2020年中国东南地区数学奥林匹克高二年级第二天试题

合集下载

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word 版一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分不是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分不作OE ⊥AB ,OF ⊥CD ,垂足分不为E ,F ,线段BC ,AD 的中点分不为M ,N .〔1〕假设A ,B ,C ,D 四点共圆,求证:EM FN EN FM ⋅=⋅;〔2〕假设 EM FN EN FM ⋅=⋅,是否一定有A ,B ,C ,D 四点共圆?证明你的结论.解〔1〕设Q ,R 分不是OB ,OC 的中点,连接EQ ,MQ ,FR ,MR ,那么11,22EQ OB RM MQ OC RF ====,又OQMR 是平行四边形,因此OQM ORM ∠=∠,由题设A ,B ,C ,D 四点共圆,因此ABD ACD ∠=∠,因此 图1 22EQO ABD ACD FRO ∠=∠=∠=∠,因此 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ∆≅∆, 因此 EM =FM , 同理可得 EN =FN , 因此 EM FN EN FM ⋅=⋅.〔2〕答案是否定的.当AD ∥BC 时,由于B C ∠≠∠,因此A ,B ,C ,D 四点不共圆,但现在仍旧有EM FN EN FM ⋅=⋅,证明如下:如图2所示,设S ,Q 分不是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,那么11,22NS OD EQ OB ==,CB因此NS ODEQ OB=.①又11,22ES OA MQ OC==,因此ES OAMQ OC=.②而AD∥BC,因此OA ODOC OB=,③由①,②,③得NS ES EQ MQ=.因为2NSE NSA ASE AOD AOE∠=∠+∠=∠+∠,()(1802) EQM MQO OQE AOE EOB EOB∠=∠+∠=∠+∠+︒-∠(180)2AOE EOB AOD AOE=∠+︒-∠=∠+∠,即NSE EQM∠=∠,因此NSE∆~EQM∆,故EN SE OAEM QM OC==〔由②〕.同理可得,FN OAFM OC=,因此EN FN EM FM=,从而EM FN EN FM⋅=⋅.CB二、求所有的素数对〔p ,q 〕,使得q p pq 55+.解:假设pq |2,不妨设2=p ,那么q q 55|22+,故255|+q q .由Fermat 小定理, 55|-q q ,得30|q ,即5,3,2=q .易验证素数对)2,2(不合要求,)3,2(,)5,2(合乎要求.假设pq 为奇数且pq |5,不妨设5=p ,那么q q 55|55+,故6255|1+-q q . 当5=q 时素数对)5,5(合乎要求,当5≠q 时,由Fermat 小定理有15|1--q q ,故626|q .由于q 为奇素数,而626的奇素因子只有313,因此313=q .经检验素数对)313,5(合乎要求.假设q p ,都不等于2和5,那么有1155|--+q p pq ,故)(m od 05511p q p ≡+--. ①由Fermat 小定理,得 )(m od 151p p ≡- , ② 故由①,②得)(m od 151p q -≡-. ③设)12(21-=-r p k ,)12(21-=-s q l , 其中s r l k ,,,为正整数. 假设l k ≤,那么由②,③易知)(mod 1)1()5(5)5(1112121)12)(12(2)12(21)12(2p r r q s r s p s lkl kl -≡-≡==≡=----------,这与2≠p 矛盾!因此l k >.同理有l k <,矛盾!即现在不存在合乎要求的),(q p . 综上所述,所有满足题目要求的素数对),(q p 为)3,2(,)2,3(,)5,2(,)2,5(,)5,5(,)313,5(及)5,313(.三、设m ,n 是给定的整数,n m <<4,1221+n A A A 是一个正2n +1边形,{}1221,,,+=n A A A P .求顶点属于P 且恰有两个内角是锐角的凸m 边形的个数.解 先证一个引理:顶点在P 中的凸m 边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.事实上,设那个凸m 边形为m P P P 21,只考虑至少有一个锐角的情形,现在不妨设221π<∠P P P m ,那么)13(2122-≤≤>∠-=∠m j P P P P P P m m j ππ,更有)13(211-≤≤>∠+-m j P P P j j j π.而321P P P ∠+11P P P m m -∠>π,故其中至多一个为锐角,这就证明了引理. 由引理知,假设凸m 边形中恰有两个内角是锐角,那么它们对应的顶点相邻. 在凸m 边形中,设顶点i A 与j A 为两个相邻顶点,且在这两个顶点处的内角均为锐角.设i A 与j A 的劣弧上包含了P 的r 条边〔n r ≤≤1〕,如此的),(j i 在r 固定时恰有12+n 对.〔1〕 假设凸m 边形的其余2-m 个顶点全在劣弧j i A A 上,而j i A A 劣弧上有1-r 个P 中的点,现在那个2-m 顶点的取法数为21--m r C .〔2〕 假设凸m 边形的其余2-m 个顶点全在优弧j i A A 上,取i A ,j A 的对径点i B ,j B ,由于凸m 边形在顶点i A ,j A 处的内角为锐角,因此,其余的2-m 个顶点全在劣弧j i B B 上,而劣弧j i B B 上恰有r 个P 中的点,现在那个2-m 顶点的取法数为2-m r C .因此,满足题设的凸m 边形的个数为))()()(12()12()()12(11111111121211221∑∑∑∑∑==--+---=-=--=----+-+=⎪⎭⎫⎝⎛++=++nr nr m rm r m r m r n r m r n r m r nr m rm r C C C C n C C n CCn))(12(111--+++=m nm n C C n .四、给定整数3≥n ,实数n a a a ,,,21 满足 1m in 1=-≤<≤j i nj i a a .求∑=nk k a 13的最小值.解 不妨设n a a a <<< 21,那么对n k ≤≤1,有k n a a a a k k n k n k 2111-+≥-≥++-+-,因此()∑∑=-+=+=nk kn knk ka a a13131321()()()∑=-+-+-+⎪⎭⎫ ⎝⎛++-+=n k k n k kn k k n k a a a a a a 121211414321 ()∑∑==-+-+≥+≥n k nk kn k k n a a 13131218181. 当n 为奇数时,222113313)1(412221-=⋅⋅=-+∑∑-==n i k n n i nk . 当n 为偶数时,32113)12(221∑∑==-=-+n i nk i kn⎪⎪⎪⎭⎫ ⎝⎛-=∑∑==21313)2(2ni n j i j)2(4122-=n n . 因此,当n 为奇数时,2213)1(321-≥∑=n a nk k,当n 为偶数时,)2(3212213-≥∑=n n a nk k ,等号均在n i n i a i ,,2,1,21=+-=时成立. 因此,∑=nk k a 13的最小值为22)1(321-n 〔n 为奇数〕,或者)2(32122-n n 〔n 为偶数〕.五、凸n 边形P 中的每条边和每条对角线都被染为n 种颜色中的一种颜色.咨询:对如何样的n ,存在一种染色方式,使得关于这n 种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形P 的顶点,且它的3条边分不被染为这3种颜色? 解 当n 3≥为奇数时,存在合乎要求的染法;当n 4≥为偶数时,不存在所述的染法。

