上海高二上学期数学期末试卷
上海市高二上学期期末数学试题(解析版)
一、填空题1.若(),则______.22311n n n C C C --=+*n ∈N n =【答案】5【分析】结合组合数的性质即可求解.【详解】由,所以,111m m m n n n C C C ---=+23n n C C =又因为,所以,所以,即,m n m n n C C -=22n n n C C -=23n -=5n =故答案为:5.2.总体是由编号为的30个个体组成.利用下面的随机数表选取5个个体,选取方法01,02,,29,30 是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为__________.7816157208026315021643199714019832049234493682003623486969387181【答案】19【分析】根据随机数表选取编号的方法求解即可.【详解】随机数表第1行的第5列和第6列数字为15,则选取的5个个体依次为:15,,故选出来的第5个个体的编号为19.08,02,16,19故答案为:19.3.已知所在平面外一点,且两两垂直,则点在平面内的射影应为ABC :P ,,PA PB PC P ABC 的___________心.ABC :【答案】垂【分析】设点在平面内的射影为,由已知可证明,,根据线面垂直的P ABC 1P 1PP BC ⊥PA BC ⊥判定以及性质可得.同理可得,,即可得出答案. 1BC AP ⊥1AC BP ⊥1AB CP ⊥【详解】设点在平面内的射影为,则平面. P ABC 1P 1PP ⊥ABC 又平面,所以.BC ⊂ABC 1PP BC ⊥因为,,,平面,平面, PA PB ⊥PA PC ⊥PB PC P ⋂=PB ⊂PBC PC ⊂PBC 所以平面.又平面,所以.PA ⊥PBC BC ⊂PBC PA BC ⊥因为,平面,平面,所以平面. 1PA PP P =I PA ⊂1PAP 1PP ⊂1PAP BC ⊥1PAP 又平面,所以. 1AP ⊂1PAP 1BC AP⊥同理可证,,,所以是的垂心. 1AC BP ⊥1AB CP ⊥1PABC :所以,点在平面内的射影应为的垂心. P ABC ABC :故答案为:垂.4.某校要从高一、高二、高三共2023名学生中选取50名组成志愿团,若先用简单随机抽样的方法从2023名学生中剔除23名,再从剩下的2000名学生中按分层随机抽样的方法抽取50名,则每名学生入选的可能性___________. 【答案】502023【分析】应用随机抽样定义,每各个体被抽到的概率相等求解即可.【详解】先用简单随机抽样的方法从2023名学生中剔除23名,每各个体被抽到的概率相等, 再从剩下的2000名学生中按分层随机抽样的方法抽取50名,则每名学生入选的可能性为 502023故答案为:5020235.在的二项展开式中,项的系数是___________.92x x ⎛⎫- ⎪⎝⎭3x 【答案】672-【分析】由二项式的通项公式即可求解.【详解】二项式的通项为,92x x ⎛⎫- ⎪⎝⎭9992192((C 2C )r r r r rr r T x x x --+-==-令,得,923r -=3r =所以项的系数是.3x 339(2)C 672-=-故答案为:.672-6.已知圆锥的侧面积为,且它的侧面展开图是一个半圆,则这个圆锥的底面半径是_________. 2π【答案】1【分析】设出圆锥底面半径和母线长,利用侧面展开后,扇形弧长公式和面积公式进行求解.【详解】设圆锥的底面半径为r ,圆锥的母线长为l ,则,解得:,又21π2π2l =2l =2ππ2πr l ==,解得:. 1r =故答案为:17.如图所示:在直三棱柱中,,,则平面与平面ABC 111ABC A B C -AB BC ⊥1AB BC BB ==11A B C 所成的二面角的大小为_____.【答案】4π【分析】通过题意易得直三棱柱ABC ﹣A 1B 1C 1即为正方体的一半,直接得出答案. 【详解】根据题意,易得直三棱柱1即为正方体的一半,111ABC A B C -所求即为平面与平面所成的二面角,即为,∴11A B C 111A B C 11C B C ∠又△为等腰直角三角形,,11B C C 114C B C π∴∠=故答案为.4π【点睛】本题考查二面角的求法,发现“直三棱柱ABC ﹣A 1B 1C 1即为正方体的一半”是解决本题的关键,属于中档题.8.有一道路网如图所示,通过这一路网从A 点出发不经过C 、D 点到达B 点的最短路径有___________种.【答案】24【分析】根据已知,要想避开C 、D 点,需分步考虑.得到每一步的方法种类,用分步计数原理乘起来即可得出答案.【详解】如图,由已知可得,应从点,先到点,再到点,最后经点到点即可.A E F GB 第一步:由点到点,最短路径为4步,最短路径方法种类为;A E 1343C C 4⋅=第二步:由点到点,最短路径为3步,最短路径方法种类为;E F 1232C C 3⋅=第三步:由点经点到点,最短路径为3步,最短路径方法种类为. F G B 111121C C C 2⋅⋅=根据分步计数原理可得,最短路径有种. 43224⨯⨯=故答案为:24.9.从本市某高中全体高二学生中抽取部分学生参加体能测试,按照测试成绩绘制茎叶图,并以,,,,为分组作出频率分布直方图,后来茎叶图受到了污[)50,60[)60,70[)70,80[)80,90[]90,100损,可见部分信息如图,则a 的值为___________.【答案】0.02【分析】根据频率分布图可得组内有2个数据.结合茎叶图和频率分布直方图可知样本容量[]90,100,即可得出组内的数据有4个,进而求出a 的值.20n =[)80,90【详解】由频率分布直方图可得,组内数据的频率等于组内数据的频率,所以[]90,100[)50,60组内有2个数据.[]90,100设样本容量为,则,所以. n 20.0110n=⨯20n =所以组内的数据有,所以组内数据的频率等于,所以[)80,902025724----=[)80,9040.220=. 0.20.0210a ==故答案为:.0.0210.如图,四边形为梯形,,,图中阴影部分绕旋转一周所形成的ABCD //AD BC 90ABC ∠=︒AB 几何体的体积为_________【答案】. 683π【分析】由题意知:旋转所得几何体为一个圆台,从上面挖去一个半球;利用球体、圆台的体积公式求几何体体积.【详解】由题意知,所求旋转体是一个圆台,从上面挖去一个半球;圆台的上底面面积,14S π=下底面面积,216S π=∴圆台的体积为,()114163283V πππ=⨯⨯=又半球的体积为, 3214162233V ππ=⨯⨯⨯=故旋转体的体积为. 1216682833V V πππ-=-=故答案为:. 683π11.斐波那契数列是由13世纪意大利斐波那契提出的,它的通项公式为:,若,则数列通项公式为*,N n nn a n ⎤⎥=-∈⎥⎦1212C C C nn n n n n S a a a =+++ {}n S ___________.*,N n nn ⎤⎥-∈⎥⎦【分析】根据已知数列的通项公式,结合二项式定理,计算可得.n S 【详解】因为, *,N n nn a n ⎤⎥=-∈⎥⎦又因为22121212C C CC C Cnn n n n nn nnn n nS a a a=+++⎤⎤⎤⎥⎥--+-⎥⎥⎥⎥⎦⎦⎦212122C C C C Cnnn n n n n⎤⎤⎤⎤⎤⎥⎥⎥=+⎥⎥-⎥⎥⎥⎥⎥⎦⎦⎦⎦⎦121222C C C C C Cn nn nn n n n n n⎤⎤⎥⎥=++++⎥⎥+⎦+⎦0202 012012C+C C C C+C Cnnn n n n n n n⎤⎥=+++++⎥⎦11n n⎤⎤=++⎥⎥⎥⎥⎦⎦n n⎤⎥=-⎥⎦故答案为:n n⎤⎥⎥⎦-12.在棱长为的正方体中,分别为线段和平面上的动点,点11111ABCD A B C D-,F P1AC1111DCBA G为线段的中点,则周长的最小值为___________.1B C PGF:【答案】##43113【分析】若取得最小值,则在线段上,将平面绕旋转到与共面的情况,PF P11A C11AAC1AC1ABC可知过作于点,结合三角形三边关系可知的最小值为,可知所求三G11GP A C'⊥P'PF FG+P G'角形周长最小值为;利用二倍角公式可求得,在可求得,由此可得2P G'11sin AC B∠1Rt GP C':P G'结果.【详解】若取得最小值,则平面,又在平面上的投影为,PF PF ⊥1111D C B A 1AC 1111D C B A 11A C 在线段上,P ∴11A C 将平面绕旋转到与共面的情况,如图所示,11AAC 1AC 1ABC过作于点,交于点,G 11GP A C '⊥P '1AC F '(当且仅当重合,重合时取等号), PF FG PG P G '∴+≥≥,F F ',P P ',, 1AB = 1BC =1AC =1GC =在中,∴1Rt ABC :1sin AC B ∠=1cos AC B ∠=11111sin sin 22sin cos A C B AC B AC B AC B ∴∠=∠=∠∠=则在中,, 1Rt GP C ':1112sin 3P G GC A C B '=∠==的周长.PGF ∴:423PG PF FG P G '++≥=故答案为:. 43【点睛】关键点点睛:本题考查立体几何中到定点和到动点的距离和的最值问题的求解,解题关键是能够通过旋转平面将立体几何中距离之和的问题,转化为平面几何中的距离之和的问题,进而结合三角形三边关系确定最值取得的情况.二、单选题13.设M ,N 为两个随机事件,如果M ,N 为互斥事件,那么( ) A .是必然事件 B .是必然事件 M N ⋃M N ⋃C .与一定为互斥事件 D .与一定不为互斥事件M N M N 【答案】A【分析】根据对立事件和互斥事件的定义,再借助维恩图即可求解. 【详解】因为M ,N 为互斥事件,则有以下两种情况,如图所示(第一种情况)(第二种情况)无论哪种情况,均是必然事件.故A 正确.如果是第一种情况,不是必然事件,故M N ⋃M N ⋃B 不正确,如果是第一种情况,与不一定为互斥事件,故C 不正确,如果是第二种情况,M N M 与一定为互斥事件,故D 不正确. N 故选:A.14.已知平面两两垂直,直线满足:,则直线不可能满足αβγ、、a b c 、、,,a b c αβγ⊆⊆⊆a b c 、、以下哪种关系 A .两两垂直 B .两两平行C .两两相交D .两两异面【答案】B【分析】通过假设,可得平行于的交线,由此可得与交线相交或异面,由此不可能//a b ,a b ,αβc 存在,可得正确结果.////a b c 【详解】设,且与均不重合l αβ= l ,a b假设:,由可得:, ////a b c //a b //a β//b α又,可知, l αβ= //a l //b l 又,可得:////a b c //c l 因为两两互相垂直,可知与相交,即与相交或异面 ,,αβγl γl c 若与或重合,同理可得与相交或异面 l a b l c 可知假设错误,由此可知三条直线不能两两平行 本题正确选项:B 【点睛】本题考查空间中的直线、平面之间的位置关系,关键在于能够通过线面关系得到第三条直线与前两条线之间的位置关系,从而得到正确结果.15.某种疾病可分为两种类型:第一类占70%,可由药物治疗,其每一次疗程的成功率为70%,A 且每一次疗程的成功与否相互独立;其余为第二类,药物治疗方式完全无效.在不知道患者所患A 此疾病的类型,且用药物第一次疗程失败的情况下,进行第二次疗程成功的概率最接近下列哪一A 个选项( ) A .0.25 B .0.3 C .0.35 D .0.4【答案】B【分析】分别写出两次疗程概率,再应用独立事件概率是概率的积, 计算即可. 【详解】用药物A 第一次疗程失败的概率为0.70.3+0.3=0.51⨯用药物A 第一次疗程失败第二次疗程成功的概率为 0.70.30.7=0.3×0.49⨯⨯所以药物A 第一次疗程失败的情况下,进行第二次疗程成功的概率为,0.30.49490.30.290.5151⨯=⨯≈ 故选:B .16.已知随机变量,,,,记,其中,()2,B n p ξ:*n ∈N 2n ≥01p <<()()f t P t ξ==t ∈N 2t n ≤,现有如下命题:①;②若,则,下列判断正确的是011(2)(21)2nnt t f t f t ==<<-∑∑6np =()()12f t f ≤( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题【答案】D【分析】根据已知得出.取,根据二项式定理求出奇数项和偶数项()()22C 1n tt t n f t p p -=⋅⋅-12p =和,即可判断命题①真假;先利用分布列的表达式得出,判断()()()()()()1211111f t n p t f t t p ++-+=++-()f t的增减性.讨论是否为整数,得出最大项.最后根据已知,即可判断命题②真假. ()21n p +【详解】由已知可得,.()()()22C 1n tt t n f t P t p p ξ-===⋅⋅-对于命题①,当时,. 12p =()()2222111C 1C 222tn tnt t n n f t P t ξ-⎛⎫⎛⎫⎛⎫===⋅⋅-=⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭因为, ()()0221321222222C C C C C C n n n n n n n n -+++++++L L ()2012212222222C C C C C 112nn nn n n n n n -=+++++=+=L ()()221321222222CC C C C C n n nn n n n n -+++-+++L L ,所以()()()()()()0122122012212222221C 1C 1C 1C 1C 110n n nn nn n n n n --=-⨯+-⨯+-⨯++-⨯+-⨯=-=L . 022132121222222C C C C C C 2n n n n n n n n n--+++=+++=L L 所以,所以,所以()222222221111(2)2222C C Cn nnnnn t nnf t -=+⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭++⋅⋅∑ 101(21)(2)2n nt t f t f t ==-==∑∑①为假命题;对于命题②,若.()~2,B n p ξ()()()()21112221C 1C 1n t t t n n tt t n f t p p f t p p --++-+⋅⋅⋅⋅-=-()()()211n t p t p -=+-()()()()()()2111111n p t t p t p +-+++-=+-.()()()()211111n p t t p +-+=++-当时,,随着的增加而增加;当时,()121t n p +<+()()1f t f t +>()f t t ()121t n p +>+,随着的增加而减小.()()1f t f t +<()f t t 当为整数时,或时,有最大值;当不为整数()21n p +()21t n p =+()211t n p =+-()f t ()21n p +时,为的整数部分时,有最大值.因为,,所以当t ()21n p +()f t ()2112n p p +=+01p <<12t =时,最大,所以有,所以②为真命题. ()f t ()()12f t f ≤故选:D.三、解答题17.如图,在直三棱柱中,,,,交于点111ABC A B C -2AB AC ==14AA =AB AC ⊥1BE AB ⊥1AA E ,D 为的中点.1CC(1)求证:平面;BE ⊥1AB C (2)求直线与平面所成角的大小. 1B D 1AB C 【答案】(1)证明见解析(2)【分析】(1)先证明,从而可得平面,进而可得,再由线面垂直1AA AC ⊥AC ⊥11AA B B AC BE ⊥的判定定理即可证明;(2)建立空间直角坐标系,求出平面的一个法向量,利用向量法求解即可 1AB C 【详解】(1)因为三棱柱为直三棱柱, 111ABC A B C -所以平面, 1AA ⊥ABC 又平面, AC ⊂ABC 所以.1AA AC ⊥因为,,,平面,平面, AC AB ⊥1AA AC ⊥1AB AA A ⋂=AB ⊂11AA B B 1AA ⊂11AA B B 所以平面. AC ⊥11AA B B 因为平面, BE ⊂11AA B B 所以.AC BE ⊥因为,,,平面,平面, 1BE AB ⊥AC BE ⊥1AC AB A ⋂=AC ⊂1AB C 1AB ⊂1AB C 所以平面.BE ⊥1AB C (2)由(1)知,,两两垂直,如图建立空间直角坐标系. AB AC 1AA A xyz -则,,,,,()0,0,0A ()12,0,4B ()0,2,0C ()2,0,0B ()0,2,2D 设,,,,()0,0,E a ()12,0,4AB = ()2,0,BE a =-()0,2,0AC =因为,所以,即,则, 1AB BE ⊥440a -=1a =()2,0,1BE =- 由(1)平面的一个法向量为.1AB C ()2,0,1BE =-又()12,2,2B D =--设直线与平面所成角的大小为,则1B D 1AB C π20θθ⎛⎫≤≤ ⎪⎝⎭11πsin cos 2BE B DBE B D θθ⋅⎛⎫=-== ⎪⎝⎭因此,直线与平面所成角的大小为. 1B D 1ABC18.兰州牛肉面是人们喜欢的快餐之一,面条的宽度有细面、二细、毛细、韭叶、二宽、大宽等.现将体积为1000的面团经过第一次拉伸成长为100cm 的圆柱型面条,再经过第二次对折拉伸3cm 成长为的面条,……,小徐同学喜欢吃的面条的截面直径不超过0.5cm ,求至少经过多少2100cm ⨯次对折拉伸之后面条才符合小徐同学的要求?(单位:cm.每次对折拉伸相等的长度,面条的粗细是均匀的,拉面师傅拉完面后手中剩余面忽略不计)【答案】至少经过次对折拉伸之后面条才符合小徐同学的要求7【分析】拉伸之后面条数列为等比数列,可得拉伸后面条的数量;由圆柱的体积公式,结合等体积法即可求得拉伸后面条的截面半径,进而得解.【详解】经过次对折拉伸之后面条的数量成等比数列, n 因而可知经过次对折拉伸之后面条的长度为, n 12100n -⨯设拉伸次后面条的截面半径为,由面团体积为可得 n r 31000cm ,121002π1000n r -⨯⨯⨯=又因为直径, 122d r =≤即得,,是单调递增的 2121012π4n r -=≤⨯5102πn -≤52n y -=且当时,,当时, , 6n =102π>7n =104π≤所以至少经过次对折拉伸之后面条才符合小徐同学的要求719.一个随机变量的概率分布为:,其中A ,B ,C 为锐角三角形ABC 的三个ζ()12cos2sin x x A B C ⎛⎫⎪+⎝⎭内角.(1)求A 的值;(2)若,求数学期望的取值范围. 12cos sin x B x C ==,E ζ【答案】(1)π6(2)34⎫⎪⎪⎭【分析】(1)根据概率分布的概率性质计算即可;(2)把转化为三角函数,根据角的范围确定三角函数的值域可解. E ζ【详解】(1)由已知可知: cos2sin 1A A +=,,212sin sin 1A A -+=()sin 12sin 0A A -=又因为为锐角, ,所以,即得. A sin 0A >1sin 2A =π6A =(2)因为 12cos sin xB xC ==,所以cos cos2sin sin 11cos sin 22E B A C A B C ζ=+=+ 11πcos sin 226B B ⎛⎫=++⎪⎝⎭111cos sin cos 22213sin cos 22B B B B B ⎛⎫=++⨯ ⎪ ⎪⎝⎭⎛⎫=⨯⎪ ⎪⎝⎭1sin cos 2π3B B B =⨯+⎛⎫=+ ⎪⎝⎭又因为是锐角三角形,且,所以ABC :π6A =ππ32B <<, 2ππ5π336B <+<π1sin 32B ⎛⎛⎫+∈ ⎪ ⎝⎭⎝π334B ⎫⎛⎫+∈⎪ ⎪⎪⎝⎭⎭34E ζ⎫∈⎪⎪⎭20.《瀑布》(图1)是最为人所知的作品之一,图中的瀑布会源源不断地落下,落下的水又逆流而上,荒唐至极,但又会让你百看不腻,画面下方还有一位饶有兴致的观察者,似乎他没发现什么不对劲.此时,他既是画外的观看者,也是埃舍尔自己.画面两座高塔各有一个几何体,左塔上方是著名的“三立方体合体”由三个正方体构成,右塔上的几何体是首次出现,后称“埃舍尔多面体”(图2)埃舍尔多面体可以用两两垂直且中心重合的三个正方形构造,设边长均为2,定义正方形n n n n A B C D ,的顶点为“框架点”,定义两正方形交线为“极轴”,其端点为“极点”,记为,将极点1,2,3n =,n n P Q ,分别与正方形的顶点连线,取其中点记为,,,如(图3).埃11,P Q 2222A B C D m E m F 1,2,3,4m =舍尔多面体可视部分是由12个四棱锥构成,这些四棱锥顶点均为“框架点”,底面四边形由两个“极点”与两个“中点”构成,为了便于理解,图4我们构造了其中两个四棱锥与11122A PE P E -22131A P E P F -(1)求异面直线与成角余弦值; 12P A 12Q B (2)求平面与平面的夹角正弦值; 111P A E 122A E P (3)求埃舍尔体的表面积与体积(直接写出答案). 【答案】(1);13;(3)表面积为,体积为. 2【分析】(1)以点为坐标原点,分别以的方向为轴的正方向,建立空间直角O 221,,OP OQ OP u u u r u u u u r u u u r,,x y z 坐标系.写出点的坐标,求出,,根据向量即可结果;()121,1,1P A =--u u u r ()121,1,1Q B =u u u u r(2)根据坐标,求出平面与平面的法向量,根据向量法可以求出法向量夹角的余弦111P A E 122A E P 值,进而得出结果;(3)由已知可得,四边形为菱形.根据向量法求出四棱锥的体积以及表面积即1122PE P E 11122A PE P E -可得出结果.【详解】(1)解:由题意可知,两两垂直,且.以点为坐标原221,,OP OQ OP 2211OP OQ OP ===O 点,分别以的方向为轴的正方向,如图5,建立空间直角坐标系. 221,,OP OQ OP u u u r u u u u r u u u r,,x y z则由题意可得,,,,,,,()0,0,0O ()21,0,0P ()20,1,0Q ()10,0,1P ()21,1,0B ()11,0,1A ()21,1,0A -,.()10,0,1Q -又分别是的中点,所以,. 12,E E 1212,P A PB 1111,,222E ⎛⎫- ⎪⎝⎭2111,,222E ⎛⎫ ⎪⎝⎭所以,,()121,1,1P A =--u u u r ()121,1,1Q B =u u u u r 则,12121cos ,3P A Q B <=-u u u r u u u u ru u u r u u u u r 所以异面直线与成角余弦值为. 12P A 12Q B 13(2)解:由(1)可得,,,,.()111,0,0P A =u u u r11111,,222PE ⎛⎫=-- ⎪⎝⎭u u u r ()210,0,1P A =u u u r 22111,,222P E ⎛⎫=- ⎪⎝⎭u u u u r 设是平面的一个法向量,()1111,,n x y z =111P A E 则, 1111110n P A n PE ⎧⋅=⎪⎨⋅=⎪⎩ 即, 111101110222x x y z =⎧⎪⎨--=⎪⎩令,可得是平面的一个法向量. 11y =()10,1,1n =-111P A E 设是平面的一个法向量,()2222,,n x y z =122A E P 则, 22122200n P A n P E ⎧⋅=⎪⎨⋅=⎪⎩ 即,取,可得是平面的一个法向量. 222201110222z x y z =⎧⎪⎨-++=⎪⎩21x =()21,1,0n = 122A E P 则,1212121cos ,2n n n n n n ⋅<>===u r u u ru r u u r u r u u r所以平面与平面. 111P A E 122A E P =(3)解:由(1)(2)可得,,,,()121,0,1PP =-u u u r()120,1,0E E =u u u u r 11111,,222PE ⎛⎫=-- ⎪⎝⎭u u u r ,,. 22111,,222P E ⎛⎫=- ⎪⎝⎭u u u u r ()111,0,0A P =-u u u r12111,,222PE ⎛⎫=- ⎪⎝⎭u u u u r 所以,2211P E PE =-u u u u r u u u r 所以∥且,所以四边形为平行四边形. 22P E 11PE 2211=P E PE 1122PE P E 又,()()12121,0,10,1,00PP E E ⋅=-⋅=u u u r u u u u r所以,即, 1212PP E E ⊥u u u r u u u u r1212PP E E ⊥所以四边形为菱形.1122PE P E ,, 121E E =u u u u r 所以. 112212112P E P E S PP E =⨯⨯u u u r u u u 设是平面的一个法向量,则,()3333,,n x y z = 1122PE P E 31231100n PP n PE ⎧⋅=⎪⎨⋅=⎪⎩即,取, 3333301110222x z x y z -=⎧⎪⎨--=⎪⎩31x =则是平面的一个法向量.()31,0,1n =u r1122PE P E 又,所以点到平面的距离()111,0,0A P =-u u u r 1A 1122PE P Ed 所以四棱锥的体积. 11122A PE P E -11221111336P E P E V S d =⨯⨯==因为,,. ()111,0,0A P =-u u u r12111,,222PE ⎛⎫=- ⎪⎝⎭u u u u r 11111,,222PE ⎛⎫=-- ⎪⎝⎭u u u r 所以在方向上的投影为 11A P u u u r 12PE u u u u r 111212AP PE PE ⋅==u u u r u u u u r u u u u r 所以点到直线的距离. 1A 12PE 1h 同理可得点到直线的距离1A 11PE 2h =所以四棱锥的侧面积11122A PE P E -1121114422S PE h =⨯⨯⨯==u u u u r 所以埃舍尔体的表面积为,体积为.112S =1122V =21.随着网络的快速发展,电子商务成为新的经济增长点,市场竞争也日趋激烈,除了产品品质外,客服团队良好的服务品质也是电子商务的核心竞争力,衡量一位客服工作能力的重要指标—询单转化率,是指咨询该客服的顾客中成交人数占比,可以看作一位顾客咨诲该客服后成交的概率,已知某网店共有10位客服,按询单率分为,两个等级(见表),且视,等级客服的询单转A B A B 化率分别为对应区间的中点值.等级A B询单转化率70%%[90,) 50%%[70,)人数6 4(1)求该网店询单转化率的平均值;(2)现从这10位客服中任意抽取4位进行培训,求这4人的询单转化率的中位数不低于的概70%率;(3)已知该网店日均咨询顾客约为1万人,为保证服务质量,每位客服日接待顾客的数量不超过1300人.在网店的前期经营中,进店咨询的每位顾客由系统等可能地安排给任一位客服接待,为了提升店铺成交量,网店实施改革,经系统调整,进店咨询的每位顾客被任一位A 等级客服接待的概率为a ,被任一位B 等级客服接待的概率为b ,若希望改革后经咨询日均成交人数至少比改革前增加300人,则a 应该控制在什么范围? 【答案】(1); 72%(2); 3742(3). 113,8100⎡⎤⎢⎥⎣⎦【分析】(1)由已知分别求出、等级客服的询单转化率,根据平均数公式求出即可; A B (2)设A 等级客服的人数为,则的可能取值为,对应的询单转化率中位数分别为X X 0,1,2,3,4,进而利用超几何分布求出对应的概率,求出答案;60%,60%,70%,80%,80%(3)根据二项分布的期望公式计算出改革前的日均成交人数为7200,然后表示出改革后的日均成交人数,结合每位客服日接待顾客的数量不超过1300人,列出不等式组,即可求出120006000a +a 的取值范围.【详解】(1)解:由已知可得,等级客服的询单转化率为,等级客服的询单转化率为A 80%B 60%,所以该网店询单转化率的平均值为.80%660%472%10⨯+⨯=(2)解:由(1)知:、等级客服的询单转化率分别为. A B 80%,60%设抽取4位客服中,等级客服的人数为X ,则X 的可能取值为0,1,2,3,4. A 由题意可得,服从超几何分布.X 当时,4人转化率为,中位数为; X 0=60%,60%,60%,60%60%当时,4人转化率为,中位数为; 1X =60%,60%,60%,80%60%当时,4人转化率为,中位数为; 2X =60%,60%,80%,80%70%当时,4人转化率为,中位数为; 3X =60%,80%,80%,80%80%当时,4人转化率为,中位数为. 4X =80%,80%,80%,80%80%所以,当时,这4人的询单转化率的中位数不低于.2X ≥70%因为,服从超几何分布,所以的分布列为,. X X ()464410C C C k k P X k -⋅==0,1,2,3,4k =所以. ()()()2101P X P X P X ≥=-=-=04136464441010C C C C 371C C 42⋅⋅=--=(3)解:设改革前后等级客服的接待顾客人数分别为. A ,Y Z 则改革前,每位进店咨询顾客被等级客服接待的概率为, A 163105P ==所以,则.310000,5Y B ⎛⎫~ ⎪⎝⎭()31000060005E Y =⨯=因为,等级客服的询单转化率分别为,A B 80%,60%所以改革前日均成交人数为; ()600080%10000600060%7200⨯+-⨯=改革后,每位进店咨询顾客被等级客服接待的概率为, A 26P a =所以,则,()10000,6Z B a ~()10000660000E Z a a =⨯=故改革后日均成交人数为. ()6000080%100006000060%120006000a a a ⨯+-⨯=+由得:,①1200060007200300a +≥+18a ≥因为每位顾客被一位等级客服接待的概率为,又,所以每位顾客被一位等级客服A a 641a b +=B 接待的概率为. 164ab -=又每位客服日接待顾客的数量不超过1300人,所以, 100001300161000013004a a≤⎧⎪⎨-⋅≤⎪⎩解得:,②13100225a a ⎧≤⎪⎪⎨⎪≥⎪⎩由①②得:,所以应该控制在. 1138100a ≤≤a 113,8100⎡⎤⎢⎥⎣⎦。
上海重点高中高二上学期期末数学试题(解析版)
一、填空题1.“两条直线没有公共点”是“两条直线是异面直线”的__________条件.【答案】必要不充分【分析】两条直线没有公共点,得到异面或者平行,异面可以得到没有交点,得到答案.【详解】两条直线没有公共点,则两条直线平行或者异面两条直线是异面直线,则两条直线没有公共点“两条直线没有公共点”是“两条直线是异面直线”的必要不充分条件.故答案为必要不充分【点睛】本题考查了充分必要条件,属于基础题型.2.已知向量,则向量的坐标为______.()()()3,5,1,2,1,3,1,1,2a b c =-==-- 4a b c -+ 【答案】 ()5,012-,【分析】根据向量坐标运算法则即可求解.【详解】由题意可知,. ()()()()435121341,125012a b c -+=--+--=- ,,,,,,,故答案为: ()5,012-,3.已知球的体积是,则该球的半径为______. 9π2【答案】## 32 1.5【分析】根据球的体积公式,代入就可求得半径. 34π3V R =【详解】设球的半径为R ,根据球的体积公式,即,解得. 34π9π32V R ==3278R =32R =故答案为:. 324.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是2的倍数的概率为______.【答案】##0.8 45【分析】列举出所有情况,及数字之积是2的倍数的情况,从而利用古典概型求概率公式求出答案.【详解】6张卡片中无放回随机抽取2张,有以下情况:,()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,共有15种情况,()()()4,5,4,6,5,6其中数字之积是2的倍数的情况有,()()()()()()()()()()()()1,2,1,4,1,6,2,3,2,4,2,5,2,6,3,4,3,6,4,5,4,6,5,6共12种情况,故概率为. 124155=故答案为: 455.用斜二测画法画得的正方形的直观图的面积为______.【答案】16【分析】根据斜二测画法的原则得到直观图的对应边长关系,即可求出相应的面积.【详解】设原正方形的边长为,根据斜二测画法的原则可知,, a O C a ''=1122O A OA a ''==高, 1sin 452A D O A a '=''==∴对应直观图的面积为,故原正方形的面积为16,2a 216a =故答案为:16.6.将边长分别为和的矩形,绕边长为的一边所在直线旋转一周得到一个圆柱,则该3cm 2cm 3cm 圆柱的体积为______.3cm 【答案】12π【分析】确定圆柱的底面半径和母线长,利用侧面积求解公式可得.【详解】解:由题知,圆柱的底面半径为,母线长为,2cm r =3cm l =所以该圆柱的体积为2π12πV r l ==3cm 故答案为:.12π7.棱长为2的正四面体(所有棱长都相等)的侧棱与底面所成角的大小是______.【答案】【分析】设正四面体的顶点在平面中的投影为点,进而得是侧棱与底面所P ABC O PCO ∠PC ABC 成角,再根据几何关系求解即可.【详解】解:如图,设正四面体的顶点在平面中的投影为点,P ABC O 所以,由正四面体的性质可知,平面,且为等边三角形的中心,OP ⊥ABC O ABC 所以,是侧棱与底面所成角,且是等边三角形的边的中线,PCO ∠PC ABC OC ABC AB 因为正四面体的棱长为,-P ABC 2所以,OC=OP ==所以,在中,,Rt POC △tan OPPCO OC ∠==所以,侧棱与底面所成角的大小是故答案为:8.圆锥底面半径为3,其侧面展开图是一个圆心角为的扇形,则此圆锥的侧面积为______. 2π3【答案】27π【分析】侧面积即为扇形面积,底面周长为扇形弧长,由此可得扇形半径,后可得答案.【详解】因底面半径为3,则底面周长即扇形弧长为,又圆心角为,则扇形半径为:2π36π⨯=2π3.则扇形面积即圆锥侧面积为:. 6923ππ=21292723ππ⨯⨯=故答案为:27π9.正三棱锥底面边长为4,则二面角的大小为______.-P ABC P BC A --【答案】【分析】根据题意分析可得二面角的平面角为,利用余弦定理运算求解.P BCA --PMA ∠【详解】取的中点,连接,BC M ,PM AM ∵,则,4,PB PC PA AB AC BC ======,PM BC AM BC ⊥⊥故二面角的平面角为,P BC A --PMA ∠由题意可得:,3,4PM AM PA ===∵,且, 222cos 2PM AM PA PMA PA AM +-∠==⋅[]0,πPMA ∠∈故二面角的大小为P BC A --故答案为:10.把一个圆锥截成圆台,已知圆台的上、下底面半径的比为,母线(原圆雉母线在圆台中的1:4部分)长为9,则原圆锥的母线长______.【答案】12【分析】根据圆台的几何特征利用三角形相似即可求得结果.【详解】由题意可得,几何体如下图所示:取轴截面可知,圆台的上、下底面半径的比为,且, 14CD AB =//,9CD AB BD =设圆锥的母线长为,根据相似比可得,解得, l 914CD ED l AB EB l -===12l =即原圆锥的母线长为.12故答案为:.1211.在棱长为的正方体中,,分别是正方形、正方形的中a 1111ABCD A B C D -M N ABCD 11BB C C 心,则过点,,的平面截正方体的截面面积为______.A M N2【分析】连接AC ,, ,找到过点A 、、的平面截正方体的截面,确定其形状,求得截面1B C 1AB M N 边长,即可求得答案.【详解】如图连接AC ,则AC 过点M ,连接,则经过点N ,连接,1B C 1B C 1AB则过点A 、、的平面截正方体的截面为等边,M N 1ACB A 因为正方体棱长为,故, a 1ACBA22)= 212.设一组样本数据的方差为6,则数据的方差是______.128,,,x x x ⋅⋅⋅12831,31,,31x x x ++⋅⋅⋅+【答案】54【分析】设的平均数为,结合的方差为6,根据平均数和方差的计算公式得128,,,x x x ⋅⋅⋅x 128,,,x x x ⋅⋅⋅到的平均数和方差.12831,31,,31x x x ++⋅⋅⋅+【详解】设的平均数为,则,且128,,,x x x ⋅⋅⋅x 1288x x x x ⋅⋅+++=⋅,()()()2122288648x x x x x x ⋅⋅⋅-+-+-+=⨯=故的平均数为, 12831,31,,31x x x ++⋅⋅⋅+()128128383131313188x x x x x x x +⋅⋅⋅++++++⋅⋅⋅+=++=+方差为()()()8212223131313131318x x x x x x +--++--+⋅⋅⋅++--. ()()()22228194854898x x x x x x ⎡⎤⋅⋅⋅+⎢=-⎦+-+-⎥⨯⎣==故答案为:54二、单选题13.若直线的方向向量为,平面的法向量为,能使的是( )l r αn l α∥A .B . ()()1,0,0,1,0,0r n ==- ()()1,2,3,0,3,2r n =-=C .D . ()()0,1,1,1,0,1r n ==-- ()()1,3,5,1,0,1r n ==-【答案】B 【分析】由题意知,要使,则直线的方向向量与平面的法向量垂直,即.l α∥l r αn r ⋅n 0=【详解】若,则;l α∥r ⋅n 0=对于A :,,故A 错误; ()()1,0,0,1,0,0r n ==- ()()1,0,01,0,010r n ⋅-=⋅=-≠ 对于B :,,故B 正确;()()1,2,3,0,3,2r n =-= ()()1,2,30,3,20r n =-⋅⋅= 对于C :,,故C 错误;()()0,1,1,1,0,1r n ==-- ()()0,1,11,0,110r n -⋅⋅-==-≠ 对于D :,,故D 错误;()()1,3,5,1,0,1r n ==- ()()1,3,51,0,140r n =⋅-⋅=-≠ 故选:B.14.