圆锥曲线全部公式及概念
圆锥曲线知识点全归纳(完整精华版)
圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。
定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。
定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。
圆锥曲线全部公式及概念
圆锥曲线1.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩ 离心率c e a ==准线到中心的距离为2a c ,焦点到对应准线的距离(焦准距)2b p c =. 通径的一半(焦参数):2b a.2.椭圆22221(0)x y a b a b+=>>焦半径公式及两焦半径与焦距构成三角形的面积:21()a PF e x a ex c =+=+,22()a PF e x a ex c =-=-;1221tan 2F PF F PFS b ∆∠=.3.椭圆的的内外部: (1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.4.双曲线22221(0,0)x y a b a b -=>>的离心率c e a ==2a c ,焦点到对应准线的距离(焦准距)2p c = 通径的一半(焦参数):2b a焦半径公式21|()|||a PF e x a ex c =+=+,22|()|||a PF e x a ex c=-=-,两焦半径与焦距构成三角形的面积1221cot 2F PF F PF S b ∆∠=.5.双曲线的内外部: (1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.6.双曲线的方程与渐近线方程的关系:(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222bya x(0>λ,焦点在x 轴上;0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b7.抛物线px y 22=的焦半径公式:抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x p x p x CD ++=+++=212122.8.抛物线px y 22=上的动点可设为P ),2(2 y py 或2(2,2)P pt pt P (,)x y ,其中 22y px =.9.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=. 10.以抛物线上的点为圆心,焦半径为半径的圆必与准线相切;以抛物线焦点弦为直径的圆,必与准线相切;以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切.11.直线与圆锥曲线相交的弦长公式: AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率,12||x x -=12.圆锥曲线的两类对称问题:(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.特别地,曲线(,)0F x y =关于原点O 成中心对称的曲线是(,)0F x y --=. 曲线(,)0F x y =关于直线x 轴对称的曲线是(,)0F x y -=. 曲线(,)0F x y =关于直线y 轴对称的曲线是(,)0F x y -=. 曲线(,)0F x y =关于直线y x =轴对称的曲线是(,)0F y x =. 曲线(,)0F x y =关于直线y x =-轴对称的曲线是(,)0F y x --=.13.圆锥曲线的第二定义:动点M 到定点F 的距离与到定直线l 的距离之比为常数e ,若01e <<,M 的轨迹为椭圆;若1e =,M 的轨迹为抛物线;若1e >,M 的轨迹为双曲线.注意:1、还记得圆锥曲线的两种定义吗?解有关题是否会联想到这两个定义? 2、还记得圆锥曲线方程中的:(1)在椭圆中:a 是长半轴,b 是短半轴,c 是半焦距,其中222b ac =-,,(01)ce e a=<<是离心率,2a c 是准心距,2b c 是准焦距, 2b a是半通径.(2)在双曲线中:a 是实半轴,b 是虚半轴,c 是半焦距,其中222b c a =-,,(1)c e e a=>是离心率,2a c 是准心距,2b c 是准焦距, 2b a是半通径.(3)在抛物线中:p 是准焦距,也是半通径.3、在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?(到定点的距离比到定直线的距离)4、离心率的大小与曲线的形状有何关系(圆扁程度,张口大小)?等轴双曲线的离心率是多少?(e =5、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).注意:尤其在求双曲线与直线的交点时:当0∆>时:直线与双曲线有两个交点(包括直线与双曲线一支交于两点和直线与双曲线两支各交于一点两种情况);当0∆=时,直线与双曲线有且只有一个交点(此时称指向与双曲线相切),反之,当直线与双曲线只有一个交点时,直线与双曲线不一定相切,此时直线与双曲线的一条渐近线平行,当0∆<时,直线与双曲线没有交点.6、椭圆中,注意焦点、中心、短轴端点所组成的直角三角形.此时222a b c =+. 7、通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?) 8、你知道椭圆、双曲线标准方程中,,a b c 之间关系的差异吗?9、如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点.此时两个方程联立,消元后为方程变为一次方程.椭圆练习1.过椭圆12222=+by a x (a>b>0)的左焦点F 1任做一条不与长轴重合的弦AB,F 2为椭圆的右焦点,则△ABF 1的周长是( ) (A)2a (B)4a (C)2b (D)4b2.设b a b a b a +=+∈则,62,,22R 的最小值是( ) (A)22-(B)335-(C)-3(D)27-3.椭圆的两个焦点和短轴的两个顶点,是一个含600角的菱形的四个顶点,则椭圆的离心率为( ) (A )21 (B )23 (C )33 (D )21或23 4.设常数m>0,椭圆x 2+m 2y 2=m 2的长轴是短轴的两倍,则m 的值等于( ) (A )2 (B )2 (C )2或21 (D )2或225.过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为( ) (A)212 (D)136.如果椭圆的两个焦点将长轴分成三等份,那么这个椭圆的两条准线间的距离是焦距的( )(A )18倍 (B )12倍 (C )9倍 (D )4倍7.当关于x,y 的方程x 2sin α-y 2cos α=1表示的曲线为椭圆时,方程(x+cos α)2+(y+ sin α)2=1所表示的圆的圆心在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限8.已知椭圆的焦点为F 1,F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q,使得|PQ|=|PF 2|,那么动点Q 的轨迹是( ) (A )圆 (B )椭圆 (C )直线 (D )其它9.已知椭圆14922=+y x 与圆(x-a)2+y 2=9有公共点, 则a 的取值范围是( )(A)-6<a <6 (B)0<a≤5 (C)a 2<25 (D)|a|≤610.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) (A)2 (B)12(C)2(D1 11.在椭圆12222=+by a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点依次与某一焦点连结的线段长为r 1,r 2,r 3,则有( ) (A )r 1,r 2,r 3成等差数列 (B )231211r r r =+ (C )r 1,r 2,r 3成等比数列 (C )以上都不对 12.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF13.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) (A)(0,1) (B)1(0,]2(C)(D)14.一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为( ) (A )22186x y += (B )221166x y += (C )22184x y += (D )221164x y +=15.若椭圆19822=++y a x 的离心率是21,则a 的值为————————. 16.椭圆x 2cos 2α+y 2=1(0<α<π,α≠2π)的半长轴=——————,半短轴=——————,半焦距=——————,离心率=——————. 17.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a c PF F PF F =,则该椭圆的离心率的取值范围为 .18.M 是椭圆14922=+y x 上的一点,F 1,F 2 是椭圆的焦点,且∠F 1MF 2=900,则△F 1MF 2的面积等于——————. 19.与圆(x+1)2+y 2=1相外切,且与圆(x -1)2+y 2=9相内切的动圆圆心的轨迹方程是——————20.设椭圆⎪⎩⎪⎨⎧==ααsin 32cos 4y x (α为参数)上一点P 与x 轴正向所成角∠POx=3π,则点P 的坐标是__.21.在平面直角坐标系xOy 中,椭圆22221(0)y x a b a b+=>>的焦距为2c ,以O 为圆心,a 为半径作圆M ,若过2(0)a P c ,作圆M 的两条切线相互垂直,则椭圆的离心率为22.已知直线l :y=mx+b,椭圆C:22)1(ax -+y 2=1,若对任意实数m,l 与C 总有公共点,则a,b 应满足的条件是 .23.椭圆4cos 2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)上点到直线20x y -=的最大距离是 .24.12F F 、是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ⋅的最大值是 .25.已知椭圆焦点为F 1(0,-22),F 2(0, 22),长轴长为6, 过焦点的弦的长等于短轴长,求这焦点弦的倾斜角.26.在椭圆191622=+y x 上求一点M ,使它到直线l:3x+4y -50=0的距离最大或最小. 27.在△ABC 中,BC=24,AC 、AB 的两条中线之和为39,求△ABC 的重心轨迹方程.29.椭圆12222=+by a x 与x 轴、y 轴正方向相交于A 、B ,在第一象限内的椭圆上求一点C ,使得四边形OACB 的面积最大.30.点A 、B 分别是椭圆1202362=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值.双曲线练习1.F 1、F 2为双曲线1422-=-y x 的两个焦点,点P 在双曲线上,且∠F 1PF 2=90°,则△F 1PF 2的面积是________________.2.双曲线焦点在y 轴上,且一个焦点在直线5x -2y +20=0上,两焦点关于原点对称,35=a c ,则此双曲线的方程是________.3.已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为________________.4.已知双曲线22ax -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O为原点),则两条渐近线的夹角为______________________.5.已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是_________________.6.