2020年东南奥林匹克赛高一组第二天答案

2020年东南奥林匹克赛高一组第二天答案

证明:记
Ͳ.
Ͳ
假设 1
Ͳ中每个整数都没有大于 的素因子.
设 是 最大的素数幂因子. 由于≤ 的素数个数不超过 1
1,
故当
1
1 1时,
1
1 ,对于所有的 1
.
因为 ≤ ,且≤ 的素数个数不会超过 1
1 个,故必然有两个不同
的1
1
使得 1
.故 1
min 1 1
1.但是
1 命题得证.
1
1≤
1 ≤ 1,矛盾.故当
T k i 1 T k i .
令 S㤵k T㤵k (k 1 ‴ 1 ), k Ͳ 时 , S㤵k 1 1 S ‴ S 1 S k
1 䁥 1 . 由此知,正整数
当且仅当 1 为合数. 因此有:
1 集合 1
1‴ 1
1 为质数 中的任一数(简称为质前数)
皆不属于集合 ,而其余的数皆在 中;
对于集合 ,
1 1 ,当正整数 䁥 不全为 1 时, 䁥 为合数,
即每个奇质数皆不属于 ,对于这种数,要么是两个相邻正整数的乘积: 1
1 ,要么可表为这样的三个因子之积,其中较大的一个因子等于另两个
状态, i S 则说明这一格子未被染色,否则这一格子没有染色.在任何一个状态下,我们计 f㤵S 为将状态 S 全部染成黑色所需的次数之期望.如果 S ⊆ S', 我们称 S'比 S 状态要"大",此 时,关于状态 S'的染色策略也可用于 S,从而 f㤵S ≤ f㤵S' .令 g㤵S i 为选择喷涂格子 i 之后所
1 1时,
. 用一个喷头对一张 1 的方格纸条的每一格进行喷涂,当喷头对指定的
第 㤵1 ≤ ≤ 格喷涂时,该格被染成黑色,同时与第 格相邻的左侧方格和右

第八届中国东南地区数学奥林匹克

第八届中国东南地区数学奥林匹克

特别地, = 时, = . 当b 3 n ÷
(i当 b一 a< i ) 2 O时 , 令
6 设 P , … , 为 平 面 上 n个 定 点 , . P , P
M 是该平面内线段 A 上任一点, I 记 MI P 为
点 P ( =1 2 … , ) ii , , n 与 的距 离. 明 : 证
( ) b的取 值范 围 ; 1求
( ) 给定 的 b 求 0 ( 2对 , . 卢兴 江
满 足

2 已知 n b c为 两 两 互 质 的正 整 数 , . 、、 且
( 陶平 生
供题 )
;b + , In + , l0 + . ( c)b ( c)c ( b)
1 秒或 3秒 , 1 其他情形类似可得同样结果. 综上 , 答案 为 39,1 1. , 1 ,8 ( 陈传 理 提供 )
2 1 年第 1 期 01 1
B C交于点 A ; 似 得 到 点 , G. 明 : ,类 、 证 A、
,、
! ( I { 0)=b l - m , U ≥ j 进 】 a>u ・ ・
单调增 加 , 以 , 所
) g1 ( )=n+6 一口=6 ・ =3
l — a


( ≥3 . n )
证 明 : 于每个 n∈ N+ a a +2皆 对 , +
此 ,丢 时 >. 口
综上, b的取 值范 围是 [ , o) 3 +o ,
为完 全平 方数.
( 陶平生
( 晓呜 杨 供题)
第 二 天
5 如 图 l 设 A o B 0 C 0 △ A C的 . , A 、B 、 C 是 B
求 口 bc的值 . 、、