下列命题中真命题是( )A .四边形一定是平面图形B .相交于一点的三条直线只能确定一个平面C .四边形四边上的中点可以确定一个平面D .如果点,,平面,且,,平面,则平面与平面为同一平面A B C ∈αA B C ∈βαβ【答案】C【分析】利用平面的基本性质逐一判断即可.【详解】对于A ,四边形有平面四边形和空间四边形,由不共面的四个点构成的四边形为空间四边形,故A 错误;对于B ,三棱锥三条侧棱所在的直线相交于一点,但这三条直线不共面,故B 错误;对于C ,由四边形四边上的中点连线为平行四边形,平行四边形对边平行,所以四边形四边上的中点可以确定一个平面,故C 正确;下面证明四边形四边上的中点连线为平行四边形.证明:如图为四边形,其中,,,分别为,,,的中点,ABCD E F G H AD AB BC CD 连接,,,BD FE GH 由,为,,则,且,同理,且, E F AD AB FE BD ∥1=2FE BD GH BD ∥1=2GH BD 所以,且,所以四边形为平行四边形.FE GH A =FE GH EFGH对于D ,当点,,在一条直线上时,平面和与平面也可能相交,故D 错误.A B C αβ故选:C .15.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为A .B .C .D . 7105838310【答案】B 【详解】试题分析:因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为,故选B. 40155408-=【解析】几何概型【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.16.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( )A .该地农户家庭年收入低于4.5万元的农户比率估计为6%B .该地农户家庭年收入不低于10.5万元的农户比率估计为10%C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为,故A 正确;0.020.040.066%+==该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B 正确;0.040.0230.1010%+⨯==该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D 正确;0.100.140.2020.6464%50%++⨯==>该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.6⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于. ⨯频率组距组距三、解答题17.某高中高一、高二、高三年级共有学生800名,各年级男、女生人数如下表:高一 高二 高三 男生(人数)149 x y 女生(人数)143 130z已知在三个年级的学生中随机抽取1名,抽到高二年级男生的概率是0.16(1)求的值;x (2)现用分层抽样的方法在三个年级中共抽取32名学生,应从高三年级抽取多少名?【答案】(1)128.(2)10名.【分析】(1)根据抽到高二年级男生的概率是0.16,列式计算,可得答案.(2)求出高三年级的总人数,根据分层抽样的比例,列式计算,求得答案.【详解】(1)由题意可知. 0.16,128800x x =∴=(2)高三年级人数为,800(149143)(128130)250-+-+=故用分层抽样的方法在三个年级中共抽取32名学生, 应从高三年级抽取人数为(名). 2503210800⨯=18.甲乙两名射击运动员在某次选拔赛中的成绩的茎叶图为: 甲乙 1 10 3 33 3 6 7 7 9 92 23 6 68 8 8 8 9如果以这个成绩为依据选择一个人参加正赛,从平均水平和稳定性的角度出发应该选择谁?用统计学相关数据说明你选择的理由.【答案】选择甲,理由见解析【分析】分别求出,和,,然后比较大小即可求解. x 甲x 乙2S 甲2S 乙【详解】依题意,, 888893939697979910129493x ++++++++==甲, 8889929293969610310329493x ++++++++==乙 2222212222889488949394939493333S ⎡⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+⎢ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎣甲 222222222296949794979499941019416633333⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+-=⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦2222212222889489949294929493333S ⎡⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+⎢ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎣乙, 2222222222939496949694103941039423633333⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+-=⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦所以,.x x =甲乙22S S <甲乙所以从平均水平和稳定性的角度出发应该选择甲.19.三棱锥中,,分别为,中点,,A BCD -O E BD BC 2CA CB CD BD ====AB AD ==(1)求证:平面;AO ⊥BCD (2)求异面直线与所成角的大小.AB CD 【答案】(1)证明见解析.(2).【分析】(1)连接,证明,,根据线面垂直的判定定理即可证明结论; OC AO BD ⊥AO OC ⊥(2)取的中点M ,连接,找到异面直线与所成角,求出相关线段长,AC OM ME OE 、、AB CD 解三角形,即可求得答案.【详解】(1)连接,∵ O 为的中点, OC AB AD ==BD∴,,且, AO BD ⊥112OD BD ==1AO ===又,O 为的中点,2CA CB CD BD ====BD∴,且,CO BD ⊥CO ===在中,,AOC A 2224AO CO AC =+=∴,即,=90AOC ∠︒AO OC ⊥又平面,,,OC BD O OC BD =⊂ BCD ∴平面.AO ⊥BCD (2)取的中点M ,连接, AC OM ME OE 、、由E 为的中点,知,BC ,ME AB OE DC ∥∥∴直线与所成的角就是异面直线与所成角或其补角,OE EM AB CD 在中,,, OMEV 12EM AB ==112OE DC ==由平面,平面,所以,AO ⊥BCD OC ⊂BCD AO OC ⊥∵是直角三角形斜边上的中线,∴, OM AOC 112OM AC ==在中,由余弦定理可得:OEM △222cos 2OE EM OM OEM OE EM +-∠=⋅==由于异面直线所成角的范围为, π(0,2所以异面直线与所成角的大小为. AB CD 20.如图所示的正四棱柱的底面边长为,侧棱,点在棱上,1111ABCD A B C D -112AA =E 1CC 且().1=CE CC λ 0λ>(1)当时,求三棱锥的体积; 1=2λ1D EBC -(2)当异面直线与所成角的大小为时,求的值. BE 1D C 2arccos 3λ【答案】(1) (2) 16λ=【详解】试题分析:(1)正四棱柱中,平面,可得1111ABCD A B C D -11D C ⊥EBC;(2)以为原点,射线、、作轴、11113D EBC Rt ECB V S D C -∆=⋅111326CE BC =⨯⋅=D DA DC 1DD x y 轴、轴的正半轴,建立空间直角坐标系,可得,,利用空间向量夹z ()10,1,2D C =- ()1,0,2BE λ=- 角余弦公式列方程求解即可.试题解析:(1)由,得, 又正四棱柱,则平面, 11=2CE CC 1CE =1111ABCD A B C D -11D C ⊥EBC 则 . 11113D EBC Rt ECB V S D C -∆=⋅111326CE BC =⨯⋅=(2)以为原点,射线、、作轴、轴、轴的正半轴,建立空间直角坐标系(如D DA DC 1DD x y z 图),则,,,,()1,1,0B ()0,1,2E λ()10,0,2D ()0,1,0C 即,()10,1,2D C =- ()1,0,2BE λ=- 又异面直线与所成角的大小为, BE 1D C2arccos 3则23化简整理得,又,即. 2165λ=0λ>λ=【方法点晴】本题主要考查利用空间向量求异面直线所成的角角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 21.如图,等腰,,点是的中点,绕所在的边逆时针旋转一Rt AOB △2OA OB ==C OB AOB A BO 周.设逆时针旋转至,旋转角为,.OA OD θ[)0,2θ∈π(1)求旋转一周所得旋转体的体积和表面积;ABC A V S (2)当时,求点到平面的距离; π3θ=O ABD (3)若,求旋转角.AC BD ⊥θ【答案】(1), . 4π3V =S =+(3)或. 2π3θ=4π3θ=【分析】(1) 旋转体的体积为圆锥与圆锥的体积之差; 表面积为圆锥与圆锥的侧面BO CO S BO CO 积之和;(2)三棱锥与三棱锥体积相等,使用等积转化法求点到平面的距离;B AOD -O ABD -O ABD (3) 取中点,连接,得,在求得,在中由余弦定理得OD E ,CE AE AC CE ⊥Rt ACE A AE AOE △cos AOE ∠,从而求得旋转角.θ【详解】(1)设底面半径为,圆锥底面面积为,底面周长, 母线R BO 2π4πS R '==4πL =.AB ==圆锥的体积,侧面积. BO 1118π4π2333V S BO '=⋅=⨯⨯=14π22L S AB =⨯=⨯=圆锥的体积 ,CO 1114π4π1333V S CO '=⋅=⨯⨯=AC ==. 24π22L S AC =⨯==旋转一周所得旋转体的体积. ABC A 124π3V V V =-=旋转一周所得旋转体表面积.ABC A 12S S S =+=+(2),π,3OA OD AD θ=∴== 2AOD S R ∴=A, ∴11233B AOD AOD V S OB -=⋅==A 在中,连接,取的中点,连接, ABD △AD AD M BM,, 2BA BD AD ===BM ===所以11222ABD S AD BM =⋅⋅=⨯=A 设点到平面的距离为,O ABD h,13O ABD ABD B AOD V S h V --∴=⋅=A 13h ∴=h ∴=即点到平面O ABD (3)取中点,连接, OD E ,CE AE, 1//,2CE BD CE BD ∴==,,AC BD AC CE ⊥∴⊥在中,Rt ACE A AC CE ==AE ∴=在中,由余弦定理得, AOE △2,1,OA OE AE ==2224171cos 22212OA OE AE AOE OA OE +-+-∠===-⋅⋅⨯⨯,, ()0,AOE ∈π∠ 2π3AOE ∴∠=,或. [)0,2θπ∈ 2π3θ∴=4π3θ=。
上海市高二上学期期末数学试题(解析版)
一、填空题1.在等差数列中,已知,,则__.{}n a 12a =34a =-4a =【答案】7-【分析】利用通项公式的相关的性质即可求解.【详解】设公差为,则, d 3132a a d -==-所以.437a a d =+=-故答案为:7-2.等比数列中,若,,则_____. (){*}n a n ∈N 2116a =512a =8a =【答案】4【分析】根据等比数列的通项公式可求得答案.【详解】设等比数列的公比为,则,解得,即,所以(){*}n a n ∈N q 35212a a q ⨯==38q =2q =, 3581842a a q =⨯⨯==故答案为:.43.半径为2的球的表面积为________.【答案】16π【分析】代入球的表面积公式:即可求得.2=4S R π表【详解】, 2R = 由球的表面积公式可得,∴2=4S R π表,2=42=16S ππ⨯⨯球表故答案为:16π【点睛】本题考查球的表面积公式;属于基础题.4.从甲、乙、丙、丁4名同学中选2名同学参加志愿者服务,则甲、乙两人都没有被选到的概率为___________(用数字作答).【答案】 16【解析】先计算出从4名同学中选2名同学的情况,再计算出甲、乙两人都没有被选到的情况,即可求出概率.【详解】解:从4名同学中选2名同学共有种, 2443621C ⨯==⨯甲、乙两人都没有被选到有种,1甲、乙两人都没有被选到的概率为. ∴165.已知正项等差数列的前项和为,,则________.{}n a n n S 25760a a a +-=11S =【答案】22【分析】根据等差数列的性质可得,再根据求和公式即可求出.62a =【详解】正项等差数列的前项和为.{}n a n n S 由得,所以,(舍)25760a a a +-=26620a a -=62a =60a = 611111*********a a a S +=⨯=⨯=故答案为:22【点睛】本题考查了等差数列的求和公式和等差数列的性质,考查了运算能力,属于基础题. 6.如图,以长方体的顶点为坐标原点,过的三条棱所在的直线为坐标轴,建1111ABCD A B C D -D D 立空间直角坐标系,若的坐标为,则的坐标为________1DB (4,3,2)1AC【答案】(4,3,2)-【详解】 如图所示,以长方体的顶点为坐标原点,1111ABCD A B C D -D 过的三条棱所在直线为坐标轴,建立空间直角坐标系,D 因为的坐标为,所以,1DB (4,3,2)(4,0,0),(0,3,2)A C 所以.1(4,3,2)AC =-7.一次期中考试,小金同学数学超过90分的概率是0.5,物理超过90分的概率是0.7,两门课都超过90分的概率是0.3,则他的数学和物理至少有一门超过90的概率为___________.【答案】0.9## 910【分析】利用概率加法公式直接求解.【详解】一次期中考试,小金同学数学超过90分的概率是0.5,物理超过90分的概率是0.7,两门课都超过90分的概率是0.3,∴他的数学和物理至少有一门超过90的概率为:.0.50.70.30.9P =+-=故答案为:0.9.8.如图,点为矩形的边的中点,,,将矩形绕直线旋转所M ABCD BC 1AB =2BC =ABCD AD 得到的几何体体积记为,将绕直线旋转所得到的几何体体积记为,则的值为1V MCD △CD 2V 12V V ________【答案】6【分析】分析几何体的结构,计算出、,由此可得出结果.1V 2V 【详解】将矩形绕直线旋转所得到的几何体是以为底面圆的半径,母线长为的圆柱,ABCD AD 12所以,,21122V ππ=⨯⨯=将绕直线旋转所得到的几何体是以为底面圆的半径,高为的圆锥,MCD △CD 11所以,. 2211133V ππ=⨯⨯⨯=因此,. 126V V =故答案为:.69.已知直三棱柱的各棱长都相等,体积等于.若该三棱柱的所有顶点都在球的表面上,()318cm O 则球的体积等于__. O ()3cm 【分析】先由题目条件可得三棱柱的棱长,后可结合图形确定球O 的球心,后可得答案.【详解】如图,三棱柱是直三棱柱,且所有棱长都相等,111ABC A B C -该三棱柱的顶点都在球的表面上,且三棱柱的体积为18,O 设三棱柱的棱长为,则, a 1sin 60182a a a ⨯⨯⨯︒⨯=解得,分别设上下底面中心为、,a =1O 2O 则的中点即为三棱柱外接球的球心,12O O O ,22O A ==所以球的半径,R ===则球的体积等于.O 34π3⨯=10.如图,一质点从原点出发沿向量到达点,再沿轴正方向从点前进AO )1OA = 1A y 1A 到达点,再沿的方向从点前进到达点,再沿轴正方向从点前进112OA 2A 1OA 2A 1212A A 3A y 3A 到达点,,这样无限前进下去,则质点最终到达的点的坐标为__.2312A A 4A L A【答案】 83【分析】根据已知前进规律,再应用无穷等比数列求和公式可得横纵坐标.【详解】等比数列前项和公式当, n ()11,1n n a q S q -=-,110n q q ∞→+-<<≠,1,1n a S q→-根据已知前进规律,探究轴正方向的规律,得, y 1111181121441616314++++++=⨯=-同理也可发现x==故质点最终到达的点的坐标为.A8)3故答案为:8)3二、单选题11.设“事件与事件互斥”是“事件的对立事件是”的()A B A BA.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】B【分析】由对立事件及互斥事件的关系即可得出结论.【详解】由对立事件一定是互斥事件,但互斥事件不一定是对立事件,故“事件与事件互斥”是“事件的对立事件是”的必要而不充分条件.A B A B故选:B.12.如图,正方体中,、分别为棱、上的点,在平面内且与1111A B C D ABCD-E F1A A BC11ADD A平面平行的直线()DEFA.有一条B.有二条C.有无数条D.不存在【答案】C【分析】设平面,且,可证明平面,从而可得正确的选项.l⊂11ADD A//l DE//l DEF【详解】设平面,且,又平面,平面,l⊂11ADD A//l DE DE⊂DEF l⊂DEF平面,显然满足要求的直线l有无数条.//l∴DEF故选:C.【点睛】本题考查线面平行的判断,注意根据所求直线在定平面中去构造与平面平行的直线,本题属于容易题.13.实数a ,b 满足a •b >0且a ≠b ,由a 、b 、按一定顺序构成的数列( ) 2a b +A .可能是等差数列,也可能是等比数列B .可能是等差数列,但不可能是等比数列C .不可能是等差数列,但可能是等比数列D .不可能是等差数列,也不可能是等比数列【答案】B【分析】由实数a ,b 满足a•b >0且a≠b ,分a ,b >0和a ,b <0,两种情况分析根据等差数列的定义和等比数列的定义,讨论a 、b 、2a b +件的a ,b 的值,最后综合讨论结果,可得答案.【详解】(1)若a >b >0则有a > b 2a b +若能构成等差数列,则a+b= 2a b +2a b +解得a=b (舍),即此时无法构成等差数列若能构成等比数列,则a•b=, 2a b +2a b +=解得a=b (舍),即此时无法构成等比数列(2)若b <a <0,2a b a b +>>>,得2a b b a +=+于是b <3a4ab=9a 2-6ab+b 2得b=9a ,或b=a (舍)当b=9a 时这四个数为-3a ,a ,5a ,9a ,成等差数列.于是b=9a <0,满足题意<0,a•>0,不可能相等,故仍无法构成等比数列 2a b +故选B【点睛】本题考查的知识点是等差数列的确定和等比数列的确定,熟练掌握等差数列和等比数列的定义和性质是解答的关键.14.已知正项等比数列满足,若存在两项,,则的{}n a 7652a a a =+m a n a 14a =14m n +最小值为( )A .B .C .D .不存在3243256【答案】A【分析】根据求出公比得到,结合均为正整7652a a a =+2q =14a =6m n +=,m n 数,得到五组值,代入求出最小值.【详解】设正项等比数列的公比为,{}n a 0q >因为,所以,7652a a a =+25552a q a q a =+化为,,解得.220q q --=0q >2q =因为存在两项,,m n a a 14a =14a =化为.6m n +=则,;,;,;,;,.1m =5n =2m =4n =3m =3n =4m =2n =5m =1n =则当,时,, 1m =5n =1449155m n +=+=当,时,, 2m =4n =1413122m n +=+=当,时,, 3m =3n =14145333m n +=+=当,时,, 4m =2n =1419244m n +=+=当,时,, 5m =1n =14121455m n +=+=故最小值为. 32故选:A .15.已知函数是定义在上的严格增函数且为奇函数,数列是等差数列,,则()f x R {}n a 10110a >的值( ) ()()()()()12320202021f a f a f a f a f a ++++ A .恒为正数B .恒为负数C .恒为D .可正可负0【答案】A 【分析】根据函数的性质可判断函数值正负,从而结合等差数列性质推出()f x 12021()()0f a f a +>,进而将结合等差数列的性质即可判断答案.()()()()()12320202021f a f a f a f a f a ++++ 【详解】因为函数是上的奇函数且是严格增函数,()f x R 所以,且当时,; 当时,.(0)0f =0x >()0f x >0x <()0f x <因为数列是等差数列,,故.{}n a 10110a >1011()0f a >再根据,所以,则,12021101120a a a +=>12021a a ->120212021()()()f a f a f a >-=-所以.12021()()0f a f a +>同理可得,,,22020()()0f a f a +>32019()()0f a f a +>L 所以()()()()()12320202021f a f a f a f a f a +++++ ,1202122020101210101011[()()][()()][()()]()0f a f a f a f a f a f a f a =+++++++> 故选:.A三、解答题16.在高中学生军训表演中,学生甲的命中率为0.4,学生乙的命中率为0.3,甲乙两人的击互不影响,求:(1)甲乙同时射中目标的概率;(2)甲乙中至少有一人击中目标的概率.【答案】(1)0.12(2)0.58【分析】(1)设出相应的事件,找出对应事件的概率,利用相互独立事件的概率求解即可,(2)利用对立事件性质求解即可.【详解】(1)设“甲击中目标”为事件,“乙击中目标”为事件,A B 则,且事件,相互独立,()()0.4,0.3P A P B ==A B 所以甲乙同时射中目标的概率为.()()()0.40.30.12P A B P A P B ⋅=⋅=⨯=(2)设“甲乙中至少有一人击中目标”为事件,C 则它的对立事件为“甲乙都没有击中目标”记为:,A B ⋅则. ()()()()()()11110.410.30.58P C P A B P A P B =-⋅=-⋅=---=17.如图,已知平面,,直线与平面所成的角为,且AB ⊥BCD BC BD ⊥AD BCD 30︒.2AB BC ==(1)求三棱锥的体积;A BCD -(2)设为的中点,求异面直线与所成角的大小.(结果用反三角函数值表示)M BD AD CM【答案】(2)【分析】(1)由题目条件可得BD ,后可由三棱锥体积公式得答案; (2)取中点,连接,则,即为异面直线与所成角,后可AB N ,CN MN //MN AD CMN ∠AD CM 由余弦定理得答案.【详解】(1)因为平面,所以即为直线与平面所成的角, AB ⊥BCD ADB ∠AD BCD所以,所以 o 30ADB ∠=o tan 30AB BD ==所以三棱锥的体积 A BCD -1111223632A BCD BCD V S AB BC BD AB -=⋅=⋅⋅=⨯⨯⨯A (2)取中点,连接,则,AB N ,CN MN //MN AD 所以即为异面直线与所成角,CMN ∠AD CM 又平面,平面,则,AB ⊥BCD BD ⊂BCD AB BD ⊥得. 1422,AD MN AD ====CN CM ====则在中,,CMN A 2,MN CN CM ===所以, 222cos 2CM MN CN CMN CM MN +-∠=⋅所以异面直线与所成角的大小为AD CM18.已知数列满足,且.{}n a 11a =123n n a a +=+(1)令,求证:是等比数列;3n n b a =+{}n b (2)求数列的通项公式及数列的前项和.{}n a n a {}n a n 【答案】(1)证明见解析(2),数列的前项和为 123n n a +=-{}n a n 2234n n +--【分析】(1)根据题意结合等比数列定义运算分析;(2)根据题意结合等比数列的通项公式求得,再利用分组求和以及等比数列的求和公123n n a +=-式运算求解.【详解】(1)因为,所以, 123n n a a +=+()1323n n a a ++=+又∵,则,且,3n n b a =+12n n b b +=14b =所以是以首项,公比的等比数列.{}n b 14b =2q =(2)由(1)得,所以,11422n n n b -+=⋅=123n n a +=-所以 ()()()()23123412323...23222...23n n n S n ++=-+-++-=++++-. ()2412312324n n n n +-=-=---19.如图,在圆柱中,是圆柱的母线,是圆柱的底面的直径,是底面圆周上异1OO AB BC O A D 于、的点.B C(1)求证:平面;CD ⊥ABD (2)若,,,求圆柱的侧面积.2BD =4CD =6AC =1OO 【答案】(1)证明见解析(2)【分析】(1)由圆柱的性质可得底面,即可得出,再由直线与平面垂直的判定AB ⊥BCD AB CD ⊥得出结论;(2)由已知解直角三角形求出圆柱的底面半径及母线长,即可求出答案.【详解】(1)证明:底面,且底面,AB ⊥Q BCD CD ⊂BCD ,AB CD ∴⊥又,且,平面,CD BD ⊥ AB BD B = AB 、BD ⊂ABD 平面;CD \^ABD (2)在中,,,Rt BCD ∆2BD =4CD =BC ∴==又在中,,Rt ABC ∆6AC =.4AB ∴==4,∴圆柱的侧面积为.∴1OO 24π=20.若数列满足“对任意正整数,,,都存在正整数,使得”,则称数列{}n a i j i j ≠k k i j a a a =⋅具有“性质”.{}n a P (1)判断各项均等于的常数列是否具有“性质”,并说明理由;a P (2)若公比为的无穷等比数列具有“性质”,求首项的值;2{}n a P 1a (3)若首项的无穷等差数列具有“性质”,求公差的值.12a ={}n a P d【答案】(1)答案见解析;(2),且;(3)或.12ma =1m ≥-m Z ∈1d =2d =【分析】(1)根据性质计算,由解得或,可得结论; P 2i j k a a a a a ===0a =1a =(2)通项公式,然后由求出,由的范围可得的值的形式;112n n a a -=⋅k i j a a a =⋅1a 1m k i j =+--1a (3)由得,由对于任意的正整数,存在整数和,使得,1k n a a a =221d k n =-+n 1k 2k 11k n a a a =⋅,两式相减得.首先确定,得是整数,因此也是整数,22k n a a a =⋅21()n da k k d =-0d ≠21n a k k =-d 然后说明不合题意(取较大的,使得即可得),时只有或2,并说明符0d <m 11m m a a a +>0d >1d =合题意.【详解】解:(1)若数列具有“性质”,由已知对于任意正整数,,,都存在正整数{}n a P i j i j ≠,使得,所以,解得或.k k i j a a a =⋅2a a =0a =1a =所以当或时,常数数列满足“性质”的所有条件,数列具有“性质”;当且0a =1a =P P 0a ≠1a ≠时,数列不具有“性质”.{}n a P (2)对于任意正整数,,,存在正整数,使得,即,i j i j ≠k k i j a a a =⋅111111222k i j a a a ---⋅=⋅⋅⋅,令,则.112k i j a +--=1k i j m Z +--=∈12m a =当且时,则,对任意正整数,,,由得1m ≥-m Z ∈11122n m n n a a -+-=⋅=i j i j ≠k i j a a a =⋅,得,而是正整数,所以存在正整数使111222m k m i m j +-+-+-=⋅1k i j m =++-1i j m ++-1k i j m =++-得成立,数列具有“性质”.k i j a a a =⋅P 若,取,,,不是中的项,不合题意.2m ≤-1,2i j ==12112222m m m a a ++=⨯=21m m +<212m +{}n a 综上所述,且.12m a =1m ≥-m Z ∈(3).对于任意的正整数,存在整数,使得得. 2(1)n a n d =+- n k 1k n a a a =⋅221d k n =-+对于任意的正整数,存在整数和,使得,,两式相减得. n 1k 2k 11k n a a a =⋅22k n a a a =⋅21()n da k k d =-当时,显然不合题意.0d =当时,得,是整数,从而得到公差也是整数.0d ≠21n a k k =-d 若时,此数列是递减的等差数列,取满足正整数,解得,0d <()2102m m a a a <⎧⎪⎨->=⎪⎩m 211m d m ⎧>-+⎪⎪⎨⎪>⎪⎩由,所以不存在正整数使得成立.从而时,不具有“性质”.211m m m a a a a +⋅>>k 1m m k a a a +⋅=0d <P 是正整数,都是正整数,因此或2. 221d k n =-+,k n 1d =当时,数列2,3,4,……,,……,对任意正整数,,,由得1d =1n +i j i j ≠k i j a a a =⋅,得,而是正整数,从而数列具有“性质”.1(1)(1)k i j +=+⋅+k i j i j =++⋅i j i j ++⋅P 当时,数列2,4,6,……,,……,对任意正整数,,,由得2d =2n i j i j ≠k i j a a a =⋅,得,而是正整数,从而数列具有“性质”.222k i j =⋅2k i j =⋅2i j ⋅P 综上所述或.1d =2d =【点睛】关键点点睛:本题考查数列新定义,考查学生的创新意识,推理能力.解题关键是理解新定义并能运用新定义解题.性质,即对任意的,存在,使得,只要根据P ,*m n N ∈*k N ∈k m n a a a =这个恒成立式求得数列即可.。
上海市高二上学期期末数学试题(解析版)
一、填空题1.已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于______. 【答案】3π【分析】根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的表面积公式,能求出结果.【详解】∵圆锥的轴截面是正三角形,边长等于2 ABC ∴圆锥的高,2AO ==底面半径.1212r =⨯=∴这个圆锥的表面积:.221213S rl r πππππ=+=⨯⨯+⨯=故答案为.3π【点睛】本题给出圆锥轴截面的形状,求圆锥的表面积,着重考查了等边三角形的性质和圆锥的轴截面等基础知识,考查运算求解能力,是基础题.2.已知数列是等差数列,,,则这个数列的公差_________. {}n a 920a =209a =d =【答案】1-【分析】根据等差数列通项公式直接计算.【详解】由等差数列得,91201820199a a d a a d =+=⎧⎨=+=⎩解得,1281a d =⎧⎨=-⎩故答案为:.1-3.设,则方程的解集为______.()2xf x =()ln 4f x '=【答案】##{|1}x x ={1}【分析】解方程即得解.2ln 2ln 4x =【详解】解:由题得. 2ln 2ln 4,2ln 22ln 2,22,1x x x x =∴=∴=∴=所以方程的解集为. {|1}x x =故答案为:{|1}x x =4.的展开式中的系数为_______.252()x x+4x 【答案】40【分析】根据二项定理展开通项,求得的值,进而求得系数. 10352r r rC x -r 【详解】根据二项定理展开式的通项式得 2510355()()22r r r r r rC x C xx--=所以 ,解得1034r -=2r =所以系数225240C ⨯=故答案为:40【点睛】本题考查了二项式定理的简单应用,属于基础题.5.我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人等六项专项附加扣除,某单位老年、中年、青年员工分别有80人、100人、120人,现采用分层随机抽样的方法,从该单位上述员工中抽取30人调查专项附加扣除的享受情况,则应该从青年员工中抽取的人数为________人. 【答案】12【分析】根据分层抽样的抽样原理即可求解.【详解】采用分层随机抽样的方法,从该单位上述员工中抽取30人调查专项附加扣除的享受情况,则应该从青年员工中抽取的人数为.120301280100120⨯=++故答案为:12.6.从个人中选人负责元旦三天假期的值班工作,其中第一天安排人,第二天和第三天均安排742人,且人员不重复,则一共有___________种安排方式(结果用数值表示). 1【答案】420【分析】分别确定第一天、第二天、第三天值班的人,结合分步乘法计数原理可求得结果. 【详解】从个人中选人负责元旦三天假期的值班工作,其中第一天安排人,第二天和第三天742均安排人,且人员不重复,1由分步乘法计数原理可知,不同的安排方法种数为.211754C C C 2154420=⨯⨯=故答案为:.4207.已知随机事件和相互独立,若,(表示事件的对立事件),则A B ()0.36P AB =()0.6P A =A A __________()P B =【答案】0.9【分析】求出的值,再利用独立事件的概率乘法公式可求得的值. ()P A ()P B 【详解】由对立事件的概率公式可得, ()()10.6P A P A =-=由独立事件的概率乘法公式可得,因此,. ()()()P AB P A P B =()()()0.9P AB P B P A ==故答案为:.0.98.已知数列的前项和为,满足对任意的,均有,则______. {}n a n n S *N n ∈1n n S a +=-6a =【答案】 164-【分析】根据递推公式得到,所以数列是以为首项,以为公比的等比数112n n a a -={}n a 112a =-12列,利用等比数列的通项即可求解.【详解】因为对任意的,均有,则有, *N n ∈1n n S a +=-1n n S a =--当时,,所以;1n =1111a S a ==--112a =-当时,,也即, 2n ≥1111n n n n n a S S a a --=-=--++112n n a a -=因为,所以数列是以为首项,以为公比的等比数列,112a =-{}n a 112a =-12所以,则,1111((22n n n a a -=⋅=-6164a =-故答案为:. 164-9.由0、1、2、3、4、5六个数字组成无重复数字且数字2、3相邻的四位数共______个(结果用数字表示). 【答案】60【分析】分两种情况:四位数有0和没有0时,然后求出数字2,3相邻的即可.【详解】四位数没有0时,数字2,3相邻看作一个数字,2,3需要排列,所以有种,23233236C A A =四位数有0时,求出数字2,3相邻,看作一个数,2,3排列,0只能在后两位置选一个,所以有种,故满足题意的共有60个;2211222324A A C C =故答案为:60.10.如图所示,玩具计数算盘的三档上各有7个算珠,现将每档算珠分为左右两部分,左侧的每个算珠表示数2,右侧的每个算珠表示数1(允许一侧无珠),记上、中、下三档的数字和分别为,a ,. 例如,图中上档的数字和. 若,,成等差数列,则不同的分珠计数法有____种.b c 9a =a b c【答案】32【分析】先确定每档可取的整数,再根据公差分类讨论,最后根据分类计数原理得结果. 【详解】每档可取7到14中的每个整数, 若公差为0,共有8种; 若公差为±1,则共有12种; 若公差为±2,则共有8种; 若公差为±3,则共有4种;所以,不同分珠方法有:8+12+8+4=32种, 故答案为32【点睛】本题考查分类计数原理,考查基本分析求解能力,属难题.11.已知矩形的周长为6,则将其绕所在直线旋转一周所得圆柱的体积最大值为ABCD AB ______. 【答案】4π【分析】根据已知条件及圆柱的体积公式,再利用导数法求解最值即可. 【详解】设,则,()03BC x x =<<3AB x =-所以将周长为6的矩形绕所在直线旋转一周所得圆柱的体积为 ABCD AB .则,()()()()223π3π3,03V x x x x x x =-=-<<()()2π63V x x x '=-令,即,解得(舍)或.()0V x '=()2π630x x-=0x =2x =当时,; 02x <<()0V x '>当时,.23x <<()0V x '<所以在上单调递增,在上单调递减; ()V x ()0,2()2,3所以当,即,时,取得最大值为2x =2BC =1AB =()V x()()()23max 2π3224πV x V ==⨯-=所以将其绕所在直线旋转一周所得圆柱的体积最大值为. AB 4π故答案为:.4π12.已知,则723456701234567(21)x a a x a x a x a x a x a x a x -=+++++++______________.1234567234567a a a a a a a ++++++=【答案】10206【分析】对已知关系式两边同时求导,可得,再根据的展开式的各项126234534567614(21)234567x a a x a x a x a x a x a x -=++++++614(21)x +系数和与的展开式的各项系数和的绝对值相等求解即可. 614(21)x -【详解】对已知关系式两边同时求导,可得,126234534567614(21)234567x a a x a x a x a x a x a x -=++++++因为的展开式的各项系数和与的展开式的各项系数和的绝对值相等, 614(21)x +614(21)x -所以. ()612345672345671421110206a a a a a a a ++++++=⨯+=故答案为:10206.二、单选题13.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是.A .90B .75C .60D .45【答案】A【详解】样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36, ∴样本总数为.