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是_________________.7.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.8.双曲线112422=-y x 上点P 到左焦点的距离为6,这样的点有______个. 9.直线y=x+3与曲线14||92=-x x y 的交点个数是 .10.双曲线的两准线间的距离是焦距的53,则此双曲线的离心率为 .11.已知双曲线的渐近线方程是x y 32±=,且双曲线过点(3,4),则双曲线的离心率为 ,双曲线的方程为 . 12.设连接共轭双曲线四个顶点和四个焦点所成两个四边形的面积分别为S 1,S 2,则(21S S )max 为 . 13.已知双曲线的两个焦点坐标为F 1(0,-10), F 2(0,10)且一条渐近线方程是430x y -=,则双曲线的标准方程为14.已知双曲线经过)3,453(-A ,且与另一双曲线116922=-y x ,有共同的渐近线,则此双曲线的标准方程是 .15.已知双曲线的一条渐近线方程是043=+y x ,焦点是椭圆12510022=+y x 与坐标轴的交点,则双曲线的标准方程是 .16.已知双曲线的两条渐近线所夹的锐角是60︒,则此双曲线的离心率为 . 9.直线y x =-1被双曲线,3222=-y x 所截得弦的中点坐标是 ,弦长是 .17.已知关于x ,y 的二次方程4814)16()4(222+-=-+-m m y m x m 表示的是双曲线,则m 的取值范围是 .18.已知双曲线方程为191622=-y x ,经过它的右焦点F 2,作一条直线,使直线与双曲线恰好有一个交点,则该直线的斜率是 .19.已知双曲线方程为422=-x y ,过一点P (0,1),作一直线l ,使l 与双曲线无交点,则直线l 的斜率k 的集合是 .20.双曲线191622=-y x 右支上一点P 到左右两个焦点的距离之比是5:3,则P 点右准线的距离为_____________. 21.以230x y ±=为渐近线,且经过点(1 , 2)的双曲线是 .22.双曲线的离心率e =2,则它的一个顶点把焦点之间的线段分成长、短两段的比是 .23.双曲线1322=-y x 的渐近线中,斜率较小的一条渐近线的倾斜角为 . 24.若双曲线2222by a x -=1的一条渐近线的倾斜角为锐角α,则双曲线的离心率为____________.25.已知双曲线的渐近线方程为043=±y x ,一条准线的方程为0335=+y ,则双曲线方程 .26.双曲线1422=+k y x 的离心率e ∈(,)12,则k 的取值范围是______________.27.椭圆14222=+a y x 与双曲线1222=-y a x 的焦点相同,则a = . 28.如图,OA 是双曲线的实半轴,OB 是虚半轴,F 为焦点, 且∠=︒BAO 30,S ABF∆=)336(21-,则该双曲线方程是 . 29.已知双曲线的中心在原点,以坐标轴为对称轴,且与圆x y 2217+=相交于点A (4 , -1),若圆在点A 的切线与双曲线的渐近线平行,求此双曲线的方程.30.双曲线与椭圆1362722=+y x 有共同的焦点,它们的一个交点的纵坐标为4,求双曲线的方程.31.直线231+=x y 与双曲线14922=-y x 的两个交点与原点构成三角形,求此三角形的面积.32.已知双曲线b x a y a b 222222-=上有一点P ,焦点为F 1、F 2,且∠=F PF 12α,求证:2221αctg b S PF F ·=∆.33.斜率为2的直线l 被双曲线12322=-y x 截得的弦长为1552,求直线l 的方程. 34.已知P 为双曲线x y 2244-=上的动点,Q 是圆41)2(22=-+y x 上的动点,求PQ 的最小值。
圆锥曲线公式大全
圆锥曲线知识考点一、直线与方程1、倾斜角与斜率:1212180<α≤0(tan x x y y --==)α2、直线方程:⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠:121121y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b : 1x y a b += ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率BAk -=,y 轴截距为B C -)(6)k 不存在⇔a x b a x o=⇔⇔=)的直线方程为过(轴垂直,90α3、直线之间的关系:222111:,:b x k y l b x k y l +=+=⑴平行:{⇔⇔≠=21212121//b b k k k k l l 且都不存在,212121C C B B A A ≠=⑵垂直:{⇔⇔⊥-=⇔-==21212111.021k k k k k k l l 不存在,02121=+B B A A⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax ⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为:0=++n Ay Bx⑸定点(交点)系方程:过两条直线:,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为:0)(222111=+++++C y B x A C y B x A λ反之直线0)(222111=+++++C y B x A C y B x A λ中,λ取任何一切实数R ,则直线一定过定点),(0yx ,即:,0:22221111=++=++C y B x A l C y B x A l 两条直线的交点),(0y x4、距离公式: (1)两点间距离公式:两点),(),,(222211y x P x x P :()()21221221y y x x P P -+-=(2)点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为2200BA CBy Ax d +++=(3)两平行线间的距离公式:1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2221BA C C d +-=二、圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+- 其中圆心为(,)a b ,半径为r .⑵一般方程:022=++++F Ey Dx y x (0422>-+F E D)其中圆心为(,)22D E --,半径为22142r D E F =+-.2、直线与圆的位置关系 点),(0y x 和圆222)()(r b y a x =-+-的位置关系有三种:222222222)()()(rb y a x r b y a x rb y a x >-+-⇔=-+-⇔<-+-⇔)(点在圆外)(点在圆上)(点在圆内直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .切线方程:(1)当点),(00y x P 在圆222r y x =+上⇔200r y y x x =+圆222)()(r b y a x =-+-⇔200))(())((r b y b y a x a x =--+--(2)当点),(00y x P 在圆222r y x =+外,则设直线方程()00x x k y y -=-,并利用d=r求出斜率,即可求出直线方程【备注:切线方程一定是两条,考虑特殊直线k 不存在】 ④弦长公式:222||d r AB -=2212121()4k x x x x =+--3、两圆位置关系:21O O d =⑴外离:r R d +> ⇔有4条公切线 ⑵外切:r R d += ⇔有3条公切线 ⑶相交:r R d r R +<<- ⇔有2条公切线 ⑷内切:r R d -= ⇔有1条公切线 ⑸内含:r R d -< ⇔有0条公切线三、圆锥曲线与方程1.椭圆 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 第一定义到两定点21F F 、的距离之和等于常数2a , 即21||||2MF MF a +=(212||a F F >)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(01)MFe e d=<< 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B2.双曲线轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距222122()F F c c a b ==- 离心率22222221(01)c c a b b e e a a a a-====-<<准线方程 2a x c=±2a y c=±焦半径0,0()M x y左焦半径:10MF a ex =+ 右焦半径:20MF a ex =-下焦半径:10MF a ey =+ 上焦半径:20MF a ey =-焦点三角形面积12212tan()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径 过焦点且垂直于长轴的弦叫通径: ab 22焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 第一定义到两定点21F F 、的距离之差的绝对值等于常数2a , 即21||||2MF MF a -=(2102||a F F <<)第二定义与一定点的距离和到一定直线的距离之比为常数e ,即(1)MFe e d=>【备注】1、双曲线和其渐近线得关系:由双曲线求渐进线:x a by a x b y a x b y b y a x b y a x ±=⇒±=⇒=⇒=-⇒=-22222222222201由渐进线求双曲线:λ=-⇒=-⇒=⇒±=⇒±=2222222222220by a x b y a x a x b y a x b y x a b y2.等轴双曲线⇔实轴和虚轴等长的双曲线⇔其离心率e =2⇔渐近线x ±=y⇔方程设为λ=-22y x2、求弦长的方法: ①求交点,利用两点间距离公式求弦长;②弦长公式3.抛物线图形) (消 ) (消x y y y y ky y k y x x x x k x x k l ]4))[(11(||11]4))[(1(1212212212212212212-++=-+=-++=-+=五、.直线与圆锥曲线的关系 1、直线与圆锥曲线的关系如:直线y =kx +b 与椭圆x 2a 2+y 2b2=1 (a >b >0)的位置关系:直线与椭圆相交⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y2b 2=1⇔有2组实数解,即Δ>0.直线与椭圆相切⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y2b 2=1⇔有1组实数解,即Δ=0,直线与椭圆相离⇔⎩⎪⎨⎪⎧y =kx +b x 2a 2+y2b2=1⇔没有实数解,即Δ<【备注】(1)韦达定理(根与系数的关系){AB x AC x C By Ax x -=+=⇔=++2121x .x 210x 的两根方程和则有21221214)(||xx x x x x -+=-(2){b kx y bkx y +=+=1122则有下列结论b x x k y y ++=+)(2121)(2121x x k y y -=-22121221)(bx x k x x k y y +++=③、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;0202y a x b k -=(椭圆) 0202y a x b k =(双曲线)3、关于抛物线焦点弦的几个结论(了解)设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ=⑶ 以AB 为直径的圆与准线相切; ⑷ 焦点F 对A B 、在准线上射影的张角为2π;⑸ 112.||||FA FB P+=。
高中圆锥曲线公式总结大全
高中圆锥曲线公式总结大全
高中数学中,圆锥曲线是一个重要的内容,包括椭圆、双曲线和抛物线。
这些曲线的公式是
几何、物理、工程等领域中常用的,下面是圆锥曲线公式总结:
1. 椭圆公式
椭圆的标准方程为:((x-h)^2)/a^2 + ((y-k)^2)/b^2 = 1。
其中,(h,k)表示椭圆的中心坐标,a和b分别表示椭圆在x和y方向上的半轴长度。
2. 双曲线公式
双曲线的标准方程为:((x-h)^2)/a^2 - ((y-k)^2)/b^2 = 1。
其中,(h,k)表示双曲线的中心坐标,a和b分别表示双曲线在x和y方向上的半轴长度。
3. 抛物线公式
抛物线的标准方程为:y = ax^2 + bx + c。
其中,a、b和c分别为常数,a表示抛物线的开口方向、大小,b表示抛物线水平方向位置,c表示抛物线的最低点(也就是y轴截距)。
4. 曲率半径公式
曲线在某一点的曲率半径R可以使用以下公式计算:R = [(1+(y')^2)^(3/2)]/|y''|。
其中,y'和y''分别表示曲线在该点处的一阶和二阶导数。
5. 弧长公式
曲线在两点之间的弧长可以使用以下公式计算:L = ∫(a to b)[((1+(y')^2)^(1/2)]dx。
其中,a和b分别代表起点和终点,在这个区间内,x的取值范围满足 a≤x≤b。
总之,圆锥曲线的公式是高中数学中的重要内容,不仅在理论研究方面有着广泛的应用,也
在实际问题的建模和解决中具有重要意义。
圆锥曲线公式大全
圆锥曲线知识考点一、直线与方程1、倾斜角与斜率:1212180<α≤0(tan x x y y --==)α2、直线方程:⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠:121121y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b : 1x y a b += ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率BAk -=,y 轴截距为B C -)(6)k 不存在⇔a x b a x o=⇔⇔=)的直线方程为过(轴垂直,90α3、直线之间的关系:222111:,:b x k y l b x k y l +=+=⑴平行:{⇔⇔≠=21212121//b b k k k k l l 且都不存在,212121C C B B A A ≠=⑵垂直:{⇔⇔⊥-=⇔-==21212111.021k k k k k k l l 不存在,02121=+B B A A⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax ⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为:0=++n Ay Bx⑸定点(交点)系方程:过两条直线:,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为:0)(222111=+++++C y B x A C y B x A λ反之直线0)(222111=+++++C y B x A C y B x A λ中,λ取任何一切实数R ,则直线一定过定点),(0yx ,即:,0:22221111=++=++C y B x A l C y B x A l 两条直线的交点),(0y x4、距离公式: (1)两点间距离公式:两点),(),,(222211y x P x x P :()()21221221y y x x P P -+-=(2)点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为2200BA CBy Ax d +++=(3)两平行线间的距离公式:1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2221BA C C d +-=二、圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+- 其中圆心为(,)a b ,半径为r .⑵一般方程:022=++++F Ey Dx y x (0422>-+F E D)其中圆心为(,)22D E --,半径为22142r D E F =+-.2、直线与圆的位置关系 点),(0y x 和圆222)()(r b y a x =-+-的位置关系有三种:222222222)()()(rb y a x r b y a x rb y a x >-+-⇔=-+-⇔<-+-⇔)(点在圆外)(点在圆上)(点在圆内直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .切线方程:(1)当点),(00y x P 在圆222r y x =+上⇔200r y y x x =+圆222)()(r b y a x =-+-⇔200))(())((r b y b y a x a x =--+--(2)当点),(00y x P 在圆222r y x =+外,则设直线方程()00x x k y y -=-,并利用d=r求出斜率,即可求出直线方程【备注:切线方程一定是两条,考虑特殊直线k 不存在】 ④弦长公式:222||d r AB -=2212121()4k x x x x =+--3、两圆位置关系:21O O d =⑴外离:r R d +> ⇔有4条公切线 ⑵外切:r R d += ⇔有3条公切线 ⑶相交:r R d r R +<<- ⇔有2条公切线 ⑷内切:r R d -= ⇔有1条公切线 ⑸内含:r R d -< ⇔有0条公切线三、圆锥曲线与方程1.椭圆 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 第一定义到两定点21F F 、的距离之和等于常数2a , 即21||||2MF MF a +=(212||a F F >)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(01)MFe e d=<< 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B【备注】1、双曲线和其渐近线得关系:由双曲线求渐进线:x a by a x b y ax b y b y a x b y a x ±=⇒±=⇒=⇒=-⇒=-22222222222201由渐进线求双曲线:λ=-⇒=-⇒=⇒±=⇒±=2222222222220by a x b y a x a x b y a x b y x a b y2.等轴双曲线⇔实轴和虚轴等长的双曲线⇔其离心率e =2⇔渐近线x ±=y⇔方程设为λ=-22y x2、求弦长的方法: ①求交点,利用两点间距离公式求弦长; ②弦长公式) (消 ) (消x y y y y ky y k y x x x x k x x k l ]4))[(11(||11]4))[(1(1212212212212212212-++=-+=-++=-+=五、.直线与圆锥曲线的关系图形标准方程22y px =()0p >22y px =- ()0p >22x py = ()0p >22x py =-()0p >开口方向向右向左向上向下定义与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线(定点F 不在定直线l 上)顶点 ()0,0离心率 1e =对称轴 x 轴y 轴范围0x ≥0x ≤0y ≥ 0y ≤ 焦点,02p F ⎛⎫ ⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =焦半径0,0()M x y 02p MF x =+02p MF x =-+02p MF y =+02p MF y =-+通径 过抛物线的焦点且垂直于对称轴的弦称为通径:2HH p '=焦点弦长 公式 12AB x x p =++参数p几何意义参数p 表示焦点到准线的距离,p 越大,开口越阔1、直线与圆锥曲线的关系如:直线y =kx +b 与椭圆x 2a 2+y 2b 2=1 (a >b >0)的位置关系: 直线与椭圆相交⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1⇔有2解,即Δ>0.直线与椭圆相切⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1⇔有1组实数解,即Δ=0,直线与椭圆相离⇔⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1⇔没有实数解,即Δ<【备注】(1)韦达定理(根与系数的关系){AB x AC x C By Ax x -=+=⇔=++2121x .x 210x 的两根方程和则有21221214)(||xx x x x x -+=-(2){b kx y bkx y +=+=1122则有下列结论b x x k y y ++=+)(2121)(2121x x k y y -=-22121221)(bx x k x x k y y +++=③、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;0202y a x b k -=(椭圆) 0202y a x b k =(双曲线)3、关于抛物线焦点弦的几个结论(了解)设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ=⑶ 以AB 为直径的圆与准线相切; ⑷ 焦点F 对A B 、在准线上射影的张角为2π;⑸ 112.||||FA FB P+=。
最全圆锥曲线知识点总结
最全圆锥曲线知识点总结的定义是指平面内一个动点P到两个定点F1,F2的距离之和等于常数(PF1+PF2=2a>F1F2),那么这个动点P的轨迹就是椭圆。
这两个定点被称为椭圆的焦点,两焦点的距离被称为椭圆的焦距。
注意:如果PF1+PF2=F1F2,则动点P的轨迹是线段F1F2;如果PF1+PF2<F1F2,则动点P的轨迹无图形。
2)对于椭圆,如果焦点在x轴上,那么它的参数方程是x=acosθ,y=bsinθ(其中θ为参数),如果焦点在y轴上,那么它的参数方程是y=acosθ,x=bsinθ。
如果椭圆的标准方程是x2/a2+y2/b2=1(a>b>0),那么它的范围是−a≤x≤a,−b≤y≤b,焦点是两个点(±c,0),对称中心是(0,0),顶点是(±a,0)和(0,±b),长轴长为2a,短轴长为2b,离心率为e=c/a,椭圆即为0<e<1的情况。
3)关于直线与椭圆的位置关系,如果点P(x,y)在椭圆外,那么a2+b2>1;如果点P(x,y)在椭圆上,那么a2+b2=1;如果点P(x,y)在椭圆内,那么a2+b2<1.4)焦点三角形是指椭圆上的一点与两个焦点构成的三角形。
5)弦长公式是指如果直线y=kx+b与圆锥曲线相交于两点A、B,且x1、x2分别为A、B的横坐标,那么AB=√[1+k2(x1−x2)2]。
如果y1、y2分别为A、B的纵坐标,则AB=√[1+k2(y1−y2)2]。
如果弦AB所在直线方程设为x=ky+b,则AB=√[1+k2(y1−y2)2]。
6)圆锥曲线的中点弦问题可以用“韦达定理”或“点差法”求解。
在椭圆中,以P(x,b2x,y)为中点的弦所在直线的斜率k=−a2y。
1.已知椭圆 $m x^2 + n y^2 = 1$ 与直线 $x+y=1$ 相交于$A,B$ 两点,点 $C$ 是 $AB$ 的中点,且 $AB=2\sqrt{2}$,求椭圆的方程,若 $OC$ 的斜率为 $\frac{1}{2}$,求 $m,n$ 的值。
圆锥曲线知识点整理
圆锥曲线知识点整理圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
下面我们来详细整理一下圆锥曲线的相关知识点。
一、椭圆1、定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
焦点在y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} =1\)(\(a > b > 0\))3、椭圆的性质(1)范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b \leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。
(2)对称性:椭圆关于 x 轴、y 轴和原点对称。