历届东南数学奥林匹克试题

历届东南数学奥林匹克试题

目录2004年东南数学奥林匹克 (2)2005年东南数学奥林匹克 (4)2006年东南数学奥林匹克 (6)2007年东南数学奥林匹克 (9)2008年东南数学奥林匹克 (11)2009年东南数学奥林匹克 (14)2010年东南数学奥林匹克 (16)2011年东南数学奥林匹克 (18)2012年东南数学奥林匹克 (20)2004年东南数学奥林匹克1.设实数a、b、c满足a2+2b2+3c2=32,求证:3−a+9−b+27−c≥1.2.设D是△ABC的边BC上的一点,点P在线段AD上,过点D作一直线分别与线段AB、PB交于点M、E,与线段AC、PC的延长线交于点F、N.如果DE=DF,求证:DM=DN.3.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有a n+12≥2a n a n+2.(2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有a n+12≥2a n a n+2.4.给定大于2004的正整数n,将1,2,3,⋯,n2分别填入n×n棋盘(由n行n列方格构成)的方格中,使每个方格恰有一个数.如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”.求棋盘中“优格”个数的最大值.5.已知不等式√2(2a+3)ccc(θ−π4)+6ssnθ+ccsθ−2csn2θ<3a+ 6对于θ∈�0,π2�恒成立,求a的取值范围.6.设点D为等腰△ABC的底边BC上一点,F为过A、D、C三点的圆在△ABC内的弧上一点,过B、D、F三点的元与边AB交于点E.求证:CD⋅EE+DE⋅AE=AD⋅AE.7.N支球队要矩形主客场双循环比赛(每两支球队比赛两场,各有一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进行多场客场比赛.但如果某周内该球队有主场比赛,在这一周内不能安排该球队的客场比赛.如果4周内能够完成全部比赛,球n的值.注:A、B两队在A方场地矩形的比赛,称为A的主场比赛,B的客场比赛.8.求满足x−y x+y+y−z y+z+z−u z+u>0,且1≤x、y、z、u≤10的所有四元有序整数组(x,y,z,u)的个数.2005年东南数学奥林匹克1.(1)设a∈R.求证:抛物线y=x2+(a+2)x−2a+1都经过一个顶点,且顶点都落在一条抛物线上.(2)若关于x的方程y=x2+(a+2)x−2a+1=0有两个不等实根,求其较大根的取值范围.(吴伟朝供题)2.⊙O与直线l相离,作OO⊥l,P为垂足.设点Q是l上任意一点(不与点P重合),过点Q作⊙O的两条切线QA、QB,A、B为切点,AB与OP相交于点K.过点P作OP⊥QB,ON⊥QA,M、N为垂足.求证:直线MN平分线段KP.(裘宗沪供题)3.设n(n≥3)是正整数,集合P={1,2,⋯,2n}.求最小的正整数k,使得对于M的任何一个k元子集,其中必有4个互不相同的元素之和等于4n+1.(张鹏程供题)4.试求满足a2+b2+c2=2005,且a≤b≤c的所有三元正整数数组(a,b,c).(陶平生供题)5.已知直线l与单位圆⊙O相切于点P,点A与⊙O在直线l的,且A到直线l的距离为ℎ(ℎ>2),从点A作⊙O的两条切线,分别与直线l交于B、C两点.求线段PB与线段PC的长度之乘积.(冷岗松司林供题)6.将数集A=�a1,a2,⋯,a n�中所有元素的算术平均值记为O(A)�O(A)=a1+a2+⋯+a n n�.若B是A的非空子集,且P(B)=P(A),则称B是A的一个“均衡子集”.试求数集P={1,2,3,4,5,6,7,8,9}的所有“均衡子集”的个数.(陶平生供题)7.(1) 讨论关于x的方程|x+1|+|x+2|+|x+3|=a的根的个数;(2) 设a1,a2,⋯,a n为等差数列,且|a1|+|a2|+⋯+|a n|=|a1+1|+|a2+1|+⋯+|a n+1|=|a1−2|+|a2−2|+⋯+|a n−2|=507.求项数n的最大值.(林常供题)8.设0<α、β、γ<π2,且csn3α+csn3β+csn3γ=1.求证tan2α+tan2β+tan2γ≥3√32.(李胜宏供题)2006年东南数学奥林匹克1. 设a >b >0,f (x )=2(a+b )x+2ab 4x+a+b .证明:存在唯一的正数x ,使得f (x )=�a 13+b 132�3. (李胜宏 供题)2. 如图1,在△ABC 中,∠ABC =90°,D 、G 是边CA 上的亮点,连结BD 、BG .过点A 、G 分别作BD 的垂涎,垂足分别为E 、F ,连结CF .若BE =EE ,求证:∠ABG =∠DEC .图13. 一副纸牌共52张,其中,“方块”、“梅花”、“红心”、“黑桃”每种花色的牌个13张,标号依次是2,3,⋯,10,J ,Q ,K ,A .相同花色、相邻标号的两张牌称为“同花顺”牌,并且A 与2也算同花顺牌(即A 可以当成1使用).试确定,从这副牌中取出13张牌,使每种标号的牌都出现,并且不含同花顺取牌方法数.(陶平生 供题)4. 对任意正整数n ,设a n 是方程x 3+x n =1的实数根.求证: (1) a n+1>a n ;(2) ∑1(s+1)a i n s=1<a n .(李胜宏 供题)5. 如图2,在△ABC 中,∠A =60°,△ABC 的内切圆⊙I 分别切边AB 、AC 于点D 、E ,直线DE 分别与直线BI 、CI 相交于点F 、G .证明:EG =12BC .图2 6. 求最小的实数m ,使得对于满足a +b +c =1的任意正实数a 、b 、c ,都有m (a 3+b 3+c 3)≥6(a 2+c 2+c 2)+1. (熊 斌 供题)7. (1) 求不定方程mn +nn +mn =2(m +n +n )的正整数解(m ,n ,n )的组数; (2) 对于给定的整数k (k >1),证明:不定方程mn +nn +mn =k (m +n +n )至少有3k +1组正整数解(m ,n ,n ). (吴伟朝 供题) 8. 对于周长为n (n ∈N +)的圆,称满足如下条件的最小的正整数p n 个点A 1,A 2,⋯,A p n ,对于1,2,⋯,n −1中的每一个整数m ,都存在两个点A s 、A j (1≤s 、j ≤p n ).以A s 和A j 为端点的一条弧长等于m ,圆周上每相邻两点间的弧长顺次构成的序列T n =�a 1,a 2,⋯,a p n �称为“圆剖分序列”.列入,当n =13,圆剖分数为p 13=4,图3中所标数字为相B邻两点之间的弧长,圆剖分序列为T 13=(1,3,2,7), (1,2,6,4),求p 21和p 31,并给出一个相应的圆剖分序列.图3(陶平生 供题)73112007年东南数学奥林匹克1. 试求实数a 的个数,使得对于每个a ,关于x 的三次方程x 3=ax +a +1都有满足|x |<1000的偶数根.2. 如图1所示,设C 、D 是以O 为圆心、AB 为半径的半圆上的任意两点,过点B 作⊙O 的切线交直线CD 于P ,直线PO 于直线CA ,AD 分别交于点E 、F .证明:OE =OF .图13. 设a s =msn �k +s k �k ∈N ∗�,试求S n 2=[a 1]+[a 2]+⋯+[a n 2]的值.4. 试求最小的正整数n ,使得对于满足条件∑a s n s=1=2007的任一个具有n 项的正整数数列a 1,a 2,⋯,a n ,其中必有连续若干项之和等于30. 5. 设函数f (x )满足:f (x +1)−f (x )=2x +1(x ∈R ),且当x ∈[0,1]时有|f (x )|≤1,证明:当x ∈R 时,有|f (x )|≤2+x 2.6. 如图,在直角三角形ABC 中,D 是斜边AB 的中点,PB ⊥AB ,MD 交AC 于N ;MC 的延长线交AB 于E .证明:∠DBN =∠BCE .7. 试求满足下列条件的三元数组(a ,b ,c ):E(1) a<b<c,且当a,b,c为质数;(2) a+1,b+1,c+1构成等比数列.8.设正实数a,b,c满足:abc=1,求证:对于整数k≥2,有a k a+b+b k b+c+c k c+a≥32.2008年东南数学奥林匹克1.已知集合S={1,2,⋯,3n},n是正整数,T是S的子集,满足:对任意的x、y、z∈T(x、y、z可以相同),都有x+y+z∉T.求所有这种集合T的元素个数的最大值.(李胜宏供题)2.设数列{a n}满足a1=1,a n+1=2a n+n(1+2n)(n=1,2,⋯).试求通项a n的表达式.(吴伟朝供题)3.在△ABC中,BC>AB,BD平分∠ABC交AC于点D,AQ⊥BO,垂足为Q,M是边AC的中点,E是边BC的中点.若△PQM的外接圆⊙O与AC的另一个交点为H.