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75, ∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90. 【解析】频率分布直方图.14.函数可导,“函数在点处的导数值为0”是“函数在点()y f x =()y f x =()00,x y ()y f x =()00,x y 处取极值”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件【答案】B【分析】举特例说明导数值为0,但不是极值点,即可得到结果. 【详解】导数值为0的点不一定是函数的极值点.对于函数,,虽然,但是由于无论还是,恒有,()3f x x =()23f x x '=()00f '=0x >0x <()0f x ¢>即函数是增函数,所以0不是函数的极值点.()3f x x =()3f x x =一般地,函数在一点处的导数值为0是函数在该点处取极值的必要条件,而非充()y f x =()y f x =分条件. 故选:B.15.的展开式为多项式,其展开式经过合并同类项后的项数一共有( ) 11(2)x y z ++A .72项 B .75项 C .78项 D .81项【答案】C【分析】由多项式展开式中的项为,即,将问题转化为将2个隔板a b c kx y z 11a b c ++=(,,0)a b c ≥和11个小球分成三组,应用组合数求项数即可.【详解】由题设,多项式展开式各项形式为且,a b c kx y z 11a b c ++=(,,0)a b c ≥故问题等价于将2个隔板和11个小球分成三组,即. 213C 78=故选:C16.为评估某种治疗肺炎药物的疗效,有关部门对该药物在人体血管中的药物浓度进行测量.设该药物在人体血管中药物浓度与时间的关系为.甲、乙两人服用该药物后,血管中药物浓c t ()c f t =度随时间变化的关系如下图所示.t给出下列四个结论:① 在时刻,甲、乙两人血管中的药物浓度相同; 1t ② 在时刻,甲、乙血管中药物浓度的瞬时变化率相同;2t ③ 在这个时间段内,甲、乙两人血管中药物浓度的平均变化率相同; 23[,]t t ④ 在两个时间段内,甲血管中药物浓度的平均变化率相同. 1223[,],[,]t t t t 其中所有正确结论的序号是( ) A .①② B .①③④ C .②③ D .①③【答案】D【分析】理解瞬时变化率和平均变化率的概念,结合导数的几何意义可知,瞬时变化率是在此点处切线的斜率,平均变化率是,再结合图象,逐一判断选项即可.()()f t t f t t+-A A 【详解】解:对于①,在时刻,两图象相交,说明甲、乙两人血管中的药物浓度相同,即①正1t 确;对于②,在时刻,两图象的切线斜率不相等,即两人的不相等,说明甲、乙两人血管中药2t 2()f t '物浓度的瞬时变化率不相同,即②错误;对于③,由平均变化率公式知,甲、乙两人在,内,血管中药物浓度的平均变化率均为2[t 3]t ,即③正确; 3232()()f t f t t t --对于④,在,和,两个时间段内,甲血管中药物浓度的平均变化率分别为和1[t 2]t 2[t 3]t 2121()()f t f t t t --,显然不相同,即④错误. 3232()()f t f t t t --故正确的只有①③; 故选:D .三、解答题17.2022年,第二十二届世界杯足球赛在卡塔尔举行,某国家队26名球员的年龄分布茎叶图如图所示:(1)该国家队25岁的球员共有几位?求该国家队球员年龄的第75百分位数;(2)从这26名球员中随机选取11名球员参加某项活动,求这11名球员中至少有一位年龄不小于30岁的概率.【答案】(1)3位;第75百分位数是30 (2) 911920【分析】(1)根据茎叶图和百分位数公式,即可计算结果; (2)根据对立事件和组合数公式求概率.【详解】(1)由茎叶图可知,25岁的球员共有3位球员;因为,所以第75百分位数是第20位,由茎叶图可知,年龄从小到大排列,第20位2675%19.5⨯=球员的年龄是30;(2)11名球员没有年龄不小于30的概率, 11191126C 9C 920P ==所以这11名球员中至少有一位年龄不小于30岁的概率. 99111920920P =-=18.在直三棱柱中,,,,D 是AB 的中点.111ABC A B C -3AC =4BC =15AAAB ==(1)求三棱锥的体积; 1D BCB -(2)求证:∥平面;1AC 1CDB (3)求三棱柱的外接球的表面积. 111ABC A B C -【答案】(1)5;(2)详见解析; (3). 50π【分析】(1)由题可得,然后结合条件利用棱锥体积公式即得; AC BC ⊥(2)设与相交于点,可得,根据线面平行的判定定理,即得;1B C 1BC E 1//AC DE (3)由题可得三棱柱的外接球即为以为棱的长方体的外接球,然后利用111ABC A B C -1,,CC CA CB 长方体的性质即得.【详解】(1)因为,,, 3AC =4BC =15AA AB ==所以,即,又D 是AB 的中点,222AC BC AB +=AC BC ⊥所以;111111134522325D BCB B DBC ABC B V V V ---===⨯⨯⨯⨯⨯=(2)设与相交于点,连接,1B C 1BC E ED在中,为的中点,为的中点, 1C AB △D AB E 1C B 所以,1//AC DE 因为平面,平面, 1AC ⊄1CDB DE ⊂1CDB 所以平面;1//AC 1CDB (3)由题可知在直三棱柱中,两两垂直,111ABC A B C -1,,CC CA CB 所以直三棱柱的外接球即为以为棱的长方体的外接球, 111ABC A B C -1,,CC CA CB 设直三棱柱的外接球的半径为,则, 111ABC A B C -R ()2222234550R =++=即,2450R =所以三棱柱的外接球的表面积为. 111ABC A B C -24π50πR =19.已知数列满足,.{}n a 11a =134(2)n n a a n -=+≥(1)求证:数列是等比数列; {}2n a +(2)求数列的通项公式;{}n a (3)写出的具体展开式,并求其值.5211i i a -=∑【答案】(1)证明见解析;(2);32nn a =-(3).1138388-【分析】(1)利用构造法,得到,可证明是等比数列; 123(2)n n a a -+=+{}2n a +(2)根据等比数列的通项公式,求出,进而可求的通项公式;23nn a +={}n a (3)直接写出的具体展开式,根据,利用等比数列的前项和公式,直接计算可5211i i a -=∑n a n 5211i i a -=∑得答案.【详解】(1),等式两边同时加上2, 134(2)n n a a n -=+≥得,又, 123(2)n n a a -+=+11a = 123a +=则为首项是3,公比的等比数列{}2n a +3q =(2)由(1)得,为首项是3,公比的等比数列, {}2n a +3q =,故.23n n a ∴+=32n n a =-(3)521135791i i a a a a a a -==++++∑35793333325=++++-⨯53(19)1019-=--1153383(91)10888=⨯--=-20.已知甲的投篮命中率为0.6,乙的投篮命中率为0.7,丙的投篮命中率为0.5,求: (1)甲,乙,丙各投篮一次,三人都命中的概率; (2)甲,乙,丙各投篮一次,恰有两人命中的概率; (3)甲,乙,丙各投篮一次,至少有一人命中的概率. 【答案】(1)0.21; (2)0.44; (3)0.94.【分析】(1)根据概率乘法得三人都命中概率为;0.60.70.50.21⨯⨯=(2)分甲命中,乙,丙未命中,乙命中,甲,丙未命中,丙命中,乙,丙未命中,三种情况讨论,结合概率乘法和加法公式即可得到答案;(3)采取正难则反的原则,求出其对立事件即三人全未命中的概率,再根据对立事件的概率公式求解即可.【详解】(1)设事件:甲投篮命中;A 事件:乙投篮命中;B 事件:丙投篮命中.C 甲,乙,丙各投篮一次,三人都命中的概率.()()()()0.60.70.50.21P ABC P A P B P C ==⨯⨯=所以甲,乙,丙各投篮一次,三人都命中的概率为0.21.(2)设事件:恰有两人命中.D 所以()(P D P ABC ABC ABC =++(()()()()()()()()P A P B P C P A P B P C P A P B P C =++0.40.70.50.60.30.50.60.70.50.44=⨯⨯+⨯⨯+⨯⨯=所以甲,乙,丙各投篮一次,恰有两人命中的概率为0.44.(3)设事件:至少有一人命中.E 所以()1(10.40.30.510.060.94P E P ABC =-=-⨯⨯=-=所以甲,乙,丙各投篮一次,至少有一人命中的概率为0.94.21.已知, 21()ln (1)()2f x x a x ax a =-++∈R (1)当时,求函数在点处的切线方程;0a =()y f x =(1,(1))f (2)当时,求函数的单调区间;(0,1]a ∈()y f x =(3)当时,方程在区间内有唯一实数解,求实数的取值范围.0a =()(2)f x m x =-21,e ⎡⎤⎣⎦m 【答案】(1)10y +=(2)答案见解析(3) 21211,1e e ⎧⎫⎡⎫++⎨⎬⎪⎢⎩⎭⎣⎭U【分析】(1)求导,根据导数的几何意义求切线方程;(2)求导,分类讨论求单调区间;(3)根据题意整理可得在区间内有唯一实数解,构建,利用导数求ln 1x m x-=21,e ⎡⎤⎣⎦()ln x g x x =的单调性,数形结合分析运算.()g x 【详解】(1)当时,则,可得, 0a =()ln f x x x =-()11f x x '=-故,()()11,10f f '=-=即切点坐标为,切线斜率,()1,1-0k =故函数在点处的切线方程为.()y f x =()()1,1f 10y +=(2)由题意可知:函数定义域为,且, ()0,∞+()()()()1111ax x f x a ax x x -+'-=-+=注意到,令,解得或, (0,1]a ∈()0f x '=11x a =≥1x =①当,即时,与在上的变化情况如下 11a >01a <<()f x ()f x '()0,∞+ x()0,1 1 11,a ⎛⎫ ⎪⎝⎭ 1a 1,a ⎛⎫+∞ ⎪⎝⎭ ()f x '+ 0 -0+ ()f x 单调递增 极大值 ()1f 单调递减 极小值1f a ⎛⎫ ⎪⎝⎭单调递增所以函数的单调递增区间为,,单调递减区间为; ()y f x =()0,11,a ⎛⎫+∞ ⎪⎝⎭11,a ⎛⎫ ⎪⎝⎭②当时,在定义域内恒成立, 1a =()2(1)0x f x x-'=≥所以函数的单调递增区间为;()y f x =()0,∞+综上所述:当时,函数的单调递增区间为,,单调递减区间为01a <<()y f x =()0,11,a ⎛⎫+∞ ⎪⎝⎭11,a ⎛⎫ ⎪⎝⎭;当时,函数的单调递增区间为.1a =()0,∞+(3)当时,则,0a =()ln f x x x =-因为方程在区间内有唯一实数解,()()2f x m x =-21,e ⎡⎤⎣⎦即,整理得, ()ln 2x x m x -=-ln 1x m x-=原题意等价于在区间内有唯一实数解, ln 1x m x-=21,e ⎡⎤⎣⎦设,则, ()ln x g x x =()221ln 1ln x x x x g x x x ⋅--=='注意到,21,e x ⎡⎤∈⎣⎦当时,;当时,;[]1,e x ∈()0g x '>(2e,e x ⎤∈⎦()0g x '<故在上单调递增,在上单调递减, ()g x []1,e (2e,e ⎤⎦且, ()()()221210,e ,e e e g g g ===则在上的图像如图所示, ()ln x g xx=21,e ⎡⎤⎣⎦若在区间内的唯一实数解,则或, ln 1x m x -=21,e ⎡⎤⎣⎦11e m -=2210,e m ⎡⎫-∈⎪⎢⎣⎭解得或, 11e m =+221,1e m ⎡⎫∈+⎪⎢⎣⎭故实数的取值范围. m 21211,1e e ⎧⎫⎡⎫++⎨⎬⎪⎢⎩⎭⎣⎭U 【点睛】方法定睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)画出函数草图,数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.。
上海市高二第一学期期末考试数学试卷含答案(共5套)
上海市高二第一学期期末考试数学试卷(满分100分,90分钟完成,允许使用计算器,答案一律写在答题纸上)一、填空题(每小题3分,满分30分,请将正确答案直接填写在相应空格上)1、计算=-+ii11 。
(i 为虚数单位) 2、已知向量(3,4)a =与(2,0)b =,则a 在b 方向上的投影为_______。
3、过点(1,5)A -,且以(2,1)n =-为法向量的直线的点法向式方程为_______。
4、直线y x m =+被圆221x y +=,则m =_______________。
5、已知直线032=++a y ax 和07)1(3=-+-+a y a x 平行,则a =___________。
6、椭圆221259x y +=上一点P 到两焦点的距离之积为m ,则m 最大时点P 的坐标为 。
7、以抛物线x y 162=的顶点为中心,焦点为右焦点,且分别以()1,3-=p、()1,3=q为两条渐近线的法向量的双曲线方程为_______________。
8、如图1,设线段EF 的长度为1,端点F E 、在边长为2的正方形ABCD 的四边上滑动.当F E 、沿着正方形的四边滑动一周时,EF 的中点M 所形成的轨迹为G ,若G 围成的面积为S ,则=S 。
9、下列四个命题:①直线l 的斜率[1,1]k ?,则直线l 的倾斜角[,]44p pa ?;②直线l :1y kx =+与以(1,5)A -、(4,2)B -两点为端点的线段相交,则4k ?或34k ?;③如果实数x y 、满足方程22(2)3x y -+=,那么yx的最大值为3;④直线1y kx =+与椭圆2215x y m +=恒有公共点,则m 的取值范围是1m ³.其中正确命题的序号是________。
10、如图2,设椭圆171622=+y x 的左右焦点分别为21F F 、,过焦点1F 的直线交椭圆于B A 、两点,若2ABF ∆的内切圆的面积为π,设B A 、两点的坐标分别为),(),(2211y x B y x A 、,则||21y y -值为 。
上海市高二上学期数学期末考试试卷含答案
第一学期高二数学期末考试试卷注意事项:1.考试时间:90分钟试卷满分:100分;2.本试卷由填空题、选择题和解答题三大题组成,共19题;3.测试范围:必修三《第10章空间直线与平面》、《第11章简单几何体》、《第12 章概率初步》、第13章《统计》+选择性必修一《第3 章空间向量及其应用》、《第1章平面直角坐标系中的直线》、第2章《圆锥曲线》 2.1 圆;一、填空题(本大题共有10题,满分34分;其中1-6题每题3分,7-10题每题4分)1、某医院对某学校高三年级的600名学生进行身体健康调查,采用男女分层抽样法抽取一个容量为50的样本,己知女生比男生少抽了10人,则该年级的女生人数是_________.2、如图所示,下列空间图形中,①图(1)是圆柱;②图(2)是圆锥;③图(3)是圆台.上述说法正确的个数为________.3、三条两两相交的直线最多可确定的平面的个数为________.4、如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC.若所有的棱长都是2,则异面直线AC1与BC所成的角的正弦值为5、如图,在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别为AA1,C1D1的中点,过D,M,N三点的平面与直线A1B1交于点P,则线段PB1的长为________.6、如图所示的正方体的棱长为4,E ,F 分别为A 1D 1,AA 1的中点,则过C 1,E ,F 的截面的周长为________.7、若三条直线OA ,OB ,OC 两两垂直,则直线OA 垂直于________.(填序号)①平面OAB ;②平面OAC ;③平面OBC ;④平面ABC .8、经过点A (1,1)且在x 轴上的截距等于在y 轴上的截距的直线方程是__________.9、已知点P 是直线x +y +6=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 为切点,C 为圆心,则当四边形P ACB 的面积最小时,点P 的坐标为________. 10、已知一组数据12,,,n x x x 的平均数6x =,方差221s =,去掉一个数据之后,剩余数据的平均数没有变,方差变为24,则这组数据的个数n =__________.二、选择题(本大题共有4题,满分16分;其中每题4分)11、下列命题中,正确的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .用一个平面去截棱锥,底面与截面之间的部分组成的空间图形叫棱台C .圆台的所有平行于底面的截面都是圆D .棱柱的一条侧棱就是棱柱的高12、如图,在三棱柱ABC -A 1B 1C 1中,AM =2MA 1,BN =2NB 1,过MN 作一平面交底面三角形ABC 的边BC ,AC 于点E ,F ,则( )A .MF ∥NEB .四边形MNEF 为梯形C .四边形MNEF 为平行四边形D .A 1B 1∥NE13、若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且()2P A a =-,()45P B a =-,则实数a 的取值范围是( )A .(1,2)B .53,42⎛⎫ ⎪⎝⎭C .54,43⎛⎫ ⎪⎝⎭D .54,43⎛⎤ ⎥⎝⎦14、设实数x ,y 满足(x -2)2+y 2=3,那么y x 的最大值是( ) A .12 B .33 C .32D . 3三、解答题(本大题共有5题,满分50分)15、(本题8分)如图,AB 是圆O 的直径,点C 是弧AB 上的一点,D ,E 分别是VB ,VC 的中点,求异面直线DE 与AC 所成的角的大小为________.16、(本题8分)如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =AB ,D 为PB 的中点,则下列结论正确的序号是;并说明理由;A .BC ⊥平面P ABB .AD ⊥PCC .AD ⊥平面PBCD .PB ⊥平面ADC17、(本题10分)从2名男生(记为1A,2A)和2名女生(记为1B,2B)这4人中一次性选取2名学生参加象棋比赛(每人被选到的可能性相同).(1)请写出该试验的样本空间 ;(2)设事件M为“选到1名男生和1名女生”,求事件M发生的概率;(3)若2名男生1A,2A所处年级分别为高一、高二,2名女生1B,2B所处年级分别为高一、高二,设事件N为“选出的2人来自不同年级且至少有1名女生”,求事件N发生的概率.18、(本题12分)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市某中学校从全校随机抽取50名学生参加冬奥会知识竞赛,并根据这50名学生的竞赛成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间[40,50),[50,60),,[80,90),[90,100].(1)求频率分布直方图中a的值:(2)求这50名学生竞赛成绩的众数和中位数.(结果保留一位小数)19、(本题12分)如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;(3)若平面AB1E与平面A1B1E夹角的大小为30°,求AB的长.参考答案注意事项:1.考试时间:90分钟试卷满分:100分;2.本试卷由填空题、选择题和解答题三大题组成,共19题;3.测试范围:必修三《第10章空间直线与平面》、《第11章简单几何体》、《第12 章概率初步》、第13章《统计》+选择性必修一《第3 章空间向量及其应用》、《第1章平面直角坐标系中的直线》、第2章《圆锥曲线》 2.1 圆;二、填空题(本大题共有10题,满分34分;其中1-6题每题3分,7-10题每题4分)1、某医院对某学校高三年级的600名学生进行身体健康调查,采用男女分层抽样法抽取一个容量为50的样本,己知女生比男生少抽了10人,则该年级的女生人数是_________.【答案】240【详解】抽取比例为50160012=,设该年级的女生人数是x,则男生人数为600x-,因为女生比男生少抽了10人,所以11(600)101212x x=--,解得240x=,故答案为:240.2、如图所示,下列空间图形中,①图(1)是圆柱;②图(2)是圆锥;③图(3)是圆台.上述说法正确的个数为________.【答案】0;【解析】图(1)不是圆柱,因为从其轴截面可以看出,该空间图形不是由矩形绕其一边所在直线旋转一周得到的;图(2)不是圆锥,因为该空间图形不是由直角三角形绕其直角边所在直线旋转一周得到的;图(3)不是圆台,因为该空间图形的上、下底面所在的平面不平行,不是由平行于圆锥底面的平面截得的.3、三条两两相交的直线最多可确定的平面的个数为________.【答案】3【解析】在空间中,两两相交的三条直线最多可以确定3个平面,如图所示:PA ,PB ,PC 相交于一点P ,且PA ,PB ,PC 不共面,则PA ,PB 确定一个平面PAB ,PB ,PC 确定一个平面PBC ,PA ,PC 确定一个平面PAC .4、如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC .若所有的棱长都是2,则异面直线AC 1与BC 所成的角的正弦值为【答案】144; 【解析】如图,连接AB 1,∵BC ∥B 1C 1,∴∠AC 1B 1就是异面直线AC 1与BC 所成的角.在△AC 1B 1中,AC 1=AB 1=22,B 1C 1=2,∴cos ∠AC 1B 1=122=24.∴sin ∠AC 1B 1=144. ∴异面直线AC 1与BC 所成的角的正弦值为144. 5、如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为AA 1,C 1D 1的中点,过D ,M ,N 三点的平面与直线A 1B 1交于点P ,则线段PB 1的长为________.【答案】34a 【解析】延长DM 交D 1A 1的延长线于点G ,连接GN 交A 1B 1于点P .由M ,N 分别为AA 1,C 1D 1的中点知,P 在A 1B 1的14(靠近A 1)处,故线段PB 1的长为34a .6、如图所示的正方体的棱长为4,E ,F 分别为A 1D 1,AA 1的中点,则过C 1,E ,F 的截面的周长为________.【答案】45+62;【解析】 由EF ∥平面BCC 1B 1可知,平面BCC 1B 1与平面EFC 1的交线为BC 1,平面EFC 1与平面ABB 1A 1的交线为BF ,所以截面周长为EF +FB +BC 1+C 1E =45+6 2.7、若三条直线OA ,OB ,OC 两两垂直,则直线OA 垂直于________.(填序号)①平面OAB ;②平面OAC ;③平面OBC ;④平面ABC .【答案】③;【解析】由线面垂直的判定定理知OA 垂直于平面OBC ;8、经过点A (1,1)且在x 轴上的截距等于在y 轴上的截距的直线方程是__________.【答案】x -y =0或x +y -2=0【解析】若直线在x 轴上的截距为0,可设直线方程为y =kx ,将A (1,1)代入,得k =1,∴直线方程为y =x .若直线在x 轴上的截距不为0,可设直线方程为x +y =a ,将A (1,1)代入,得a =2,∴直线方程为x +y =2.9、已知点P 是直线x +y +6=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 为切点,C 为圆心,则当四边形P ACB 的面积最小时,点P 的坐标为________.【答案】(-3,-3)【解析】如图所示,四边形PACB 的面积S =2S △PAC =|PA |·|AC |=|PA |=|PC |2-1,要使S 最小,需|PC |最小,当CP 与直线x +y +6=0垂直时,|PC |取得最小值,此时直线PC 的方程为y -1=x -1,即x -y =0,与方程x +y +6=0联立得P (-3,-3).10、已知一组数据12,,,n x x x 的平均数6x =,方差221s =,去掉一个数据之后,剩余数据的平均数没有变,方差变为24,则这组数据的个数n =__________.【答案】8【详解】因为去掉一个数据之后,数据的平均数没有变,所以去掉的数据为6,去掉6后方差变为24,故得到()24121-=n n ,解得:8n =故答案为:8;二、选择题(本大题共有4题,满分16分;其中每题4分)11、下列命题中,正确的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .用一个平面去截棱锥,底面与截面之间的部分组成的空间图形叫棱台C .圆台的所有平行于底面的截面都是圆D .棱柱的一条侧棱就是棱柱的高【答案】A【解析】用一个平行于底面的平面截棱锥,底面与截面之间的部分组成的空间图形叫棱台,B 错误.圆台的所有平行于底面的截面都是圆面,C 错误.立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,D 错误.12、如图,在三棱柱ABC -A 1B 1C 1中,AM =2MA 1,BN =2NB 1,过MN 作一平面交底面三角形ABC 的边BC ,AC 于点E ,F ,则( )A .MF ∥NEB .四边形MNEF 为梯形C .四边形MNEF 为平行四边形D .A 1B 1∥NE【答案】B【解析】∵在▱AA 1B 1B 中,AM =2MA 1,BN =2NB 1,∴AM ∥BN ,且AM =BN ,∴四边形ABNM 是平行四边形,∴MN ∥AB .又MN ⊄平面ABC ,AB ⊂平面ABC ,∴MN ∥平面ABC .又MN ⊂平面MNEF ,平面MNEF ∩平面ABC =EF ,∴MN ∥EF ,∴EF ∥AB ,显然在△ABC 中,EF ≠AB ,∴EF ≠MN ,∴四边形MNEF 为梯形.故选B. 13、若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且()2P A a =-,()45P B a =-,则实数a 的取值范围是( )A .(1,2)B .53,42⎛⎫ ⎪⎝⎭C .54,43⎛⎫ ⎪⎝⎭D .54,43⎛⎤ ⎥⎝⎦【答案】D【详解】随机事件A 、B 互斥,A 、B 发生的概率均不等于0,且()2P A a =-,()45P B a =-, ∴0()10()1()()1P A P B P A P B <<⎧⎪<<⎨⎪+⎩,即021*******a a a <-<⎧⎪<-<⎨⎪-⎩,解得5443a <,即54,43a ⎛⎤∈ ⎥⎝⎦. 故选:D .14、设实数x ,y 满足(x -2)2+y 2=3,那么y x的最大值是( ) A .12 B .33 C .32D . 3【答案】D【解析】令yx=k,则y=kx,∴kx-y=0,问题转化为直线kx-y=0与圆有关系,则|2k-0|1+k2≤3,∴k2≤3,∴-3≤k≤3,故yx的最大值为3,故选D.三、解答题(本大题共有5题,满分50分)15、(本题8分)如图,AB是圆O的直径,点C是弧AB上的一点,D,E分别是VB,VC的中点,求异面直线DE与AC所成的角的大小为________.【答案】90°【解析】∵在△VBC中,E,D分别为VC,VB的中点,∴DE∥BC,∴异面直线DE与AC所成的角即为BC与AC所成的角,即为∠ACB=90°.16、(本题8分)如图,在三棱锥P-ABC中,P A⊥平面ABC,AB⊥BC,P A=AB,D为PB的中点,则下列结论正确的序号是;并说明理由;A.BC⊥平面P ABB.AD⊥PCC.AD⊥平面PBCD.PB⊥平面ADC【答案】ABC【解析】∵PA⊥平面ABC,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,故A正确;由BC⊥平面PAB,得BC⊥AD,又PA=AB,D是PB的中点,∴AD⊥PB,又PB∩BC=B,PB,BC⊂平面PBC,∴AD⊥平面PBC,故C正确;∴AD ⊥PC ,故B 正确. 17、(本题10分)从2名男生(记为1A ,2A )和2名女生(记为1B ,2B )这4人中一次性选取2名学生参加象棋比赛(每人被选到的可能性相同).(1)请写出该试验的样本空间Ω;(2)设事件M 为“选到1名男生和1名女生”,求事件M 发生的概率;(3)若2名男生1A ,2A 所处年级分别为高一、高二,2名女生1B ,2B 所处年级分别为高一、高二,设事件N 为“选出的2人来自不同年级且至少有1名女生”,求事件N 发生的概率.【答案】(1){}121112212212(,),(,),(,),(,),(,),(,)A A A B A B A B A B B B ;(2)23;(3)12【详解】(1)解:由题知,样本空间Ω为{}121112212212(,),(,),(,),(,),(,),(,)A A A B A B A B A B B B ;(2)由(1)知,所有的可能结果数为6个,其中满足事件M 得结果数有4个;故()4263M P ==; (3)由(1)知,所有的可能结果数为6个,其中满足事件N 得结果数有3个;故()3162N P ==.18、(本题12分)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市某中学校从全校随机抽取50名学生参加冬奥会知识竞赛,并根据这50名学生的竞赛成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间[40,50),[50,60),,[80,90),[90,100].(1)求频率分布直方图中a 的值: (2)求这50名学生竞赛成绩的众数和中位数.(结果保留一位小数)【答案】(1)0.006a =;(2)众数75;中位数76.4(1)由(0.0040.0180.02220.028)101a +++⨯+⨯=,得0.006a =(2)50名学生竞赛成绩的众数为7080752+= 设中位数为m ,则0.040.060.22(70)0.0280.5m +++-⨯=,解得76.4m ≈ 所以这50名学生竞赛成绩的中位数为76.419、(本题12分)如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若平面AB 1E 与平面A 1B 1E 夹角的大小为30°,求AB 的长.【解析】(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1). 故AD 1→=(0,1,1),B 1E —→=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0.∵AD 1→·B 1E —→=-a 2·0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0)(0≤z 0≤1),使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0).设平面B 1AE 的法向量为n =(x ,y ,z ).则n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ ax +z =0,ax 2+y =0. 取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,即n ·DP →=0,a 2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,使得DP ∥平面B 1AE ,此时AP =12. (3)连接A 1D ,B 1C ,由ABCD -A 1B 1C 1D 1为长方体及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C ,又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,B 1C ,B 1E ⊂平面DCB 1A 1, ∴AD 1⊥平面DCB 1A 1,∴AD 1→是平面DCB 1A 1即平面A 1B 1E 的一个法向量,且AD 1→=(0,1,1).设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n |·|AD 1→|=-a 2-a 2×1+a 24+a 2. ∵平面AB 1E 与平面A 1B 1E 夹角的大小为30°,∴|cos θ|=cos 30°,即3a22×1+5a 24=32. 解得a =2,即AB 的长为2.。
上海市2021-2021年高二上期末数学试卷含答案解析