(3)顶点:椭圆有四个顶点,焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。
(4)离心率:椭圆的离心率\(e =\frac{c}{a}\),\(0 < e < 1\),\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F₁、F₂的距离之差的绝对值等于常数(小于|F₁F₂|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\),其中\(a > 0\),\(b > 0\),\(c^2 = a^2 + b^2\)。
圆锥曲线公式及知识点总结
圆锥曲线公式及知识点总结圆锥曲线的统一定义:到定点的距离与到定直线的距离的商是常数e的点的轨迹。
数学里有很多公式,为了帮助大家更好的学习数学,小编特地为大家整理了圆锥曲线公式及知识点总结,希望对大家的数学学习有帮助。
圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a>0,b>0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
且当01时为双曲线。
圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程x²/a²+y²/b²=1(a>b>0)x²/a²-y²/b²=1(a>0,b>0)y²=2px(p>0)范围x∈[-a,a]x∈(-∞,-a]∪[a,+∞)x∈[0,+∞)y∈[-b,b]y∈Ry∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b)(a,0),(-a,0)(0,0)焦点(c,0),(-c,0)(c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线x=±a²/cx=±a²/cx=-p/2渐近线——————y=±(b/a)x—————离心率。
《圆锥曲线公式汇总》
《圆锥曲线公式汇总》《圆锥曲线公式汇总》一、椭圆1.标准方程:a2x2+b2y2=1 (焦点在x轴上,a>b>0;焦点在y轴上,b>a>0)2.焦点坐标:F1(−c,0),F2(c,0) (c为焦距的一半,c2=a2−b2)3.离心率:e=ac (0<e<1)4.焦点到曲线上任意一点的距离之和:PF1+PF2=2a5.焦点到曲线上任意一点的距离之差:∣PF1−PF2∣=2a2−b26.曲线上的点到焦点的距离与到准线的距离之比:dPF=e (d为准线到原点的距离)7.准线方程:x=±ca2 (焦点在x轴上);y=±ca2 (焦点在y轴上)8.通径长(过焦点且垂直于长轴的弦长):a2b29.短轴端点到焦点的距离:a10.焦点三角形的面积:S=b2tan(2θ) (θ为焦点三角形的顶角)二、双曲线1.标准方程:a2x2−b2y2=1 (焦点在x轴上,a>0,b>0);a2y2−b2x2=1 (焦点在y轴上,a>0,b>0)2.焦点坐标:F1(−c,0),F2(c,0) (c为焦距的一半,c2=a2+b2)3.离心率:e=ac (e>1)4.焦点到曲线上任意一点的距离之差的绝对值:∣PF1−PF2∣=2a5.焦点到曲线上任意一点的距离之和:PF1+PF2=2a2+b26.曲线上的点到焦点的距离与到准线的距离之比:dPF=e (d为准线到原点的距离)7.准线方程:x=±ca2 (焦点在x轴上);y=±ca2 (焦点在y轴上)8.通径长(过焦点且垂直于实轴的弦长):a2b29.实轴端点到焦点的距离:c−a10.焦点三角形的面积:S=tan(2θ)b2 (θ为焦点三角形的顶角)三、抛物线1.标准方程:y2=4px (焦点在x轴上,p为焦准距);x2=4py (焦点在y轴上,p为焦准距)2.焦点坐标:F(2p,0) (焦点在x轴上);F(0,2p) (焦点在y轴上)3.准线方程:x=−2p (焦点在x轴上);y=−2p (焦点在y轴上)4.曲线上任意一点到焦点的距离等于到准线的距离:PF=d (d为准线到原点的距离)。
圆锥曲线所有公式
圆锥曲线所有公式圆锥曲线是平面上的一类曲线,其形状类似于一个圆锥的截面。
圆锥曲线可以分为三类:椭圆、双曲线和抛物线。
每一类都有其独特的特征和数学公式。
1. 椭圆:椭圆是圆锥曲线中最简单的一类曲线。
它的定义是平面上到两个固定点F1和F2的距离之和等于常数2a的所有点构成的图形。
其中,F1和F2称为焦点,2a称为主轴长度。
椭圆的数学公式是:(x-h)^2/a^2 + (y-k)^2/b^2 = 1其中,(h, k)是椭圆中心的坐标,a和b分别是椭圆的半长轴和半短轴的长度。
2. 双曲线:双曲线是圆锥曲线中形状较为特殊的一类曲线。
它的定义是平面上到两个固定点F1和F2的距离之差的绝对值等于常数2a的所有点构成的图形。
双曲线的数学公式是:(x-h)^2/a^2 - (y-k)^2/b^2 = 1其中,(h, k)是双曲线中心的坐标,a和b分别是双曲线的半长轴和半短轴的长度。
3. 抛物线:抛物线是圆锥曲线中形状最特殊的一类曲线。
它的定义是平面上到一个固定点F的距离等于到直线l的距离的平方的所有点构成的图形。
抛物线的数学公式是:y = ax^2 + bx + c其中,a、b和c是抛物线的参数,控制着抛物线的开口方向和大小。
除了这些基本的数学公式,还有一些与圆锥曲线相关的重要公式和性质,例如焦点到顶点的距离、离心率、焦半径等。
这些公式和性质可以帮助我们更好地理解和分析圆锥曲线的特点和行为。
总之,圆锥曲线是一类十分重要的数学曲线,其公式与性质在数学和物理等领域有广泛的应用。
熟练掌握这些公式和性质可以帮助我们解决各种与圆锥曲线相关的问题。
高中数学圆锥曲线知识点总结及公式大全
高中数学圆锥曲线知识点总结及公式大全一、圆锥曲线的基本概念圆锥曲线包括椭圆、双曲线和抛物线,它们是高中数学中重要的知识点之一。
圆锥曲线是由平面与圆锥的交线所形成的曲线,其基本概念包括焦点、准线和离心率等。
1. 焦点:圆锥曲线的焦点是到曲线的两个顶点距离相等的点,焦点到曲线的顶点的距离称为焦距。
椭圆和双曲线的焦点位于其对称轴上,而抛物线的焦点则位于其准轴上。
2. 准线:圆锥曲线的准线是与焦点垂直的直线,准线与曲线有两个交点。
在椭圆和双曲线中,准线是与主轴垂直的直线,而在抛物线中,准线是与主轴平行的直线。
3. 离心率:圆锥曲线的离心率是焦点到顶点的距离与准线到顶点的距离之比,离心率的大小可以反映曲线的形状。
椭圆的离心率在0和1之间,双曲线的离心率大于1,抛物线的离心率等于1。
二、圆锥曲线的公式1. 椭圆的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ (a>b>0)性质:椭圆的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。
2. 双曲线的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =1$ (a>0, b>0)性质:双曲线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。
3. 抛物线的标准方程及性质标准方程:$y^{2} = 2px$ ($p > 0$)或$x^{2} = 2py$ ($p > 0$) 性质:抛物线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。
三、圆锥曲线的应用1. 椭圆的应用:椭圆在光学、机械、工程等领域有着广泛的应用。
例如,椭圆镜片可以纠正近视和远视,椭圆形状的机械零件可以减少振动和提高稳定性。
2. 双曲线应用:双曲线在热学、光学、工程等领域有着广泛的应用。
例如,双曲线冷却塔可以优化散热效果,双曲线形状的桥梁可以增强承受能力。
高中数学中的圆锥曲线知识点总结
高中数学中的圆锥曲线知识点总结圆锥曲线是高中数学中重要的几何概念之一,包括椭圆、双曲线和抛物线。
在本文中,我们将对这些圆锥曲线的基本概念、性质和相关公式进行总结。
一、椭圆1. 概念:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:椭圆的两个焦点F1和F2之间的距离为2c,椭圆的长轴为2a,短轴为2b,有关系式c^2 = a^2 - b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
椭圆的离心率小于1。
- 焦点与定点关系:椭圆上的任意一点P到两个焦点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。
- 弦与切线性质:椭圆上任意一条弦与该点处的切线垂直。
3. 相关公式:- 椭圆标准方程:(x^2)/(a^2) + (y^2)/(b^2) = 1 或 (y^2)/(a^2) +(x^2)/(b^2) = 1(其中a > b)。
- 焦点坐标公式:F1(-c,0),F2(c,0)。
- 离心率公式:e = c/a。
- 曲率半径:任意一点P在椭圆上的曲率半径为a^2/b。
二、双曲线1. 概念:双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:双曲线的两个焦点F1和F2之间的距离为2c,双曲线的长轴为2a,短轴为2b,有关系式c^2 = a^2 + b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
双曲线的离心率大于1。
- 焦点与定点关系:双曲线上的任意一点P到两个焦点F1和F2的距离之差等于常数2a,即|PF1 - PF2| = 2a。
- 弦与切线性质:双曲线上任意一条弦与该点处的切线垂直。
3. 相关公式:- 双曲线标准方程:(x^2)/(a^2) - (y^2)/(b^2) = 1 或 (y^2)/(a^2) -(x^2)/(b^2) = 1(其中a > b)。
圆锥曲线全部公式与概念
圆锥曲线1.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩离心率c e a ==,准线到中心的距离为2a c ,焦点到对应准线的距离(焦准距)2b p c =. 通径的一半(焦参数):2b a.2.椭圆22221(0)x y a b a b+=>>焦半径公式及两焦半径与焦距构成三角形的面积:21()a PF e x a ex c =+=+,22()a PF e x a ex c =-=-;1221tan 2F PF F PFS b ∆∠=.3.椭圆的的内外部: (1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y b⇔+>.4.双曲线22221(0,0)x y a b a b -=>>的离心率c e a ==2a c ,焦点到对应准线的距离(焦准距)2p c = 通径的一半(焦参数):2b a焦半径公式21|()|||a PF e x a ex c =+=+,22|()|||a PF e x a ex c=-=-,两焦半径与焦距构成三角形的面积1221cot 2F PF F PF S b ∆∠=.5.双曲线的内外部: (1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.6.双曲线的方程与渐近线方程的关系:(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上;0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是7.抛物线px y 22=的焦半径公式: 抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 8.抛物线px y 22=上的动点可设为P ),2(2y py 或2(2,2)P pt pt P (,)x y ,其中 22y px =.9.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=.10.以抛物线上的点为圆心,焦半径为半径的圆必与准线相切;以抛物线焦点弦为直径的圆,必与准线相切;以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切.11.直线与圆锥曲线相交的弦长公式: AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y x B y x ,由方程⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率,12||x x -= 12.圆锥曲线的两类对称问题:(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 特别地,曲线(,)0F x y =关于原点O 成中心对称的曲线是(,)0F x y --=. 曲线(,)0F x y =关于直线x 轴对称的曲线是(,)0F x y -=. 曲线(,)0F x y =关于直线y 轴对称的曲线是(,)0F x y -=. 曲线(,)0F x y =关于直线y x =轴对称的曲线是(,)0F y x =. 曲线(,)0F x y =关于直线y x =-轴对称的曲线是(,)0F y x --=.13.圆锥曲线的第二定义:动点M 到定点F 的距离与到定直线l 的距离之比为常数e ,若01e <<,M 的轨迹为椭圆;若1e =,M 的轨迹为抛物线;若1e >,M 的轨迹为双曲线.注意:1、还记得圆锥曲线的两种定义吗?解有关题是否会联想到这两个定义? 2、还记得圆锥曲线方程中的:(1)在椭圆中:a 是长半轴,b 是短半轴,c 是半焦距,其中222b ac =-,,(01)ce e a=<<是离心率,2a c 是准心距,2b c 是准焦距, 2b a是半通径.(2)在双曲线中:a 是实半轴,b 是虚半轴,c 是半焦距,其中222b c a =-,,(1)c e e a=>是离心率,2a c 是准心距,2b c 是准焦距, 2b a是半通径.(3)在抛物线中:p 是准焦距,也是半通径.3、在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?(到定点的距离比到定直线的距离)4、离心率的大小与曲线的形状有何关系(圆扁程度,张口大小)?等轴双曲线的离心率是多少?(e =5、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).注意:尤其在求双曲线与直线的交点时:当0∆>时:直线与双曲线有两个交点(包括直线与双曲线一支交于两点和直线与双曲线两支各交于一点两种情况);当0∆=时,直线与双曲线有且只有一个交点(此时称指向与双曲线相切),反之,当直线与双曲线只有一个交点时,直线与双曲线不一定相切,此时直线与双曲线的一条渐近线平行,当0∆<时,直线与双曲线没有交点.6、椭圆中,注意焦点、中心、短轴端点所组成的直角三角形.此时222a b c =+. 7、通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?) 8、你知道椭圆、双曲线标准方程中,,a b c 之间关系的差异吗?9、如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点.此时两个方程联立,消元后为方程变为一次方程.椭圆练习1.过椭圆12222=+by a x (a>b>0)的左焦点F 1任做一条不与长轴重合的弦AB,F 2为椭圆的右焦点,则△ABF 1的周长是( ) (A)2a (B)4a (C)2b (D)4b2.设b a b a b a +=+∈则,62,,22R 的最小值是( ) (A)22-(B)335-(C)-3 (D)27-3.椭圆的两个焦点和短轴的两个顶点,是一个含600角的菱形的四个顶点,则椭圆的离心率为( ) (A )21 (B )23 (C )33 (D )21或23 4.设常数m>0,椭圆x 2+m 2y 2=m 2的长轴是短轴的两倍,则m 的值等于( ) (A )2 (B )2 (C )2或21 (D )2或225.过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为( ) (A)2 (C)12 (D)136.如果椭圆的两个焦点将长轴分成三等份,那么这个椭圆的两条准线间的距离是焦距的( ) (A )18倍 (B )12倍 (C )9倍 (D )4倍7.当关于x,y 的方程x 2sin α-y 2cos α=1表示的曲线为椭圆时,方程(x+cos α)2+(y+ sin α)2=1所表示的圆的圆心在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限8.已知椭圆的焦点为F 1,F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q,使得|PQ|=|PF 2|,那么动点Q 的轨迹是( ) (A )圆 (B )椭圆 (C )直线 (D )其它 9.已知椭圆14922=+y x 与圆(x-a)2+y 2=9有公共点, 则a 的取值范围是( )(A)-6<a<6 (B)0<a ≤5 (C)a 2<25 (D)|a|≤610.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) (A)2 (B)12(C)2 (D1 11.在椭圆12222=+by a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点依次与某一焦点连结的线段长为r 1,r 2,r 3,则有( ) (A )r 1,r 2,r 3成等差数列 (B )231211r r r =+ (C )r 1,r 2,r 3成等比数列 (C )以上都不对 12.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF =( )(A)(B) 2(D) 313.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) (A)(0,1) (B)1(0,]2(C)(D)14.一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2,)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为( ) (A )22186x y += (B )221166x y += (C )22184x y += (D )221164x y +=15.若椭圆19822=++y a x 的离心率是21,则a 的值为————————. 16.椭圆x 2cos 2α+y 2=1(0<α<π,α≠2π)的半长轴=——————,半短轴=——————,半焦距=——————,离心率=——————. 17.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a c PF F PF F =,则该椭圆的离心率的取值范围为 .18.M 是椭圆14922=+y x 上的一点,F 1,F 2 是椭圆的焦点,且∠F 1MF 2=900,则△F 1MF 2的面积等于——————. 19.与圆(x+1)2+y 2=1相外切,且与圆(x -1)2+y 2=9相内切的动圆圆心的轨迹方程是——————20.设椭圆⎪⎩⎪⎨⎧==ααsin 32cos 4y x (α为参数)上一点P 与x 轴正向所成角∠POx=3π,则点P 的坐标是__.21.在平面直角坐标系xOy 中,椭圆22221(0)y x a b a b+=>>的焦距为2c ,以O 为圆心,a 为半径作圆M ,若过2(0)a P c ,作圆M 的两条切线相互垂直,则椭圆的离心率为22.已知直线l :y=mx+b,椭圆C:22)1(a x -+y 2=1,若对任意实数m,l 与C 总有公共点,则a,b 应满足的条件是 .23.椭圆4cos 2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)上点到直线20x y -=的最大距离是 .24.12F F 、是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ⋅的最大值是 .25.已知椭圆焦点为F 1(0,-22),F 2(0, 22),长轴长为6, 过焦点的弦的长等于短轴长,求这焦点弦的倾斜角.26.在椭圆191622=+y x 上求一点M ,使它到直线l:3x+4y -50=0的距离最大或最小. 27.在△ABC 中,BC=24,AC 、AB 的两条中线之和为39,求△ABC 的重心轨迹方程.29.椭圆12222=+by a x 与x 轴、y 轴正方向相交于A 、B ,在第一象限内的椭圆上求一点C ,使得四边形OACB 的面积最大.30.点A 、B 分别是椭圆1202362=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值.双曲线练习1.F 1、F 2为双曲线1422-=-y x 的两个焦点,点P 在双曲线上,且∠F 1PF 2=90°,则△F 1PF 2的面积是________________.2.双曲线焦点在y 轴上,且一个焦点在直线5x -2y +20=0上,两焦点关于原点对称,35=a c ,则此双曲线的方程是________.3.已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为________________.4.已知双曲线22ax -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O为原点),则两条渐近线的夹角为______________________.5.已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是_________________.6.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是_________________.7.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.8.双曲线112422=-y x 上点P 到左焦点的距离为6,这样的点有______个. 9.直线y=x+3与曲线14||92=-x x y 的交点个数是 .10.双曲线的两准线间的距离是焦距的53,则此双曲线的离心率为 .11.已知双曲线的渐近线方程是x y 32±=,且双曲线过点(3,4),则双曲线的离心率为 ,双曲线的方程为 . 12.设连接共轭双曲线四个顶点和四个焦点所成两个四边形的面积分别为S 1,S 2,则(21S S )max 为 . 13.已知双曲线的两个焦点坐标为F 1(0,-10), F 2(0,10)且一条渐近线方程是430x y -=,则双曲线的标准方程为14.已知双曲线经过)3,453(-A ,且与另一双曲线116922=-y x ,有共同的渐近线,则此双曲线的标准方程是 . 15.已知双曲线的一条渐近线方程是043=+y x ,焦点是椭圆12510022=+y x 与坐标轴的交点,则双曲线的标准方程是 .16.已知双曲线的两条渐近线所夹的锐角是60︒,则此双曲线的离心率为 . 9.直线y x =-1被双曲线,3222=-y x 所截得弦的中点坐标是 ,弦长是 .17.已知关于x ,y 的二次方程4814)16()4(222+-=-+-m m y m x m 表示的是双曲线,则m 的取值范围是 .18.已知双曲线方程为191622=-y x ,经过它的右焦点F 2,作一条直线,使直线与双曲线恰好有一个交点,则该直线的斜率是 .19.已知双曲线方程为422=-x y ,过一点P (0,1),作一直线l ,使l 与双曲线无交点,则直线l 的斜率k 的集合是 .20.双曲线191622=-y x 右支上一点P 到左右两个焦点的距离之比是5:3,则P 点右准线的距离为_____________. 21.以230x y ±=为渐近线,且经过点(1 , 2)的双曲线是 .22.双曲线的离心率e =2,则它的一个顶点把焦点之间的线段分成长、短两段的比是 .23.双曲线1322=-y x 的渐近线中,斜率较小的一条渐近线的倾斜角为 .24.若双曲线2222by a x -=1的一条渐近线的倾斜角为锐角α,则双曲线的离心率为____________.25.已知双曲线的渐近线方程为043=±y x ,一条准线的方程为0335=+y ,则双曲线方程 .26.双曲线1422=+k y x 的离心率e ∈(,)12,则k 的取值范围是______________. 27.椭圆14222=+a y x 与双曲线1222=-y a x 的焦点相同,则a = . 28.如图,OA 是双曲线的实半轴,OB 是虚半轴,F 为焦点, 且∠=︒BAO 30,S ABF∆=)336(21-,则该双曲线方程是 . 29.已知双曲线的中心在原点,以坐标轴为对称轴,且与圆x y 2217+=相交于点A (4 , -1),若圆在点A 的切线与双曲线的渐近线平行,求此双曲线的方程.30.双曲线与椭圆1362722=+y x 有共同的焦点,它们的一个交点的纵坐标为4,求双曲线的方程.31.直线231+=x y 与双曲线14922=-y x 的两个交点与原点构成三角形,求此三角形的面积.32.已知双曲线b x a y a b 222222-=上有一点P ,焦点为F 1、F 2,且∠=F PF 12α,求证:2221αctg b S PF F ·=∆.33.斜率为2的直线l 被双曲线12322=-y x 截得的弦长为1552,求直线l 的方程. 34.已知P 为双曲线x y 2244-=上的动点,Q 是圆41)2(22=-+y x 上的动点,求PQ 的最小值。
圆锥曲线知识要点及重要结论
圆锥曲线知识要点及重要结论圆锥曲线是数学中的一个重要概念,它包括椭圆、双曲线和抛物线三种特殊的曲线形状。
本文将介绍圆锥曲线的基本定义、性质和重要结论,以帮助读者更好地理解和应用这一概念。
1. 圆锥曲线的定义圆锥曲线是由一个可移动的点P和两个固定点F1、F2组成的。
对于椭圆和双曲线而言,这两个固定点称为焦点,而抛物线只有一个焦点。
圆锥线还有一个固定的直线L,称为准线,通过焦点F1、F2的垂线交于准线上的点称为顶点。
圆锥曲线的定义可以用以下公式表示:椭圆:PF1 + PF2 = 2a,其中a为椭圆的大半轴长度;双曲线:|PF1 - PF2| = 2a,其中a为双曲线的距离焦点到准线的距离;抛物线:PF = PL,其中P为抛物线上任意一点,F为焦点,L为准线。
2. 圆锥曲线的性质2.1 椭圆椭圆是圆锥曲线中的一种,它的性质如下:- 所有椭圆上的点到焦点的距离之和等于常数2a,其中a为椭圆的大半轴长度;- 椭圆的长轴是焦点的连线,短轴是准线的连线;- 椭圆是一个封闭曲线,对称于长轴和短轴。
2.2 双曲线双曲线是圆锥曲线中的一种,它的性质如下:- 所有双曲线上的点到焦点的距离之差的绝对值等于常数2a,其中a为焦点到准线距离的一半;- 双曲线的两支分别相交于点F1、F2,这两个点称为焦点;- 双曲线是一个非封闭曲线,它与准线之间没有交点。
2.3 抛物线抛物线是圆锥曲线中的一种,它的性质如下:- 抛物线上的点到焦点的距离等于该点到准线的垂直距离;- 抛物线是一个非封闭曲线,它与准线相切于顶点。
3. 圆锥曲线的重要结论3.1 椭圆的离心率椭圆的离心率是用来衡量椭圆形状扁度的指标,其定义为离心距与长轴长度的比值。
离心率的取值范围为0到1,当离心率为0时,椭圆变成了一个圆,而当离心率为1时,椭圆变成了一个线段。
3.2 双曲线的离心率双曲线的离心率也是衡量其形状的指标,其定义为离心距与焦点距离之差的比值。
离心率的取值范围大于1,当离心率趋近于无穷大时,双曲线的形状趋近于两个平行线。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。
在高中数学课程中,学习圆锥曲线是必不可少的。
本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。
一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。
二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
3. 抛物线:抛物线的基本方程为:$y^2=2px$。
其中,p为抛物线的焦距。
三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。
双曲线还具有渐近线,即曲线趋近于两根直线。
2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。
此外,椭圆也具有主轴、短轴和焦距等重要概念。
3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。
四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。
2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。
例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。
3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。
例如自由落体运动、射击运动以及卫星的发射轨道等。
综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。
在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。
希望本文对你对圆锥曲线的学习有所帮助。
圆锥曲线必备公式(经典)
圆锥曲线一、椭圆及其性质第一定义平面内一动点P 与两定点F 1、F 2距离之和为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yxF 1F 2abc O A 1A 2B 2B 1x =a 2cx =-a 2c y x F 1F 2ab c A 1A 2B 2B 1y =a2cy =-a 2c标准方程x 2a 2+y 2b 2=1a >b >0 y 2a 2+x 2b 2=1a >b >0 范围-a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点A 1-a ,0 ,A 2a ,0 ,B 10,-b ,B 20,bA 10,-a ,A 20,a ,B 1-b ,0 ,B 2b ,0轴长长轴长=2a ,短轴长=2b ,焦距=F 1F 2 =2c ,c 2=a 2-b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径PF 1 =a +e x 0,PF 2 =a -e x 0PF 1 =a -e y 0,PF 2 =a +e y 0焦点弦左焦点弦|AB |=2a +e (x 1+x 2),右焦点弦|AB |=2a -e (x 1+x 2).离心率e =ca=1-b 2a20<e <1 准线方程x =±a 2c y =±a 2c 切线方程x 0x a 2+y 0y b 2=1x 0x b 2+y 0y a 2=1通径过椭圆焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|+|PF 2|=2a ,周长为:2a +2c(2)焦点三角形面积:S △F 1PF 2=b 2×tanθ2(3)当P 在椭圆短轴上时,张角θ最大,θ≥1-2e 2cos (4)焦长公式:PF 1 =b 2a -c αcos 、MF 1 =b 2a +c αcos MP =2ab 2a 2-c 22αcos =2ab 2b 2+c 22αsin (5)离心率:e =(α+β)sin α+βsin sin yxF 1F 2θαP OMβ第一定义平面内一动点P 与两定点F 1、F 2距离之差为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yx F 1F2b c 虚轴实轴ayxF 1F 2实轴虚轴标准方程x 2a 2-y 2b 2=1a >0,b >0 y 2a 2-x 2b 2=1a >0,b >0 范围x ≤-a 或x ≥a ,y ∈R y ≤-a 或y ≥a ,x ∈R 顶点A 1-a ,0 、A 2a ,0 A 10,-a 、A 20,a 轴长虚轴长=2b ,实轴长=2a ,焦距=F 1F 2 =2c ,c 2=a 2+b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径|PF 1|=a +e x 0,|PF 2|=-a +e x 0左支添“-”离心率e =ca=1+b 2a2e >1 准线方程x =±a 2c y =±a 2c 渐近线y =±b a xy =±a b x切线方程x 0x a 2-y 0y b 2=1x 0x b 2-y 0y a 2=1通径过双曲线焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|-|PF 2|=2a(2)焦点直角三角形的个数为八个,顶角为直角与底角为直角各四个;(3)焦点三角形面积:S △F 1PF 2=b 2÷tan θ2=c ∙y(4)离心率:e =F 1F 2 PF 1 -PF 2=sin θsin α-sin β =sin (α+β)sin α-sin βyxF 1F 2Pθαβ定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.方程y 2=2px p >0y 2=-2px p >0x 2=2py p >0x 2=-2py p >0图形yxF x =-p2yxFx =p2y xFy =-p2yxFy =p2顶点0,0对称轴x 轴y 轴焦点F p2,0 F -p 2,0 F 0,p 2 F 0,-p2准线方程x =-p 2x =p 2y =-p2y =p 2离心率e =1范围x ≥0x ≤0y ≥0y ≤0切线方程y 0y =p x +x 0y 0y =-p x +x 0x 0x =p y +y 0x 0x =-p y +y 0通径过抛物线焦点且垂直于对称轴的弦AB =2p (最短焦点弦)焦点弦AB 为过y 2=2px p >0 焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =x 1+p 2BF =x 2+p2AB =x 1+x 2+p ,(2)x 1x 2=p 24y 1y 2=-p 2(3)AF =p 1-αcos BF =p 1+αcos 1|FA |+1|FB |=2p (4)AB =2p sin 2αS △AOB =p 22αsin AB 为过x 2=2py (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =p 1-αsin BF =p1+αsin (2)AB =2p 2αcos S △AOB=p 22αcos (3)AF BF=λ,则:α=λ-1λ+1sin yxFx =-p 2αABO yxFαABOy 2=2px (p >0)y 2=2px (p >0)四、圆锥曲线的通法F 1F 2POxyOxyFP MOxyF 1F 2P椭圆双曲线抛物线点差法与通法1、圆锥曲线综述:联立方程设交点,韦达定理求弦长;变量范围判别式,曲线定义不能忘;弦斜中点点差法,设而不求计算畅;向量参数恰当用,数形结合记心间.★2、直线与圆锥曲线的位置关系(1)直线的设法:1若题目明确涉及斜率,则设直线:y =kx +b ,需考虑直线斜率是否存在,分类讨论;2若题目没有涉及斜率或直线过(a ,0)则设直线:x =my +a ,可避免对斜率进行讨论(2)研究通法:联立y =kx +bF (x ,y )=0得:ax 2+bx +c =0判别式:Δ=b 2−4ac ,韦达定理:x 1+x 2=−b a ,x 1x 2=ca(3)弦长公式:AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)⋅[(x 1+x 2)2-4x 1x 2]=1+1k2(y 1+y 2)2−4y 1y 23、硬解定理设直线y =kx +φ与曲线x 2m +y 2n=1相交于A (x 1,y 1)、B (x 2,y 2)由:y =kx +φnx 2+my 2=mn,可得:(n +mk 2)x 2+2kφmx +m (φ2-n )=0判别式:△=4mn (n +mk 2-φ2)韦达定理:x 1+x 2=-2kmφn +mk 2,x 1x 2=m (φ2-n )n +mk 2由:|x 1-x 2|=(x 1+x 2)2-4x 1x 2,代入韦达定理:|x 1-x 2|=△n +mk 2★4、点差法(可以拓展为第三定义):若直线l 与曲线相交于M 、N 两点,点P (x 0,y 0)是弦MN 中点,MN 的斜率为k MN ,则:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=−b 2a2;在双曲线x 2a 2−y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=b 2a2;在抛物线y 2=2px (p >0)中,有k MN ⋅y 0=p .。
圆锥曲线公式大全
(一)圆锥曲线公式大全1、椭圆的定义、椭圆的方程、椭圆的性质F1(c, 0 ), F2( c, 0 )F1(0,c, ), F2( 0, c )(a, 0 ), ( 0, b )(0, a ), ( b, 0 )2、判断椭圆是 x 型还是y 型只要看2x 对应的分母大还是2y 对应的分母大,若2x 对应的分母大则x 型,若2y 对应的分母大则y 型.3、求椭圆方程一般先判定椭圆是x 型还是y 型,若为x 型则可设为12222=+b y a x ,若为y型则可设为12222=+bx a y ,若不知什么型且椭圆过两点,则设为稀里糊涂型:221mx ny +=4、双曲线的定义、双曲线的方程、椭圆的性质双曲线定义若M 为双曲线上任意一点,则有12MF MF 2a -=(2a<2c)若12MF MF 2a -==2c,则点M 的轨迹为两条射线 若12MF MF 2a -=>2c, 则点M 无轨迹焦点位置x 轴y 轴图形方程 12222=-by a x 12222=-bx a y 焦点坐标 F1(c, 0 ), F2( c, 0 )F1(0,c, ), F2( 0, c )焦距 |F1F2| = 2c顶点坐标 (a, 0 )(0, a )a, b, c 的关系式椭圆形状长的像a,所以a 是老大,a2 = b2 + c2; 双曲线形状长的像c,所以c 是老大,c2 = a2 + b2 实轴、虚轴 实轴长=2a, 虚轴长=2b ,实半轴长=a, 虚半轴长=b 无论双曲线是x 型还是y 型,双曲线的焦点总是落在实轴上对称轴 关于x 轴、y 轴和原点对称离心率 ace =( e>1) 范围 ,a x a y R ≤≤-∈或x a y a ≤≤-或y ,x R ∈渐近线b y x a=±a y x b=±2、判断双曲线是 x 型还是y 型只要看2x 前的符号是正还是2y 前的符号是正,若2x 前的符号为正则x 型,若2y 前的符号为正则y 型,同样的,哪个分母前的符号为正,则哪个分母就为2a3、求双曲线方程一般先判定双曲线是x 型还是y 型,若为x 型则可设为12222=-by a x ,若为y 型则可设为12222=-b x a y ,若不知什么型且双曲线过两点,则设为稀里糊涂型:221(0)mx ny mn -=<6、若已知双曲线一点坐标和渐近线方程y mx =,则可设双曲线方程为222(0)y m x λλ-=≠,而后把点坐标代入求解7、椭圆、双曲线、抛物线与直线:l y kx b =+的弦长公式:AB ==8、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点差法 9、椭圆、双曲线、抛物线与直线问题的解题步骤:(1)假化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y 或x (2)求出判别式,并设点使用伟大定理 (3)使用弦长公式1、抛物线的定义:平面内有一定点F 及一定直线l(F 不在l 上)P 点是该平面内一动点,当且仅当点P 到F 的距离与点P 到直线l 距离相等时,那么P 的轨迹是以F 为焦点,l 为准线的一条抛物线.————见距离想定义!!!2、(1)抛物线方程左边一定是x 或y 的平方(系数为1),右边一定是关于x 和y 的一次项,如果抛物线方程不,立即化为方程!(2)抛物线的一次项为x 即为x 型,一次项为y 即为y 型!(3)抛物线的焦点坐标为一次项系数的四分之一,准线与焦点坐标互为相反数!一次项为x ,则准线为”x=多少”,一次项为y ,则准线为”y=多少”!(4)抛物线的开口看一次项的符号,一次项为正,则开口朝着正半轴,一次项为负,则开口朝着负半轴!(5)抛物线的题目强烈建议画图,有图有真相,无图无真相!3、求抛物线方程,如果只知x 型,则设它为2y ax =(0)a ≠,a>o,开口朝右;a<0,开口朝左; 如果只知y 型,则设它为2(0)x ay a =≠,a>o,开口朝上;a<0,开口朝下。
(完整版)圆锥曲线知识点归纳总结
完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。
三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。
构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。
2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。
椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。
椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。
重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2);焦=缩1 比为e = c/a,其中c^2 = a^2– b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。
抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。
重要公式:抛物线的标准方程为(x^2/4a) =。
y4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。
双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。
双曲线的焦缩比为c^2=a^2+ b^2.重要公式:双曲线的标准方程为(x^2/a^2)–(y^2/b^2) =1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。
椭圆的应用包括轨道运动、天体力学以及密码学等领域。
抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。
双曲线的应用包括电磁波的传播、双曲线钟的标定等。
6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。
对称性:椭圆和双曲线关于x 轴和y 轴都有对称性,抛物线关于y 轴有对称性。
切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。
焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。
此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。
熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。
圆锥曲线知识点公式大全
圆锥曲线知识点公式大全圆锥曲线是平面上的一类曲线,包括椭圆、双曲线和抛物线。
它们都可以由一个动点(焦点)和一条定点到动点距离与到一条给定直线距离之比(离心率)确定。
1.椭圆的定义方程:(x/a)² + (y/b)² = 1,其中a和b分别是椭圆的两条半轴的长度。
2.长轴和短轴:长轴的长度是2a,短轴的长度是2b。
焦距是c,满足c² = a² - b²。
3.离心率:离心率用e表示,e² = 1 - (b²/a²)。
离心率是一个衡量椭圆形状的指标,e=0表示圆。
4.双曲线的定义方程:(x/a)² - (y/b)² = 1或(y/b)² - (x/a)² = 1,其中a和b分别是双曲线的两条半轴的长度。
5.双曲线的焦点和离心率:双曲线有两个焦点和两条渐近线,焦点到双曲线上的任意一点的距离与焦距之差的绝对值恒等于离心率。
6.抛物线的定义方程:y² = 4ax或x² = 4ay,其中a是抛物线的焦点到准线的垂直距离。
7.抛物线的焦点和准线:焦点是抛物线上的一个特殊点,准线是与焦点对称的一条直线。
以上是圆锥曲线的基本知识点和公式。
除此之外,还有一些拓展的知识点:-增量曲线:当焦点和准线都在y轴上时,圆锥曲线的公式可以表达为任意形式的增量曲线,如二次抛物线、双曲线等。
-参数方程:圆锥曲线也可以用参数方程表示,其中x = x(t)和y = y(t)是关于参数t的函数,通常t的取值范围是一个区间。
-极坐标方程:圆锥曲线也可以用极坐标方程表示,其中r = r(θ)是关于极角θ的函数。
-高斯曲率:圆锥曲线在不同点处的曲率有所不同,而高斯曲率是描述曲面曲率性质的一个指标。
对于圆锥曲线来说,高斯曲率恒为常数。
希望以上信息能对你有所帮助!如果您还有其他问题,请随时提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线1.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩ 离心率c e a ==准线到中心的距离为2a c ,焦点到对应准线的距离(焦准距)2b p c =. 通径的一半(焦参数):2b a.2.椭圆22221(0)x y a b a b+=>>焦半径公式及两焦半径与焦距构成三角形的面积:21()a PF e x a ex c =+=+,22()a PF e x a ex c =-=-;1221tan 2F PF F PFS b ∆∠=.3.椭圆的的内外部: (1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y b⇔+>.4.双曲线22221(0,0)x y a b a b -=>>的离心率c e a ==2a c ,焦点到对应准线的距离(焦准距)2p c = 通径的一半(焦参数):2b a焦半径公式21|()|||a PF e x a ex c =+=+,22|()|||a PF e x a ex c=-=-,两焦半径与焦距构成三角形的面积1221cot 2F PF F PF S b ∆∠=.5.双曲线的内外部: (1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.6.双曲线的方程与渐近线方程的关系:(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上;0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b7.抛物线px y 22=的焦半径公式:抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x p x p x CD ++=+++=212122.8.抛物线px y 22=上的动点可设为P ),2(2 y py 或2(2,2)P pt pt P (,)x y ,其中 22y px =.9.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=. 10.以抛物线上的点为圆心,焦半径为半径的圆必与准线相切;以抛物线焦点弦为直径的圆,必与准线相切;以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切.11.直线与圆锥曲线相交的弦长公式: AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率,2121212||()4x x x x x x -=+-.12.圆锥曲线的两类对称问题:(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 特别地,曲线(,)0F x y =关于原点O 成中心对称的曲线是(,)0F x y --=. 曲线(,)0F x y =关于直线x 轴对称的曲线是(,)0F x y -=. 曲线(,)0F x y =关于直线y 轴对称的曲线是(,)0F x y -=. 曲线(,)0F x y =关于直线y x =轴对称的曲线是(,)0F y x =. 曲线(,)0F x y =关于直线y x =-轴对称的曲线是(,)0F y x --=.13.圆锥曲线的第二定义:动点M 到定点F 的距离与到定直线l 的距离之比为常数e ,若01e <<,M 的轨迹为椭圆;若1e =,M 的轨迹为抛物线;若1e >,M 的轨迹为双曲线.注意:1、还记得圆锥曲线的两种定义吗解有关题是否会联想到这两个定义 2、还记得圆锥曲线方程中的:(1)在椭圆中:a 是长半轴,b 是短半轴,c 是半焦距,其中222b ac =-,,(01)ce e a=<<是离心率,2a c 是准心距,2b c 是准焦距, 2b a是半通径.(2)在双曲线中:a 是实半轴,b 是虚半轴,c 是半焦距,其中222b c a =-,,(1)c e e a=>是离心率,2a c 是准心距,2b c 是准焦距, 2b a是半通径.(3)在抛物线中:p 是准焦距,也是半通径.3、在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序(到定点的距离比到定直线的距离)4、离心率的大小与曲线的形状有何关系(圆扁程度,张口大小)等轴双曲线的离心率是多少(2e =)5、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).注意:尤其在求双曲线与直线的交点时:当0∆>时:直线与双曲线有两个交点(包括直线与双曲线一支交于两点和直线与双曲线两支各交于一点两种情况);当0∆=时,直线与双曲线有且只有一个交点(此时称指向与双曲线相切),反之,当直线与双曲线只有一个交点时,直线与双曲线不一定相切,此时直线与双曲线的一条渐近线平行,当0∆<时,直线与双曲线没有交点.6、椭圆中,注意焦点、中心、短轴端点所组成的直角三角形.此时222a b c =+. 7、通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论) 8、你知道椭圆、双曲线标准方程中,,a b c 之间关系的差异吗9、如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点.此时两个方程联立,消元后为方程变为一次方程.椭圆练习1.过椭圆12222=+by a x (a>b>0)的左焦点F 1任做一条不与长轴重合的弦AB,F 2为椭圆的右焦点,则△ABF 1的周长是( ) (A)2a (B)4a (C)2b (D)4b2.设b a b a b a +=+∈则,62,,22R 的最小值是( )(A)22- (B)335-(C)-3(D)27-3.椭圆的两个焦点和短轴的两个顶点,是一个含600角的菱形的四个顶点,则椭圆的离心率为( ) (A )21 (B )23 (C )33 (D )21或23 4.设常数m>0,椭圆x 2+m 2y 2=m 2的长轴是短轴的两倍,则m 的值等于( ) (A )2 (B )2 (C )2或21 (D )2或225.过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为12 (D)136.如果椭圆的两个焦点将长轴分成三等份,那么这个椭圆的两条准线间的距离是焦距的( )(A )18倍 (B )12倍 (C )9倍 (D )4倍7.当关于x,y 的方程x 2sin α-y 2cos α=1表示的曲线为椭圆时,方程(x+cos α)2+(y+ sin α)2=1所表示的圆的圆心在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限8.已知椭圆的焦点为F 1,F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q,使得|PQ|=|PF 2|,那么动点Q 的轨迹是( ) (A )圆 (B )椭圆 (C )直线 (D )其它9.已知椭圆14922=+y x 与圆(x-a)2+y 2=9有公共点, 则a 的取值范围是( )(A)-6<a<6 (B)0<a≤5 (C)a 2<25 (D)|a|≤610.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) (A)2 (B)12(C)2(D1 11.在椭圆12222=+by a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点依次与某一焦点连结的线段长为r 1,r 2,r 3,则有( ) (A )r 1,r 2,r 3成等差数列 (B )231211r r r =+ (C )r 1,r 2,r 3成等比数列 (C )以上都不对 12.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF13.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) (A)(0,1) (B)1(0,]2(C)(D)14.一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为( ) (A )22186x y += (B )221166x y += (C )22184x y += (D )221164x y +=15.若椭圆19822=++y a x 的离心率是21,则a 的值为————————. 16.椭圆x 2cos 2α+y 2=1(0<α<π,α≠2π)的半长轴=——————,半短轴=——————,半焦距=——————,离心率=——————. 17.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a cPF F PF F =,则该椭圆的离心率的取值范围为 .是椭圆14922=+y x 上的一点,F 1,F 2 是椭圆的焦点,且∠F 1MF 2=900,则△F 1MF 2的面积等于——————. 19.与圆(x+1)2+y 2=1相外切,且与圆(x -1)2+y 2=9相内切的动圆圆心的轨迹方程是—————— 20.设椭圆⎪⎩⎪⎨⎧==ααsin 32cos 4y x (α为参数)上一点P 与x 轴正向所成角∠POx=3π,则点P 的坐标是__.21.在平面直角坐标系xOy 中,椭圆22221(0)y x a b a b+=>>的焦距为2c ,以O 为圆心,a 为半径作圆M ,若过2(0)a P c ,作圆M 的两条切线相互垂直,则椭圆的离心率为22.已知直线l :y=mx+b,椭圆C:22)1(a x -+y 2=1,若对任意实数m,l 与C 总有公共点,则a,b 应满足的条件是 .23.椭圆4cos 2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)上点到直线20x y -=的最大距离是 .24.12F F 、是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ⋅的最大值是 .25.已知椭圆焦点为F 1(0,-22),F 2(0, 22),长轴长为6, 过焦点的弦的长等于短轴长,求这焦点弦的倾斜角.26.在椭圆191622=+y x 上求一点M ,使它到直线l:3x+4y -50=0的距离最大或最小. 27.在△ABC 中,BC=24,AC 、AB 的两条中线之和为39,求△ABC 的重心轨迹方程.29.椭圆12222=+by a x 与x 轴、y 轴正方向相交于A 、B ,在第一象限内的椭圆上求一点C ,使得四边形OACB 的面积最大.30.点A 、B 分别是椭圆1202362=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值.双曲线练习、F 2为双曲线1422-=-y x 的两个焦点,点P 在双曲线上,且∠F 1PF 2=90°,则△F 1PF 2的面积是________________.2.双曲线焦点在y 轴上,且一个焦点在直线5x -2y +20=0上,两焦点关于原点对称,35=a c ,则此双曲线的方程是________.3.已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为________________. 4.已知双曲线22ax -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O为原点),则两条渐近线的夹角为______________________.5.已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是_________________.6.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是_________________.7.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.8.双曲线112422=-y x 上点P 到左焦点的距离为6,这样的点有______个. 9.直线y=x+3与曲线14||92=-x x y 的交点个数是 .10.双曲线的两准线间的距离是焦距的53,则此双曲线的离心率为 .11.已知双曲线的渐近线方程是x y 32±=,且双曲线过点(3,4),则双曲线的离心率为 ,双曲线的方程为 . 12.设连接共轭双曲线四个顶点和四个焦点所成两个四边形的面积分别为S 1,S 2,则(21S S )max 为 . 13.已知双曲线的两个焦点坐标为F 1(0,-10), F 2(0,10)且一条渐近线方程是430x y -=,则双曲线的标准方程为14.已知双曲线经过)3,453(-A ,且与另一双曲线116922=-y x ,有共同的渐近线,则此双曲线的标准方程是 .15.已知双曲线的一条渐近线方程是043=+y x ,焦点是椭圆12510022=+y x 与坐标轴的交点,则双曲线的标准方程是 .16.已知双曲线的两条渐近线所夹的锐角是60︒,则此双曲线的离心率为 . 9.直线y x =-1被双曲线,3222=-y x 所截得弦的中点坐标是 ,弦长是 .17.已知关于x ,y 的二次方程4814)16()4(222+-=-+-m m y m x m 表示的是双曲线,则m 的取值范围是 .18.已知双曲线方程为191622=-y x ,经过它的右焦点F 2,作一条直线,使直线与双曲线恰好有一个交点,则该直线的斜率是 .19.已知双曲线方程为422=-x y ,过一点P (0,1),作一直线l ,使l 与双曲线无交点,则直线l 的斜率k 的集合是 .20.双曲线191622=-y x 右支上一点P 到左右两个焦点的距离之比是5:3,则P 点右准线的距离为_____________. 21.以230x y ±=为渐近线,且经过点(1 , 2)的双曲线是 .22.双曲线的离心率e =2,则它的一个顶点把焦点之间的线段分成长、短两段的比是 .23.双曲线1322=-y x 的渐近线中,斜率较小的一条渐近线的倾斜角为 . 24.若双曲线2222by a x -=1的一条渐近线的倾斜角为锐角α,则双曲线的离心率为____________.25.已知双曲线的渐近线方程为043=±y x ,一条准线的方程为0335=+y ,则双曲线方程 .26.双曲线1422=+k y x 的离心率e ∈(,)12,则k 的取值范围是______________.27.椭圆14222=+a y x 与双曲线1222=-y a x 的焦点相同,则a = . 28.如图,OA 是双曲线的实半轴,OB 是虚半轴,F 为焦点,且∠=︒BAO 30,S ABF∆=)336(21-,则该双曲线方程是 . 29.已知双曲线的中心在原点,以坐标轴为对称轴,且与圆x y 2217+=相交于点A (4 , -1),若圆在点A 的切线与双曲线的渐近线平行,求此双曲线的方程.30.双曲线与椭圆1362722=+y x 有共同的焦点,它们的一个交点的纵坐标为4,求双曲线的方程.31.直线231+=x y 与双曲线14922=-y x 的两个交点与原点构成三角形,求此三角形的面积.32.已知双曲线b x a y a b 222222-=上有一点P ,焦点为F 1、F 2,且∠=F PF 12α,求证:2221αctg b S PF F ·=∆.33.斜率为2的直线l 被双曲线12322=-y x 截得的弦长为1552,求直线l 的方程. 34.已知P 为双曲线x y 2244-=上的动点,Q 是圆41)2(22=-+y x 上的动点,求PQ 的最小值。