求证:O、H、E、M四点共圆.(郑仲义供题)4.设正整数m、n≥2,对于任一个n元整数集A=�a1,a2,⋯,a n�,取每一对不同的数a s、a j(j>s),作差a j−a s.由这C n2个差按从小到大.衍生数列顺序排成的一个数列,称为集合A的“衍生数列”,记为A生A生中能被m整除的数的个数记为A生(m).5.证明:对于任一正整数m(m≥2),n圆整数集A=�a1,a2,⋯,a n�及B={1,2,⋯,n}所对应的A生及B生,满足不等式A生(m)≥B生(m)(陶平生供题)6.求出最大的正数λ,使得对于满足x2+y2+z2=1的任何实数x、y、z成立不等式|λxy+yz|≤√52. (张正杰供题)7. 如图1,△ABC 的内切圆⊙I 分别切BC 、AC 于点M 、N ,E 、F 分别为边AB 、AC 的中点,D 是针线EF 于BI 的交点.证明:M 、N 、D 三点共线.图1(张鹏程 供题) 8. 杰克(Jack )船长与他的海盗们掠夺到6个珍宝箱A 1,A 2,A 3,A 4,A 5,A 6,其中A s (s =1,2,⋯,6)内有金币a s 枚(诸a s 互不相等).海盗们设计了一种箱子的布局图(如图2),并推派一人和船长轮流拿珍宝箱.每次可任意拿走不与两个或两个以上的箱子相连的整个箱子.如果船长最后所取得的金币不少于海盗们所取得的金币,那么船长获胜.问:若船长先拿,他是否有适当的取法保证获胜?图2 (孙文先 供题)9. 设n 为正整数,f (n )表示满足以下条件的n 位数(称为波形数)a 1a 2⋯a n �������������的个数:a 1a 2 a 3 a 4a 6 a 5i.每一位数码a s∈{1,2,3,4},且a s≠a s+1(s=1,2,⋯);ii.当n≥3时,a s−a s+1与a s+1−a s+2(s=1,2,⋯)的符号相反.(1)求f(10)的值;(2)确定f(2008)被13除得的余数.(陶平生供题)2009年东南数学奥林匹克1.试求满足方程x2−2xy+126y2=2009的所有整数对(x,y).(张鹏程供题)2.在凸五边形ABCDE中,已知AB=DE,BC=EA,AB≠EA,且B、C、D、E四点共圆.证明:A、B、C、D四点共圆的充分必要条件是AC=AD.(熊斌供题)3.设x,y,z∈R+,√a=x(y−z)2,√b=y(z−x)2,√c=z(x−y)2;求证:a2+b2+c2≥2(ab+bc+ca). (唐立华供题)4.在一个圆周上给定十二个红点;求n的最小值,使得存在以红点为顶点的n个三角形,满足:以红点为顶点的每条弦,都是其中某个三角形的一条边.(陶平生供题)5.设1,2,⋯,9的所有排列X=�x1,x2,⋯,x9�的集合为A;∀X∈A,记f(X)=x1+2x2+3x3+⋯+9x9,P={f(X)|X∈A};求|P|. (其中|P|表示集合M的元素个数).6.已知⊙O、⊙I分别是△ABC的外接圆和内切圆;证明:过⊙O上的任意一点D,都可作一个△DEF,使得⊙O、⊙I分别是△DEF的外接圆和内切圆.(陶平生供题)7.设f(x,y,z)=x(2y−z)1+x+3y+y(2z−x)1+y+3z+z(2x−y)1+z+3x,其中x,y,z≥0,且x+y+z=1.求f(x,y,z)的最大值和最小值.(李胜宏供题)8.在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格表中裁剪出一片形状如下完整的T型五方连块?(孙文先供题)2010年东南数学奥林匹克1. 设a 、b 、c ∈{0,1,⋯9}.若二次方程ax 2+bx +c =0有有理根,证明:三位数abc�����不是质数. (张鹏程 供题)2. 对于集合A ={a 1,a 2,⋯,a m },记O (A )=a 1a 2⋯a m .设A 1,A 2,⋯A n (n =C 201099)是集合{1,2,⋯,2010}的所有99元子集.求证:2011|∑O (A s )n s=1. (叶永南 供题)3. 如图1,已知△ABC 内切圆⊙I 分别与边AB 、BC 切于点F 、D ,之心啊AD 、CF 分别于⊙I 交于另一点H 、K.求证:FD⋅HK FH⋅DK =3.图1 (熊 斌 供题)4. 设正整数a 、b 满足1≤a <b ≤100.若存在正整数k ,使得ab |a k +b k ,则称数对(a ,b )是“好数对”.求所有好数对的个数.(熊 斌 供题)5. 如图2,△ABC 为直角三角形,∠ACB =90°,M 1、M 2为△ABC 内任意两点,M 为线段M 1M 2的中点,直线BM 1、BM 2、BM 与AC 分别交于点N 1、N 2、N.求证:M 1N 1BM 1M 2N 2BM 22MN BM .图2 (裘宗沪 供题)6. 设Z +为正整数集合,定义:a 1=2,a n+1=msn �λ�∑1a i n s=1+1λ<1,λ∈Z +�(n =1,2,⋯). 求证:a n+1=a n 2−a n +1. (李胜宏 供题)7. 设n 是一个正整数,实数a 1,a 2,⋯,a n 和n 1,n 2,⋯,n n 满足:a 1≤a 2≤⋯≤a n 和n 1≤r 2≤⋯≤n n .求证:∑∑==≥n i nj j i j i r r a a 110),min((朱华伟 供题)8. 在一个圆周上给定8个点A 1,A 2,⋯,A 8.求最小的正整数n ,使得以这8个点为顶点的任意n 个三角形中,必存在两个有公共边的三角形.(陶平生 供题)21B2011年东南数学奥林匹克1.已知min x∈R ax2+b√x2+1=3.(1)求b的取值范围;(2)对给定的b,求a.2.已知a、b、c为两两互质的正整数,且a2|(b3+c3),b2|(a3+ c3),c2|(a3+b3)求a、b、c的值.3.设集合P={1,2,3,⋯,50},正整数n满足:M的任意一个35元子集中至少存在两个不同的元素a,b,使a+b=n或a−b=n.求出所有这样的n.4.如图1,过△ABC的外心O任作一直线,分别与边AB,AC相交于M,N,E,F分别是BN,CM的中点.证明:∠EOE=∠A.图15. 如图2,设AA0,BB0,CC0是△ABC的三条角平分线,自A0作A0A1∥BB0,A0A2∥CC0,A1,A2分别在AC,AB上,直线A1A2∩BC=A3;类似得到点B3,C3.证明:A3,B3,C3三点共线.图26.设O 1,O 2,⋯,O n 为平面上n 个定点,M 是该平面内线段AB 上任一点,记|O s P |为点O s 与M 的距离,s =1,2,3,⋯,n ,证明:≤∑∑∑===ni i ni i n i i B P A P M P 111,max . 7.设数列{a n }满足:a 1=a 2=1,a n =7a n−1−a n−2,n >3.证明:对于每个n ∈N ∗,a n +a n+1+2皆为完全平方数.8.将时钟盘面上标有数字1,2,⋯,12的十二个点,分别用红、黄、蓝、绿四种颜色各染三个点,现以这些点为顶点构造n 个凸四边形,使其满足:(1) 每个四边形的四个顶点四色都有;(2) 任何三个四边形,都存在某一色,该色的三个顶点所标数字各不相同.求n 的最大值.32012年东南数学奥林匹克1. 求一个三元整数组(l ,m ,n )(1<l <m <n ),使得∑k l k=1,∑k m k=l+1,∑k n k=m+1依次成等比数列.2. 如图1,△ABC 的内切圆I 在边AB ,BC ,CA 上的切点分别是D ,E ,F ,直线EF 与直线AI ,BI ,DI 分别相交于点M ,N ,K .证明:DP ⋅KE =DN ⋅KE .图1 3. 对于合数n ,记f (n )为其最小的三个正约数之和,g (n )为其最大的两个正约数之和.求所有的正合数n ,使得g (n )等于f (n )的某个正整数次幂.4. 已知实数a ,b ,c ,d 满足:对任意实数x ,均有acccx +bccc 2x +cccc 3x +dccc 4x ≤1, 求a +b -c +d 的最大值.当a +b -c +d 取最大值时,求实数a ,b ,c ,d 的值.5. 如果非负整数m 及其各位数字之和均为6的倍数,则称m 为“六合数”.求小于2012的非负整数中“六合数”的个数.6. 求正整数n 的最小值,使得A东南数学奥林匹克�n−20112012−�n−20122011<�n−201320113−�n−201120133.7.如图2,△ABC中,D为边AC上一点且∠ABD=∠C,点E在边AB上且BE=DE,设M为CD重点,AA⊥DE于点H.已知AA=2−√3,AB=1,求∠APE的度数.图2设m是正整数,n=2m−1,O n={1,2,⋯,n}为数轴上n个点所成的集合.一个蚱蜢在这些点上跳跃,每步从一个点跳到与之相邻的点.求m的最大值,使对任意x,y∈O n,从点x跳2012步到点y的跳法种数为偶数(允许中途经过点x,y).。

2020年国际数学奥林匹克(IMO)全部试题解答

2020年国际数学奥林匹克(IMO)全部试题解答

2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。

2020年全国高中数学联赛试题及详细解析(1)

2020年全国高中数学联赛试题及详细解析(1)

2020年全国高中数学联赛试题及详细解析一、选择题(每小题6分,共36分)1.(2020年全国高中数学联赛)删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是yxO Ox yO xyyx O A.B. C.D.3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A ) 163 (B) 83 (C) 1633 (D) 8 34.若x ∈[-5π12 ,-π3 ],则y=tan(x +2π3 )-tan(x +π6 )+cos(x +π6 )的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A '刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A '取遍圆周上所有点时,求所有折痕所在直线上点的集合.加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).2020年全国高中数学联赛解答第一试一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 2049 【答案】C【解析】452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2020-1980=23项.由2025+23=2048.知选C .3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A) 163 (B) 83 (C) 1633 (D) 8 3【答案】A【解析】抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点在y=p k =43上,即AB 中点为(43,43),中垂线方程为y=-33(x -43)+43,令y=0,得点P 的坐标为163.∴ PF=163.选A .4.若x ∈[-5π12 ,-π3],则y=tan(x +2π3)-tan(x +π6)+cos(x +π6)的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253【答案】C【解析】令x +π6=u ,则x +2π3=u +π2,当x ∈[-5π12,-π3]时,u ∈[-π4,-π6],y=-(cot u +tan u )+cos u=-2sin2u +cos u .在u ∈[-π4,-π6]时,sin2u 与cos u 都单调递增,从而y 单调递增.于是u=-π6时,y 取得最大值1163,故选C .二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .【答案】(-3,-5-12)∪(5-12,3). 【解析】即|x |3-2|x |2-4|x |+3<0,⇒(|x |-3)(|x |-5-12)(|x |+5+12)<0.⇒|x |<-5+12,或5-12<|x |<3. ∴ 解为(-3,-5-12)∪(5-12,3).9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .【答案】-4≤a ≤-1.【解析】A=(1,3);又,a ≤-21-x∈(-1,-14),当x ∈(1,3)时,a ≥x 2+52x-7∈(5-7,-4).∴ -4≤a ≤-1.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .【答案】93【解析】a 3=b 2,c 5=d 4,设a=x 2,b=x 3;c=y 4,d=y 5,x 2-y 4=9.(x +y 2)(x -y 2)=9.∴ x +y 2=9,x -y 2=1,x=5,y 2=4.b -d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .【答案】2+48【解析】如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45︒而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},N MHGFEDCBAT n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .【答案】118【解析】由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1.在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1出现2n -1次.∴ S n =2n -2⨯0.11…1+2n -2⨯10-n.∴ lim n →∞S n T n =12⨯19=118.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R)与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.【解析】曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c s in 4t )∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1) y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ①若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c ≠0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i .与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ②令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c 0,得4x 2+4x +1=0, 此方程在[14,34]内有惟一解: x=12.以x=12代入②得, y=14(a +2b +c ).∴ 所求公共点坐标为(12,14(a +2b +c )).加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .分析:由∠PBC=∠CDB ,若∠DBQ=∠PAC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立.而要证∆BDQ ∽∆DAQ ,只要证BD AD =DQAQ即可.二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.【解析】当3l、3m、3n的末四位数字相同时,⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104.即求满足3l ≡3m ≡3n ( mod 104)的l 、m 、n .∴ 3n (3l -n -1)≡0 (mod 104).(l -n >0)但 (3n ,104)=1,故必有3l -n ≡1(mod 104);同理3m -n ≡1(mod 104).下面先求满足3x ≡1(mod 104)的最小正整数x .∵ ϕ(104)=104⨯12⨯45=4000.故x |4000.用4000的约数试验:∵ x=1,2,时3x ≡∕1(mod 10),而34≡1(mod 10),∴ x 必须是4的倍数;∵ x=4,8,12,16时3x ≡∕1(mod 102),而320≡1(mod 102),∴ x 必须是20的倍数;∵ x=20,40,60,80时3x ≡∕1(mod 103),而3100≡1(mod 103),∴ x 必须是100的倍数;∵ x=100,200,300,400时3x ≡∕1(mod 104),而3500≡1(mod 104).即,使3x ≡1(mod 104)成立的最小正整数x=500,从而l -n 、m -n 都是500的倍数, 设l -n=500k ,m -n=500h ,(k ,h ∈N*,k >h ).由m +n >l ,即n +500h +n >n +500k ,⇒n >500(k -h )≥500,故n ≥501.取n=501,m=1001,l=1501,即为满足题意的最小三个值. ∴ 所求周长的最小值=3003.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).现设任一点连的线数≤n -2.且设b 0=q +2≤n -2.且设图中没有四边形.于是当i ≠j 时,B i 与B j 没有公共的点对,即|B i ∩B j |≤1(0≤i ,j ≤n -1).记B 0-=V \B 0,则由|B i ∩B 0|≤1,得|B i ∩B 0-|≥b i -1(i =1,2,…,n -1),且当1≤i ,j ≤n -1且i ≠j 时,B i ∩B 0-与B j ∩B 0-无公共点对.从而B 0-中点对个数≥i =1n -1∑(B i ∩B 0-中点对个数).即C 2 n -b 0≥i =1n -1∑C 2 |B i ∩B 0-|≥i =1n -1∑C 2 b i -1=12i =1n -1∑ (b 2i -3b i +2)≥12[1n -1(i =1n -1∑b i )2-3i =1n -1∑b i +2(n -1)](由平均不等式)=12[1n -1(2l -b 0)2-3(2l -b 0)+2(n -1)]=12(n -1)[(2l -b 0)2-3(n -1)(2l -b 0)+2(n -1)2]=12(n -1)(2l -b 0-n +1)(2l -b 0-2n +2)(2l ≥q (q +1)2+2=(n -1)(q +1)+2)≥12(n -1)[(n -1)(q +1)+2-b 0-n +1][(n -1)(q +1)+2-b 0-2n +2]=12(n -1)[(n -1)q +2-b 0][(n -1)(q -1)+2-b 0].(两边同乘以2(n -1)即 (n -1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(n -1≥q (q +1)代入) 得 q (q +1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(各取一部分因数比较) ①但(nq -q -n +3-b 0)-q (n -b 0-1)=(q -1)b 0-n +3(b 0≥q +2)≥(q -1)(q +2)-n +3=q 2+q +1-n =0.②(nq -q +2-b 0)-(q +1)(n -b 0)=qb 0-q -n +2≥q (q +1)-n +2=1>0. ③由假设,不存在处在不同行的2个红点对,使此四点两两同列,所以,有(由于去掉了q +2列,故还余q 2-1列,不同的列对数为C 2 q 2-1)i =1n -1∑C 2 m i ≤C 2 q 2-1. 所以q 2·q (q -1)+q (q -1)(q -2)≤(q 2-1)(q 2-2).⇒ q (q -1)(q 2+q -2)≤(q -1)(q +1)(q 2-2)⇒q 3+q 2-2q ≤q 3+q 2-2q -2.矛盾.故证.。

2020年国际数学奥林匹克(IMO)全部试题解答

2020年国际数学奥林匹克(IMO)全部试题解答

2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。

2020年中国高中数学奥林匹克试题与解答 精品

2020年中国高中数学奥林匹克试题与解答 精品

ORQN MFED CBAP2020年中国数学奥林匹克试题与解答(2020年1月11日)一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N .(1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ⋅=⋅;(2)若 EM FN EN FM ⋅=⋅,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解(1)设Q ,R 分别是OB ,OC 的中点,连接EQ ,MQ ,FR ,MR ,则11,22EQ OB RM MQ OC RF ====,又OQMR 是平行四边形, 所以OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆, 所以ABD ACD ∠=∠,于是22EQO ABD ACD FRO ∠=∠=∠=∠,所以EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ∆≅∆, 所以 EM =FM , 同理可得 EN =FN ,所以 EM FN EN FM ⋅=⋅. (2)答案是否定的.当AD ∥BC 时,由于B C ∠≠∠,所以A ,B ,C ,D 四点不共圆,但此时仍然有EM FN EN FM ⋅=⋅,证明如下:如图2所示,设S ,Q 分别是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,则11,22NS OD EQ OB ==,所以NS ODEQ OB=. ① 又11,22ES OA MQ OC ==,所以ES OAMQ OC=. ② 而AD ∥BC ,所以OA ODOC OB=, ③ 由①,②,③得NS ESEQ MQ=. 因为 2NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠,()(1802)EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+︒-∠(180)2AOE EOB AOD AOE =∠+︒-∠=∠+∠, 即NSE EQM ∠=∠,所以NSE ∆~EQM ∆,故EN SE OAEM QM OC==(由②). 同理可得, FN OAFM OC =, 所以 EN FNEM FM=, 从而 EM FN EN FM ⋅=⋅.二、求所有的素数对(p ,q ),使得q p pq 55+.解:若pq |2,不妨设2=p ,则q q 55|22+,故255|+qq .由Fermat 小定理, 55|-qq ,得30|q ,即5,3,2=q .易验证素数对)2,2(不合要求,)3,2(,)5,2(合乎要求.若pq 为奇数且pq |5,不妨设5=p ,则qq 55|55+,故6255|1+-q q .当5=q 时素数对)5,5(合乎要求,当5≠q 时,由Fermat 小定理有15|1--q q ,故626|q .由于q 为奇素数,而626的奇素因子只有313,所以313=q .经检验素数对)313,5(合乎要求.若q p ,都不等于2和5,则有1155|--+q p pq ,故SO RQNFEDCBA P)(m od 05511p q p ≡+--. ①由Fermat 小定理,得 )(m od 151p p ≡- , ②故由①,②得)(m od 151p q -≡-. ③设)12(21-=-r p k,)12(21-=-s q l, 其中s r l k ,,,为正整数. 若l k ≤,则由②,③易知)(mod 1)1()5(5)5(1112121)12)(12(2)12(21)12(2p r r q s r s p s l k l k l -≡-≡==≡=----------,这与2≠p 矛盾!所以l k >.同理有l k <,矛盾!即此时不存在合乎要求的),(q p . 综上所述,所有满足题目要求的素数对),(q p 为)3,2(,)2,3(,)5,2(,)2,5(,)5,5(,)313,5(及)5,313(.三、设m ,n 是给定的整数,n m <<4,1221+n A A A Λ是一个正2n +1边形,{}1221,,,+=n A A A P Λ.求顶点属于P 且恰有两个内角是锐角的凸m 边形的个数.解 先证一个引理:顶点在P 中的凸m 边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.事实上,设这个凸m 边形为m P P P Λ21,只考虑至少有一个锐角的情况,此时不妨设221π<∠P P P m ,则)13(2122-≤≤>∠-=∠m j P P P P P P m m j ππ,更有)13(211-≤≤>∠+-m j P P P j j j π.而321P P P ∠+11P P P m m -∠>π,故其中至多一个为锐角,这就证明了引理. 由引理知,若凸m 边形中恰有两个内角是锐角,则它们对应的顶点相邻.在凸m 边形中,设顶点i A 与j A 为两个相邻顶点,且在这两个顶点处的内角均为锐角.设i A 与j A 的劣弧上包含了P 的r 条边(n r ≤≤1),这样的),(j i 在r 固定时恰有12+n 对.(1) 若凸m 边形的其余2-m 个顶点全在劣弧j i A A 上,而j i A A 劣弧上有1-r 个P 中的点,此时这2-m 个顶点的取法数为21--m r C .(2) 若凸m 边形的其余2-m 个顶点全在优弧j i A A 上,取i A ,j A 的对径点i B ,j B ,由于凸m 边形在顶点i A ,j A 处的内角为锐角,所以,其余的2-m 个顶点全在劣弧j i B B 上,而劣弧j i B B 上恰有r 个P 中的点,此时这2-m 个顶点的取法数为2-m rC .所以,满足题设的凸m 边形的个数为))()()(12()12()()12(11111111121211221∑∑∑∑∑==--+---=-=--=----+-+=⎪⎭⎫⎝⎛++=++nr nr m rm r m r m r n r m r n r m r nr m rm r C C C C n C C n CCn))(12(111--+++=m n m n C C n .四、给定整数3≥n ,实数n a a a ,,,21Λ满足 1min 1=-≤<≤j i nj i a a .求∑=nk k a 13的最小值.解 不妨设n a a a <<<Λ21,则对n k ≤≤1,有k n a a a a k k n k n k 2111-+≥-≥++-+-,所以()∑∑=-+=+=nk kn knk ka a a 13131321()()()∑=-+-+-+⎪⎭⎫ ⎝⎛++-+=n k k n k kn k k n k a a a a a a 121211414321 ()∑∑==-+-+≥+≥n k nk kn k k n a a 13131218181. 当n 为奇数时,222113313)1(412221-=⋅⋅=-+∑∑-==n i k n n i nk . 当n 为偶数时,32113)12(221∑∑==-=-+n i nk i k n⎪⎪⎪⎭⎫ ⎝⎛-=∑∑==21313)2(2ni n j i j)2(4122-=n n . 所以,当n 为奇数时,2213)1(321-≥∑=n a nk k,当n 为偶数时,)2(3212213-≥∑=n n a nk k,等号均在n i n i a i ,,2,1,21Λ=+-=时成立. 因此,∑=nk k a 13的最小值为22)1(321-n (n 为奇数),或者)2(32122-n n (n 为偶数). 五、凸n 边形P 中的每条边和每条对角线都被染为n 种颜色中的一种颜色.问:对怎样的n ,存在一种染色方式,使得对于这n 种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形P 的顶点,且它的3条边分别被染为这3种颜色?解 当n 3≥为奇数时,存在合乎要求的染法;当n 4≥为偶数时,不存在所述的染法。

第十六届东南地区数学奥林匹克(高二年级)

第十六届东南地区数学奥林匹克(高二年级)

第一天1.对任意实数a ,用[a ]表示不超过a 的最大整数,记{a }=a −[a ].是否存在正整数m,n 及n +1个实数x 0,x 1,...,x n ,使得x 0=428,x n =1928,x k+110=[x k 10]+m +{x k 5}(k =0,1,···,n −1)成立?证明你的结论.2.如图,在平行四边形ABCD 中,∠BAD =90◦,以B 为圆心,BA 为半径的圆与AB ,CB 的延长线分别相交于点E,F ,以D 为圆心,DA 为半径的圆与AD,CD 的延长线交于点M,N ,直线EN,F M 相交于点G ,直线AG,ME 相交于点T ,直线EN 与圆D 相交于点P (=N ),直线MF 与圆B 相交于点Q (=F ),证明:G,P,T,Q 四点共圆.3.今有n 人排成一行,自左至右按1,2,···,n 的顺序报数,凡序号为平方数者退出队伍;剩下的人自左至右再按1,2,3,···的顺序重新报数,凡序号为平方数者退出队伍;如此继续.在此过程中,每个人都将先后从队伍中退出.用f (n )表示最后一个退出队伍的人在最初报数是的序号.求f (n )的表达式(用n 表示);特别地,给出f (2019)的值.4.在5×5矩阵X 中,每个元素为0或1.用x i,j 表示X 中第i 行第j 列的元素(i,j =1,2,···,5).考虑X 的所有行、列及对角线上的五元有序数组(共24个数组):(x i,1,x i,2,...,x i,5),(x i,5,x i,4,...,x i,1)(i =1,2, (5)(x 1,j ,x 2,j ,...,x 5,j ),(x 5,j ,x 4,j ,...,x 1,j )(j =1,2, (5)(x 1,1,x 2,2,···,x 5,5),(x 5,5,x 4,4,···,x 1,1)(x 1,5,x 2,4,···,x 5,1),(x 5,1,x 4,2,···,x 1,5)若这些数组两两不同,求矩阵X 所有元素之和的可能值.第二天5.对任意正整数n ,用a n 表示三边长均为正数且最长边的长为2n 的三角形的个数.(1)求a n 关于n 的表达式;(2)设数列b n 满足:n ∑k =1(−1)n −k C k n b k =a n (n ∈N ∗).求使b n ≤2019a n 成立的正整数n 的个数.6.在△ABC 中,AB >AC ,∠ABC 的平分线交AC 于点D ,∠ACB 的平分线交AB 于点E ,过A 作△ABC 外接圆的切线,交ED 的延长线于点P .已知AP =BC .证明:BD ∥CP .7.甲、乙两人从0,1,2,···,81中轮流挑选互不重复的数,甲先选,每次每人从剩下的数中选1个数.当这82个数被选完之后,记A 为甲选择的所有数之和,B 为乙选择的所有数之和.在挑选数的过程中,甲希望A ,B 的最大公约数越大越好,而乙则希望A ,B 的最大公约数越小越好.在甲、乙各自的最佳策略下,求挑选完毕之后A ,B 的最大公约数.8.对于正整数x >1,定义集合S x ={p αp 为x 的素因子,α为非负整数,p α|x,且α≡νp (x )(mod 2)},其中,νp (x )表示x 的标准分解式中素因子p 的个数,并记f (x )为S x 中的所有元素之和.约定f (1)=1.今给定正整数m .设正整数数列a 1,a 2,···,a n ,···满足:对任意整数n >m ,a n +1=max {f (a n ),f (a n −1+1),···,f (a n −m +m )}.(1)证明:存在常数A,B (0<A <1)使得当正整数x 有至少两个不同的因子时,必有f (x )<Ax +B ;(2)证明:存在正整数N,l ,使得对所有n ≥N ,a n +1=a n 成立.。

2020年(第17届)中国东南地区数学奥林匹克高二年级第二天试题(含答案)

2020年(第17届)中国东南地区数学奥林匹克高二年级第二天试题(含答案)

第十七届中国东南地区数学奥林匹克浙江•诸暨高二年级第二天2020 年8 月 6 H 上午8:00-12:001.集合…,2020}.称W={w(a,b)=(a + b) + a〃a,bwJ}c/ 为“吴,填合,Y = {y{a ,h) = (n + b) ah\a. bEI]C\l为“翻”集介.X = wcy为“西子,集合. (I) K求“西子”集合中最大致与最小数之和:(Z)若“越”集合中的元#"=y(%b)(a&b)及小方法不姓一(妇30 = y(l,5) = y(2.3)〉,就称〃为“卓越ST.求“越”亲合中“卓越故’的个数.2.如图,在四边形4BC0中,cKBC - ^ADC < 90\以4C为直径的圆。

与边BC. CD的%一个交点分用为E. F. M为9D的中点,AN LBD尸点M证明:M , N, E, F四点其四.B V3.将所行不含T方国了的正整数从小到大排成数列5,/山3.・・・,/ 证明;存在无方多个正整数八,使得册八一0=2020.4,用•个喷头对一张lx ri的方格方条的条一格进行喷法,当啧头对指定的第«1 WiVn)格喷涂时,该格被染成黑色•同时。

第i格相邻的左例方格和右侧方格(在存在的情况卜)独立地各彳弓的概率也被染成黑色.设在最佳策略卜(使喷涂次数尽可能少),喷完n个方格所需要喷涂的次教期望侑为了(初求7S)的通项公式.第十七届中国东南地区数学奥林匹克浙江•诸暨高二年级第二天2020年8月6日上午8:00T2:001.集合,=口,2,…,2020).称 W = {w(a,b) = (a + b) + aZj|a,b|e/}n/ 为“吴”集合,f = {y(a,d) = (a + d)• ab\a,为“越”集合,X = WAV为••西子”集合.(1)试求“西了”集合中最大数与最小数之和;(2)若“越”集合3的元素n = y(aM(asb)表小”法不唯一(如30 = y(L5) = y(2,3)),就称几为“卓越数”.求“越”集合中“卓越数”的个数.证明:(1)若正整数孤£卬,即有正整数a,b,使得n = a十力十。

2020中国东南数学奥林匹克高一第一题

2020中国东南数学奥林匹克高一第一题

2020我国东南数学奥林匹克高一第一题在这篇文章中,我将深入探讨2020年我国东南数学奥林匹克高一第一题,并根据题目的要求,对其进行全面评估。

我们将按照从简到繁的方式,由浅入深地讨论这道数学题,以便读者能更深入地理解和掌握解题的方法和思路。

#1. 题目概述2020年我国东南数学奥林匹克高一第一题可谓是数学题目中的经典之作。

题目涉及到了数论、代数、几何等多个领域,需要考生在有限的时间内准确把握题目的要点,并运用所学知识进行有效的解题。

这也是一道涉及多个数学知识点的综合性题目,对学生的逻辑思维能力和数学知识的综合运用能力提出了挑战。

#2. 题目分析在这一部分,我们将对题目中涉及的各个知识点进行分析和评估。

题目中可能涉及到的数论知识有哪些?对于代数和几何知识又应该如何运用?我们将从题目的各个角度进行深入的思考和分析。

#3. 解题方法接下来,我们将逐一讨论解题的方法和步骤。

在这一部分,我会结合具体的例子,通过分步讲解的方式,向读者展示解题的思路和技巧。

我们将呈现不同的解题路径,以帮助读者更好地理解和掌握解题的方法。

#4. 个人观点我将共享我对这个题目的个人观点和理解。

无论是在解题过程中的心得体会,还是对数学知识的深刻理解,我都将在这部分与读者共享。

我希望通过我的个人观点,能够给读者带来一些启发和思考。

#5. 总结回顾我们将对整篇文章进行总结和回顾。

通过这份文章,我希望读者能够全面、深刻和灵活地理解2020年我国东南数学奥林匹克高一第一题。

我会再次提及主题文字,帮助读者对整篇文章有一个清晰的梳理和理解。

在接下来的内容中,我将从上述五个方面对2020年我国东南数学奥林匹克高一第一题展开全面的讨论和阐述。

希望能给读者带来一些启发和帮助。

#1. 题目概述2020年我国东南数学奥林匹克高一第一题是一道多学科知识点交叉的综合性题目,要求考生在有限的时间内准确把握题目的要点,并结合所学知识进行有效的解题。

这道题目涉及数论、代数、几何等多个领域,考生需要具备良好的数学基础知识和解题技巧,才能有效地解答。

2020年东南奥林匹克赛高二组第二天

2020年东南奥林匹克赛高二组第二天

第十七届中国东南地区数学奥林匹克
浙江·诸暨
高二年级 第二天
2020年8月6日 上午8:00-12:00
1. 集合I ={1 ,2 ,⋯ ,2020}. 称W ={w(a ,b)=(a +b)+ab |a,b ∈I }∩I 为“吴”集合,Y ={y(a ,b)=(a +b)⋅ab|a,b ∈I }∩I 为“越”集合, X =W ∩Y 为“西子”集合.
(1)试求“西子”集合中最大数与最小数之和;
(2)若“越”集合中的元素n =y(a,b)(a ≤b)表示方法不唯一(如30=y(1,5)=y(2,3)),就称n 为“卓越数”. 求“越”集合中“卓越数”的个数.
2. 如图,在四边形ABCD 中,∠ABC =∠ADC <90∘. 以AC 为直径的圆O 与边BC , CD 的另一个交点分别为E , F. M 为BD 的中点,AN ⊥BD 于点N . 证明:M , N , E , F 四点共圆.
3. 将所有不含平方因子的正整数从小到大排成数列a 1 ,a 2 ,a 3 ,⋯ ,a n ,⋯. 证明:存在无穷多个正整数n ,使得a n+1−a n =2020.
4. 用一个喷头对一张1×n 的方格纸条的每一格进行喷涂,当喷头对指定的第i(1≤i ≤n)格喷涂时,该格被染成黑色,同时与第i 格相邻的左侧方格和右侧方格(在存在的情况下)独立地各有12的概率也被染成黑色.
设在最佳策略下(使喷涂次数尽可能少),喷完n 个方格所需要喷涂的次数期望值为T (n ). 求T (n )的通项公式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档