高二(上)期末数学试卷一、填空题(本大题满分48分)本大题共有12题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分.1.椭圆x2+4y2=100的长轴长为______.2.已知直线l的一个方向向量的坐标是,则直线l的倾斜角为______.3.已知二元一次方程组的增广矩阵是,则此方程组的解是______.4.行列式中﹣3的代数余子式的值为______.5.已知△ABC的三个顶点分别为A(1,2),B(4,1),C(3,6),则AC边上的中线BM 所在直线的方程为______.6.已知直线l1的方程为3x﹣y+1=0,直线l2的方程为2x+y﹣3=0,则两直线l1与l2的夹角是______.7.用数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是______.8.执行如图所示的程序框图,若输入p的值是6,则输出S的值是______.9.若圆C的方程为x2+y2﹣2ax﹣1=0,且A(﹣1,2),B(2,1)两点中的一点在圆C的内部,另一点在圆C的外部,则a的取值范围是______.10.若,且存在,则实数a的取值范围是______.11.已知直线l1过点P(1,4)且与x轴交于A点,直线l2过点Q(3,﹣1)且与y轴交于B点,若l1⊥l2,且,则点M的轨迹方程为______.12.如图所示,△ABC是边长为4的等边三角形,点P是以点C为圆心、3为半径的圆上的任意一点,则的取值范围是______.二、选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.13.点(a ,b )关于直线x +y=1的对称点的坐标是( )A .(1﹣b ,1﹣a )B .(1﹣a ,1﹣b )C .(﹣a ,﹣b )D .(﹣b ,﹣a ) 14.若位于x 轴上方、且到点A (﹣2,0)和B (2,0)的距离的平方和为18的点的轨迹为曲线C ,点P 的坐标为(a ,b ),则“”是“点P 在曲线C 上”的( ) A ..充分不必要条件 B ..必要不充分条件C ..充要条件D .既非充分又非必要条件15.在圆x 2+y 2﹣2x ﹣6y=15内,过点E (0,1)的最长弦和最短弦分别是AC 和BD ,则|AC |•|BD |的值为( )A .B .C .D .16.对数列{a n },{b n },若对任意的正整数n ,都有[a n +1,b n +1]⊊[a n ,b n ]且,则称[a 1,b 1],[a 2,b 2],…为区间套.下列选项中,可以构成区间套的数列是( ) A . B .C .D .三、解答题(本大题满分56分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.17.已知两直线l 1:x +(m +1)y +m ﹣2=0,l 2:mx +2y +8=0.(1)当m 为何值时,直线l 1与l 2垂直;(2)当m为何值时,直线l1与l2平行.18.在直角△ABC中,∠C是直角,顶点A,B的坐标分别为(﹣4,4),(2,﹣4),圆E 是△ABC的外接圆.(1)求圆E的方程;(2)求过点M(4,10)且与圆E相切的直线的方程.19.已知是不平行的两个向量,k是实数,且.(1)用表示;(2)若,记,求f(k)及其最小值.20.在数列{a n}中,,且对任意n∈N*,都有.(1)计算a2,a3,a4,由此推测{a n}的通项公式,并用数学归纳法证明;(2)若,求无穷数列{b n}的各项之和与最大项.21.已知点P是曲线上的动点,延长PO(O是坐标原点)到Q,使得|OQ|=2|OP|,点Q的轨迹为曲线C2.(1)求曲线C2的方程;(2)若点F1,F2分别是曲线C1的左、右焦点,求的取值范围;(3)过点P且不垂直x轴的直线l与曲线C2交于M,N两点,求△QMN面积的最大值.高二(上)期末数学试卷参考答案与试题解析一、填空题(本大题满分48分)本大题共有12题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分.1.椭圆x2+4y2=100的长轴长为20.【考点】椭圆的简单性质.【分析】利用椭圆的简单性质求解.【解答】解:椭圆x2+4y2=100化为标准形式,得:=1,∴a=10,b=5,∴椭圆x2+4y2=100的长轴长为2a=20.故答案为:20.2.已知直线l的一个方向向量的坐标是,则直线l的倾斜角为.【考点】直线的倾斜角.【分析】设直线l的倾斜角为θ,θ∈[0,π),则tanθ=﹣,即可得出.【解答】解:设直线l的倾斜角为θ,θ∈[0,π),则tanθ=﹣,∴θ=.故答案为:.3.已知二元一次方程组的增广矩阵是,则此方程组的解是.【考点】系数矩阵的逆矩阵解方程组.【分析】先利用增广矩阵,写出相应的二元一次方程组,然后再求解即得.【解答】解:由题意,方程组解之得故答案为4.行列式中﹣3的代数余子式的值为﹣5.【考点】三阶矩阵.【分析】写出行列式的﹣3的代数余子式,再计算,即可得到结论.【解答】解:由题意,行列式中﹣3的代数余子式为﹣=﹣(3+2)=﹣5故答案为:﹣55.已知△ABC的三个顶点分别为A(1,2),B(4,1),C(3,6),则AC边上的中线BM 所在直线的方程为3x﹣2y+2=0.【考点】待定系数法求直线方程.【分析】由AC的中点M(2,4),利用两点式方程能求出AC边上的中线所在的直线方程.【解答】解:∵AC的中点M(2,4),∴AC边上的中线BM所在的直线方程为:=,整理,得3x﹣2y+2=0,故答案为:3x﹣2y+2=0.6.已知直线l1的方程为3x﹣y+1=0,直线l2的方程为2x+y﹣3=0,则两直线l1与l2的夹角是.【考点】两直线的夹角与到角问题.【分析】设直线l1与l2的夹角的大小为θ,求出直线的斜率,则由题意可得tanθ=||=1,由此求得θ的值.【解答】解:设直线l1与l2的夹角的大小为θ,则θ∈[0,π),由题意可得直线l1的斜率为3,直线l2的斜率为﹣2,tanθ=||=1,解得θ=,故答案为:.7.用数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是2k.【考点】数学归纳法.【分析】观察不等式左侧的特点,分母数字逐渐增加1,末项为,然后判断n=k+1时增加的项数即可.【解答】解:左边的特点:分母逐渐增加1,末项为;由n=k,末项为到n=k+1,末项为,∴应增加的项数为2k.故答案为2k.8.执行如图所示的程序框图,若输入p的值是6,则输出S的值是.【考点】程序框图.【分析】由已知中的程序框图及已知中p输入6,可得:进入循环的条件为n<6,即n=1,2,…,5,模拟程序的运行结果,即可得到输出的S值.【解答】解:当n=1时,S=0+2﹣1=;当n=2时,S=+2﹣2=;当n=3时,S=+2﹣3=;当n=4时,S=+2﹣4=;当n=5时,S=+2﹣5=;当n=6时,退出循环,则输出的S为:.故答案为:.9.若圆C的方程为x2+y2﹣2ax﹣1=0,且A(﹣1,2),B(2,1)两点中的一点在圆C的内部,另一点在圆C的外部,则a的取值范围是(﹣∞,﹣2)∪(1,+∞).【考点】点与圆的位置关系.【分析】根据A,B与圆的位置关系讨论列出不等式解出a.【解答】解:(1)若A在圆内部,B在圆外部,则,解得a<﹣2.(2)若B在圆内部,A在圆外部,则,解得a>1.综上,a的取值范围是(﹣∞,﹣2)∪(1,+∞).故答案为(﹣∞,﹣2)∪(1,+∞).10.若,且存在,则实数a的取值范围是﹣1≤a <2.【考点】极限及其运算.【分析】根据得出﹣1<<1,再根据存在得出﹣1<≤1,由此求出实数a的取值范围.【解答】解:∵,∴=,∴﹣1<<1,解得﹣4<a<2;又存在,∴﹣1<≤1,解得﹣1≤a<3;综上,实数a的取值范围是﹣1≤a<2.故答案为:﹣1≤a<2.11.已知直线l1过点P(1,4)且与x轴交于A点,直线l2过点Q(3,﹣1)且与y轴交于B点,若l1⊥l2,且,则点M的轨迹方程为9x+6y+1=0.【考点】轨迹方程;向量数乘的运算及其几何意义.【分析】先设M(x,y),可讨论l1是否存在斜率:(1)不存在斜率时,可求出A(1,0),B(0,﹣1),从而由可以求出x=,即点M(),(2)存在斜率时,可设斜率为k,从而可以分别写出直线l1,l2的方程,从而可以求出,这样根据便可用k分别表示出x,y,这样消去k便可得出关于x,y的方程,并验证点是否满足该方程,从而便得出点M的轨迹方程.【解答】解:设M(x,y),(1)若l1不存在斜率,则:l1垂直x轴,l2垂直y轴;∴A(1,0),B(0,﹣1);∴由得,(x﹣1,y)=2(﹣x,﹣1﹣y);∴;∴;即;(2)若l1斜率为k,l2斜率为,则:l1:y﹣4=k(x﹣1),令y=0,x=;∴;l2:,令x=0,y=;∴;∴由得,;∴;∴消去k并整理得:9x+6y+1=0;点满足方程9x+6y+1=0;综(1)(2)知,点M的轨迹方程为9x+6y+1=0.故答案为:9x+6y+1=0.12.如图所示,△ABC是边长为4的等边三角形,点P是以点C为圆心、3为半径的圆上的任意一点,则的取值范围是[﹣20,4].【考点】平面向量数量积的运算.【分析】首先建立平面直角坐标系:以C为原点,平行于AB的直线为x轴,这样便可建立坐标系,然后便可根据条件确定出A,B点的坐标,并根据题意设P(3cosθ,3sinθ),从而可求出的坐标,进行数量积的坐标运算便得出,这样根据﹣1≤cosθ≤1便可求出的取值范围.【解答】解:如图,以C为坐标原点,以平行于AB的直线为x轴,垂直于AB的直线为y 轴,建立平面直角坐标系,则:;点P是以点C为圆心、3为半径的圆上的任意一点;∴设P(3cosθ,3sinθ);∴;∴;∵﹣1≤cosθ≤1;∴﹣20≤﹣12cosθ﹣8≤4;∴的取值范围为[﹣20,4].故答案为:[﹣20,4].二、选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.13.点(a,b)关于直线x+y=1的对称点的坐标是()A.(1﹣b,1﹣a)B.(1﹣a,1﹣b)C.(﹣a,﹣b)D.(﹣b,﹣a)【考点】与直线关于点、直线对称的直线方程.【分析】设出对称点的坐标列出方程组求解即可.【解答】解:点(a,b)关于直线x+y=1对称的点为(x,y),则,解得:,故选:A.14.若位于x轴上方、且到点A(﹣2,0)和B(2,0)的距离的平方和为18的点的轨迹为曲线C,点P的坐标为(a,b),则“”是“点P在曲线C上”的()A..充分不必要条件B..必要不充分条件C..充要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由题意可得:(a+2)2+b2+(a﹣2)2+b2=18,化为a2+b2=5,(b>0).即可判断出结论.【解答】解:由题意可得:(a+2)2+b2+(a﹣2)2+b2=18,化为a2+b2=5,(b>0).∴“点P在曲线C上”⇒“”,反之也成立.∴“”是“点P在曲线C上”的充要条件.故选:C.15.在圆x2+y2﹣2x﹣6y=15内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则|AC|•|BD|的值为()A.B.C.D.【考点】直线与圆的位置关系.【分析】把圆的方程化为标准方程后,找出圆心坐标与圆的半径,根据图形可知,过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦BD,根据两点间的距离公式求出ME的长度,根据垂径定理得到E为BD的中点,在直角三角形BME中,根据勾股定理求出BE,则BD=2BE,即可求出AC与BD的乘积.【解答】解:把圆的方程化为标准方程得:(x﹣1)2+(y﹣3)2=25,则圆心坐标为(1,3),半径为5,根据题意画出图象,如图所示:由图象可知:过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦,则AC=10,MB=5,ME=,所以BD=2BE=2=4,所以|AC|•|BD|=10•4=40.故选:C.16.对数列{a n },{b n },若对任意的正整数n ,都有[a n +1,b n +1]⊊[a n ,b n ]且,则称[a 1,b 1],[a 2,b 2],…为区间套.下列选项中,可以构成区间套的数列是( ) A . B .C .D .【考点】数列的极限.【分析】对于A ,运用数列的极限,即可判断;对于B ,运用n=1时,两区间的关系,即可判断;对于C ,运用n=1时,判断两区间的关系,即可得到结论;对于D ,运用指数函数的单调性和数列的极限的公式,计算即可得到结论.【解答】解:对于A ,(b n ﹣a n )=﹣=2﹣1=1≠0,故不构成区间套;对于B ,当n=1时,[a 1,b 1]=[,],[a 2,b 2]=[,],显然不满足[a 2,b 2]⊊[a 1,b 1],故不构成区间套;对于C ,当n=1时,[a 1,b 1]=[,],[a 2,b 2]=[,],显然不满足[a 2,b 2]⊊[a 1,b 1],故不构成区间套对于D ,由1﹣()n <1﹣()n +1<1+()n +1<1+()n ,满足[a n +1,b n +1]⊊[a n ,b n ];又(b n ﹣a n ) =[1﹣()n ]﹣[1+()n ]=1﹣1=0,故构成区间套. 故选:D .三、解答题(本大题满分56分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.17.已知两直线l 1:x +(m +1)y +m ﹣2=0,l 2:mx +2y +8=0.(1)当m 为何值时,直线l 1与l 2垂直;(2)当m 为何值时,直线l 1与l 2平行.【考点】直线的一般式方程与直线的平行关系;直线的一般式方程与直线的垂直关系.【分析】(1)利用两直线垂直的充要条是 A 1A 2+B 1B 2=0,可得 1×m +(1+m )•2=0,由此求得解得m 的值.(2)由两直线平行的充要条件是=≠,由此求得解得m 的值.【解答】解:(1)∵两条直线l 1:x +(1+m )y +m ﹣2=0,l 2:mx +2y +8=0,由两直线垂直的充要条件可得 A 1A 2+B 1B 2=0,即1×m+(1+m)•2=0,解得m=﹣.(2)由两直线平行的充要条件可得=≠,即=≠,解得:m=1.18.在直角△ABC中,∠C是直角,顶点A,B的坐标分别为(﹣4,4),(2,﹣4),圆E 是△ABC的外接圆.(1)求圆E的方程;(2)求过点M(4,10)且与圆E相切的直线的方程.【考点】直线与圆的位置关系.【分析】(1)根据直角三角形的性质,求出圆心坐标和半径即可得到结论.(2)根据直线和圆相切的性质,建立方程关系进行求解即可.【解答】解:(1)∵在直角△ABC中,∠C是直角,顶点A,B的坐标分别为(﹣4,4),(2,﹣4),∴AB是直径,则AB的中点(﹣1,0),即圆心E(﹣1,0),半径R=|BE|====5,则圆E的方程为(x+1)2+y2=25.(2)∵(4+1)2+102=125>25,∴点M在圆外,当切线斜率不存在时,此时切线方程为x=4,到圆心的距离d=4﹣(﹣1)=5.此时满足直线和圆相切,当直线斜率存在时,设为k,则切线方程为y﹣10=k(x﹣4),即kx﹣y+10﹣4k=0,则圆心到直线的距离d===5,即|2﹣k|=,平方得4﹣4k+k2=1+k2,即4k=3,则k=,此时切线方程为3x﹣4y+28=0,综上求过点M(4,10)且与圆E相切的直线的方程为3x﹣4y+28=0或x=4.19.已知是不平行的两个向量,k是实数,且.(1)用表示;(2)若,记,求f(k)及其最小值.【考点】平面向量数量积的运算.【分析】(1)==k+=k()+,(2)利用(1)的结论,对取平方,转化为二次函数求最值.【解答】解:(1)==k+=k()+=(1﹣k)+k.(2)=2×=﹣1.∴||2=[(1﹣k)+k]2=4(1﹣k)2+k2﹣2k(1﹣k)=7k2﹣10k+4=7(k﹣)2+.∴f(k)=.f(k)的最小值为=.20.在数列{a n}中,,且对任意n∈N*,都有.(1)计算a2,a3,a4,由此推测{a n}的通项公式,并用数学归纳法证明;(2)若,求无穷数列{b n}的各项之和与最大项.【考点】数学归纳法;数列的函数特性.【分析】(1)由,且对任意n∈N*,都有.可得a2==,a3=,a4=.由此推测{a n}的通项公式,a n=.再利用数学归纳法证明即可得出.(2),可得b n=+9,利用等比数列的前n项和公式可得:无穷数列{b n}的各项之和T n.【解答】解:(1)∵,且对任意n∈N*,都有.∴a2==,a3==,a4==.由此推测{a n}的通项公式,a n=.下面利用数学归纳法证明:①当n=1时,a1==成立;②假设当n=k∈N*时,a k=.===,则n=k+1时,a k+1因此当n=k+1时也成立,综上:∀n∈N*,a n=成立.(2),∴b n=(﹣2)n=+9,∴无穷数列{b n}的各项之和T n=+=﹣=+﹣.当n=2k(k∈N*)时,T n=+﹣,T n单调递减,因此当n=2时,取得最大值T2=.当n=2k﹣1(k∈N*)时,T n=×﹣﹣,T n单调递增,且T n<0.综上可得:T n的最大项为T2=.21.已知点P是曲线上的动点,延长PO(O是坐标原点)到Q,使得|OQ|=2|OP|,点Q的轨迹为曲线C2.(1)求曲线C2的方程;(2)若点F1,F2分别是曲线C1的左、右焦点,求的取值范围;(3)过点P且不垂直x轴的直线l与曲线C2交于M,N两点,求△QMN面积的最大值.【考点】双曲线的简单性质.【分析】(1)设Q(x,y),P(x′,y′),由=2,可得(x,y)=﹣2(x′,y′),可得,代入曲线C1的方程可得曲线C2的方程.(2)设P(2cosθ,sinθ),则Q(﹣4cosθ,﹣2sinθ).利用数量积运算性质可得:=﹣6﹣,利用二次函数与三角函数的值域即可得出.(3)设P(2cosθ,sinθ),则Q(﹣4cosθ,﹣2sinθ).设经过点P的直线方程为:y﹣sinθ=k (x﹣2cosθ),M(x1,y1),N(x2,y2).与椭圆方程联立化为:(1+4k2)x2﹣8k(sinθ﹣2kcosθ)x+4(sinθ﹣2kcosθ)2﹣16=0,可得|MN|=,点Q到直=d|MN|,通过三角函数代换,利用二次函数的单调性即可得线l的距离d.可得S△QMN出.【解答】解:(1)设Q(x,y),P(x′,y′),∵=2,∴(x,y)=﹣2(x′,y′),可得,代入+(y′)2=1,可得+=1,∴曲线C2的方程为+=1.(2)F1(﹣,0),F2(,0).设P(2cosθ,sinθ),则Q(﹣4cosθ,﹣2sinθ).则=(2cosθ+,sinθ)•(﹣4cosθ﹣,﹣2sinθ)=(2cosθ+)(﹣4cosθ﹣)+sinθ(﹣2sinθ)=﹣6﹣,∵cosθ∈[﹣1,1],∴∈.(3)设P(2cosθ,sinθ),则Q(﹣4cosθ,﹣2sinθ).设经过点P的直线方程为:y﹣sinθ=k(x﹣2cosθ),M(x1,y1),N(x2,y2).联立,化为:(1+4k2)x2﹣8k(sinθ﹣2kcosθ)x+4(sinθ﹣2kcosθ)2﹣16=0,∴x1+x2=,x1x2=,∴|MN|==,点Q到直线l的距离d==.=d|MN|=6|sinθ﹣2kcosθ|.∴S△QMN令|sinθ﹣2kcosθ|=|sinα|,=6|sinα|,令|sinα|=t∈[﹣1,1],则S△QMN=6t=f(t),令|sinα|=t∈[﹣1,1],∴S△QMN则f2(t)=﹣36t4+144t2=﹣36(t2﹣2)2+144,当且仅当t2=1时,f(t)取得最大值6.。
上海市嘉定区第一中学2023-2024学年高二上学期期末考试数学试题
上海市嘉定区第一中学2023-2024学年高二上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________二、单选题13.设A 、B 是两个事件,以下说法正确的是( ).A .若()()1P A PB +=,则事件A 与事件B 对立B .若()()1P A P B +=,则事件A 与事件B 互斥C .若()()()P A B P A P B =+U ,则事件A 与事件B 互斥且不对立D .若()()()P A B P A P B Ç=,则事件A 与事件B 相互独立14.如图所示,长方体1111ABCD A B C D -中,11,2,3AB AD AA ===,P 是线段11A C 上的动点,则下列直线中,始终与直线BP 异面的是( )三、解答题17.已知数列{}na 为等比数列,且为严格增数列,2410a a +=,2416a a ×=,22log 6n nb a =-.(1)求数列{}na 的通项公式及前n 项和n S ;(2)求数列{}nb 的前n 项和n T 的最小值.18.已知方程()()222321620m m x m m y m --++-+-=(m ÎR ).(1)求该方程表示直线的条件;(2)当m 为何实数时,方程表示的直线斜率不存在?求出此时的直线方程;(3)直线是否过定点,若存在直线过定点,求出此定点,若不存在,说明理由.19.法国著名的数学家笛卡尔曾经说过:“阅读优秀的书籍,就是和过去时代中最杰出的人们——书籍的作者一一进行交谈,也就是和他们传播的优秀思想进行交流”. 阅读会让精神世界闪光.某大学为了解大一新生的阅读情况,通过随机抽样调查了100位大一新生,对这些学生每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图如图所示:(1)求a 的值;(2)根据频率分布直方图,估计该校大一新生每天阅读时间的平均数(精确到0.1)(单位:分钟);(3)为了进一步了解大一新生的阅读方式,该大学采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70)和[80,90)的学生中抽取5人,再从中任选2人进行调查,求其中恰好有1人每天阅读时间位于[80,90)的概率.20.如图,在长方体1111ABCD A B C D -中,11DD DA ==,2AB =,点E 在棱AB 上运动.(3)求证:存在满足条件的数列{}a,使得在该数列中有无穷多项为2024.n11//BB DD ,当P 是11A C 与11B D 的交点时,BP Ì平面11BDD B ,BP 与1DD 相交,A 不是;当点P 与1C 重合时,BP Ì平面11BCC B ,BP 与1B C 相交,B 不是;当点P 与1A 重合时,因为长方体1111ABCD A B C D -的对角面11A BCD 是矩形,此时1//BP D C ,C 不是;因为AC Ì平面ABCD ,,B AC B ÏÎ平面ABCD ,而P Ï平面ABCD ,因此BP 与AC 是异面直线,D 是.故选:D 15.C【解析】利用等差数列的通项公式及其性质、三角形两边之和大于第三边,即可判断出结论.【详解】A :对任意的d ,假设均存在以1l ,2l ,3l 为三边的三角形,∵1a ,2a ,3a ,4a 是各项均为正数的等差数列,其公差d 大于零,23131222a a a a a a a \+>+=>,, 而1231a a a a d +-=-不一定大于0,因此不一定存在以1l ,2l ,3l 为三边的三角形,故不正确;B :由A 可知:当10a d ->时,存在以为1l ,2l ,3l 三边的三角形,因此不正确;C :对任意的d ,由于34224113234124200a a a a a a d a d a a a a a +>+=+=++>+-=>,, ,因此均通过(2)构造一个循环数列,以此解决出现无穷多项为2024的数出现的问题.。
上海市高二上学期期末考试数学试卷含答案(共3套)
高二第一学期期末考试试卷数学试题注意:1.答卷前,将姓名、班级、层次、学号填写清楚.答题时,书写规范、表达准确.2.本试卷共有21道试题,满分100分.考试时间90分钟.一、填空题(本大题满分36分)本大题共有12题,只要求将最终结果直接填写在答题纸相应的横线上,每个空格填对得3分,否则一律零分.1.若矩阵110A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,()121B =,则AB =__________.2.求行列式的值:111111124-=__________.3.经过点()2,1P -且与直线0l :20x y -=平行的直线l 的点法向式方程为__________.4.椭圆2214y x +=的焦距为__________.5.双曲线221916y x -=的渐近线方程是__________.6.平面上的动点P 到定点1F 、2F 距离之和等于12F F ,则点P 的轨迹是__________.7.已知圆()224x a y -+=被直线1x y +=截得的弦长为a 的值为_________.8.将参数方程222sin sin x y θθ⎧=+⎨=⎩(θ为参数)化为普通方程为__________. 9.若,x y 满足条件32x y y x+≤⎧⎨≤⎩,则34z x y =+的最大值为__________.10.设P 是抛物线22y x =上的一点,(),0A a (01a <<),则PA 的最小值是__________.11.过直线y x =上的一点作圆()()22512x y -+-=的两条切线1l ,2l ,当1l 与2l 关于直线y x =对称时,它们之间的夹角为__________.12.已知点(),P x y 是线段220x y +-=(,0x y ≥)上的点,则1x yx ++的取值范围是______. 二、选择题(本大题满分12分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应的正确代号用2B 铅笔涂黑,选对得3分,不选、选错或者选出的代号超过一个,一律零分. 13.直线3450x y ++=的倾斜角是( )(A )3arctan 4- (B )3arctan4π+ (C )3arctan 4π⎛⎫+-⎪⎝⎭(D )3arctan 24π+14.若点M 在曲线sin 2cos sin x y θθθ=⎧⎨=+⎩(θ为参数)上,则点M 的坐标可能是 ( )(A )1,2⎛ ⎝(B )31,42⎛⎫- ⎪⎝⎭(C )((D )(15.若直线2y kx =+与双曲线226x y -=的右支交于不同的两点,则实数k 的取值范围是 ( )(A ),33⎛-⎝⎭ (B )0,3⎛⎫⎪ ⎪⎝⎭ (C )3⎛⎫- ⎪ ⎪⎝⎭(D )13⎛⎫-- ⎪ ⎪⎝⎭16.关于曲线C :441x y +=,则下列四个命题中,假命题...是( )(A )曲线C 关于原点对称(B )曲线C 关于直线y x =-对称(C )曲线C 围成的面积小于π (D )在第一象限中y 随x 的增大而减小三、解答题(本大题共5题,满分52分)每题均需写出详细的解答过程.17.(本题8分)已知两条直线1l :5560x my ++=,2l :()21520m x y m -++=. (1)当m 为何值时,1l 与2l 相交; (2)当m 为何值时,1l 与2l 平行.18.(本题8分)已知动点(),A x y 到点()2,0F 和直线2x =-的距离相等. (1)求动点A 的轨迹方程;(2)记点()2,0K -,若AK AF =,求AFK △的面积.19.(本题10分)已知点()2,2P ,()0,4Q ,动点M 满足0PM QM ⋅=,O 为坐标原点. (1)求M 的轨迹方程;(2)当OP OM =时,求POM △的面积.20.(本题12分)设椭圆221925x y +=的两焦点为1F 、2F .(1)若点P 在椭圆上,且123F PF π∠=,求12F PF △的面积;(2)若AB 是经过椭圆中心的一条弦,求1F AB △面积的最大值.21.(本题14分)抛物线22y x =的准线与x 轴交于点M ,过点M 作直线l 交抛物线于A 、B 两点. (1)求直线l 的斜率的取值范围;(2)若线段AB 的垂直平分线交x 轴于()0,0N x ,求证:032x >; (3)若直线l 的斜率依次为1111,,,,,2482n ,线段AB 的垂直平分线与x 轴的交点依次为123,,,,,n N N N N ,求12231111n nN N N N N N -+++.参考答案一、填空题1.121121000⎛⎫ ⎪--- ⎪ ⎪⎝⎭2.6-3.()()2210x y --+=4.5.34y x =± 6.线段12F F 7.3或1- 8.2y x =-,[]2,3x ∈9.11 10.a 11.3π 12.1,22⎡⎤⎢⎥⎣⎦二、选择题 13.C14.B15.D16.C三、解答题 17.【解】()()55553215mD m m m ==--+-,()()651033215x mD m m m -==+--,()564322y D m m m-==-+--.当5m =时,两直线平行;当5m ≠且3m ≠-时,两直线相交.18.【解】(1)点A 的轨迹是以点F 为焦点,直线2x =-为准线的抛物线,所以28y x =.(2)过点A 作直线2x =-的垂线,垂足为H ,则AH AF =,所以AK =,所以三角形AHK是等腰直角三角形,所以AF KF ⊥,所以三角形AFK 的面积8S =. 19.【解】(1)M 的轨迹是以线段PQ 为直径的圆,所以点M 的轨迹方程为()()()2420x x y y -+--=,即()()22132x y -+-=.(2)设圆心为C .因为OP OM =,所以()1,3OC =垂直于直线MP ,所以直线MP 的方程为()()2320x y -+-=,即380x y +-=.圆心到直线MP的距离5d =,故弦长5MP =,点O 到直线MP的距离5h =,所以三角形POM的面积1162555S =⋅⋅=.20.【解】(1)设1P F m =,2PF n =,在三角形12PF F 中,由余弦定理,()()2221212122cos 21cos F F m n mn F PF m n mn F PF =+-∠=+-+∠,解得12mn =,所以三角形12F PF的面积121sin 2S mn F PF =∠= (2)因为直线AB 斜率存在,所以设其方程为y kx =,则点1F 到直线AB的距离d =.设()11,A x y ,()22,B x y ,联立直线与椭圆的方程:221925y kxx y =⎧⎪⎨+=⎪⎩x ⇒=.则21AB x x ==-=所以三角形1F AB的面积12S AB d =⋅⋅=,当且仅当0k =时,取得最大值12. 21.【解】(1)1,02M ⎛⎫- ⎪⎝⎭,设l :12y k x ⎛⎫=+ ⎪⎝⎭,联立直线与抛物线的方程:2122y k x y x⎧⎛⎫=+⎪ ⎪⎝⎭⎨⎪=⎩()2222204k k x k x ⇒+-+=(*).因为l 交抛物线于两点,所以0k ≠且二次方程(*)根的判别式0∆>,解得()()1,00,1k ∈-⋃.(2)设()11,A x y ,()22,B x y ,由韦达定理,21222k x x k-+=-,()121221y y k x x k +=++=,所以AB 中点的坐标为2221,2k kk ⎛⎫-- ⎪⎝⎭,所以AB 中垂线方程为221122k y x k k k ⎛⎫--=-+ ⎪⎝⎭,所以0211322x k =+>. (3)设(),0m m N x ,则142m m x =+,所以1114434m m m m m N N ---=-=⋅,所以11223111111194n n n N N N N N N --⎡⎤⎛⎫+++=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.高二年级第一学期数学期末考试卷(考试时间:120分钟 满分:150分 )一.填空题(1--6每小题4分,7--12每小题5分,共54分) 1.已知复数ii z +=2(i 为虚数单位),则=||z .2.若)1,2(=是直线l 的一个方向向量,则l 的倾斜角的大小为 (结果用反三角函数值表示). 3.抛物线24y x =的焦点坐标为 .4.62x ⎛- ⎝的展开式中的常数项的值是 .5.已知实数x 、y 满足不等式组52600x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则34z x y =+的最大值是 .6.已知虚数ααsin cos i z += 是方程0232=+-a x x 的一个根,则实数=a .7.已知21,F F 为双曲线C :122=-y x 的左右焦点,点P 在双曲线C 上,1260F PF ∠=︒,则=⋅||||21PF PF .8.某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为 .9. 设曲线C 的参数方程为23cos 13sin x y θθ=+⎧⎨=-+⎩(θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l的点的个数为____________. 10.已知抛物线y x 32=上的两点A 、B 的横坐标恰是关于x 的方程02=++q px x (,p q 是常数)的两个实根,则直线AB 的方程是 .11.在ABC ∆中,AB 边上的中线2CO =,若动点P 满足221sin cos 2AP AB AC θθ=⋅+⋅()R θ∈,则()PA PB PC +⋅的最小值是 .12.已知椭圆C :)0(12222>>=+b a b y a x 的左右焦点分别为21,F F ,P 为椭圆C 上任一点,M=||||||||2121PF PF PF PF ⋅+-。
上海高二上学期期末数学试题(解析版)
一、填空题1.从中随机选取一个数为,从中随机选取一个数为,则的概率是______. {}1,2,3,4a {}1,2,3b b a >【答案】##0.25 14【分析】首先根据题意用列举法写出全部基本事件,再利用古典概型公式求解即可. 【详解】从中随机选取一个数为,从中随机选取一个数为, {}1,2,3,4a {}1,2,3b 共有:,,,,,,,,,()1,1()1,2()1,3()2,1()2,2()2,3()3,1()3,2()3,3,,,共12个基本事件,()4,1()4,2()4,3则有,,,共有3个基本事件, b a >()1,2()1,3()2,3所以的概率为. b a >31124=故答案为:142.正方体中,分别为的中点,则与面所成的角是:_____ 1111ABCD A B C D -,E F 1,AA AB EF 11A C CA 【答案】30°【分析】作出线面角,根据等比三角形的性质求出线面角的大小.【详解】由于分别是的中点,所以,直线和平面所成的角的大小,E F 1,AA AB 1//EF A B EF 11A C CA 等于直线和平面所成的角.根据正方体的几何性质可知平面,所以1A B 11A C CA BD ⊥11A C CA 1OA B∠即直线和平面所成的角.在等边三角形中,是的中点,故,所以1A B 11A C CA 1A BD O BD 1AO BD ⊥.1160302OA B ∠=⨯=【点睛】本小题主要考查线面角的大小的求法,考查空间想象能力和逻辑推理能力,属于基础题.3.已知三角棱O -ABC ,M ,N 分别是对边OA ,BC 的中点,点G 在MN 上,且MN =2GN ,设OA=,=,=,则=__________________(用基底(,,)表示)a OBb OC cOG a b c 【答案】1()4a b c ++【分析】画出几何体图形,根据条件知G 为MN 的中点,连接ON ,从而可得,1()2OG OM ON =+根据M ,N 是OA ,BC 的中点即可用表示出.,,a b c OG【详解】∵如上图,点G 在MN 上,且MN =2GN ,∴G 为MN 的中点,连接ON ,且M ,N 分别是对边OA ,BC 的中点,则:.1()2OG OM ON =+ 1()4OA OB OC =++1()4a b c =++ 故答案为:.1()4a b c ++4.如图,在正方体中,M 是的中点,O 是底面ABCD 的中心,P 是上的任意点,1111ABCD A B C D -1C C 11A B 则直线BM 与OP 所成的角为__________ .【答案】90︒【分析】本题考查异面直线所成的角,涉及线面垂直的判定与性质,关键是找到OP 所在的某个平面,利用正方体的结构特征和线面垂直的判定定理证明直线BM 与此平面垂直. 【详解】如图,取AD ,BC 的中点分别为E ,F ,连接EF ,FB 1,EA 1, 易得,∴BM ⊥B 1F ,1Rt BFB Rt CMB ≅A A 又∵AB ‖EF ,AB ⊥平面BCC 1B 1,∴EF ⊥平面BCC 1B 1, ∵BM ⊂平面BCC 1B 1,∴EF ⊥BM , 又∵EF ∩B 1F =F ,∴BM ⊥平面A 1B 1FE , 又∵OP ⊂平面A 1B 1FE , ∴BM ⊥OP ,∴BM 与OP 所成的角为90°, 故答案为:90°.5.已知一组数据4,,,5,7的平均数为4,则这组数的方差是________. 2a 3a -【答案】3.6【分析】先根据这组数据的平均数为4,求得a ,再利用方差公式求解.【详解】因为一组数据4,,,5,7的平均数为4, 2a 3a -所以, ()14235745a a ++-++=解得,1a =所以这组数据为,4,2,2,5,7所以这组数据的方差为 ()()()()()22222214424245474 3.65S ⎡⎤=-+-+-+-+-=⎣⎦故答案为:3.66.已知数列中,,则__.{}n a 111,n n a a a n +==+n a =【答案】222n n -+【分析】利用累加法求解即可. 【详解】当时,,2n ≥11n n n a a -=--所以,121321()()()112(1)n n n a a a a a a a a n -=+-+-++-=++++- 222n n -+=又,符合,所以.11a =222n n n a -+=7.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交.其中使三条直线共面的充分条件有 .【答案】①④【分析】利用三棱柱与三棱锥,可得判定②、③错误,利用平面的基本性质与推理证明正确结论①、④正确,即可求解.【详解】由三棱柱的三条侧棱两两平行,可得②错误; 由三棱锥的三条侧棱,两两相交于一点,可得③错误;选项①中,如图①所示,由题意可设直线m 与点A 所确定的平面为, α则再由平面的基本性质,可得直线、也在内.l n α选项④中,如图④所示,由题意可设直线m 与直线n 所确定的平面为, α则点A 与点B 均在平面内,则再由平面基本性质,可得直线也在平面内, αl α综合可得,①④正确; 故答案为:①④.8.某单位制作了一个热气球用于广告宣传.已知热气球在第一分钟内能上升米,以后每分钟上30升的高度都是前一分钟的,则该气球上升到米至少要经过__分钟. 2370【答案】4【分析】设热气球在第分钟上升的高度为米,分析可知数列为等比数列,确定该()n n *∈N n a {}n a 数列的首项和公比,求出数列的前项和,利用数列的单调性可得出,由此可{}n a n {}n S 3470S S <<得出结果.【详解】设热气球在第分钟上升的高度为米,()n n *∈N n a 则数列是首项为,公比为的等比数列,{}n a 3023经过分钟,热气球上升的总高度米,n 2301329012313n n n S ⎡⎤⎛⎫⨯- ⎪⎢⎥⎡⎤⎝⎭⎛⎫⎣⎦==⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-则数列单调递增,{}n S 因为,, 3321909017033S ⎡⎤⎛⎫=⨯-=<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦4426509017039S ⎡⎤⎛⎫=⨯-=>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦所以该气球至少要经过分钟才能上升到米. 470故答案为:.49.棱长为的正方体的8个顶点都在球的表面上,,分别是棱,a 1111ABCD A B C D -O E F 1AA 1DD 的中点,则直线被球截得的线段长为__.EF O【分析】先求正方体外接球的半径R ,再根据过球心和点,的大圆的截面图,可得直线被O E F EF 球截得的线段为,进而可求解.QR 【详解】因为正方体内接于球,所以, 2R=R =过球心和点,的大圆的截面图如图所示,O E F则直线被球截得的线段为,过点作于点, QR O OP QR ⊥P 所以在中,. QPOA 2QR QP ===10.某工厂生产了一批节能灯泡,这批产品中按质量分为一等品,二等品,三等品.从这些产品中随机抽取一件产品测试,已知抽到一等品或二等品的概率为0.86,抽到二等品或三等品的概率为0.35,则抽到二等品的概率为___________. 【答案】0.21##21100【分析】设抽到一等品,二等品,三等品的事件分别为,利用互斥事件加法列出方程组即可,,A B C 求解.【详解】设抽到一等品,二等品,三等品分别为事件A ,B ,C则,则 ()()0.86()()0.35()()()1P A P B P B P C P A P B P C +=⎧⎪+=⎨⎪++=⎩()0.21P B =故答案为:0.2111.设数列的前n 项之积为,且.则数列的前n 项和{}n a n T *2(1)log ,2n n n T n N -=∈{}n a n S =_______. 【答案】21n -【分析】由的定义求得,然后由等比数列的前项和公式计算. n T n a n 【详解】因为,所以,2(1)log 2n n n T -=(1)22n n n T -=则,1121a T ===时,,也适合. 2n ≥()()()1212112222n n n n n n n n T a T -----===11a =所以,为等比数列,.12n n a -=122112nn n S -==--故答案为:.21n -12.已知数列满足,若不等式 恒成立,则实{}n a *111,()2(1)(1)n n n na a a n N n na +==∈++2410n ta n n ++≥数的取值范围是__________ t 【答案】[9,)-+∞【分析】根据题意化简得到,利用等差数列的通项公式化简得,把1111(1)n n n a na +-=+1(1)n a n n =+不等式,转化恒成立,结合基本不等式,即可求解. 2410nta n n++≥(4)(1)n n t n ++≥-【详解】由数列满足, {}n a *111,()2(1)(1)n n n na a a n N n na +==∈++可得,且,1111(1)n n n a na +-=+112a =所以数列表示首项为,公差为的等差数列,1n na ⎧⎫⎨⎬⎩⎭21所以,所以, 111=+(1)1n n n na a -=+1(1)n a n n =+又由恒成立,即对恒成立,2410n ta n n++≥(4)(1)n n t n ++≥-n N *∈因为,(4)(1)4(5)5)9n n n n n ++-=-++≤-=-当且仅当时取等号,所以, 2n =9t ≥-即实数的取值范围是.t [9,)-+∞二、单选题13.已知、是两条不同直线,、是两个不同平面,给出下列说法: m l αβ①若垂直于内两条相交直线,则; l αl α⊥②若且,则; ,m l αβ⊂⊂l m ⊥αβ⊥③若,则; ,l l βα⊂⊥αβ⊥④若且,则. ,m l αβ⊂⊂//αβ//l m 其中正确的序号是( ) A .①③ B .①②③ C .①③④ D .②④【答案】A【分析】根据线面垂直的判定定理,面面的位置关系,面面垂直的判定定理及面面平行的性质逐项分析即得.【详解】①若垂直于内两条相交直线,根据线面垂直的判定易知,正确;l αl α⊥②若且,则可能相交或平行,错误 ,m l αβ⊂⊂l m ⊥,αβ③由,,根据面面垂直的判定有,正确; l β⊂l α⊥αβ⊥④若且,则或异面都有可能,错误; ,m l αβ⊂⊂//αβ//l m ,l m 因此正确命题的序号为①③. 故选:A .14.已知正数数列为等比数列,公比为,又为任意正整数,且数列严格递{}n a q 2log ,n n b a n ={}n b 减,则的取值范围是( ) q A . B . (0,1)(0,2)C . D .(0,1)(1,2) (1,)+∞【答案】A【分析】利用数列的单调性及等比数列的定义,结合对数的运算及对数不等式的解法即可求解. 【详解】因为数列严格递减,所以,即,即, {}n b 1n n b b +<212log log n n a a +<12log 0n na a +<即,解得, 22log 0log 1q <=01q <<所以的取值范围为. q (0,1)故选: A.15.在无穷等比数列中,,则的取值范围是( ) {}n a 121lim()2n n a a a →∞+++=1a A .B .1(0,)211(0,)(,1)22C .D .(1,1)-(1,0)(0,1)- 【答案】B【分析】根据无穷等比数列的极限存在条件及不等式的性质即可求解. 【详解】在无穷等比数列中,,得,,且, {}n a 121lim()2n n a a a →∞+++=1112a q =-||1q <0q ≠即,,且, ()1112a q =-11q -<<0q ≠因为,且,所以,且, 11q -<<0q ≠101a <<112a ≠所以的取值范围是.1a 11(0,(,1)22故选:B.16.已知正方体的棱长为M ,N 为体对角线的三等分点,动点P 在三角1111ABCD A B CD -1BD 形内,且三角形的面积P 的轨迹长度为( ) 1ACB PMN PMN S =△A B C D 【答案】B【分析】先通过位置关系的证明说明在平面内,然后根据已知条件求解出的长度,根据N 1ACB PN 的长度确定出在平面内的轨迹形状,由此求解出对应的轨迹长度.PN P 1ACB 【详解】如图所示:连接,因为四边形是正方形,所以, 11BC B C O = 11BCC B 11BC B C ⊥因为平面,平面,所以, 11D C ⊥11BCC B 1B C ⊂11BCC B 11D C ⊥1B C 又平面,平面, 11111,BC D C C BC =⊂ 11BC D 11D C ⊂11BC D 所以平面,所以, 1B C ⊥11BC D 11B C D B ⊥同理可知:,11B A D B ⊥又因为平面,平面,, 1B C ⊂1ACB 1B A ⊂1ACB 111B C B A B = 所以平面,1D B ⊥1ACB根据题意可知:为正三角形,所以1116,D B AB B C AC =====1ACB A ,160∠=︒B AC所以,设到平面的距离为,112ACB S =⨯=A B 1ACB h 因为,所以,所以,11B ACB B ABC V V --=111133ACB ACB S h S BB ⋅⋅=⋅⋅A A 11ACB ACB S h S BB ⋅=⋅A A,所以,(2h ⨯=1123h D B ==h BN =所以即为与平面的交点,由题意可知:平面,所以, N 1D B 1ACB 1D B ⊥1ACB MN PN ⊥所以 11222PMN S MN PN PN PN =⋅=⋅⋅==A在正三角形中,高 1ACB sin 60AO AC =︒==所以内切圆的半径,13r AO ==<AN <=取的两个三等分点,连接,所以,1B C ,E F ,EN FN 1//,//NE AB NF AC所以是以长度为边长的正三角形,所以的轨迹是以的圆,圆NEF A PN P N, 在内部的轨迹是三段圆弧,每一段圆弧的圆心角为,所以对应的轨迹长度是圆周长的一1ACB A 60︒, 故选:B.【点睛】思路点睛:空间中轨迹问题的解答思路: (1)根据已知条件确定和待求点相关的平行、垂直关系; (2)通过数量关系定量分析待求点的轨迹的形状; (3)根据轨迹形状即可求解出轨迹的长度等其他量.三、解答题17.如图,在四棱锥中,底面,四边形为正方形,,分别为P ABCD -PA ⊥ABCD ABCD M N ,的中点.AB PD(1)求证:平面;MN ∥PBC (2)若,求直线与平面所成角. PA AD =MN PCD 【答案】(1)证明过程见详解(2)【分析】(1)取中点,构造平行四边形,根据线面平行的判定定理证明即可; PC (2)根据题意建立空间直角坐标系,利用向量法求线面角的正弦值,进而可求得线面角. 【详解】(1)取中点为,连接,, PC E BE NE 因为,分别为,的中点, E N PC PD 所以,.EN CD ∥12EN CD =又四边形为正方形,所以,, ABCD CD AB ∥CD AB =又因为为的中点,所以,, M AB EN BM ∥EN BM =所以四边形为平行四边形,所以,BMNE MN BE ∥又平面,平面,所以平面.BE ⊂PBC MN ⊂PBC MN ∥PBC (2)以点A 为坐标原点,,,所在直线分别为,,轴建立空间直角坐标系.AB AD AP x y z设,则,||||2PA AD ==(0,2,0),(2,2,0),(0,0,2),(1,0,0),(0,1,1)D C P M N ,,,(1,1,1)MN =- (2,2,2)PC =- (0,2,2)PD =-u u u r设平面的法向量为,PCD (,,)m x y z =则,即,令,则,00m PC m PD ⎧⋅=⎪⎨⋅=⎪⎩ 2220220x y z y z +-=⎧⎨-=⎩1y =(0,1,1)m = 设直线与平面所成角为, MN PCD θ则||sin ||||MN m MN m θ⋅===⋅所以直线与平面所成角为. MNPCD 18.在某市高三教学质量检测中,全市共有名学生参加了本次考试,其中示范性高中参加考5000试学生人数为人,非示范性高中参加考试学生人数为人.现从所有参加考试的学生中随机20003000抽取人,作检测成绩数据分析.100(1)设计合理的抽样方案(说明抽样方法和样本构成即可);(2)依据人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成100绩的平均分;【答案】(1)见解析;(2)92.4【分析】(1)根据总体的差异性选择分层抽样,再结合抽样比计算出非示范性高中和示范性高中所抽取的人数;(2)将每个矩形底边的中点值乘以相应矩形的面积所得结果,再全部相加可得出本次测验全市学生数学成绩的平均分.【详解】(1)由于总体有明显差异的两部分构成,故采用分层抽样, 由题意,从示范性高中抽取人, 2000100405000⨯=从非师范性高中抽取人; 3000100605000⨯=(2)由频率分布直方图估算样本平均分为(600.005800.0181000.021200.0051400.002)2092.4⨯+⨯+⨯+⨯+⨯⨯=推测估计本次检测全市学生数学平均分为92.4【点睛】本题考查分层抽样以及计算频率分布直方图中的平均数,着重考查学生对几种抽样方法的理解,以及频率分布直方图中几个样本数字的计算方法,属于基础题.19.2020年是充满挑战的一年,但同时也是充满机遇、蓄势待发的一年.突如其来的疫情给世界带来了巨大的冲击与改变,也在客观上使得人们更加重视科技的力量和潜能.某公司一下属企业从事某种高科技产品的生产.假设该企业第一年年初有资金5000万元,并将其全部投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年相同.公司要求企业从第一年开始,每年年底上缴资金万元,并将剩余资金全部投入下一年生产.设第年年底企业上缴资金后的剩(2500)t t …n 余资金为万元n a (1)判断是否为等比数列?并说明理由; {}2n a t -(2)若企业每年年底上缴资金,第年年底企业的剩余资金超过万元,求1500t =()m m N*∈21000的最小值.m (lg 20.3010;lg 30.4771)≈≈【答案】(1)答案见解析;(2)6.【解析】(1)由题意得,从而得15000(150%)7500,a t t =+-=-13(150%)2n n n a a t a t +=+-=-,而当,即时,所以不是等比数列;133232222n n n n a t a t a t a t +--==--2500t =120a t -={}2n a t -(2)由(1)可知, ,由可得,13300030002n n a -⎛⎫-=⋅ ⎪⎝⎭133000()3000210002m m a -=+>1362m -⎛⎫> ⎪⎝⎭然后利用单调递增,可得答案32xy ⎛⎫= ⎪⎝⎭【详解】解:(1)由题意得, 15000(150%)7500,a t t =+-=-. 13(150%)2n n n a a t a t +=+-=-当时,即时,2500t <12750030a t t -=->133232222n n n n a ta t a t a t +--∴==--是以为首项,为公比的等比数列.{}2n a t ∴-1275003a t t -=-32当,即时, 不是等比数列2500t =120a t -={}2n a t -(2)当时,由(1)知,1500t =13300030002n n a -⎛⎫-=⋅ ⎪⎝⎭,即,133000()3000210002m m a -∴=+>1362m -⎛⎫> ⎪⎝⎭法一:易知单调递增,32xy ⎛⎫= ⎪⎝⎭又,, 4381()6216=< 53243()6232=>,,15m ∴-≥6m ≥的最小值为6 m ∴法二:, 32lg 6lg 2lg 30.30100.47710.77811log 6 4.423lg 3lg 20.47710.30100.1761lg 2m ++∴->==≈=≈--,的最小值为6.6m ≥m ∴【点睛】易错点睛:本题主要考查函数与数列的综合应用问题,属于难题.解决该问题应该注意的事项:(1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.20.解:构造一个棱长为1的正方体,如图1:则四面体11ACB D .11111111111133B ACB A AB DC B CD D ACD ACB D V V V V V V V ----=----==四面体正方体正方体(1)类似此解法,如图2,求此四面体的体积;(2)对棱分别相等的四面体中,,,.求证:这个四面体的四个ABCD AB CD =AC BD =AD BC =面都是锐角三角形;(3)有4条长为2的线段和2条长为的线段,用这6条线段作为棱且长度为的线段不相邻,m m 构成一个三棱锥,问为何值时,构成三棱锥体积最大,最大值为多少?m [及变形,当且仅(),,03a b c a b c ++≤>()3,,03a b c abc a b c ++⎛⎫≤> ⎪⎝⎭当时取得等号]a b c ==【答案】(1)2;(2)证明见解析;(3)时,. m =【分析】(1)类比已知条件中的解法,构造一个长方体,求出长方体的棱长,在由长方体的体积减去四个三棱锥体积即可得到答案;(2)在四面体ABCD 中,由已知可得四面体ABCD 的四个面为全等三角形,设长方体的长、宽、高分别为a 、b 、c ,证明△ABC 为锐角三角形,即可证明这个四面体的四个面都是锐角三角形; (3)当2条长为m的线段不在同一个三角形中,写出三棱锥体积的表达式,利用基本不等式求最值.【详解】(1)类似地,构造一个长方体,1111-ABCD A B C D设从同一个顶点出发的三条棱的棱长分别为,则有:1AB x AD y AA z ===、、,解得: 22222251013x y x z y z ⎧+=⎪+=⎨⎪+=⎩123x y z =⎧⎪=⎨⎪=⎩所以1111111111B ACB A AB D C B CD D ACD ACB D V V V V V V ----=----四面体长方体11111111123123123123123232323232=⨯⨯-⨯⨯⨯⨯-⨯⨯⨯⨯-⨯⨯⨯⨯-⨯⨯⨯⨯=即此四面体的体积为2. (2)证明:在四面体中,因为,,,ABCD AB CD =AC BD =AD BC =所以四面体的四个面都是全等的三角形,只需证明一个面为锐角三角形即可. ABCD 设长方体的长、宽、高分别为abc ,则,,, 222AB a c =+222BC b c =+222AC a b =+所以, 222222222AB BC b c a c AC a b +=+++>=+即,所以B 为锐角;222AB BC AC +>同理可证:A 为锐角,C 为锐角,所以△ABC 为锐角三角形. 所以这个四面体的四个面都是锐角三角形.(3)因为长度为的线段不相邻,所以2条长为m 的线段不在同一个三角形中,如图,m不妨设AD = BC = m ,AB =BD =CD =AC =2,取BC 的中点E ,连接AE ,DE ,则AE ⊥BC ,DE ⊥BC ,而AE ∩DE =E ,∴BC ⊥平面AED ,则三棱锥的体积,1·3AED V S BC =A 在△AED 中,AD =m ,AE DE==所以1122AEDS m m ==A所以11·36AED V S BC m m ====A, ≤当且仅当,即时等号成立. 22=162m m-m 即时,. m 【点睛】(1)求几何体体积的常用的方法有:①直接法;②等体积法;③补形法;④向量法; (2)利用基本不等式求最值时,要注意其必须满足的三个条件:“一正二定三相等”① “一正”就是各项必须为正数;②“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;③“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.21.设数列的前n 项和为,已知,(). {}n a n S 11a =121n n S S +-=*n ∈N (1)求证:数列为等比数列; {}n a (2)若数列满足:,. {}n b 11b =1112n n n b b a ++=+① 求数列的通项公式;{}n b ② 是否存在正整数n ,使得成立?若存在,求出所有n 的值;若不存在,请说明理14ni i b n ==-∑由.【答案】(1)数列为等比数列,首项为1,公比为2.(2), {}n a 12n n nb -=2n =【分析】(1)由题设的递推关系式,得到(),即可证得数列为等比数列. 12n na a +=2n ≥{}n a (2)① 由(1)知,,化简得,则数列是首项为1,公差为1的12n n a -=11221n n n n b b -+-={}12n n b -等差数列,即可求得. 12n n nb -=②利用乘公比错位相减法,求得,进而得到,显然当 14(24)(2nn T n =-+⨯122n n n-+=2n =时,上式成立,设,由,所以数列单调递减,进而得到结12()2n n f n n-+=-(1)()0f n f n +-<{}()f n 论.【详解】(1)解:由,得(), 121n n S S +-=121n n S S --=2n ≥两式相减,得,即(). 120n n a a +-=12n na a +=2n ≥因为,由,得,所以, 11a =()12121a a a +-=22a =212a a =所以对任意都成立, 12n na a +=*n N ∈所以数列为等比数列,首项为1,公比为2.{}n a (2)① 由(1)知,,12n n a -=由,得, 1112n n n b b a ++=+1122n n n b b +=+即,即, 11221n n n n b b -+=+11221n n n n b b -+-=因为,所以数列是首项为1,公差为1的等差数列.11b ={}12n n b -所以,()12111n n b n n -=+-⨯=所以. 12n n nb -=② 设,1n n i i T b ==∑则,12111111232222n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以,1231111112322222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减,得 ,0121111111222222n n n T n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 11121212nnn ⎛⎫- ⎪⎛⎫⎝⎭=-⨯ ⎪⎝⎭-()1222n n ⎛⎫=-+⨯ ⎪⎝⎭所以.()14242nn T n ⎛⎫=-+⨯ ⎪⎝⎭由,得,即. 14ni i b n ==-∑()142442nn n ⎛⎫-+⨯=- ⎪⎝⎭122n n n -+=显然当时,上式成立, 2n =设(),即. ()122n n f n n-+=-*n N ∈()20f =因为, ()()()113221222011n n n n n f n f n n n n n --⎡⎤++⎛⎫⎛⎫+-=---=-+<⎢⎥⎪ ⎪++⎝⎭⎝⎭⎢⎥⎣⎦所以数列单调递减, (){}f n 所以只有唯一解,()0f n =2n =所以存在唯一正整数,使得成立.2n =14ni i b n ==-∑【点睛】点睛:本题主要考查等差、等比数列的通项公式及求和公式、数列求和的“错位相减法”,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.。
上海市高二上学期期末考试数学试题(含解析)
南洋模范学校2022-2023学年高二上学期期末考试数学试卷2023.01.05一、填空题(每题3分)1.小陈掷两次骰子都出现6的概率为______.2. 从中随机取两个元素(可相同),则这两个元素的积不是6的倍数的概率为{}1,2,3,4,5______.3. 若等比数列的前n 项和,则______.14n n S a -=+a =4. 若数列满足.若,则______.{}n a 1210212112n n n n n a a a a a +≤⎧⎪⎪=⎨≤-≤<⎪⎪⎩167a =2023a =5. 为了解某校高三年级男生的体重,从该校高三年级男生中抽取17名,测得他们的体重数据如下(按从小到大的顺序排列,单位:kg ):56 56 57 58 59 59 61 63 64 65 66 68 69 70 73 74 83 据此估计该校高三年级男生体重的第75百分位数为______kg.6. 已知为等差数列,,,以表示的前n {}n a 135105a a a ++=24699a a a ++=n S {}n a 项和,则使得达到最大值的n 是______.n S 7. 已知某社区的家庭年收入的频率分布如下表所示,可以估计该社区内家庭的平均年收入为______万元. 家庭年收入(单位:万元)[)4,5[)5,6[)6,7[)7,8[)8,9[)9,10频率f0.20.20.20.260.070.078. 第14届国际数学教育大会(ICME-14)于2021年7月12日至18日在上海举办,已知佑老师和Lisa 老师都在7天中随机选择了连续的3天参会,则两位老师所选的日期恰好都不相同的概率为______.9. ,,,使,,成112S n =+++ 222212S n =+++ 333312S n =+++ 1S 2S 3S 等差数列的自然数n 的所有可能的值为______. 10. 已知,则数列前2m 项之和为______. ()*234N n nn n a n n +⎧⎪=∈⎨⎪⎩为奇数为偶数{}n a 11. 已知数列满足,,若对任意的正整数n 均有{}n a 11a =()()2*118N n n a a m n +=+∈,则实数m 的最大值是______.4n a <12. 设数列满足,,记{}n a 112a =()()2*12023N n n n a a a n +=+∈,则使得成立的最小正整数n 是______.()()()12111n n T a a a =--- 0n T <二、选择题(每题4分)13. 某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高一年级有12名女排运动员,要从中选出3名调查学习负担情况,记作②那么完成上述两项调查应采用的抽样方法是()A. ①用简单随机抽样法;②用系统抽样法;B. ①用分层抽样法;②用简单随机抽样法;C. ①用系统抽样法;②用分层抽样法;D. ①用分层抽样法;②用系统抽样法.14. 已知数据,,…,(,)是上海普通职工n 个人的年收入,这n 1x 2x n x 3n ≥*N n ∈个数据的中位数为x ,平均数为y ,方差为z ,如果加上世界首富的年收入,则这1n x +1n +个数据中,下列说法正确的是()A. 年收入平均数增加,中位数一定变大,方差可能不变;B. 年收入平均数增加,中位数可能不变,方差变大;C. 年收入平均数增加,中位数可能不变,方差可能不变;D. 年收入平均数增加,中位数可能变大,方差不变. 15. 对任意等比数列,下列说法一定正确的是( ){}n a A. ,,成等比数列 B. ,,成等比数列 1a 3a 9a 2a 3a 6a C. ,,成等比数列D. ,,成等比数列2a 4a 8a 3a 6a 9a 16. 已知数列,满足,,,,则下列选项错{}n a {}n b 12a =112b =1111n n nn n n a b a b a b ++=+=+⎧⎪⎪⎨⎪⎪⎩*N n ∈误的是( )A.B. 505014a b=5050112a b <C. D.5050a b +=505015a b -≤三、解答题17.(本题6分)某超市从一家食品有限公司购进一批茶叶,每罐茶叶的标准质量是125g ,为了解该批茶叶的质量情况,从中随机抽取20罐,称得各罐质量(单位:g )如下: 124.9、124.7、126.2、124.9、124.2、124.9、123.7、121.4、126.4、127.7、 121.9、124.4、125.2、123.7、122.7、124.2、126.2、125.2、122.2、125.4; 求:20罐茶叶的平均质量和标准差s .(精确到0.01)x 18.(本题6分)俞女士每次投篮的命中率只有0.2,她在某次投篮练习中决定只要连续两次命中就结束投篮练习,求她至多四次投篮就能结束的概率. 19.(本题10分)设等差数列的前n 项和为,且. {}n a n S 410a =(1)若,求的公差;20590S ={}n a (2)若,且是数列中最大的项,求所有可能的值.1a Z ∈7S {}n S 1a 20.(本题12分)已知等差数列的公差为d ,且关于x 的不等式的解{}n a 2130a x dx --<集为.()1,3-(1)求数列的通项公式; {}n a (2)若,求数列前n 项和.122n a n n b a +={}n b n S 21.(本题14分)已知数列满足,. {}n a 11a =11n n na a a +=+(1)写出数列的前四项; {}n a (2)判断数列的单调性;(){}2n a(3)求证:. ()221211)n n a ++<<+南洋模范学校2022-2023学年高二上学期期末考试参考答案一、填空题 1.【答案】1362.【解析】这两个元素的积是6的倍数的有,,,, ()2,3()3,2()3,4()4,3则这两个元素的积不是6的倍数的概率为. 42115525P =-=⨯3.【解析】,由等比数列的性质,. 11444n n n S a a -=+=⋅+14a =-4.【解析】,,,,周期为3,则.167a =257a =337a =467a =2023167a a ==5.【解析】,故第75百分位数为第13个数据,为69kg.170.7512.75⨯=6.【解析】设公差为d ,则,所以,()()24613536d a a a a a a =++-++=-2d =-,所以,所以,13533105a a a a ++==335a =3(3)241n a a n d n =+-=-+所以,,则使得达到最大值的n 是20. 200a >210a <n S 7.【答案】6.58.【解析】设7天的编号依次为1,2,3,4,5,6,7, 则连续的三天分别为123,234,345,456,567,共5种情况,所以张老师与李老师随机选择的总数为种情况,115525C C =两人选择的日期恰好都不相同的分别为,,,()123,456()123,567()234,567,,共6种情况,()456,123()567,123()567,234所以所求事件的概率为. 6259.【解析】,,,由,1(1)2n n S +=2(1)(21)6n n n S ++=223(1)4n n S +=2132S S S =+得,即,解得.22(1)(21)(1)(1)324n n n n n n n ++++=+23520n n -+=1n =10.【解析】()()21321242m m m S a a a a a a -=+++++++ ()24116(541)2116mm m ⨯-++⋅=+-.11216161616(23)23151515m n m m m m ++-=+⋅+=++-11.【解析】法一:,()()221114288n n n n n a a a a m a m +-=-+=-+-若,则,2m >12n n a a m +-≥-所以, ()()112111(2)()n n n a a a a a a n m n ++=+-++-=+-→∞→∞ 所以,当时,, 2m ≤2m =()21128n n a a +=+得,又,得, ()()114448n n n a a a +-=+-11a =()()1440n n a a +-->因为,故,符合题意,1430a -=-<40n a -<所以实数m 的最大值是2.法二:一方面,当时,, 2m =()21128n n a a +=+得,又,得, ()()114448n n n a a a +-=+-11a =()()1440n n a a +-->因为,故;1430a -=-<40n a -<另一方面,若,则,2m >44320m ∆=-<得递推数列无不动点,由蛛网图得,当,, n →+∞n a →+∞综上,实数m 的最大值为2.12.【解析】因为,又,所以, 212023n n n a a a +=+112a =2102023n n n a a a +-=>故数列为严格递增数列,则,{}n a 12n a ≥由得,212023n n n a a a +=+2120232023n n n a a a +=+进而有, ()120232023n n n a a a +=+进而有,有, ()1120231120232023n n n n n a a a a a +==-++11112023n n n a a a +-=+所以,1111112023n i n n a a a =+-=+∑所以,,20231202411122202311202320232i i a a ==->-⨯>++∑20241a <所以,所以, 2024120251112220241202320231i ia a ==-<-⨯=++∑20251a >综上,,,要使的正整数n 的最小值为2025. 1220240T T T >>>> 20250T <0n T <二、选择题 13. B 14. B15.【解析】记的首项为,公比为,{}n a 1a ()0q q ≠则,,,22431a a q =⋅28191a a a q ⋅=⋅26261a a a q ⋅=⋅故当时,A 、B 选项均不正确;1q ≠±,,当时,C 也不正确; 22641a a q =⋅28281a a a q ⋅=⋅1q ≠±,,故D 选项正确.221061a a q =⋅210391a a a q ⋅=⋅故选D.20.【解析】(1)由题意得,方程的两个根分别为-1和3,10a ≠2130a x dx --=则,解得,11233d a a ⎧=⎪⎪⎨⎪-=-⎪⎩121d a =⎧⎨=⎩故数列的通项公式为,.{}n a 1(1)21n a a n d n =+-=-*N n ∈(2)由(1)得,故①,(21)2n n b n =-121232(21)2n n S n =⨯+⨯++- ②,23121232(21)2n n S n +=⨯+⨯++- 两式相减得, ()123122222(21)2n n n S n +-=+⨯+++-- 整理得,. 1(23)26n n S n +=-⨯+*N n ∈21.【解析】(1),,,. 11a =22a =352a =42910a =(2)因为,,所以,所以有, 1n a ≥110n n na a a +-=>11n n a a +>≥2211n n a a +>≥故为严格增数列.(){}2n a (3)用数学归纳法:当1n =221a<=<当,n k =11k a +<<+所以当成立即可.1n k =+21ka +<<+:2k a +<由于随k 的增大而增大,所以有, 111k k a a +++111k k a a +++>,两边平方,>12122321k k k +++>++化简得,明显成立. 1021k >+再证右边:1111k k a a +++<+由于随k 的增大而增大,所以有111k k a a +++1111kk a a +++<+,11++<+,11+<化简得, 21)11)1)++<+⋅+进一步化简,21k ++<再平方,左边,241422(2k k k k =+++++右边. 244222(2k k k k =+++++综上所述,原命题成立,即.()221211)n n a ++<<。
上海高二高中数学期末考试带答案解析
上海高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.计算.2.已知复数,则= .3.经过点的直线l的点方向式方程是.4.已知点,则线段AB的垂直平分线l的点法向式方程是.5.已知方程表示的曲线是圆,则实数a的值是.6.已知两点,则以线段PQ为直径的圆的方程是 .7.双曲线C过点(2,3),且其中一条渐近线是,则双曲线C的标准方程是.8.已知直线与直线的夹角为,则实数k= .9.直角坐标平面上点P与点的距离比它到直线的距离小2,则点P的轨迹方程是 .10.直线两点,则以A为焦点,经过B点的椭圆的标准方程是.11.圆与直线的位置关系是.(相交、相切、相离)12.已知直线l与两点,若直线l与线段AB相交,则实数k的取值范围是.二、选择题1.若复数是虚数,则a、b应满足的条件是 . [答]( )2.已知,则在复平面上所对应的复数是 .[答]( )3.若过点的直线l与抛物线有且只有一个交点,则这样的直线l共有条. [答]( )A 1B 2C 3D 44.下列说法正确的是. [答]( )(1)若直线l的倾斜角为,则;(2)若直线l的一个方向向量为,则直线l的斜率;(3)若直线l的方程为,则直线l的一个法向量为.A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)三、解答题1.本题满分8分.已知关于的实系数一元二次方程有两个虚数根、,若,且,求方程的根、.2.本题满分10分.已知椭圆,椭圆上动点P的坐标为,且为钝角,求的取值范围。
3.(本题满分10分)本题共3个小题,第1小题满分4分,第2小题满分3分,第3小题满分3分.已知直线讨论当实数m为何值时,(1)4.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.已知直线l:与双曲线C:相交于A、B两点.(1)求实数a的取值范围;(2)当实数a取何值时,以线段AB为直径的圆经过坐标原点.5.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.已知抛物线,F是焦点,直线l是经过点F的任意直线.(1)若直线l与抛物线交于两点A、B,且(O是坐标原点,M是垂足),求动点M的轨迹方程;(2)若C、D两点在抛物线上,且满足,求证直线CD必过定点,并求出定点的坐标.上海高二高中数学期末考试答案及解析一、填空题1.计算.【答案】【解析】略2.已知复数,则= .【答案】【解析】略3.经过点的直线l的点方向式方程是.【答案】【解析】略4.已知点,则线段AB的垂直平分线l的点法向式方程是.【答案】【解析】略5.已知方程表示的曲线是圆,则实数a的值是.【答案】【解析】略6.已知两点,则以线段PQ为直径的圆的方程是 .【答案】【解析】略7.双曲线C过点(2,3),且其中一条渐近线是,则双曲线C的标准方程是.【答案】【解析】略8.已知直线与直线的夹角为,则实数k= .【答案】【解析】9.直角坐标平面上点P与点的距离比它到直线的距离小2,则点P的轨迹方程是 .【答案】【解析】略10.直线两点,则以A为焦点,经过B点的椭圆的标准方程是.【答案】【解析】略11.圆与直线的位置关系是.(相交、相切、相离)【答案】【解析】略12.已知直线l与两点,若直线l与线段AB相交,则实数k的取值范围是.【答案】【解析】略二、选择题1.若复数是虚数,则a、b应满足的条件是 . [答]( )【答案】D【解析】略2.已知,则在复平面上所对应的复数是 .[答]( )【答案】D【解析】略3.若过点的直线l与抛物线有且只有一个交点,则这样的直线l共有条. [答]( )A 1B 2C 3D 4【答案】C【解析】略4.下列说法正确的是. [答]( )(1)若直线l的倾斜角为,则;(2)若直线l的一个方向向量为,则直线l的斜率;(3)若直线l的方程为,则直线l的一个法向量为.A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)【答案】B【解析】略三、解答题1.本题满分8分.已知关于的实系数一元二次方程有两个虚数根、,若,且,求方程的根、.【答案】当时,解,得,即方程的根为.当时,解,得,即方程的根为.【解析】本题满分8分.解由题可知,是实数,又,……………………………………2分∵是方程的两个虚数根,∴.……………………4分∴,即,解得.……………6分当时,解,得,即方程的根为.…………………7分当时,解,得,即方程的根为.…………………8分2.本题满分10分.已知椭圆,椭圆上动点P的坐标为,且为钝角,求的取值范围。
上海市2021-2021学年高二数学上学期期末考试试题(含解析)
上海市2021-2021学年高二数学上学期期末考试试题(含解析)一、填空题1.椭圆2212x y +=的左焦点的坐标为________.【答案】(1,0)- 【解析】 【分析】由椭圆标准方程求得椭圆的c ,可求得椭圆的左焦点坐标.【详解】根据椭圆2212x y +=的标准方程得2222,1,1,1a b c c ==∴=∴=,所以左焦点的坐标为(1,0)-,故答案为:(1,0)-.【点睛】本题考查椭圆基本几何性质,属于基础题. 2.若12z i =+,则||z =________. 【解析】 【分析】根据复数的模的计算公式可得值.【详解】∵12z i =+,∴||z == 【点睛】本题考查复数的模的计算,属于基础题.3.若(2,1)n =-是直线l 的一个法向量,则l 的倾斜角的大小为________(结果用反三角函数值表示)【答案】arctan 2 【解析】 【分析】根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据tan k α=,即可求解直线的倾斜角。
【详解】由(2,1)n =-是直线l 的一个法向量,所以可知直线l 的一个方向向量为(1,2),直线l 的倾斜角为α,可得tan 2k α==, 所以直线的倾斜角为tan 2arc α=。
故答案为:tan 2arc 。
【点睛】本题主要考查了直线的方向向量,以及直线的斜率与倾斜角的应用,其中解答中根据直线的方向向量求得直线的斜率是解答的关键,着重考查了计算能力,属于基础题。
4.双曲线221x y a+=的虚轴长是实轴长的2倍,则a =________.【答案】4- 【解析】 【分析】利用虚轴长和实轴长的定义,建立方程可求得参数的值。
【详解】双曲线221x y a +=的标准方程为 221x y a-=-,虚轴的长是,实轴长 2,由题意知 ,∴4a =-, 故答案为:4-.【点睛】本题考查双曲线的标准方程和简单的几何性质,关键在于分清双曲线标准方程中的,a b ,属于基础题.5.圆心为(1,2)C -且经过点(5,1)P 的圆的方程为________. 【答案】22(1)(2)25x y -++= 【解析】 【分析】求出圆的半径,即可写出圆的标准方程.【详解】圆心为(1,2)C -,则圆的半径为5=,所以所求的圆的方程为: 22(1)(2)25x y -++=, 故答案为: 22(1)(2)25x y -++=.【点睛】本题考查圆的标准方程的求得,关键在于根据已知条件:圆过点,求得圆的半径,属于基础题. 6.倾斜角为4π的直线过抛物线22y x =的焦点F ,交抛物线于A 、B 两点,则||AB =______. 【答案】4 【解析】 【分析】由抛物线22y x =得焦点1,02F ⎛⎫⎪⎝⎭,再求得直线的方程,将直线的方程与抛物线的方程联立得出交点的坐标的关系123x x +=,再由抛物线的定义可求得线段的长.【详解】由抛物线22y x =得焦点1,02F ⎛⎫⎪⎝⎭,∴倾斜角为4π的直线过焦点F 的方程为:12y x =-,与抛物线22y x =联立得21304x x -+=,令()11,A x y ,()22,B x y ,则123x x +=,由抛物线的定义得1211||,||22AF x BF x =+=+, ∴22111141||22AB x x x x =+++++==, 故答案为:4.【点睛】本题考查抛物线的定义和直线与抛物线的位置关系,关键在于运用抛物线的定义转化了求线段的长的关系,属于基础题.7.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________. 【答案】43【解析】【详解】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d =≤即3k 2≤4k,∴0≤k≤43,故可知参数k 的最大值为43.8.在△ABC 中,2AB =,3C π∠=,则AB AC ⋅的最大值为_______.2+ 【解析】 【分析】根据向量的数量积运算和余弦定理得2cos AB AC b A ⋅=⋅⋅22222b c a b bc+-=+,再由正弦定理和三角函数的恒等变换得,33a Ab B ==,()222216sin sin 3b a B A -=-23A π⎛⎫=+ ⎪⎝⎭,可求得最值.【详解】在△ABC 中,2AB =,3C π∠=,由正弦定理得2sin AB R C ==, R ∴=, ∴2cos AB AC b A ⋅=⋅⋅22222b c a b bc +-=⋅222222242222b ac b a b a -+-+-===+,2sin sin sin a b c R A BC ===, ,a A b B ∴==,()222216sin sin 3b a B A ∴-=-161cos 21cos 2322B A --⎛⎫=- ⎪⎝⎭8(cos 2cos 2)3A B =-82cos 2cos 233A A π⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦81cos 2cos 2232A A A ⎛⎫=+ ⎪ ⎪⎝⎭ sin 233A π⎛⎫=+ ⎪⎝⎭, ()22maxb a ∴-=, 22max222b a ⎛⎫-+=+ ⎪⎝⎭, 所以AB AC⋅最大值为23+, 2+. 【点睛】此题考查了正弦定理,余弦定理和三角形的面积公式,以及向量的数量积运算,熟练掌握正弦定理进行三角形的边角互化,运用三角函数求最值是解本题的关键,属于中档题.9.已知椭圆22:143x y Γ+=的右焦点为F ,过原点O 的直线与椭圆Γ交于A 、B 两点,则11||||AF BF +的取值范围为________. 【答案】4[1,]3【解析】 【分析】利用椭圆的定义设|AF |=x ∈[1,3],则|BF |=4﹣x ,构造函数()[]11134f x x x x=+∈-,,,利用导数求其范围即可.【详解】取椭圆左焦点F ′,连接AF ,BF ,AF ′,BF ′,易知四边形AFBF ′为平行四边形,即有|AF |+|BF |=|AF |+|AF ′|=2a =4,设|AF |=x ∈[1,3],则|BF |=4﹣x ,故11114AF BF x x+=+-, 令()[]11134f x x x x=+∈-,,,则()()222222228211(4)'(4)(4)(4)x x x f x x x x x x x ---=-==---,易知函数f (x )在[1,2)上单调递减,在[2,3]上单调递增, ∴()()()4()13()213max min f x f f f x f =====,, 即11AF BF +的取值范围为413⎡⎤⎢⎥⎣⎦,. 故答案为:413⎡⎤⎢⎥⎣⎦,.【点睛】本题考查直线与椭圆的位置关系,关键在于由中心对称的转化,考查椭圆的定义及导数的运用,考查转化思想及函数思想,属于中档题.10.已知点C 在以O 为圆心的圆弧AB 上运动,且23AOB π∠=,若OC OA OB x y =+,则23x y +的取值范围为________.【答案】257【解析】 【分析】设OA 为直角坐标系的x 轴,建立平面直角坐标系.记OC 与OA 夹角为203πθθ⎛⎫≤≤⎪⎝⎭,求出三个向量坐标,进而利用同角三角函数的平方关系,可得到()25723x y θϕ+=+(其中3tan ϕ=),结合三角函数的图象和性质,可得答案. 【详解】设OA 为直角坐标系的x 轴,建立平面直角坐标系如下图所示,记OC 与OA 夹角为203πθθ⎛⎫≤≤⎪⎝⎭, 则(cos ,sin ),(1,0)OC OA θθ==,13,22OB ⎛⎫=- ⎪ ⎪⎝⎭,代入OC OA OB x y =+,有3(cos ,sin )(,0)2y y x θθ⎛=+- ⎝⎭,∴3cos,sin 2y yxθθ-==,∴323sin cos,sinx yθθθ=+=,故()25723sin3x yθϕ+=+(其中3tan4ϕ=),23πθ≤≤,23πϕθϕϕ∴≤+≤+,而57sin19ϕ=,235757sin33819πϕ⎛⎫+=>⎪⎝⎭,当2πθϕ+=时,23x y+取最大值257,当θϕϕ+=,即0θ=时,23x y+取最小值2,∴23x y+的取值范围为257[2,]3,故答案为:257[2,].【点睛】本题考查向量的线性关系,运用三角函数的恒等变换和性质求最值,关键在于建立合适的平面直角坐标系,将所求的式子转化为关于角的三角函数,属于中档题.二、选择题11.若12i是关于x的实系数方程20x bx c++=的一个复数根,则()A. 2,3b c== B. 2,1b c==- C. 2,1b c=-=- D.2,3b c=-=【答案】D【解析】分析】由题意,将根代入实系数方程x2+bx+c=0整理后根据得数相等的充要条件得到关于实数a,b 的方程组102220b cb-++=⎧⎪⎨=⎪⎩,解方程得出a,b的值即可选出正确选项【详解】由题意12+i是关于x的实系数方程x2+bx+c=0∴1+22i ﹣2+b 2+bi +c =0,即()12220b c b i -++++=∴102220b c b -++=⎧⎪⎨+=⎪⎩,解得b =﹣2,c =3 故选:D .【点睛】本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题12.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩则z =2x +y 的最小值是( )A. -15B. -9C. 1D. 9【答案】A 【解析】 【分析】作出不等式组表示的可行域,平移直线z =2x +y ,当直线经过B (-6,-3)时,取得最小值.【详解】作出不等式组表示的可行域,结合目标函数的几何意义得函数在点B (-6,-3)处取得最小值z min =-12-3=-15.故选:A【点睛】此题考查二元一次不等式组表示平面区域,解决线性规划问题,通过平移目标函数表示的直线求得最值.13.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 的取值范围是( )A. [3,1]--B. [1,3]-C. [3,1]-D.(,3][1,)∞-+∞【答案】C 【解析】由题意得圆心为(,0)a . 圆心到直线的距离为d =, 由直线与圆有公共点可得≤12a +≤,解得31a -≤≤.∴实数a 取值范围是[3,1]-. 选C .14.已知直线:1l x y +=与双曲线2221x y a -=(0a >)交于A 、B 两点,与y 轴交于点D ,若512DA DB =,则a 的值为( ) A. 1713B. 1913C.2113D. 2【答案】A 【解析】 【分析】首先由直线方程与双曲线方程联立得出A 、B 两点的坐标关系,再由512DA DB =找到A 、B 两点横坐标的关系,结合根与系数的关系得到关于a 的方程,从而求得选项.【详解】由直线方程与双曲线方程联系222201x a y a y x ⎧--=⎨=-+⎩得()22221220x a x a α-+-=,设()()()1122,,,,0,1A x y B x y D ,∵512DA DB =,∴()()11225,1,112x y x y -=-,∴12512x x =,212221a x x a -+=-,212221a x x a -⋅=-,∴1212x x x x +=⋅,2222551212x x x +=,211731717,512512x x ∴==⨯=,∴2122171725121a x x a -⋅=⨯=-,解得1713a =, 故选:A.【点睛】本题是考查双曲线和直线位置关系的综合题目,解题的关键是如何利用已知的向量条件构造关于a 的方程,还考查了一元二次方程根与系数的关系,并且对学生的运算能力要求较高,属于中档题. 三、解答题15.设关于x 的方程2236(1)10x m x m --++=的两根的绝对值的和为2,求实数m 的值. 【答案】0m = 【解析】 【分析】设关于x 的方程2236(1)10x m x m --++=的两根为12,x x ,根据根与系数的关系得212m 103x x +⋅=>,12,x x 同号,分两根全为正,和两根全为负分别求解可得值.【详解】设关于x 的方程2236(1)10x m x m --++=的两根为12,x x ,则212m 103x x +⋅=>,12,x x ∴同号,要么全为正,要么全为负.若全为正,则122(1)2x x m +=-=,解得2m =,此时方程为23650x x -+=,方程无解,所以舍去;若全为负,则122(1)2x x m +=-=-,解得0m =,此时方程为23610x x ++=方程有两个负根,且绝对值的和为2, 综上所述,m 的值为0.【点睛】本题考查一元二次方程的根与系数的关系,求解时,注意带回验证是否有根,是否满足题意,属于基础题.16.已知点(1,)P a 在双曲线22:14yx Γ-=上.(1)求双曲线的两条渐近线方程; (2)求点(1,)P a 到两条渐近线距离的乘积.【答案】(1)2y x =±;(2)45. 【解析】【分析】 (1)由双曲线22:14y x Γ-=得,1,2a b ==,可求得双曲线的渐近线的方程;(2)由点(1,)P a 在双曲线22:14y x Γ-=上,求得0a =,再根据点到直线的距离公式可求得点(1,0)P 到两条渐近线距离的乘积.【详解】(1)由双曲线22:14y x Γ-=得,1,2a b ==,所以双曲线的渐近线的方程为:2y x =±,(2)∵点(1,)P a 在双曲线22:14y x Γ-=上,∴2114a -=,0a ∴=,∴(1,0)P , (1,0)P 到2y x =的距离为1d =,(1,0)P 到2y x =-的距离为2d =,1245d d ∴⋅==, 所以点(1,0)P 到两条渐近线距离的乘积为45. 【点睛】本题考查双曲线的简单的几何性质,和双曲线上的点到两渐近线的距离之积,属于基础题.17.已知椭圆222:1y x a Γ+=(0a >)经过点,直线l 与椭圆交于11(,)A x y 、22(,)B x y 两点,11(,)p ax y =,22(,)q ax y =.(1)求椭圆的方程;(2)若p q ⊥,直线l 经过点F ,求直线l 的方程.【答案】(1)2214y x +=;(2)y =. 【解析】【分析】(1) 根据椭圆222:1y x a Γ+=(0a >)经过点,代入可求得 a 得椭圆的方程;(2)显然直线l 的斜率存在,设直线l的方程为y kx =()22410k x ++-=,可得出根与系数的关系,再根据向量的垂直关系可得到关于k 的方程,可求得k ,从而得到直线l 的方程. 【详解】(1) ∵椭圆222:1y x a Γ+=(0a >)经过点,21314a ∴+=, 24a ∴=, 0,2a a >∴=,∴椭圆的方程为: 2214y x +=; (2)当直线l 的斜率不存在时,直线l 的方程为:0x =,(0,2),(0,2),(0,2),(0,2)A B p q -==-,显然不满足p q ⊥,∴直线l 的斜率存在,设直线l的方程为y kx =+,由2214y x y x ⎧=⎪⎨+=⎪⎩,得()22410k x ++-=,∵11(,)A x y 、22(,)B x y,则1212221416160x x x x k k ⎧+=⎪⎪⎪⋅=-⎨+⎪∆=+>⎪⎪⎩, 又()()11222,,2,,p x y q x y p q ==⊥,121240p q x x y y ∴⋅=+=,即(121240x x kx kx +=,()()21212430,k x x x x ∴+++=()()224(1)()340k k ∴+⨯-⋅-++=,解得22,k k =∴=,所以直线l的方程为y =.【点睛】本题考查椭圆方程的求解,直线与椭圆的位置关系,以及向量的垂直关系的数量积表示,关键在于将目标条件转化为直线与椭圆的交点的坐标的韦达定理上,属于常考题,难度题.18.已知抛物线2:2y px Γ=(0p >)经过点(1,2)P ,直线l 与抛物线Γ有两个不同的交点A 、B ,直线PA 交y 轴于M ,直线PB 交y 轴于N .(1)若直线l 过点(0,1)Q ,求直线l 的斜率的取值范围;(2)若直线l 过点(0,1)Q ,设(0,0)O ,QM QO λ=,QN QO μ=,求11λμ+的值;(3)若直线l 过抛物线Γ的焦点F ,交y 轴于点D ,DA AF λ=,DB BF μ=,求λμ+的值.【答案】(1)(,1)-∞且3k ≠-且0k ≠;(2)112λμ+=;(3)1-. 【解析】【分析】(1)由题意易得直线斜率存在且不为0,且直线PA 、PB 斜率存在,设出直线方程,并联立抛物线方程,根据交点有两个,得出>0∆,解不等式即可得直线斜率的范围.(2)根据QM QO λ=,QN QO μ=,得出λ、μ与点,M N 坐标之间的关系,再根据,,M A P 在同一直线上,,,N B P 在同一直线上,得出λ,μ与点,A B 坐标之间的关系,根据(1)中联立所得的方程得出点,A B 横坐标之间的关系,对原式进行化简,即可得11λμ+的值.(3) 设直线l 的方程为:()10,x my m =+≠联立直线与抛物线的方程得出点,A B 纵坐标之间的关系,再由DA AF λ=,DB BF μ=,得出λ、μ与点,A B 坐标之间的关系,对λμ+化简可求得λμ+的值.【详解】(1)因为抛物线2:2y px Γ=经过点(1,2)P ,所以42p =,所以2p =,所以抛物线Γ的解析式为24y x =。
上海市高二第一学期数学期末考试试卷含答案
上海市高二第一学期数学期末考试试卷注意:1. 答卷前,考生务必在答题纸上规定的地方作答,写在其它地方一律不予批阅.2. 本试卷共有21道试题,满分100分,练习时间90分钟.一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一律得零分.1. 过平面外一点与该平面平行的平面有 个.2. 小王做“投针”实验,记录针压住平行线的次数,所得的数据是_ _.(用“观测数据”或“实验数据”填空)3. 某药物公司实验一种降低胆固醇的新药,在500个病人中进行实验,结果如下表 胆固醇降低的人数没有起作用的人数 胆固醇升高的人数 307 120 73则使用药物后胆固醇降低的经验概率为 .4. 已知球O 的表面积为36π,则该球的体积为 . 5. “二十四节气歌”是以“春、夏、秋、冬”开始的四句诗.某校高二共有学生400名,随机抽查100名学生并提问二十四节气歌,只能说出一句的有45人,能说出两句及以上的有38人,据此估计该校高二年级的400名学生中,对“二十四节气歌”一句也说不出的有____ __人.6. 某校高二(1)班为了调查学生线上授课期间的体育锻炼时间的差异情况,抽取了班级5名同学每周的体育锻炼时间,分别为6,6.5,7,7,8.5(单位:小时),则可以估计该班级同学每周的体育锻炼时间的方差为 .7. 已知一个正方形的边长为2,则它的直观图的面积为 . 8. 已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为 .9.“阿基米德多面体”也称半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.二十四等边体就是一种半多正多面体.如图,棱长为1的正方体截去八个一样的四面体,就得到二十四等边体,则该几何体的体积为 .10. 已知事件A 、B 互斥,()35P A B =,且()()2P A P B =,则()P B = . 11. 小明和小王在课余玩象棋比赛,可以采用“五局三胜制”或“三局两胜制”.相对而言,小明棋艺稍弱 ,每一局赢的概率都仅为0.4. 小明为了让自己在比赛中赢的几率更大些,应该提议采AB 用 .(填选 “三局两胜制”或“五局三胜制”)12. 如图,有一边长为2cm 的正方形ABCO ,D 、E 分别为AO 、AB 的中点.按图中的虚线翻折,使得A 、B 、O 三点重合,制成一个三棱锥,并得到以下四个结论:①三棱锥的表面积为4; ②三棱锥的体积为13; ③三棱锥的外接球表面积为6π; ④三棱锥的内切球半径为1.则以上结论中,正确结论是 . (请填写序号)二、选择题(本大题共有4题,满分12分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 3分,否则一律得零分.13.小明同学每天阅读数学文化相关的书籍,他每天阅读的页数分别为:4、5、4.5、5、6、8、7、5、4.5、6(单位:页).下列图形中不利于描述这些数据的是( )A .条形图B .茎叶图C .散点图D .扇形图14.下列说法正确的是( ) A .过球面上任意两点与球心,有且只有一个大圆B .底面是正多边形,侧棱与底面所成的角均相等的棱锥是正棱锥C .用一个平面截圆锥,得到一个圆锥和圆台D .以直角三角形任意一边为旋转轴,其余两边旋转一周所得的旋转体都是圆锥15.某校组织了一次航空知识竞赛,甲、乙两个班级各派8名同学代表参赛.两个班级的数学课代表合作,将甲、乙两班所有参赛同学的得分绘制成如图所示的茎叶图,则下列结论错误的是( )A .甲班参赛同学得分的极差比乙班参赛同学得分的极差小B .甲班参赛同学得分的中位数比乙班参赛同学得分的中位数低C . 甲班参赛同学得分的平均数为84D .乙班参赛同学得分的第75百分位数为8916. 先后抛掷质地均匀的硬币4次,得到以下结论:①可以从不同的观察角度写出不同的样本空间②事件“至少2次正面朝上”与事件”至少2次反面朝上”是互斥事件③事件“至少1次正面朝上”与事件”4次反面朝上”是对立事件④事件“1次正面朝上3次反面朝上”发生的概率是14以上结论中,正确的个数为( )个 A .1个 B .2个C .3个D .4个 三、解答题(本大题共有5题,满分52分)解答下列各题必须写出必要的步骤.17.(本题满分8分,第1小题满分4分,第2小题满分4分)如图,在正方体1111ABCD A B C D -中,E 为1DD 的中点.(1) 求异面直线1BD 与1CC 所成的角;(2)判断1BD 与平面AEC 的位置关系,并说明理由.18.(本题满分10分,第1小题满分5分,第2小题满分5分)不透明的盒子中有标号为1、2、3、4的4个大小与质地相同的球.(1)甲随机摸出一个球,放回后乙再随机摸出一个球,求两球编号均为奇数的概率;(2)甲、乙两人进行摸球游戏,游戏规则是:甲先随机摸出一个球,记下编号,设编号为m ,放回后乙再随机摸出一个球,也记下编号,设编号为n . 如果5m n +>,算甲赢;否则算乙赢. 这种游戏规则公平吗?请说明理由.19.(本题满分10分,第1小题满分6分,第2小题满分4分)如图,在直角AOB 中,π6OAB ∠=,斜边8AB =,D 是AB 中点,现将直角AOB 以直角边AO 为轴旋转一周得到一个圆锥.点C 为圆锥底面圆周上一点,且π2BOC ∠=. (1)求圆锥的体积与侧面积;(2)求直线CD 与平面BOC 所成的角的正切值.20.(本题满分12分,第1小题满分4分,第2小题满分4分,第3小题满分4分)法国著名的数学家笛卡尔曾经说过:“阅读优秀的书籍,就是和过去时代中最杰出的人们——书籍的作者一一进行交谈,也就是和他们传播的优秀思想进行交流”. 阅读会让精神世界闪光.某大学为了解大一新生的阅读情况,通过随机抽样调查了100位大一新生,对这些学生每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图如图所示:(1) 求a 的值;(2) 根据频率分布直方图,估计该校大一新生每天阅读时间的平均数(精确到0.1)(单位:分钟);(3) 为了进一步了解大一新生的阅读方式,该大学采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70)和[80,90)的学生中抽取5人,再从中任选2人进行调查,求其中恰好有1人每天阅读时间位于[80,90)的概率.21.(本题满分12分,第1小题满分4分,第2小题满分4分,第3小题满分4分)如图,已知四面体ABCD 中,AB BCD ⊥面,BC CD ⊥.(1)求证:AC CD ⊥;(2)《九章算术》中将四个面都是直角三角形的四面体称为“鱉臑”,若此“鱉臑”中,1AB BC CD ===,有一根彩带经过面ABC 与面ACD ,且彩带的两个端点分别固定在点B 和点D 处,求彩带的最小长度;(3)若在此四面体中任取两条棱,记它们互相垂直的概率为1P ;任取两个面,记它们互相垂直的概率为2P ;任取一个面和不在此面上的一条棱,记它们互相垂直的概率为3P . 试比较概率1P 、2P 、3P 的大小.【教师版】高二数学练习卷答案一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一律得零分.1. 过平面外一点与该平面平行的平面有 1 个.2. 小王做“投针”实验,记录针压住平行线的次数,所得的数据是_“实验数据”_.(用“观测数据”或“实验数据”填空)3. 某药物公司实验一种降低胆固醇的新药,在500个病人中进行实验,结果如下表 胆固醇降低的人数没有起作用的人数 胆固醇升高的人数 307 120 73则使用药物后胆固醇降低的经验概率为 0.614 .4. 已知球O 的表面积为36π,则该球的体积为 36π . 5. “二十四节气歌”是以“春、夏、秋、冬”开始的四句诗.某校高二共有学生400名,随机抽查100名学生并提问二十四节气歌,只能说出一句的有45人,能说出两句及以上的有38人,据此估计该校高二年级的600名学生中,对“二十四节气歌”一句也说不出的有____68___人.6. 某校高二(1)班为了调查学生线上授课期间的体育锻炼时间的差异情况,抽取了班级5名同学每周的体育锻炼时间,分别为6,6.5,7,7,8.5(单位:小时),则可以估计该班级同学每周的体育锻炼时间的方差为 0.7 .7. 已知一个正方形的边长为2,则它的直观图的面积为2 . 8. 已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为 3 . 9.“阿基米德多面体”也称半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.二十四等边体就是一种半多正多面体.如图,棱长为1的正方体截去八个一样的四面体,就得到二十四等边体,则该几何体的体积为 56. 10. 已知事件A 、B 互斥,()35P A B =,且()()2P A P B =,则()P B = 45 . 11. 小明和小王在课余玩象棋比赛,可以采用“五局三胜制”或“三局两胜制”.相对而言,小明棋艺稍弱 ,AB 每一局赢的概率都仅为0.4. 小明为了让自己在比赛中赢的几率更大些,应该提议采用 “三局两胜制” .(填选 “三局两胜制”或“五局三胜制”)12. 如图,有一边长为2cm 的正方形ABCO ,D 、E 分别为AO 、AB 的中点.按图中的虚线翻折,使得A 、B 、O 三点重合,制成一个三棱锥,并得到以下四个结论:①三棱锥的表面积为4; ②三棱锥的体积为13; ③三棱锥的外接球表面积为6π; ④三棱锥的内切球半径为1. 则以上结论中,正确结论是 ① ② ③ . (请填写序号) 二、选择题(本大题共有4题,满分12分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 3分,否则一律得零分.13.小明同学每天阅读数学文化相关的书籍,他每天阅读的页数分别为:4、5、4.5、5、6、8、7、5、4.5、6(单位:页).下列图形中不利于描述这些数据的是( C )A .条形图B .茎叶图C .散点图D .扇形图14.下列说法正确的是( B )A .过球面上任意两点与球心,有且只有一个大圆B .底面是正多边形,侧棱与底面所成的角均相等的棱锥是正棱锥C .用一个平面截圆锥,得到一个圆锥和圆台D .以直角三角形任意一边为旋转轴,其余两边旋转一周所得的旋转体都是圆锥15.某校组织了一次航空知识竞赛,甲、乙两个班级各派8名同学代表参赛.两个班级的数学课代表合作,将甲、乙两班所有参赛同学的得分绘制成如图所示的茎叶图,则下列结论错误的是( D )A .甲班参赛同学得分的极差比乙班参赛同学得分的极差小B .甲班参赛同学得分的中位数比乙班参赛同学得分的中位数低C . 甲班参赛同学得分的平均数为84D .乙班参赛同学得分的第75百分位数为8916. 先后抛掷质地均匀的硬币4次,得到以下结论:①可以从不同的观察角度写出不同的样本空间②事件“至少2次正面朝上”与事件”至少2次反面朝上”是互斥事件③事件“至少1次正面朝上”与事件”4次反面朝上”是对立事件④事件“1次正面朝上3次反面朝上”发生的概率是14以上结论中,正确的个数为( C )个 A .1个 B .2个C .3个D .4个 三、解答题(本大题共有5题,满分52分)解答下列各题必须写出必要的步骤.17.(本题满分8分,第1小题满分4分,第2小题满分4分)如图,在正方体1111ABCD A B C D -中,E 为1DD 的中点.(1) 求异面直线1BD 与1CC 所成的角;(2)判断1BD 与平面AEC 的位置关系,并说明理由.解 (1)因为11//BB CC ,所以11B BD ∠就是异面直线1BD 与1CC所成的角或其补角. ……………………………………………………………………2分设1BB a =,则112B D a =,13BD a =,所以11tan 2B BD ∠.……………1分所以异面直线1BD 与1CC 所成的角为arc 263arcsinarccos 33=)……1分 (2)连接BD ,交AC 于O ,在1BDD 中,O 、E 分别为BD 、1DD 中点,OE 为1BDD 的中位线,所以1//OE BD .……………………………………………………………2分因为OE 在平面AEC 上,而1BD 不在平面AEC 上,…………………………1分由直线与平面平行的判定定理得,1BD //平面AEC .18.(本题满分10分,第1小题满分5分,第2小题满分5分)不透明的盒子中有标号为1、2、3、4的4个大小与质地相同的球.(1)甲随机摸出一个球,放回后乙再随机摸出一个球,求两球编号均为奇数的概率;(2)甲、乙两人进行摸球游戏,游戏规则是:甲先随机摸出一个球,记下编号,设编号为m ,放回后乙再随机摸出一个球,也记下编号,设编号为n . 如果5m n +>,算甲赢;否则算乙赢. 这种游戏规则公平吗?请说明理由.解 (1)甲摸出的球编号为奇数的概率是12,…………………………………2分乙摸出的球编号为奇数的概率是12,……………………………………………2分 所以两球编号均为奇数的概率是14.………………………………………1分 (2)()3616P m n +==,………………………………………………………1分 ()2716P m n +==,………………………………………………………………1分 ()1816P m n +==………………………………………………………………1分 所以甲赢的概率为32131616168++=,乙赢的概率为58.……………………1分 所以这种游戏规则不公平. ……………………………………………………1分(也可直接写出样本空间,写出答案,酌情给分)19.(本题满分10分,第1小题满分6分,第2小题满分4分)如图,在直角AOB 中,π6OAB ∠=,斜边8AB =,D 是AB 中点,现将锥底面圆直角AOB 以直角边AO 为轴旋转一周得到一个圆锥.点C 为圆周上一点,且π2BOC ∠=. (1)求圆锥的体积与侧面积;(2)求直线CD 与平面BOC 所成的角的正切值.解 (1)由题,4,3OB OA ==1分 所以圆锥的体积为221164ππ4433π333V OB OA =⋅⋅=⋅⋅=.……………………2分 圆锥的侧面积为32πS rl π==侧.……………………………………………………2分(2)取BO 中点BH ,在AOB 中,中位线//DH AO ,可得DH ⊥平面BOC ,所以DCH ∠即直线CD 与平面BOC 所成的角. …………………………………2分222315tan 542DH DCH HC ∠===+.……………………………………………2分 所以直线CD 与平面BOC 所成的角的正切值为155.……………………………1分 20.(本题满分12分,第1小题满分4分,第2小题满分4分,第3小题满分4分)法国著名的数学家笛卡尔曾经说过:“阅读优秀的书籍,就是和过去时代中最杰出的人们——书籍的作者一一进行交谈,也就是和他们传播的优秀思想进行交流”. 阅读会让精神世界闪光.某大学为了解大一新生的阅读情况,通过随机抽样调查了100位大一新生,对这些学生每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图如图所示:(1) 求a 的值;(2) 根据频率分布直方图,估计该校大一新生每天阅读时间的平均数(精确到0.1)(单位:分钟);(3) 为了进一步了解大一新生的阅读方式,该大学采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70)和[80,90)的学生中抽取5人,再从中任选2人进行调查,求其中恰好有1人每天阅读时间位于[80,90)的概率. 解 (1)因为频率分布直方图的所有矩形面积之和为1,所以(0.0100.0450.005)101a a ++++⨯=,……………………………2分得0.02a =,…………………………………………………………………2分(2) 各区间的中点值为55、65、75、85、95 ……………………………1分对应的频数分别为10、20、45、20、5…………………………………………1分这100名大一新生每天阅读时间的平均数为551065207545852095574.0100⨯+⨯+⨯+⨯+⨯=…………………1分所以估计该校大一新生每天阅读时间的平均数为74分钟. …………………1分(3)由题意,阅读时间位于分组[50,60),[60,70)和[80,90)的学生数分别为10人、20人、20人,因此每组中抽取的人数分别为1人、2人、2人. ………………2分因此,再从中任选2人进行调查,其中恰好有1人每天阅读时间位于[80,90)的概率为323P=105⨯=.………………………………………………………………………2分21.(本题满分12分,第1小题满分4分,第2小题满分4分,第3小题满分4分)如图,已知四面体ABCD 中,AB BCD ⊥面,BC CD ⊥.(1)求证:AC CD ⊥(2)《九章算术》中将四个面都是直角三角形的四面体称为“鱉与臑”,若此“鱉臑”中,1AB BC CD ===,有一根彩带经过面ABC小面ACD ,且彩带的两个端点分别固定在点B 和点D 处,求彩带的最长度.(3)若在此四面体中任取两条棱,记它们互相垂直的概率为1P ;任取两个面,记它们互相垂直的概率为2P ;任取一个面和不在此面上的一条棱,记它们互相垂直的概率为3P . 试比较概率1P 、2P 、3P 的大小(1)证明 因为AB BCD ⊥面,所以AB CD ⊥,…………………………………1分又BC CD ⊥,所以CD ABC ⊥面………………………………………………………2分所以AC CD ⊥……………………………………………………………………………1分(2)将面ABC 与面ACD 沿AC 展开成如图所示的平 面图形,由题,3π4BCD ∠=,……………………1分 所以彩带的最小长度为此平面图中BD 长. 又22311211cos π224BD =+-⨯⨯⨯=+…………2分 22+…………………………1分(3) 由题,151153P ==…………………………1分 23162P ==……………………………………………1分 321126P ==……………………………………………1分 所以312P P P <<.………………………………………1分【附加题】单选题1.过坐标原点O 作直线:(2)(1)60l a x a y -+++=的垂线,垂足为(,)H m n ,则22m n +的取值范围是( )A .0,⎡⎣B .(0,C .[]0,8D .(]0,8 【提示】求出直线直线()():2160l a x a y -+++=过的定点A ,由题意可知垂足是落在以OA 为直径的圆上,由此可利用22m n +的几何意义求得答案;【答案】D【解析】直线()():2160l a x a y -+++=,即()260a x y x y +-++= , 令0260x y x y +=⎧⎨-++=⎩ ,解得22x y =⎧⎨=-⎩ , 即直线()():2160l a x a y -+++=过定点(2,2)A - ,由过坐标原点O 作直线()():2160l a x a y -+++=的垂线,垂足为(,)H m n ,可知:(,)H m n 落在以OA 为直径的圆上,而以OA 为直径的圆为22(1)(1)2x y ++-= ,如图示:故22m n +可看作是圆上的点(,)H m n 到原点距离的平方, 而圆过原点,圆上点到原点的最远距离为||22OA = ,但将原点坐标代入直线:(2)(1)60l a x a y -+++=中,60= 不成立,即直线l 不过原点,所以(,)H m n 不可能和原点重合,故22(0,8]m n +∈,故选:D2.在平面直角坐标系中,O 为坐标原点,A 、B 为平面上两点,且0OA OB ⋅=,M 为线段AB 中点,其坐标为(),a b 524a b =+-,则OM 的最小值为( ) A 5 B 25 C .33D 5【提示】由已知可得以AB 为直径的圆过点O ,对条件变形得到245a b OM +-=圆M 与直线240x y +-=相切,从而得到圆M 的半径最小值为点O 到直线240x y +-=的距离的一半,利用点到直线距离公式进行求解.【答案】B【解析】因为0OA OB ⋅=,所以OA OB ⊥,即以AB 为直径的圆过点O ,因为M 为线段AB 中点,坐标为(),a b 524a b =+-, 则245a b OM +-=几何意义为圆M 的半径与点M 到直线240x y +-=的距离相等, 即圆M 与直线240x y +-=相切,则圆M 的半径最小值为点O 到直线240x y +-=的距离的一半,125=.故选:B。
上海市2023-2024学年高二上学期期末考试数学试题与答案
上海市2023-2024学年高二上学期期末考试数学试题一、填空题(本大题共有12题,满分42分,第1~6题每题3分,第7~12题每题4分要求在答题纸相应题序的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.椭圆2214y x +=的焦距为__________.2.表面积为4π的球的体积为__________.3.已知数列{}n a 是各项为正的等比数列,11a =,51a =,则其前10项和10S =__________.4.已知事件A 与事件B 互斥,且()0.3P A =,()0.4P B =,则()P A B =________.5.若抛物线2x my =的顶点到它的准线距离为12,则正实数m =______.6.某学校组织全校学生参加网络安全知识竞赛,成绩(单位:分)的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若该校的学生总人数为1000,则成绩低于60分的学生人数为__.7.已知一个圆锥的底面半径为3,其侧面积为15π,则该圆锥的体积为___________.8.若双曲线22116x y m -=经过点(),则此双曲线的渐近线夹角的为______.9.若数列{}n a 满足()1112,21,n n a a a n n n +==+≥∈N ,则{}n a 的通项公式是______.10.在体积为9的斜三棱柱ABC—A 1B 1C 1中,S 是C 1C 上的一点,S—ABC 的体积为2,则三棱锥S—A 1B 1C 1的体积为___.11.已知无穷等比数列{}n a 满足:21193,2i i i i a a +∞+∞====∑∑,则{}n a 的通项公式是______.12.已知直线1:20l y -=和直线2:10l x +=,则曲线()2211x y -+=上一动点P 到直线1l 和直线2l的距离之和的最小值是____________.二、选择题(本大题共有4题,满分14分,第13~14题每题3分,第15~16题每题4分),每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得相应满分,否则一律得零分.13.直线倾斜角的取值范围为()A.π0,2⎡⎫⎪⎢⎣⎭B.π0,2⎡⎤⎢⎥⎣⎦C.[0,π)D.[]0,π14.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件15.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是()A.720 B.710C.310D.3516.关于曲线1122:1M x y +=,有下述两个结论:①曲线M 上的点到坐标原点的距离最小值是22;②曲线M 与坐标轴围成的图形的面积不大于12,则下列说法正确的是()A.①、②都正确B.①正确②错误C.①错误②正确D.①、②都错误三、解答题(本大题共有5题,满分44分),解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.17.随机抽取某校甲乙两班各10名同学,测量他们的身高(单位:cm ),获得身高数据如下:甲班:170179162168158182179168163171乙班:159173179178162181176168170165(1)计算甲班的样本方差;(2)求乙班数据的25%分位数.18.在长方体1111ABCD A B C D -中(如图),2AB =,11AD AA ==,点E 是棱AB 的中点.(1)求异面直线1AD 与EC 所成角的大小;(2)《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,试问四面体1D CDE 是否为鳖臑?并说明理由.19.已知数列{}n a 的前n 项和为2,n n S S n n =+,其中N,1n n ∈≥.(1)求{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n H .20.如图,在底面边长为1,侧棱长为2的正四棱柱1111ABCD A B C D -中,P 是侧棱1CC 上的一点,.=CP m (1)试确定m 的值,使直线AP 与平面11BDD B 所成角为60︒;(2)在线段11A C 上是否存在一个定点Q ,使得对任意的m ,有1D Q AP ⊥?证明你的结论.21.已知椭圆22221(,0)x y a b a b+=>的一个焦点为)3,0,离心率为32,椭圆的左右焦点分别为12F F 、,直角坐标原点记为O .设点()0,P t ,过点P 作倾斜角为锐角的直线l 与椭圆交于不同的两点B C 、.(1)求椭圆的方程;(2)设椭圆上有一动点T ,求()12PT TF TF ⋅-的取值范围;(3)设线段BC 的中点为M ,当2t ≥Q ,使得非零向量OM与向量PQ平行,请说明理由.上海市2023-2024学年高二上学期期末考试数学试题答案1.【分析】利用椭圆方程求出a ,b ,然后求解c ,即可得到结果.【详解】解:椭圆2214y x +=,2a =,1b =,则c ==.椭圆2214y x +=的焦距为:故答案为:【点睛】本题考查椭圆的简单性质的应用,属于基础题.2.【分析】先求出半径,再利用公式可求体积.【详解】2344441,33S R R V R ππππ==⇒===,故答案为:43π.3.【分析】根据题意,由条件可得数列{}n a 的公比为1,则10110S a =,即可得到结果.【详解】因为数列{}n a 是各项为正的等比数列,则其公比0q >,又11a =,51a =,则4511a q a ==,即1q =,所以数列{}n a 为常数数列,且11n a a ==,所以1011010S a ==.故答案为:104.【分析】根据互斥事件的概率加法公式,即可求解.【详解】因为随机事件A 与B 互斥,且()0.3P A =,()0.4P B =,所以()()()0.30.40.7P A B P A P B =+=+= .故答案:0.75.【分析】根据顶点到它的准线距离为4m即可得到方程,解出即可.【详解】222m x my y ==⋅,因为m 为正实数,则142m =,则2m =,故答案为:2.6.【分析】先利用频率分布直方图求得成绩低于60分的频率,进而求得该校成绩低于60分的学生人数.【详解】图中成绩低于60分的频率为20(0.010.005)0.3+=,则该校成绩低于60分的学生人数为10000.3300⨯=(人)故答案为:3007.【分析】根据圆锥的侧面积公式求出圆锥的母线长,利用勾股定理求出圆锥的高,再根据圆锥的体积公式可求出结果.【详解】设圆锥的母线长为l ,因为圆锥的底面半径3r =,所以圆锥的侧面积S 3rl l ππ==,依题意可得315l ππ=,解得5l =,所以圆锥的高4h ===,所以该圆锥的体积221113412333V Sh r h πππ==⋅=⨯⨯⨯=.故答案为:12π.8.【分析】将点代入双曲线,求出m ,然后求出渐近线方程,根据渐近线的斜率判断【详解】将点()代入双曲线得329116m-=,解得9m =,所以双曲线221169x y -=,所以双曲线的渐近线为34y x =±,设34y x =的倾斜角为α且3tan 4α=,则045α︒︒<<,0290α︒︒<<,所以两条渐近线的夹角为2α,所以232tan 2tan 291tan 116ααα===--247,所以由22sin 2cos 21sin 224tan 2cos 27ααααα⎧+=⎪⎨==⎪⎩得7cos 225α=.故答案为:7acccos259.【分析】利用累加法,结合等差数列的求和公式即可得解.【详解】因为()1112,21,n n a a a n n n +==+≥∈N ,所以212a a -=,324a a -=,…,12(1)n n a a n --=-,2n ≥,所以121321()()()n n n a a a a a a a a -=+---+++ 2(1)12242(1)122122n n n n n -=++++-=+⨯=-+ ,2n ≥,又112a =也满足上式,所以212n a n n =-+.故答案为:212n a n n =-+.10.【分析】由已知棱柱体积与棱锥体积可得S 到下底面距离与棱柱高的关系,进一步得到S 到上底面距离与棱锥高的关系,则答案可求.【详解】设三棱柱111ABC A B C -的底面积为'S ,高为h ,则9'9'S h S h==,,再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h ⨯⨯=,所以'23h h =,则S 到上底面111A B C 的距离为13h ,所以三棱锥111S A B C -的体积为111'91339S h ⨯=⨯=.故答案为1.【点睛】本题考查棱柱、棱锥体积的求法,考查空间想象能力、思维能力与计算能力,考查数形结合思想,三棱锥体积为13V S h =⋅底,本题是中档题.11.【分析】根据题意得到1q <,再利用无穷等比数列和的公式得到131a q =-与212912a q =-,解方程组即可得解.【详解】因为无穷等比数列{}n a ,13i i a +∞==∑,则1q <,131a q =-①,所以{}2n a 是首项为21a ,公比为21q <的等比数列,又2192ii a +∞==∑,则212912a q =-②,由①②可得,1312a q =+③,由②③可得,12a =,13q =,故{}n a 的通项公式为1123n n a -⎛⎫= ⎪⎝⎭.故答案为:1123n n a -⎛⎫= ⎪⎝⎭.12.【分析】先设出点P 的坐标,表示出点P 到直线1l 和直线2l 的距离之和12003d d x y +=-+;再利用几何意义求解得出答案.【详解】设点P 的坐标为()00,x y 则动点P 到直线1l 的距离为10022d y y =-=-;动点P 直线2l 的距离为()20011d x x =--=+.所以曲线()2211x y -+=上一动点P 到直线1l 和直线2l 的距离之和为120000213d d y x x y +=-++=-+令003t x y -=-,即003y x t=+-则3t -的几何意义是过点P 的直线3y x t =+-在y 轴上的截距.因为点P 在曲线()2211x y -+=上.所以当直线3y x t =+-与曲线()2211x y -+=相切时t 有最值.因为曲线()2211x y -+=是以()1,0圆心,1为半径的圆.1=,解得4t =-或4t =+所以曲线()2211x y -+=上一动点P 到直线1l 和直线2l的距离之和的最小值为4-故答案为:413.【分析】根据直线倾斜角的定义进行判断即可.【详解】当直线与横轴平行时,直线的倾斜角是0,因此直线倾斜角的取值范围为[0,π),故选:C14.【详解】当α⊥β时,平面α内的直线m 不一定和平面β垂直,但当直线m 垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m⊥β”的必要不充分条件.15.【分析】根据给定条件,利用列举法结合古典概率计算即得.【详解】记3名男同学为,,a b c ,2名女同学为,E F ,从5名同学中任选2名的结果有:,,,,,,,,,ab ac aE aF bc bE bF cE cF EF ,共10个,选出的2名同学中至少有1名女同学的事件含有的结果有,,,,,,aE aF bE bF cE cF EF ,共7个,所以选出的2名同学中至少有1名女同学的概率是710.故选:B16.【分析】利用基本不等式判断①的正确性,利用不等式的性质判断②的正确性.【详解】对于①,由11221x y +=平方可得,1x y ++=.因为x y +≥所以12x y +≥()2224x y ≥+≥,当且仅当14x y ==时等号成立,故①错误;对于②,由11221x y +=知,[],0,1x y ∈,11221y x =-,两边平方可得1y x =+-.因为x ≤,所以1121y x x x x =+-+-=-,即曲线C 在直线1y x =-的下方,因此所围图形的面积不大于12,故②正确.故选:C【点睛】用基本不等式求最值时,要注意其必须满足的三个条件:“一正,二定,三相等”.(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致.17.【分析】(1)利用平均数与方差的计算公式即可得解;(2)利用百分位数的定义求解即可.【小问1详解】依题意,设甲班的样本平均数为x ,方差为2s ,则()117017916216815818217916816317117010x =⨯+++++++++=,所以()()()()()22222222222109821212927157.210s ⎡⎤=⨯++-+-+-+++-+-+=⎣⎦【小问2详解】将乙班数据从小到大重新排列得:159,162,165,168,170,173,176,178,179,181,又1025% 2.5⨯=,所以乙班数据的25%分位数为第3位数,即165cm .18.【分析】(1)作//AE CE '交CD 于E ',联结1D E ',即可得到1D AE '∠为异面直线1AD 与EC 所成角,再根据三角形的性质求出1D AE '∠,即可得解;(2)首先可得90DEC ∠=︒,即可得到DEC 为直角三角形,在由线面垂直、面面垂直的性质得到CE ⊥平面1DD E ,即可得到1CE D E ⊥,即1D EC △为直角三角形,即可判断;【小问1详解】解:作//AE CE '交CD 于E ',联结1D E ',因为E 是棱AB 的中点.所以E '为CD 的中点,则1D AE '∠为异面直线1AD 与EC 所成角,因为11AD AA DE '===,所以11AE D E AD ''===因为1AD E '△为正三角形,即160D AE '∠=︒,异面直线1AD 与EC 所成角为60︒.【小问2详解】解:E 是棱AB 上的中点,则ADE V 、CBE △均为等腰直角三角形,故90DEC ∠=︒,所以DEC 为直角三角形,由1DD ⊥平面ABCD ,1DD ⊂面1DD E ,所以平面1DD E ⊥平面ABCD ,又DE CE ⊥,平面1DD E 平面ABCD DE =,CE ⊂平面ABCD ,所以CE ⊥平面1DD E ,1D E ⊂平面1DD E ,所以1CE D E ⊥,所以1D EC △为直角三角形,因为1DD ⊥平面ABCD ,,DE DC ⊂平面ABCD ,所以1DD DE ⊥,1DD DC ⊥,所以1DD E △、1DD C △均为直角三角形,故四面体1D CDE 四个面均为直角三角形为鳖臑.19.【分析】(1)利用,n n S a 之间的关系进行求解即可;(2)利用裂项相消法进行求解即可.【小问1详解】因为当N,1n n ∈≥时,有2n S n n =+,所以当N,2n n ∈≥时,有()2111n S n n -=-+-,两式相减,得2n a n =,当1n =时,由212n S n n a =+⇒=,适合2n a n =,所以2n a n =,*N n ∈;【小问2详解】因为2n a n =,N n ∈;所以()()111111112224141n n a a n n n n n n +⎛⎫==⋅=- ⎪+++⎝⎭,因此()11111114223141n n H n n n ⎛⎫=-+-++-= ++⎝⎭ .20.【分析】(1)建立空间直角坐标系,利用直线与平面所成角的公式求出m 的值;(2)假设在线段11A C 上存在这样的点Q ,设点Q 的横坐标为x ,则(,1,2)-Q x x ,由1⊥D Q AP ,即10AP D Q ⋅=,求出x ,即可得出答案.【小问1详解】建立如图所示的空间直角坐标系,则点(1,0,0)A ,(1,1,0)B ,(0,1,)P m ,(0,1,0)C ,(0,0,0)D ,1(1,1,2)B ,1(0,0,2)D ,(1,1,0)∴=-- BD ,1(0,0,2)BB = ,(1,1,)=- AP m ,(1,1,0).=- AC 由0AC BD ⋅= ,10⋅= AC BB ,1BD BB B ⋂=知,AC 为平面11BB D D 的一个法向量.设AP 与平面11BB D D 所成的角为θ,则2||3sin 2||||22AP AC AP AC m θ⋅==⨯+ ,解得63=m 故当63m =时,直线AP 与平面11BDD B 所成角为60︒.【小问2详解】假设在线段11A C 上存在这样的点Q ,设点Q 的横坐标为x ,则(,1,2)-Q x x ,1(,1,0)D Q x x =- ,依题意,得1⊥ D Q AP ,即10AP D Q ⋅= ,(1)0∴-+-=x x ,解得12x =,当Q 为11A C 的中点时,满足题设的要求.21.【分析】(1)求出,a b 可得答案;(2)设动点(),T x y ,求出()122123PT TF TF PT F F x ⋅-=⋅=- ,根据x 的取值范围可得答案;(3)设直线:l y kx t =+与椭圆方程联立,可得其判别式1Δ0>,化简得2214t k ->①,利用韦达定理求出M 点坐标可得14OM k k =-,利用//OM PQ 得PQ OM k k =,设直线PQ 方程为14y x t k =-+与椭圆方程联立,要使得存在点Q 可得其判别式2Δ0≥,化简得22144k t ≤-②,由①②式求出t 的范围可得答案.【小问1详解】由题意,得2c a ==,所以1b ==,则椭圆的标准方程为2214x y +=;【小问2详解】设动点()()21,,T x y F F =- ,(),=- PT x y t ,()1221PT TF TF PT F F ⋅-=⋅=- ,[]2,2x ∈- 所以()12PT TF TF ⋅-的取值范围为-⎡⎣;【小问3详解】显然直线的斜率存在,所以可以设直线:l y kx t =+,联立得到2214y kx t x y =+⎧⎪⎨+=⎪⎩,整理,得()()222148440k x ktx t +++-=,则2121222844,1414kt t x x x x k k-+=-⋅=++,则222244,,,14141414M M M kt t kt t x y kx t M k k k k ⎛⎫=-=+=∴- ⎪++++⎝⎭,又 直线l 与椭圆交于两点:()()22221Δ64414440k t k t =-+->,化简得226416160k t +->,则2214t k ->①,14OM k k∴=-,如果//OM PQ ,则14PQ OM k k k ==-,设直线PQ 为22114,414y x t k y x t k x y ⎧=-+⎪⎪=-+⎨⎪+=⎪⎩,整理得2221214404t x x k k k⎛⎫+-+-= ⎪⎝⎭,要使得存在点Q ,则()2222241Δ414404t t k k ⎛⎫=-+-≥ ⎪⎝⎭,整理得22224116160,44+-≥∴≤-t k k t ②,由①②式得,22211444-∴<≤-t k t ,则2211444t t -<-,解得t <<,所以当t ≥Q ,使得//OM PQ .【点睛】关键点点睛:第三问的解题关键点是分别设直线l 、直线PQ 方程与椭圆方程联立,利用其判别式化简t 求出t 的范围.。
上海重点高二上学期期末数学试题(解析版)
一、填空题1.等比数列中,且,则公比为______. {}n a 11a =1238a a a =-【答案】2-【分析】根据给定条件,利用等比数列性质求出,再求出公比作答.2a 【详解】在等比数列中,因为,则,所以公比. {}n a 321238a a a a ==-22a =-212a q a ==-故答案为:2-2.已知空间向量,,且与垂直,则等于 ___.()3,2,5a =- ()1,,1b x =- a bx 【答案】4【分析】根据向量垂直数量积等于列方程即可求解.0【详解】因为向量,,且与垂直,()3,2,5a =- ()1,,1b x =- a b所以,可得,3250a b x ⋅=-+-=4x =故答案为:.43.圆锥底面半径为1cm ,母线长为4cm ,则其侧面展开图扇形的圆心角______. θ=【答案】π2【分析】直接利用弧长公式即可求解.【详解】因为圆锥底面半径为1cm ,所以侧面展开图对应的扇形的弧长为, 2π2πr =所以圆锥侧面展开图的圆心角. 2ππ42θ==故答案为:π24.已知无穷等比数列的前项的和为,首项,公比为,且,则______. {}n a n n S 13a =q lim 2n n S →∞=q =【答案】##-0.512-【分析】根据无穷等比数列前n 项和的极限可知且,可得,结合已知求即可. 0q ≠||1q <121a q=-q 【详解】无穷等比数列的前项和为,首项为,公比,且, {}n a n n S 13a =q lim 2n n S →∞=∴且,0q ≠||1q <,则. 13211a q q ∴==--12q =-故答案为:.12-51,则球的表面积为______.【答案】16π【分析】计算半径为,再计算表面积得到答案.2R =【详解】球的半径,故球的表面积为. 2R ==24π16πR =故答案为:16π6.甲、乙、丙三人100米跑的成绩(互不影响)合格的概率分别为,若对这三人进行一次231543、、100米跑检测,则三人都合格的概率是___________(结果用最简分数表示). 【答案】110##0.1【分析】利用独立事件的概率求解.【详解】因为甲、乙、丙三人100米跑的成绩(互不影响)合格的概率分别为,231543、、所以三人都合格的概率是,231154310p ⨯⨯==故答案为:1107.在空间中,直线平行于直线,直线为异面直线,若,则异面直线AB EF BC EF 、120ABC ∠=︒所成角的大小为______.BC EF 、【答案】60︒【分析】根据异面直线所成角的定义,即可求得答案.【详解】直线为异面直线,且直线平行于直线, BC EF 、AB EF 所以与所成角即为异面直线、所成角, AB BC BC EF 因为,且异面直线所成角的范围是, 120ABC ∠=︒(0],90︒︒所以异面直线、所成角的大小为, BC EF 60︒故答案为:60︒8.如图的茎叶图记录了甲、乙两组各五名学生在一次体育测试中的成绩(单位:分)已知甲组数据的平均数为18,乙组数据的中位数为16,则______.x y -=【答案】2【分析】根据茎叶图和题中所说的平均数和中位数计算未知量即可. 【详解】由茎叶图得甲组数据为:9,12,,24,27,10x +因为甲组数据的平均数为18,所以, 91210242751890x +++++=⨯=解得;8x =由茎叶图可知乙组数据为:9,15,,18,24, 10y +乙组数据的中位数为16,所以,解得, 1016y +=6y =所以. 2x y -=故答案为:29.已知公差不为的等差数列的前项和为,若,则的最小值为0{}n a n n S {}457,,10,0a S S ∈-n S ____________ 【答案】12-【分析】对的值进行分类讨论,结合等差数列前项和最值的求法求得的最小值. 4a n n S 【详解】取得最小值,则公差,或, n S 0d >410a =-40a =(1)当 17474530,0,770,5102a a a d S a S a +=>=⨯====-,1130,51010a d a d ⇒+=+=-,16,20,28,2804n n a d a n a n n ⇒=-=>=-=-≤⇒≤所以的最小值为. n S 4146241212S a d =+=-+=-(2)当,不合题意. 1747410,0,77702a a a d S a +=->=⨯==-综上所述:的最小值为. 457=0,= 10,0,n a S S S -=12-故答案为:12-10.古希腊数学家阿基米德是世界上公认的三位最伟大的数学家之一,其墓碑上刻着他认为最满意的一个数学发现,如图,一个“圆柱容球”的几何图形,即圆柱容器里放了一个球.该球顶天立地,四周碰边,在该图中,球的体积是圆柱体积的,并且球的表面积也是圆柱表面积的,若圆柱的2323表面积是,现在向圆柱和球的缝隙里注水,则最多可以注入的水的体积为______.24π【答案】163π【分析】利用圆柱的表面积求出球的表面积,然后求出球的半径,最后求出圆柱的底面半径和高,利用圆柱和球的体积差,求出水的体积即可.【详解】设球的半径为,由题意得球的表面积为,r 224243r ππ=⨯所以,所以圆柱的底面半径为2,高为4,2r =所以最多可以注入的水的体积为.2341624233πππ⨯⨯-⨯=故答案为:163π11.在棱长为的正方体中,点分别是线段(不包括端点)上的动11111ABCD A B C D -12,P P 1,AB BD 点,且线段平行于平面,则四面体的体积的最大值是___________. 12PP 11A ADD 121PP AB 【答案】124【分析】由线面平行的性质定理知, ∽ , , 121//PP AD 12PP B ∴A 1ADB A 112211PB PP P B AB AD BD ==设,则 , 到平面 的距离为 ,则, 1,(0,1)PB x x =∈12PP =2P 11AA B B h 2111P B hA D BD =所以,所以四面体 的体积为, h x =121PP AB 22111111(1)1()()3266224V x x x x x =⨯⨯-⨯⨯=-=--+当 时,四面体 的体积取得最大值: . 12x =121PP AB 124所以答案应填:. 124【解析】1、柱、锥、台体体积;2、点、线、面的位置关系.【思路点睛】本题考查正方形中几何体的体积的求法,找出所求四面体的底面面积和高是解题的关键,考查计算能力,属于中档题.由线面平行的性质定理知, ∽ ,设出121//PP AD 12PPB ∴A 1ADB A ,则 , 到平面 的距离为 ,表示出四面体 的体1,(0,1)PB x x =∈12PP =2P 11AA B B x121PP AB 积,通过二次函数的最值,求出四面体的体积的最大值.12.已知数列和,其中的小数点后的第n 位数字,(例如{}n a {}n b n a 1.41421356237= 14a =,),若,且对任意的,均有,则满足的所有n 的值为63a =11b a =N n *∈1n n b b a +=2022n b n =-______.【答案】或20242026【分析】计算得到为周期数列,考虑,,三种情况,代入数据计算得{}n b 32n k =-31n k =-3n k =到答案.【详解】当时,,当时,, 1n =114b a ==2n =1242b b a a ===当时,,当时,, 3n =2321b b a a ===4n =3414b b a a ===当时,,当时,,5n =4542b b a a ===6n =5621b b a a ===故为周期数列,,,{}n b 4,322,311,3 n n k b n k n k =-⎧⎪==-⎨⎪=⎩*N k ∈当时,,所以, 32n k =-20224n b n =-=2026n =当时,,所以, 31n k =-20222n b n =-=2024n =当时,,所以(舍去), 3n k =20221n b n =-=2023n =综上所述:或2024. 2026n =故答案为:或20242026二、单选题13.用数学归纳法证明“”,验证成立时等式左边计算所得()323121111n n a a a a a a++-+⋅⋅⋅+=≠-++1n =项是( ) A .1 B .1a +C . D .21a a ++2341a a a a ++++【答案】D【分析】根据数学归纳法求解即可.【详解】表达式的左边是从开始加到结束,131n a +所以验证成立时等式左边计算所得项是. 1n =2341a a a a ++++故选:D14.某中学高三年级共有学生1600人,为了解他们的身体状况,用分层抽样的方法从中抽取一个容量为40的样本,若样本中共有男生12人,则该校高三年级共有女生( )A .1260B .1230C .1120D .1140【答案】C【分析】由男生所占抽取样本容量的比例求出男生的总人数,进而求出女生总人数. 【详解】由男生人数为,所以女生人数为. 12160048040⨯=16004801120-=故选:C .15.在一个正三角形的三边上,分别取一个距顶点最近的十等分点,连接形成的三角形也为正三角形(如图1所示,图中共有个正三角形).然后在较小的正三角形中,以同样的方式形成一个更2小的正三角形,如此重复多次,可得到如图2所示的优美图形(图中共有个正三角形),这个过11程称之为迭代.在边长为的正三角形三边上,分别取一个三等分点,连接成一个较小的正三角243形,然后迭代得到如图3所示的图形(图中共有个正三角形),其中最小的正三角形面积为10( )AB . CD1【答案】A【分析】记第个正三角形的边长为,第个正三角形的边长为,根据与的关系判n n a 1n +1n a +n a 1n a +断出为等比数列,由此求解出最小的正三角形的边长,从而面积可求. {}n a 【详解】设第个正三角形的边长为,则个正三角形的边长为, n n a 1n +1n a +由条件可知:,1243a =又由图形可知:,所以,222112122cos 603333n n n n n aa a a a +⎛⎫⎛⎫=+-⨯⨯⨯︒ ⎪ ⎪⎝⎭⎝⎭2211,03n n n a a a +=>所以,所以是首项为的等比数列, 1n n a a +={}n a 243所以,所以,所以,1243n n a -=⨯11n n a -=10a所以最小的正三角形的面积为:, 12=故选:A.【点睛】关键点点睛:解答本题的关键是将已知问题转化为等比数列问题,通过每一次的迭代分析正三角形的边长之间的关系,从而分析得到正三角形的边长成等比数列,据此可进行相关计算.16.已知平面经过圆柱的旋转轴,点是在圆柱的侧面上,但不在平面上,则下α12O O AB 、12O O α列个命题中真命题的个数是( ) 4①总存在直线且与异面; ,l l α⊂l AB ②总存在直线且; ,l l α⊂l AB ⊥③总存在平面且; ,AB ββ⊂βα⊥④总存在平面且. ,AB ββ⊂//βαA .l B .2C .3D .4【答案】C【分析】根据空间位置关系可直接判断.【详解】解:由已知得直线与平面可能平行,也可能相交, AB α所以一定存在直线,且与异面,故①正确; l l ⊂αl AB 一定存在直线,且,故②正确; l l ⊂αl AB ⊥一定存在平面,且,故③正确;βAB β⊂βα⊥当直线与平面相交时,不存在存在平面,且,故④错误; AB αβAB β⊂//βα所以4个命题中真命题的个数是3个. 故选:C三、解答题17.如图,圆锥的底面直径与母线长均为4,PO 是圆锥的高,点C 是底面直径AB 所对弧的中点,点D 是母线PA 的中点.(1)求该圆锥的体积;(2)求直线CD 与平面PAB 所成角的大小.【答案】(2)4π【分析】(1)根据圆锥的体积公式计算出圆锥的体积.(2)作出直线CD 与平面PAB 所成角,解直角三角形求得角的大小.【详解】(1)依题意可知圆锥的底面半径,高 2r =OP ==所以圆锥的体积为. 2123π⨯⨯⨯=(2)连接,由于是的中点,所以, OD D PA 122OD PA ==由于是弧的中点,所以,C AB OC AB ⊥根据圆锥的几何性质可知,,OC OP AB OP O ⊥⋂=所以平面,所以是直线CD 与平面PAB 所成角的平面角. OC ⊥PAB ODC ∠在中,,所以.Rt ODC A ,22COD OD OC π∠===4ODC π∠=即直线CD 与平面PAB 所成角的大小为.4π18.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两,A B 组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体A B 积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为. C 5.5()P C 0.70(1)求乙离子残留百分比直方图中的值;,a b (2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1) ,;(2) ,.0.35a =0.10b = 4.056【分析】(1)由及频率和为1可解得和的值;(2)根据公式求平均数.()0.70P C =a b 【详解】(1)由题得,解得,由,解得0.200.150.70a ++=0.35a =0.050.151()10.70b P C ++=-=-.0.10b =(2)由甲离子的直方图可得,甲离子残留百分比的平均值为,0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=乙离子残留百分比的平均值为 0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯=【点睛】本题考查频率分布直方图和平均数,属于基础题.19.随着人们生活水平的提高,很多家庭都购买了家用汽车,使用汽车共需支出三笔费用;购置费、燃油费、养护保险费,某种型号汽车,购置费共万元;购买后第年燃油费共万元,以后2012每一年都比前一年增加万元.0.2(1)若每年养护保险费均为万元,设购买该种型号汽车年后共支出费用为万元,求1()*n n N ∈n S n S 的表达式;(2)若购买汽车后的前年,每年养护保险费均为万元,由于部件老化和事故多发,第年起,每617一年的养护保险费都比前一年增加,设使用年后养护保险年平均费用为,当10%()*n n N ∈n C 时,最小,请你列出时的表达式,并利用计算器确定的值(只需写出的值) 0n n =n C 6n >n C 0n 0n 【答案】(1) 22920,100*1n n nN S n ++∈=(2)5010 1.15,6,*;7n n C n n N n n -⨯-=>∈=【分析】(1)根据题意,购买该车后,每年的燃油费构成等差数列,首项为,公差为,进而20.2得年后燃油的总费用是,进而结合题意可得; ()*n n N ∈2191010n n +229201010n n n S =++(2)由题知从第七年起,养护保险费满足等比数列,首项为 ,公比为,进而得1.1 1.1年后,养护保险费为,再求平均值即可得答案,最后利用计算器计算可*,(6)n n N n ∈>510 1.15n -⨯-得.07n =【详解】(1)解:根据题意,购买后第年燃油费共万元,以后每一年都比前一年增加万元, 120.2所以购买该车后,每年的燃油费构成等差数列,首项为,公差为, 20.2所以购买该种型号汽车第年的燃油费用为, ()*n n N ∈0.2 1.8n a n =+所以购买该种型号汽车年后燃油的总费用是,()*n n N ∈()20.2 1.821921010n n n n ++=+因为每年养护保险费均为万元,所以购买该种型号汽车年后养护费用共万元, 1()*n n N ∈n 所以. 2219292020,10101010*n n n n N n nS n =+++=∈++(2)解:当时,由于每一年的养护保险费都比前一年增加, 6n >10%所以从第七年起,养护保险费满足等比数列,首项为,公比为, 1.1 1.1所以从第七年起,第年的养护保险费用为,*,(6)n n N n ∈>61.1,*n n N -∈所以购买该种型号汽车年后,养护保险费为,*,(6)n n N n ∈>()651.11 1.1610 1.151 1.1n n --⨯-+=⨯--所以当时,使用年后,养护保险费的年平均费用为.6n >()*n n N ∈510 1.15,6,*n n C n n N n-⨯-=>∈经计算器计算得时,最小.07n =n C 20.已知梯形中,,,,,分别是ABCD //AD BC 2ABC BAD π∠=∠=24AB BC AD ===E F AB,上的点,,,沿将梯形翻折,使平面平面(如图).CD //EF BC AE x =EF ABCD AEFD ⊥EBCF(1)当时,①证明:平面;②求二面角的余弦值; 2x =EF ⊥ABE D BF E --(2)三棱锥的体积是否可能等于几何体体积的?并说明理由. D FBC -ABE FDC -49【答案】(1)①见解析,2)当时,三棱锥的体积等于几何体2AE =D FBC -体积的. ABE FDC -49【分析】(1)①可证,从而得到平面.②如图,在平面中,过,EF AE EF BE ⊥⊥EF ⊥ABE AEGD 作且交于.在平面中,过作且交于,连接.可证D DG EF ⊥EF G DBF D DH BF ⊥BF H GH 为二面角的平面角,求出和的长度后可求二面角的余弦值.DHG ∠D BF E --DG GH(2)若存在,则,利用体积公式可得关于的方程,解方程后可得,故假设5=4B ADFE D BFC V V --x 2x =成立.【详解】(1)①在直角梯形中,因为,故,ABCD 2ABC BAD π∠=∠=,DA AB BC AB ⊥⊥因为,故.//EF BC EF AB ⊥所以在折叠后的几何体中,有,,EF AE EF BE ⊥⊥而,故平面.AE BE E =I EF ⊥ABE ②如图,在平面中,过作且交于.AEFD D DG EF ⊥EF G 在平面中,过作且交于,连接.DBF D DH BF ⊥BF H GH 因为平面平面,平面平面, AEFD ⊥EBCF AEFD ⋂EBCF EF =平面,故平面,DG ⊂AEFD DG ⊥EBCF 因为平面,故,而,BF ⊂EBCF DG BF ⊥DG DH D = 故平面,又平面,故,BF ⊥DGH GH ÌDGH GH BF ⊥所以为二面角的平面角,DHG ∠D BF E --在平面中,因为,故,AEFD ,AE EF DG EF ⊥⊥//AE DG 又在直角梯形中,且, ABCD //EF BC ()132EF BC AD =+=故,故四边形为平行四边形,//EF AD AEGD 故,2DG AE ==1GF =在直角三角形中,,因为三角形内角, BEF 2tan 3BFE ∠=BFE ∠故sin BFE ∠=1sin GHBFE =⨯∠=故,因为三角形内角,故tan DHG ∠=DHG∠cosDHG ∠=所以二面角D BF E --(2)若三棱锥的体积等于几何体体积的, D FBC -ABE FDC -49则即. 9=4B ADFE D BFCD BFC V V V ---+5=4B ADFE D BFC V V --由(1)的证明可知,平面,DG ⊥BEFC 同理可证平面,.BE ⊥AEFD AE DG =故,其中为直角梯形的面积. 113B ADFE V BE S -=⨯⨯1S ADFE 而, 1133D BFC BCF BCF V DG S AE S -=⨯⨯=⨯⨯A A 在直角梯形中,过作的垂线,与分别交于,ABCD D BC ,EF BC ,M N 则,故,所以, 24FM x =2x FM =22x FE =+所以. 21112242222x x S x x ⎛⎫⎛⎫=++⨯=+ ⎪ ⎪⎝⎭⎝⎭所以. ()()22111444432262B ADFE x x V x x x x -⎛⎫⎛⎫=⨯-⨯+=⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭又, ()1242BCF S BE BC x =⨯⨯=-A 故,所以, ()1243D BFC V x x -=⨯⨯-()()215144246243x x x x x ⎛⎫⨯-⨯+=⨯⨯⨯- ⎪⎝⎭解得,2x =故当时,三棱锥的体积等于几何体体积的. 2AE =D FBC -ABE FDC -49【点睛】线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.而面面垂直的证明可以通过线面垂直得到,也可以通过证明二面角是直二面角. 空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算. 又三棱锥的体积的计算需选择合适的顶点和底面,此时顶点到底面的距离容易计算.21.设数列与满足:的各项均为正数,.{}n a {}n b {}n a cos , n n b a n *=∈N (1)设,若是无穷等比数列,求数列的通项公式; 233ππ, 43a a =={}nb {}n b(2)设.求证:不存在递减的数列,使得是无穷等比数列; 1π02<≤a {}n a {}n b (3)当时,为公差不为0的等差数列且其前的和为0;若对任意满足条件121≤≤+n m {}n b 21m +的数列,其前项的和均不超过,求正整数的最大值.06π (121)<≤≤≤+n a n m {}n a 21m +21m S +100πm【答案】(1);(2)证明见解析;(3)最大值为8.1n n b -⎛= ⎝【解析】(1)运用等比数列的中项性质,解方程可得公比,所求通项公式;q (2)运用反证法证明,结合数列的单调性和余弦函数的值域,可得矛盾,即可得证;(3)运用等差数列的等差中项的性质和求和公式,解不等式可得所求最大值.【详解】(1)解:,公比为23πcos4b ==3π1cos 32b ==q =由解得, 2213b b b =⋅11b =数列的通项公式为.{}n b 1n n b -⎛= ⎝(2)证明:反证法,设存在则,此时 21π02a a <<<21cos cos 0a a >>公比21cos 1cos a q a =>,考虑不等式11cos cos ()n n a a q -=⋅11cos 1n a q -⋅>当时,即时,11log (cos )q n a >-11[1log (cos )]q n a ≥+-有(其中表示不超过x 的最大整数),cos 1n a >[]x 这与的值域为矛盾()cos f x x =[1,1]-假设不成立,得证∴(3)解:, 121()(21)02+++=m b b m ∴1210m b b ++=由等差数列性质221210 (11, )*+-++=+=≤≤+∈N i m i m b b b b i m i 即,特别地,,22cos cos 0i m i a a +-+=10m b +=现考虑的最大值21m S +为使取最大值,应有,21m S +[]5π,6πn a ∈否则在中将替换为,且,21m S +n a n a 'cos cos n n a a '=[]5π,6πn a '∈将得到一个更大的21m S +由可知,特别地,; 22cos cos 0i m i a a +-+=2211π211π2i m i a a +-+=⋅=111π2m a +=于是 ()21max 11π(21)11π(11π)10022++⋅=⋅+=≤m m S m π解得,所以的最大值为8. 18922m ≤m 【点睛】本题考查等比数列和等差数列的性质和通项公式、求和公式的运用,考查运算能力和推理能力,以及反证法的应用.。
上海名校高二上学期期末数学试题(解析版)
一、填空题1.与的等差中项是____________________. 327【答案】15【分析】利用等差中项的定义即得解. 【详解】3与27的等差中项为:. 327152+=故答案为:15.2.已知等差数列满足,则公差__________; {}n a 371,5a a ==d =【答案】1【分析】根据等差数列基本量的计算即可求解. 【详解】由等差数列的性质可得 73441d a a d ==⇒=-故答案为:13.在等比数列中,若,则__________; {}n a 131,9a a ==5a =【答案】81【分析】由等比中项即可求解.【详解】由等比中项可得, 3315522181a a a a a a =⇒==故答案为:814.计算:__________;114ii +∞=⎛⎫= ⎪⎝⎭∑【答案】13【分析】根据无穷等比数列的求和公式直接求出答案即可.【详解】因为,所以是首项为,公比为的等比数列, 1114414n n+⎛⎫⎪⎝⎭=⎛⎫ ⎪⎝⎭14n ⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭1414所以.1111414314ii +∞=⎛⎫== ⎪⎝⎭-∑故答案为:.135.有3位老师、4名学生排成一排照相,其中老师必须排在一起的排法共有________种.(用具体数字回答) 【答案】720【分析】根据相邻问题捆绑法即可由分步乘法计数原理求解.【详解】第一步:利用捆绑法把3名老师看做一个整体与学生全排列,则有,55A 120=第二步:解绑,3位老师之间的顺序为,33A 6=由乘法计数原理可得,5353A A 1206720=⨯=故答案为:7206.已知直线的一个方向向量为,平面的一个法向量,若,则实数l (1,2,1)d =-α(,4,2)n x =- //l α_______.x =【答案】10【分析】根据直线与平面平行,得到直线的方向向量与平面的法向量垂直,进而利用空间向量数量积为0列出方程,求出的值.x 【详解】因为,所以直线的方向向量与平面的法向量垂直,//l αl α即,解得:.(,4,2)(1,2,1)820n d x x ⋅=-⋅-=--=10x =故答案为:107.若的二项展开式中的常数项为,则实数a =___________.62a x x ⎛⎫+ ⎪⎝⎭160-【答案】1-【分析】由二项式可得其展开式通项为,结合已知常数项求参数a 即可.662162rr r r r T a C x --+=⋅【详解】由题设,二项式展开式通项为, 6662166(2)(2rrr r r r r r aT C x a C x x---+==⋅∴当,常数项为,可得.3r =333362160160a C a ⋅==-1a =-故答案为:.1-8.已知若三向量共面,则实数______.(1,1,3),(1,4,2),(1,5,),a b c x =-=--= ,,a b cx =【答案】5【分析】利用空间向量共面定理即可求解.【详解】因为三向量共面,所以,,,a b ca b c λμ=+ 即(1,1,3)(1,4,2)(1,5,),x λμ-=--+所以,解得,145123x λμλμλμ-+=⎧⎪+=-⎨⎪-+=⎩23135x λμ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩故答案为:5.9.用数学归纳法证明: 的第二步中,当时等(31)(1)(2)()2n n n n n n +++++++=*()n N ∈1n k =+式左边与时的等式左边的差等于___. n k =【答案】3k+2【详解】试题分析:当时,等式的左边为,当时,等式的n k =(1)(2)()k k k k ++++++ 1n k =+左边为,所以当时等式左边与时的等式左(2)(3)(1)(11)k k k k k k +++++++++++1n k =+n k =边的差等于. (1)(11)(1)32k k k k k k ++++++-+=+【解析】数学归纳法.10.对于数列满足:,记满足条件的所有数列中,{}n a {}()11121,,,,N,1n n n a a a a a a n n +=-∈∈≥ {}n a 的最大值为,最小值为,则__________;10a a b a b -=【答案】502【分析】先根据求,,观察规律可得,进而可得答案. 1a 2a 34,a a ,a b 【详解】因为,所以,即, 11a ={}211a a a -∈211a a -=所以;22a =,所以或,即或; {}3212,a a a a -∈321a a -=322a a -=33a =34a =,所以或或或,{}43123,,a a a a a -∈431a a -=432a a -=433a a -=434a a -=即或或或或;44a =45a =46a =47a =48a =以此类推,可得的最小值为,的最大值, 10a 10b =10a 92512a ==所以. 51210502a b -=-=故答案为:50211.某种平面分形图如下图所示,一级分形图是一个边长为1的等边三角形(图(1));二级分形图是将一级分形图的每条线段三等分,并以中间的那一条线段为一底边向形外作等边三角形,然后去掉底边(图(2));将二级分形图的每条线段三等边,重复上述的作图方法,得到三级分形图(图(3));;重复上述作图方法,依次得到四级、五级、级分形图.则级分形图的周长为L n 、n__________;【答案】1433n -⎛⎫⨯ ⎪⎝⎭【分析】根据题意,先分析边长之间的变化规律,再分析边数的变化规律即可求出第个图形的周n 长,从而可求出周长.【详解】由题意可知,第1个图形的边长为1,第2个图形的边长为第1个图形边长的,第3个13图形的边长又是第2个图形边长的,……,13所以各个图形的边长构成首项为1,公比为的等比数列,13所以第个图形的边长为,n 1113n n a -⎛⎫=⨯ ⎪⎝⎭由图可知,各个图形的边数,构成首项为3,公比为4的等比数列,所以第个图形的边数为,n 134n n b -=⨯所以第个图形的周长为,n 1433n n n a b -⎛⎫=⨯ ⎪⎝⎭故答案为:1433n -⎛⎫⨯ ⎪⎝⎭12.设集合,选择的两个非空子集和,要使中最小的数大于{}()1,2,3,,N,2P n n n =∈≥ P A B B A 中最大的数,则不同的和共有__________个组合. A B 【答案】1221n n n --+【分析】先分析集合A ,分别有多少种选择方法,根据分步计数原理相乘,再对、求和即可求B l k 得结果.【详解】设A 中最大的数为,中最大的数为,依题意有.k B l 1k l n ≤<≤记,,.因为中最小的数大于A 中最{}1,2,,1M k =- {}1,2,,1S k k l =++- {}1,2,,N l l n =++ B 大的数,所以A 中其它元素只能取自集合,有种选择方{}1,2,,1M k =- 0111111C C C 2k k k k k -----+++=法;中其它元素只能取自集合,有种选择方法;B {}1,2,,N l l n =++ 01C C C 2n l n ln l n l n l -----+++= 内的数既不属于A 也不属于.根据分步计数原理,集合A ,的选择方法有{}1,2,,1S k k l =++- B B 种. 因为,所以满足题目条件的所有集合A ,的选择方法种数为122k n l --⋅1k l n ≤<≤B ()1122k n l k l n--≤<≤⋅∑()111122n nk n lk l k ---==+=⋅∑∑()11121212k n k n k ---=-=-∑()111221n k n kk ---==-∑()111122n n k k ---==-∑. 1112(1)212n n n ---=---11(1)221n n n --=--+1221n n n -=-+【点睛】本题求解的关键是:把集合分成三部分,利用分步计数原理求出集合A ,B 的选择方法,利用等比数列的求和公式求和,综合了集合子集,数列求和,计数原理三模块的知识.二、单选题13.若成等比数列,则下列三个数列:(1);(2);(3)a b c d ,,,2222,,,a b c d ,,ab bc cd ,必成等比数列的个数为( ) ,,a b b c c d ---A .0 B .1 C .2 D .3【答案】C【分析】根据成等比数列,设其公比为( ),利用等比数列的定义即可结合所给式子a b c d ,,,q 1q ≠进行判断.【详解】成等比数列,设公比为 ,则均不为0,且, a b c d ,,,q a b c d ,,,b c dq a b c===,故成等比数列,且公比为, 2222222b c d q a b c ===2222,,,a b c d 2q 因此成等比数列,且公比为, 22,,bc c cd d q q ab a bc b====,,ab bc cd 2q ,当时,成等比数列,且公比为,()()()()21,11,1a b a q b c b q aq q c d aq q -=--=-=--=-1q ≠q 但当时,不是等比数列, 1q =故选:C14.设等差数列的前项和为,若,则( ) {}n a n n S 19290,0a a a a +>+<A .且 B .且 90S >100S >90S <100S >C .且 D .且90S >100S <90S <100S <【答案】C【分析】根据题意,利用等差数列求和公式和等差中项性质可判断,的正负.9S 10S 【详解】因为,所以, 190a a +>()1999=02a a S +>因为,所以,290a a +<()()11029101010022a a a a S ++==<故选:C.15.设是空间中给定的5个不同的点,则使成立的12345,,,,A A A A A 123450MA MA MA MA MA ++++=点的个数为( ) M A .0 B .1C .5D .10【答案】B【详解】【解析】向量的加法及其几何意义.分析:根据所给的四个固定的点,和以这四个点为终点的向量的和是一个零向量,根据向量加法法则,知这样的点是一个唯一确定的点.解:根据所给的四个向量的和是一个零向量, 123450MA MA MA MA MA ++++=当A 1,A 2,A 3,A 4,A 5是平面上给定的5个不同点确定以后, 在平面上有且只有一个点满足使得四个向量的和等于零向量, 故选B .16.设各项均为正整数的无穷等差数列,满足,且存在正整数,使,成等{}n a 3382022a =k 1a 338k a a ,比数列,则公差的所有可能取值的个数为( ) d A .1 B .3 C .4 D .5【答案】C【分析】利用等差数列的通项表示出的关系式,结合,成等比数列,分类讨论可得答1,a d 1a 338k a a ,案.【详解】根据题意可知,,化简可得, 33813372022a a d =+=16337a d +=因为各项均为正整数,则, {}n a N d ∈故是337的倍数,且,1a 16337a ≤⨯因为,成等比数列,所以,1a 338k a a ,222223381202232337k a a a ===⨯⨯则 , 又因为, 222132337k a a ⨯⨯=1(1)=+-k a a k d分为以下情况讨论:① 若,则,可得,1337a =16d +=5d =,解得,合乎题意;3375(1)36337k a k =+-=⨯2360k =②若,则,可得,12337a =⨯26d +=4d =,解得,合乎题意;23374(1)18337k k a =⨯+-=⨯1349k =③ 若,则,可得,13337a =⨯36d +=3d =,解得,合乎题意;33373(1)12337k k a =⨯+-=⨯1012k =④若,则,可得, 14337a =⨯46d +=2d =,解得,不合乎题意; 43372(1)9337k a k =⨯+-=⨯16872k =⑤若,则,可得,15337a =⨯56d +=1d =此时不是整数,不合题意;222323375337k a ⨯⨯=⨯⑥若,则,可得,此时是常数列,且每一项均为,合乎题意; 16337a =⨯66d +=0d ={}n a 2022综上所述,公差的所有可能取值的个数为. d 4故选:C.三、解答题17.已知数列是公差大于零的等差数列,且,求数列的通项公式以{}n a d 34346,8a a a a +=-⋅={}n a 及前项和.n n S 【答案】,210n a n =-29n S n n =-【分析】通过联立方程组解得和的值,求出首项和公差,通过等差数列的通项公式和前3a 4a 1a d n 项和公式,求出数列的通项公式以及前项和{}n a n n S 【详解】依题意,,解得或,公差大于零,343468a a a a +=-⎧⎨⋅=⎩3424a a =-⎧⎨=-⎩3442a a =-⎧⎨=-⎩ d ∴43a a >(舍去),,,, 3424a a =-⎧⎨=-⎩∴3442a a =-⎧⎨=-⎩∴432d a a =-=1324228a a d ∴=-=--⨯=-, ∴1(1)8(1)2210n a a n d n n =+-=-+-⨯=-, ∴21()(8210)922n n n a a n n S n n +-+-===-数列的通项公式; ∴{}n a 210n a n =-数列的前项和.∴{}n a n 29n S n n =-18.如图,正方体的棱长为2,分别是的中点,请运用空间向量方法1111ABCD A B C D -,E F 111,AA A B (建系如图).求解下列问题:(1)求异面直线与所成角的大小; EF 1BC (2)求到平面的距离. E 1BC D 【答案】(1) 60︒【分析】(1)根据题意得到各点的坐标,从而得到与,再利用空间向量夹角的余弦表示即EF 1BC可得解;(2)先求得与平面的一个法向量,再利用点到平面距离的向量解法即可得解.DE1BC D 【详解】(1)根据题意,得,,,,,,()0,0,0D ()2,0,0A ()0,2,0C ()2,2,0B ()10,0,2D ()10,2,2C ,,()2,0,1E ()2,1,2F.则,, ()0,1,1EF = ()12,0,2BC =- 设异面直线与所成的角为,则,EF 1BC α090α︒<≤︒所以,则,1111cos cos ,2EF BC EF BC EF BC α⋅====60α=︒所以异面直线与所成的角为.EF 1BC 60︒(2)由(1)得,,,()2,0,1DE = ()2,2,0DB =()12,0,2BC =- 设是平面的一个法向量,则,即,(),,n x y z = 1BC D 100n DB n BC ⎧⋅=⎪⎨⋅=⎪⎩220220x y x z +=⎧⎨-+=⎩取,则,故,1x =1,1y z =-=()1,1,1n =-所以点E 到平面的距离为1BC D DE n n ⋅==19.已知数列是首项等于且公比不为1的等比数列,是它的前项和. {}n a 116n S n (1)若公比为2,求满足的最小正整数; 15128n S >n (2)若,设,求数列的前项和的最小值. 325416S S =-()log 1n a n b a a =>{}n b n n T 【答案】(1) 2(2) 210log a -【分析】(1)根据首项和公比,写出的公式,再解不等式即可; n S 15128n S >(2)根据,代入首项即可求得公比,进而求得的通项公式,根据等差数列的定义325416S S =-{}n b 可证明为等差数列,进而求得,化简后根据二次函数性质求最小值即可.{}n b n T【详解】(1)因为等比数列首项为,公比为, {}n a 11621q =≠所以,,()()14112111621121615128nnnn a qq S ->--===---*N n ∈即,,因为, 4212832n ->*N n ∈321121281162332281282=<<=所以只需即可,解得,, 42122n -≥2n ≥*N n ∈故满足的最小正整数; 15128n S >2n =(2)因为等比数列首项为,设公比为,代入中有: {}n a 1161q ≠325416S S =-,解得(舍)或, ()()2115141161616q q q ++=⨯+-1q =2q =所以,故, 1512216n n n a --=⨯=()5log log 25log 2n n a n a a b a n -=-==因为, ()()14log 25log 2log 2n n a a a b b n n +=---=-所以是等差数列,且, {}n b 14log 2a b =-所以()()()4log 25lo 2g 229log 2a a n a n n T n n --==+-, ()22log 2lo 9819222g 42a a n n n ⎡⎤⎛⎫=-=--⎢⎥⎪⎝⎭⎢⎥⎣⎦因为,所以,且有,1a >log 20a >*N n ∈所以当或时,取得最小值,最小值为. 4n =5n =n T 4510log 2a T T ==-20.已知数列满足.{}n a ()1*1111,N ,2,R 9n n n a a t a n n t --⎛⎫==⋅+∈≥∈ ⎪⎝⎭(1)若,求数列的通项公式; 1t ={}n a (2)若,求证:数列为等差数列,并求的通项公式; 19t ={}9nn a {}n a (3)对于(2)中的数列,设,则数列是否有最大项,如有,请求出是第几项,若{}n a 8nn n b a =⋅{}n b 没有,请说明理由. 【答案】(1) 118998n n a --⨯=(2)19n n n a -=(3)有, 第8项和第9项【分析】(1)将代入,再用累加法即可求得的通项公式;1t ={}n a (2)将代入,令,根据等差数列的定义即可证明,再根据的通项公式,即可求19t =9n n n c a ={}n c 得的通项公式;{}n a (3)先求出的通项公式,若有最大项,只需该项大于等于其前一项以及后一项,建立不{}n b {}n b 等式解出即可.【详解】(1)因为,所以, 1t =()1*11N ,29n n n a a n n --⎛⎫=+∈≥ ⎪⎝⎭当时,,,,, 2n ≥1119n n n a a --⎛⎫-= ⎪⎝⎭21219n n n a a ---⎛⎫-= ⎪⎝⎭L 12119a a ⎛⎫-= ⎪⎝⎭上述式子累加,可得 1211111999n n n a a --⎛⎫⎛+⎫⎛⎫-= ⎪ ⎪ ⎪⎝+⎝⎭⎝+⎭⎭, 119811111191899n n --⎛⎫- ⎪-=⨯=-⎝⎭因为,所以, 11a =118998n n a --⨯=当时,,符合通项公式, 1n =10118998a =-=⨯故; 118998n n a --⨯=(2)因为,所以, 19t =()1*11N ,2199n n n a a n n --⎛⎫=+∈≥ ⎪⎝⎭两边同时乘以,可得,9n ()1*1999N ,2n n n n a a n n --=+∈≥令,上式即为,9n n n c a =()*19N ,2n n c c n n -=+∈≥即,因为,()*19N ,2n n c c n n --=∈≥1199c a ==故,即为以9为首项,9为公差的等差数列,{}n c {}9n n a 所以,即,解得;9n c n =99n n a n =19n n na -=(3)由(2)知,所以, 19n n na -=189nn n n b -=假设数列最大项为,则有, {}n b m b 11m m m mb b b b +-≤⎧⎨≤⎩即,解得, ()()111211889918899m mm m m m m m m m m m +----⎧+≤⎪⎪⎨-⎪≤⎪⎩89m ≤≤所以数列有最大项,最大项为第8项和第9项.{}n b 【点睛】思路点睛:该题考查数列的综合应用,属于中难题,关于求数列最大项和最小项的思路有:(1)将数列视为函数,当时所对应的一列函数值,根据的类型作出相对应的函()f x *N x ∈()f x 数图象,或利用求函数最值的方法,求出的最值,进而求得数列的最值项;()f x (2)通过通项公式研究数列的单调性,利用,确定最大项,利用n a 11n n n n a a a a -+≤⎧⎨≤⎩()2n ≥确定最小项. ()11,2n n nn a a n a a -+≤⎧≥⎨≤⎩21.设数列的前项和为.若,则称是“紧密数列”. {}n a n n S ()112N,12n na n n a +≤≤∈≥{}n a (1)已知数列是“紧密数列”,其前5项依次为,求的取值范围; {}n a 39811,,,,2416x x (2)若数列的前项和为,判断是否是“紧密数列”,并说明理由; {}n a n ()2134n S n n =+{}n a (3)设数列是公比为的等比数列.若数列与都是“紧密数列”,求的取值范围.{}n a q {}n a {}n S q 【答案】(1) 819,322⎡⎤⎢⎥⎣⎦(2)数列为“紧密”数列;理由见详解.{}n a (3) 1,12⎡⎤⎢⎥⎣⎦ 【分析】(1)根据题意,得到,且,求解,即可得出结果; 0x ≠142291812216x x⎧≤≤⎪⎪⎨⎪≤≤⎪⎩(2)根据,求出,计算的范围,即可得出结论; ()2*13(N )4n S n n n =+∈1122n a n =+1n n a a +(3)先讨论,易得满足题意;再讨论,得到,,根据为“紧1q =1q ≠11n n a a q -=()111nn a q S q -=-{}na 密”数列,得到或,分别根据这两种情况,计算的范围,即可得出结果. 112q ≤<12q <≤1n n S S +【详解】(1)若数列为“紧密”数列,{}n a 则,且, 0x ≠142291812216x x⎧≤≤⎪⎪⎨⎪≤≤⎪⎩解得:, 819322≤≤x 即的取值范围为. x 819,322⎡⎤⎢⎥⎣⎦(2)数列为“紧密”数列;理由如下:{}n a 数列的前项和, {}n a ()2*13(N )4n S n n n =+∈当时,; 1n =()1111314a S ==⨯+=当时,, 2n ≥()()2211111313(1)4422n n n a S S n n n n n -⎡⎤=-=+-+--=+⎣⎦又,即满足, 111122a +==11a =1122n a n =+因此, 1122n a n =+*(N )n ∈所以对任意,, *n ∈N ()111121*********n n n a n a n n n ++++===++++所以, 1111221n n a a n +<=+<+因此数列为“紧密”数列;{}n a (3)因为数列是公比为的等比数列,前项和为,{}n a q n n T 当时,有,,1q =1n a a =1n S na =所以,,满足题意; 11122n na a +≤=≤1111122n n S n S n n ++≤==+≤当时,,,1q ≠11n n a a q -=()111n n a q S q -=-因为为“紧密”数列,{}n a所以, 1122n n a a q +≤=≤即或, 112q ≤<12q <≤当时, 112q ≤<, 1111111n nn n nn S q q S q q ++--=>=--, ()()121111112111n n n nn n n n n n q q S q q q S q q q+++---=<==+<---所以,满足为“紧密”数列; 1111221n n nn S q S q ++-≤=≤-{}n S 当时,,不满足为“紧密”数列; 12q <≤2211121S q q S q-==+>-{}n S 综上,实数的取值范围是. q 1,12⎡⎤⎢⎥⎣⎦。
上海市第十中学高二上学期期末数学试题(解析版)
一、填空题1.已知表示两个不同的平面,为平面内的一条直线,则“”是“”的________αβ,m ααβ⊥m β⊥条件【答案】必要不充分【分析】根据直线和平面的位置关系以及充分必要条件的定义可判断.【详解】若,与面不一定垂直,αβ⊥m β若,根据面面垂直的判定定理可得,m β⊥αβ⊥故答案为:必要不充分.2.一个总体分为两层,用分层抽样方法从总体中抽取一个容量为的样本.已知层中每个,A B 20B 个体被抽到的概率都是,则总体中的个体数为________. 112【答案】240【分析】根据分层抽样每个个体抽到的概率相等,即可求出结论【详解】因为用分层抽样方法从总体中抽取一个容量为的样本.20由层中每个个体被抽到的概率都为,知道在抽样过程中每个个体被抽到的概率是, B 112112所以总体中的个体数为. 12024012÷=故答案为:.2403.已知数据是互不相等的正整数,且,中位数是,则这组数据的方差是12345x x x x x 、、、、3x =3________.【答案】2【分析】根据题意可求得五个数据,利用方差公式可求得结果.【详解】设,则,12345x x x x x <<<<33x =又因为数据是互不相等的正整数,所以, 121,2x x ==,45453,9,4,5x x x x x =∴+=== . 222222123451(3)(3)(3)(3)(3)25s x x x x x ⎡⎤∴=-+-+-+-+-=⎣⎦故答案为:.24.若正四棱柱的底面边长为,与底面成角,则到底面1111ABCD A B C D -11AB ABCD 60︒11A C ABCD 的距离为__________.【分析】确定到底面的距离为正四棱柱的高,即可求得结论.11A C ABCD 1111ABCD A B C D -【详解】∵正四棱柱,1111ABCD A B C D -∴平面平面,//ABCD 1111D C B A 平面,11AC ⊂1111D C B A 平面,11//A C ∴ABCD 到底面的距离为正四棱柱的高11A C ∴ABCD 1111ABCD A B C D -∵正四棱柱的底面边长为,与底面成角,1111ABCD A B C D -11AB ABCD 60︒1AA ∴=故答案为5.某学校有学生1485人,教师132人,职工33人.为有效预防甲型H1N1流感,拟采用分层抽样的方法从以上人员中抽取50人进行抽查,则在学生中应抽取___________人.【答案】45【分析】根据分层抽样的性质,先求出抽样比例,进而可求出结果.【详解】由题意可知:分层抽样的抽样比为, 501=1485+132+3333所以学生中应抽取, 114854533⨯=故答案为:.456.过正方形ABCD 之顶点A 作平面,若,则平面与平面所成的锐PA ⊥ABCD PA AB =ABP CDP 二面角的度数为________.【答案】45︒【分析】将四棱锥补成正方体即可求解.【详解】根据已知条件可将四棱锥补成正方体如图所示:连接CE ,则平面CDP 和平面CPE 为同一个平面,由题可知平面,平面,PE ⊥BCE ,BE CE ⊂BCE ∴,,又平面和平面,平面,平面, PE ⊥BE PE ⊥CE ABP CDP PE =BE ⊂ABP CE ⊂CDP ∴为平面和平面所成的锐二面角的平面角,大小为.CEB ∠ABP CDP 45︒故答案为:.45︒7.的三边长分别为3、4、5,为平面外一点,它到三边的距离都等于2,则到平面ABC A P ABC P 的距离是________.ABC【分析】作平面于,由题可得是的内切圆圆心,可得半径,进而即得.PO ⊥ABC O O ABC A 1r =【详解】如图,,则为直角三角形,ABC A 3,4,5AB BC AC ===ABC A 作平面于,于,于,于,连接,PO ⊥ABC O PD AB ⊥D PE BC ⊥E PF AC ⊥F ,,OD OE OF由题可知,故,2PD PE PF ===OD OE OF ==由平面,平面,PO ⊥ABC AB ⊂ABC 所以,又,平面,平面,PO ⊥AB AB PD ⊥ ,PD PO P PD =⊂ POD PO ⊂POD 平面,平面,AB ∴⊥POD DO ⊂POD ,同理,AB OD ∴⊥,BC OE AC OF ⊥⊥故O 是的内切圆圆心,设其半径为,Rt ABC △r则, ()113434522r ⨯⨯=⨯++所以,1r OD ==所以PO ==8.口袋内装有一些大小相同的红球、黄球、白球,从中摸出一个球,摸出红球或白球的概率为0.65,摸出黄球或白球的概率为0.6,那么摸出白球的概率为__________.【答案】0.25【详解】设摸出白球、红球、黄球的事件分别为,根据互斥事件概率加法公式,,A B C ,,()()()0.65P A B P A P B +=+=()()()0.6P A C P A P C +=+=,解得.()()()()1P A B C P A P B P C ++=++=()0.25P A =9.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是 、【答案】45,46【详解】10.如图,在长方体中,,与所成的角为,则1111ABCD A B C D -2AB BC ==1A D 1BC π2与平面所成角的正弦值为________ 1BC 11BB D D【答案】##0.512【分析】由题可得为正方体,根据正方体的性质结合条件可得为直线1111ABCD A B C D -1C BO ∠1BC 与平面所成角,进而即得.11BB D D 【详解】因为在长方体中,,1111ABCD A B C D -2AB BC ==∴上下底面为正方形,连接,则,与所成的角为, 1AD 11//BC AD 1A D 1BC π2∴与所形成的角为,即, 1A D 1AD π21A D ⊥1AD ∴为正方形,为正方体,11AA D D 1111ABCD A B C D -设,则,1111A C B D O = 111C O B D ⊥因为平面,平面,1B B ⊥1111D C B A 1C O ⊂1111D C B A 所以,又平面,平面,1B B ⊥1C O 11111,B B B D B B B =⊂ 11BB D D 11B D ⊂11BB D D 所以平面,连接,1C O ⊥11BB D D BO 则为直线与平面所成角,1C BO ∠1BC 11BB D D由题可知中,,1Rt C BO A 1BC =1C O =∴,即与平面所成角的正弦值为.11sin 2C BO ∠=1BC 11BB D D 12故答案为:.1211.如图,在三棱柱中,, ,,侧棱的长111–ABC A B C 90ACB ∠=︒160ACC ∠=︒145BCC ∠=︒1CC 为1,则该三棱柱的高等于________【答案】##0.512【分析】过作平面、直线的垂线,交点分别为O ,D ,E ,可得四边形为矩1C ACB BC AC 、OECD形,结合条件可得,,进而即得. 1C D =12OD =【详解】过作平面、直线的垂线,交点分别为O ,D ,E ,连接OD 、OC 、OE ,则1C ACB BC AC 、即为三棱柱的高,1C O由平面,平面,可得,1C O ⊥ACB AC ⊂ACB 1C O ⊥AC 又,平面,平面,AC 1C E ⊥1111,O E C C C O C =⊂ 1C OE 1C E ⊂1C OE 所以平面,又平面,AC ⊥1C OE OE ⊂1C OE 所以,同理可得,又,AC ⊥OE OD BC ⊥90ACB ∠=︒所以四边形为矩形,OECD 在直角三角形和中,,,侧棱的长为1,1ECC 1DCC 160ACC ∠=︒145BCC ∠=︒1CC则, 11212CE CC ==1CD C D ==所以, 12OD CE ==所以, 1OC ==12即三棱柱的高等于.12故答案为:.1212.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml (不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80mg/100ml (含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2000元以下罚款.据《法制晚报》报道,2009年8月15日至8月28日,全国查处酒后驾车和醉酒驾车共28800人,如图是对这28800人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为__________【答案】4320【分析】根据频率分布直方图结合醉酒驾车的含义即得.【详解】由题意结合频率分布直方图可得,醉酒驾车,即血液酒精浓度在80mg/100ml (含80)以上的人数约为:.()288000.010.005104320⨯+⨯=故答案为:4320.二、单选题13.已知是直线,是两个不同平面,下列命题中的真命题是( )l ,αβA .若,则B .若,则 //,//l l αβ//αβ,//αβα⊥l l β⊥C .若,则D .若,则,//l l αβ⊥αβ⊥//,//l ααβ//l β【答案】C【分析】利用空间中线、面的平行和垂直的性质和判定定理即可判断.【详解】若,则有,故可判断A 错误.,//,,m l m l l αβαβ⋂=⊄⊄//,//l l αβ若,则或,故B 错误.,//,m l m l αβα⋂=⊄//l βl β⊂若,则存在直线与平行,所以,故C 正确.,//l l αβ⊥βl αβ⊥若,则或,故D 错误.//,//l ααβ//l βl β⊂故选:C.14.设直线平面,过平面外一点与都成30°角的直线有且只有:l ⊂ααA ,l αA .1条B .2条C .3条D .4条 【答案】B【分析】过与平面成30°角的直线形成一个圆锥的侧面(即圆锥的母线与底面成30°角),然后A α考虑这些母线中与直线成30°角的直线有几条,通过圆锥的轴截面可得.l 【详解】如图,,以为轴,为顶点作一个圆锥,圆锥轴截面顶角大小为120°,则圆AO α⊥AO A锥的母线与平面所成角为30°,因此过的所有与平面成30°角的直线都是这个圆锥母线所在αA α直线,过圆锥底面圆心作直线,交底面圆于两点,圆锥的母线中与直线夹角为30°的直线是O //l l ',B C l '母线,也只有这两条直线,,AB AC 故选:B .15.一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB ⊥EF ;②AB 与CM 成60°的角;③EF 与MN 是异面直线;④MN ∥CD .其中正确的是( )A .①②B .③④C .②③D .①③【答案】D【详解】将展开图还原为正方体,由于EF ∥ND ,而ND ⊥AB ,∴EF ⊥AB ;显然AB 与CM 平行;EF 与MN是异面直线,MN 与CD 也是异面直线,故①③正确,②④错误.16.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A .甲地:总体均值为3,中位数为4B .乙地:总体均值为1,总体方差大于0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为3【答案】D 【详解】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.【解析】众数、中位数、平均数、方差三、解答题17.如图,正四棱锥的底面边长为a ,侧棱长为2a ,点P 、Q 分别在BD 和SC 上,并且S ABCD -,平面,求线段PQ 的长.:1:2=BP PD //PQ SAD【分析】过作,交于,根据线面平行即面面平行的判定定理可得平面平P //PM BC CD M //PQM 面,进而,然后利用余弦定理结合条件即得.SAD //MQ SD 【详解】如图,过作,交于,连结,P //PM BC CD M QM因为,,//PM BC //AD BC 所以,又平面,平面,//PM AD PM ⊄SAD AD ⊂SAD 所以平面,又平面,//PM SAD //PQ SAD 又,平面,PM PQ P = ,PM PQ ⊂PQM 所以平面平面,又平面平面,平面平面, //PQM SAD PQM SDC MQ =SDC I SAD SD =,//MQ SD ∴由,可得,:1:2=BP PD 2233PM BC a ==, 1233QM SD a ∴==,,//SD QM //AD MP ,PMQ ADS ∴∠=∠,12cos 4ADADS SD ∠== 所以, 22222244162cos 299492233a PQ PM QM PM QM PMQ a a a a =+-⋅⋅∠=+-⨯⨯⨯=所以线段. PQ 18.如图所示是一多面体的表面展开图,分别为展开图中线段的中点,则在原,,M Q P ,,BC CD DE 多面体中,求直线ME 与平面APQ 所成角的正弦值.【分析】先还原几何体,建立空间直角坐标系,计算线面角正弦值.【详解】还原多面体为长方体,以为原点,分别为轴,建立如图空间直角坐标D ,,DA DCDE ,,x y z 系,由题意得,(0,0,0),(2,0,0),(0,1,0),(0,0,2),(0,0,4),(1,2,0)D A Q P E M ,(2,0,2),(0,1,2),(1,2,4)PA PQ ME ∴=-=-=-- 设面的法向量, APQ (,,)n x y z =则,即,令得 00n PA n PQ ⎧⋅=⎪⎨⋅=⎪⎩22020x z y z -=⎧⎨-=⎩1x =(1,2,1)n = 设直线ME 与平面APQ 所成角为,α则. sin α19.设在直三棱柱中,,,依次为,的中点.111ABC A B C -12AB AC AA ===90BAC ∠=︒,E F 1C C BC(1)求异面直线所成角的大小(用反三角函数值表示);1,A B EF θ(2)求点到平面的距离.1B AEF 【答案】(1)【分析】(1)建立空间直角坐标系,利用向量求异面直线所成的角.(2)先求出平面的法向量,利用空间向量求点到面的距离.AEF 【详解】(1)以为原点建立如图空间坐标系,A 则 , 11(0,0,2),(2,0,0),(2,0,2),(0,2,1),(1,1,0)A B B E F, ,1(2,0,2)A B =- (1,1,1)EF =--11|cos ||||||A B EF A B EF θ⋅∴===. θ∴=(2)设平面的一个法向量为,AEF (,,)n x y z = , ,(0,2,1)AE = (1,1,0)AF = 解得: 020,00n AE y z x y n AF ⎧⋅=+=⎧⎪∴⎨⎨+=⋅=⎩⎪⎩ (,,2)n x x x =-令可得,1x =(1,1,2)n =- ∵ 1(2,0,2)AB =1||||AB n d n ⋅⋅===∴点到平面﹒1B AEF 20.为预防甲型H1N1病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:A 组B 组C 组 疫苗有效673 x y 疫苗无效77 90 z已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是0.33.(1)求x 的值;(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C 组抽取多少个?(3)已知,求不能通过测试的概率.465,25y z ≥≥【答案】(1)660x =(2)90(3)211【分析】(1)根据概率与频率的关系求解;(2)根据分层抽样的抽取方法求解;(3)利用古典概率模型求解.【详解】(1)因为在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是,所以. 0.332000x =660x =(2)组的样本个数为,C 2000(6737766090)500y z +=-+++=所以应在C 组抽取. 500360902000⨯=(3)由(2)可知,,且,500y z +=,y z ∈N 所以样本空间包含的基本事件有:()()()()()()465,35,466,34,467,33,468,32,469,31,470,30,共有11个,()()()()()471,29,472,28,473,27,474,26,475,25,若测试不能通过,则,解得,779020000.1z ++>⨯33z >所以包含的样本点由共2个,()()465,35,466,34所以不能通过测试的概率为. 21121.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2,EF ∥AB,EF ⊥FB,∠BFC=90°,BF=FC,H 为BC 的中点,(Ⅰ)求证:FH ∥平面EDB;(Ⅱ)求证:AC ⊥平面EDB;(Ⅲ)求四面体B—DEF 的体积;【答案】1/3【分析】(Ⅰ)要证明线面平行,先本题先要作直线和直线FH 平行;再利用线面平行的判定定理证明即可;(Ⅱ)要证明线面垂直,只需证明直线和同一平面内的两条相交直线垂直即可.由已知四边形ABCD 是正方形可得,,所以只需再证明即可;AC BD ⊥EG BD G ⋂=AC EG ⊥(Ⅲ)要求四面体的体积,需求四面体的底面积和高即可;根据已知得,所以BF 为BF CDEF ⊥平面四面体B-DEF 的高;由,得,即为底面DEF 底边EF 上的高,可算出EF BFC ⊥平面EF FC ⊥FC 底面的面积;再代入四面体的体积公式即可.【详解】(Ⅰ)证明:设AC 与BD 交于点G ,则G 为AC 的中点,连结GE ,GH ,由于H 为BC 的中点,故, 1,//2GH AB GH AB =又,∴, 1EF AB,EF //AB 2=//,EF GH EF GH =∴四边形EFHG 为平行四边形,∴EG ∥FH ,而EG 平面EDB ,∴.FH //EDB 平面(Ⅱ)证明:由四边形ABCD 为正方形,有,又,AB BC ⊥//EF AB ∴,而,EF BC ⊥EF FB ⊥∴,∴,∴,EF BFC ⊥平面EF FH ⊥AB FH ⊥又,H 为BC 的中点,BF FC =∴,∴,∴,FH BC ