图图P 1 (aI 2P 2 (b图对于环路b , =⋅⎰bL l B d ;对于环路c , =⋅⎰cL l B d . ?0I , 0, 2?0I .练习十一 安培力 洛仑兹力一、选择题如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v. (D) 反比于B ,反比于v练习十三 静磁场习题课一、选择题1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量F m 与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D图(AB OBO(DB O(CB O(B)B O(E图边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 . l I B πμ0222=l π1l I π02.如图, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA ?轴转动,导线通电转过? 角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即? 角不变),可以采用哪一种办法(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2. (B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2. (D) 将磁场B 减少1/4,线框中电流强度减少1/4.图图l (d (。

稳恒电流的磁场习题详解

稳恒电流的磁场习题详解

r习题三一、选择题1.如图3-1所示,两根长直载流导线垂直纸面放置,电流I 1 =1A ,方向垂直纸面向外;电流I 2 =2A ,方向垂直纸面向内,则P 点的磁感应强度B 的方向与x 轴的夹角为[ ](A )30˚; (B )60˚; (C )120˚; (D )210˚。

答案:A解:如图,电流I 1,I 2在P 点产生的磁场大小分别为1212,222I IB B d d ππ==,又由题意知12B B =;再由图中几何关系容易得出,B 与x 轴的夹角为30º。

2.如图3-2所示,一半径为R 的载流圆柱体,电流I 均匀流过截面。

设柱体内(r < R )的磁感应强度为B 1,柱体外(r > R )的磁感应强度为B 2,则 [ ](A )B 1、B 2都与r 成正比; (B )B 1、B 2都与r 成反比;(C )B 1与r 成反比,B 2与r 成正比; (D )B 1与r 成正比,B 2与r 成反比。

答案:D解:无限长均匀载流圆柱体,其内部磁场与截面半径成正比,而外部场等效于电流集中于其轴线上的直线电流磁场,所以外部磁场与半径成反比。

3.关于稳恒电流磁场的磁场强度H ,下列几种说法中正确的是 [ ] (A )H 仅与传导电流有关。

(B )若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零。

(C )若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零。

(D )以闭合曲线L为边缘的任意曲面的H 通量均相等。

答案:C解:若闭合曲线上各点H 均为零,则沿着闭合曲线H环流也为零,根据安培环路定理,则该曲线所包围传导电流的代数和为零。

4.一无限长直圆筒,半径为R ,表面带有一层均匀电荷,面密度为σ,在外力矩的作用下,这圆筒从t=0时刻开始以匀角加速度α绕轴转动,在t 时刻圆筒内离轴为r 处的磁感应强度B 的大小为 []图2I 1I(A )0; (B )0R t μσα; (C )0R t r μσα; (D )0rt Rμσα。

稳恒磁场练习题及答案

稳恒磁场练习题及答案

稳恒磁场练习题及答案一、 选择题1、在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。

问哪个区域中有些点的磁感应强度可能为零 ( D ) (A )仅在象限1 (B )仅在象限2(C )仅在象限1、3 (D )仅在象限2、42、关于洛仑兹力,下列说法错误的是:( D ) (A )带电粒子在磁场中运动,不一定受洛仑兹力 (B )洛仑兹力不做功(C )洛仑兹力只改变粒子运动方向(D )当磁场方向与粒子运动方向一致时,洛仑兹力对粒子作正功 3、一电量为q 的粒子在匀强磁场中运动,下面哪种说法是正确的:( B ) (A )只要速度大小相同,粒子所受的洛仑兹力就相同(B )在速度不变的前提下,若电荷电量q 变为-q ,则粒子受力方向相反,数值不变 (C )粒子进入磁场后,其动量和动能都不改变(D )洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹一定是圆4、由磁场的高斯定理可知 (D )(A )穿入闭合曲面的磁感应线条数必然多于穿出的磁感应线条数; (B )穿入闭合曲面的磁感应线条数必然少于穿出的磁感应线条数; (C )一根磁感应线可以始于闭合曲面外,终止在闭合曲面内; (D )一根磁感应线可以完全处于闭合曲面内。

5、对于某一回路L ,安培环路积分等于零,则可以断定(D )(A) 回路L 内一定有电流。

(B) 回路L 内可能有电流,且代数和不为零。

(C) 回路L 内一定无电流。

(D) 回路L 内可能有电流,但代数和为零。

6、电流I 1穿过一回路L ,而电流I 2则在回路的外面,于是有 ( C )(A) L 上各点的磁感应强度及积分⎰⋅Ll d B都只与I 1有关。

(B) L 上各点的磁感应强度B 只与I 1有关,积分⎰⋅Ll d B与I 1、I 2有关。

(C) L 上各点的磁感应强度B 与I 1、I 2有关,积分⎰⋅L l d B只与I 1有关。

(D) L 上各点的磁感应强度B 及积分⎰⋅Ll d B都与I 1、I 2有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳恒电流的磁场一、判断题3、设想用一电流元作为检测磁场的工具,若沿某一方向,给定的电流元l d I0放在空间任意一点都不受力,则该空间不存在磁场。

×4、对于横截面为正方形的长螺线管,其内部的磁感应强度仍可用nI 0μ表示。

√5、安培环路定理反映了磁场的有旋性。

×6、对于长度为L 的载流导线来说,可以直接用安培定理求得空间各点的B。

×7、当霍耳系数不同的导体中通以相同的电流,并处在相同的磁场中,导体受到的安培力是相同的。

×8、载流导体静止在磁场中于在磁场运动所受到的安培力是相同的。

√9、安培环路定理Il d B C 0μ=∙⎰中的磁感应强度只是由闭合环路内的电流激发的。

×10、在没有电流的空间区域里,如果磁感应线是一些平行直线,则该空间区域里的磁场一定均匀。

√二、选择题1、把一电流元依次放置在无限长的栽流直导线附近的两点A 和B ,如果A 点和B 点到导线的距离相等,电流元所受到的磁力大小(A )一定相等 (B )一定不相等(C )不一定相等 (D )A 、B 、C 都不正确 C2、半径为R 的圆电流在其环绕的圆内产生的磁场分布是: (A )均匀的 (B )中心处比边缘处强 (C )边缘处比中心处强 (D )距中心1/2处最强。

C3、在均匀磁场中放置两个面积相等而且通有相同电流的线圈,一个是三角形,另一个是矩形,则两者所受到的(A )磁力相等,最大磁力矩相等 (B )磁力不相等,最大磁力矩相等 (C )磁力相等,最大磁力矩不相等 (D )磁力不相等,最大磁力矩不相等 A4、一长方形的通电闭合导线回路,电流强度为I ,其四条边分别为ab 、bc 、cd 、da 如图所示,设4321B B B B 及、、分别是以上各边中电流单独产生的磁场的磁感应强度,下列各式中正确的是:LI()()121101111234000C C C A B dl I B B dl C B B dl D B BB B dl Iμμ⋅=⋅=+⋅=+++⋅=⎰⎰⎰⎰()()()()A5、两个载流回路,电流分别为121I I I 设电流和单独产生的磁场为1B,电流2I 单独产生的磁场为2B ,下列各式中正确的是:(A )()21012C B dl I I μ⋅=+⎰(B )1202C B dl I μ⋅=⎰(C )()()112012C B B dlI I μ+⋅=+⎰(D )()()212012C B B dlI I μ+⋅=+⎰ D 6、半径为R 的均匀导体球壳,内部沿球的直线方向有一载流直导线,电线I 从A 流向B 后,再沿球面返回A 点,如图所示下述说法中正确的是:(A )在AB 线上的磁感应强度0=B(B )球外的磁感应强度0=B(C )只是在AB 线上球内的部分感应强度0=B(D )只是在球心上的感应强度0=BA7、如图所示,在载流螺线管的外面环绕闭合路径一周积分ld B L ∙⎰等于(A )0 (B )nI 0μ(C )20nIμ (D )I 0μD8、一电量为q 的点电荷在均匀磁场中运动,下列说法正确的是 (A )只要速度大小相同,所受的洛伦兹力就相同。

(B )在速度不变的前提下,电荷q 改变为-q ,受力方向反向数值不变。

(C )电荷q 改变为-q 速度方向相反,力的方向反向,数值不变。

(D )F B v 、、三个矢量,已知任意两个量的大小和方向,就能判断第三个量的方向与大小(E )质量为m 的运动电荷,受到洛伦兹力后,其动能与动量不变。

B9、一圆柱形的长直导线,截面半径为R ,稳恒电流均匀通过导线的截面,电流为I ,P 点到圆柱轴线的垂直距离为r ,如图所示设导线内的磁感应强度为内B ,导线外的c磁感应强度为外B,则有成反比与成正比,、与)(成正比与成反比,、与)(成反比都与、)(成正比都与、)(外内外内外内外内r B r B D r B r B C r B B B r B B AD10、如图所示一半径为R 的导线圆环同一个径向对称的发散磁场处处正交,环上各个磁感应强度B的大小相同,方向都与环平面的法向成θ设导线圆环有电流I ,则磁场作用在此环上的合力大小和方向是: (A )F=RIB π2 垂直环面向上 (B )F=RIB π2sin θ 垂直环面向上 (C ) F=RIB π2sin θ 垂直环面向下 (D ) F=RIB π2cos θ 沿环面背向圆心 B11、半径为R 的圆形回路中有电流2I ,另一无限长直载流导线AB 中有电流1I ,AB 通过圆心,且与圆形回路在同一平面内,圆形回路所受1I 的磁场力是:(A )F=0(B )F=R I I πμ2210 (C ) F=210I I μ(D ) F=R I I 2210μC12、一圆线圈的半径为R ,载有电流I ,放在均匀外磁场中,如图所示,线圈导线上的张力是: (A )T=2RIB (B )T=IRB (C )T=0(D )T=RIB π2 B13、如图所示,两无穷大平行板上载有均匀分布的面电流密度均为i ,两电流平行且同向,Ⅰ、Ⅱ、Ⅲ三个区的磁感强度B 的分布为:Ci B i B i B D i B B i B C iB B i B B i B iB B A 030201032010320103021020220μ=μ=μ=μ==μ=μ==μ=μ=μ==;;)(;;)(;;)(;;)(14、已知α粒子的质量是质子的4倍,电量是质子的2倍,设它们的初速度为零,IrPRIIIii经相同的电压加速后,垂直进入匀强磁场作圆周运动,它们的半径比为:(A )1 (B )1/2 (C )2 (D )22A三、填空题1、一长螺线管通有电流I ,若导线均匀密绕,则螺线管中部的磁感应强度为( )端面处的磁感应强度约为( )nI nI 0021μμ;2、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强度的大小为( )R I40μ3、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强度的大小为( )4、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强的大小为( )()R I ππ+μ2105、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强的大小为( ) R I 80μ6、载流导线形状如图所示,O 处的磁感应强D 的大小为( )⎪⎪⎭⎫⎝⎛-πθμ120114R R I7、载流导线形状如图所示,O 处的磁感应强D 的大小为( )⎪⎪⎭⎫ ⎝⎛+210114R R I μ8、载流正方形线圈的边长为2a ,通以电流I ,线圈轴线上距其中心O 为0r 处的磁感应强度的大小是( )R IORI O R I ORI O 2R IO1R Iθ2R IO 1R()2202220212a r r a Ia ++πμ9、两条无限长的平行直导线相距a ,当通以相等同向电流时,则距直导线距离都为a 的一点P 的磁感应强度的大小是( )a I πμ23010、电子以初速度0v进入均匀磁场B v B 平行于中,0时,电子作( )运动;当B v 垂直于0时,电子作( )运动;当B v 与0成045角时,电子作( )运动。

匀速直线 圆圈 螺旋线11、以相同的几根导线焊成立方形如图,在A 、B 两端接上一电源,在立方形中心的磁感应强度B 等于(零12、氢原子处在基态时,cm 810-⨯的轨道(玻尔轨道)上作匀速圆周运动,速度为s cm v /102.28⨯=已知电子荷C e 19106.1-⨯=电子的这种运动在轨道中心处产生的磁感应强度B的值是( )12.5T13、均匀铁环上任意两点,用长直导线沿径向引到很远的电源上,那么其圆心处的磁感应强度为( ) 014、长直螺线换管长度与其直径之比为L/2R=3,螺线管中点的磁感应强度为1B 若用无限长螺线管的公式计算,其相对误差是( )5%15、一段导线弯成如图所示形状,它的质量为m,上面水平一段长为L,处在均匀磁场中,磁感应强度为B ,B与导线垂直,导线下面两端分别插在两个浅水银槽里,两槽水银与一带开关K的外电源联接,当K一接通,导线便从水银槽里跳起来,设跳起来的高度为h,则通过导线的电量q=( )LB qh m 216、在磁感应强度为B线沿竖直方向从静止自由滑落,其所载电流为I,滑动中导线与B正交,且保持水平。

则导线下落的速度是( )t m LIBg )-(IaP aaI20、霍耳效应高斯计的探头条用n 形锗半导体薄片,其厚度为0.18mm ,材料的载流子浓度n=,若薄片载流315100.4-⨯cm 10mA 与薄片垂直的磁场T B 3100.1-⨯=,则霍耳电势差为( )V 61079-⨯21、在方向一致的电场和磁场中运动着的电子,(1)电子的速度V 沿着场的方向时,切向加速度=τa ( )。

法向加速度n a=( ).。

(2)电子的速度垂直于场的方向时,切向加速度τa =( 0 ),法向加速度n a=( )。

E m e - 0 22E vB m e +)(22、电子的荷子比e/m=1.76Kg C /1011⨯,初速度07060/100.7,并以s m v ⨯=角进入B=2.0310-⨯T 的匀强磁场,作螺旋线运动,其螺距h=( )。

0.62m四、问答题1、设想用一电流元作为检测磁场的工具。

若沿某一方向,给定的电流元dl I 0放在空间任一点都不受力作用,你能否由此断定该空间不存在磁场?为什么?答:不能。

根据安培定律()002ˆ4rI dl Idl e dF r μπ⨯⨯=知,当l d I 0与r e l Id ˆ⨯ 平行,但r e l Id 与不平行时,0,0≠=B F d,故不能断定该空间不存在磁场2、把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触形成串联回路,再把它们接到直流电源上通以电流(如图),问弹簧将发生什么现象?怎样解释?(3题图)答:弹簧将作机械振动。

因为弹簧通电后,整个弹簧的线圈电流可看成是同向平行的,同向平行相互吸引,因此,弹簧被压缩,下端离开水银面,磁力消失,弹簧恢复原状,于是电流又被接通,弹簧又被压缩……。

这样周而复始地进行下去,弹簧不停地振动。

3、在测量霍耳电势差时,为什么两测量点必须是霍耳导体两侧相对处,如图中A 、‘A 两点?如不是相对处则可带来什么问题?答:当导体中有电流通过时,电流从高电势流向低电势,因而导体的不同截面上电势不相同,但同一垂直截面上各点的电势相等。

当通有电流的导体处于磁场B中时,在同一截面上的A 和A’两点间存霍耳电势差。

若A 和A’不相对,那么测得的电势差就不只是霍耳电势差,还包括无磁场时所存在的电势差。

相关文档
最新文档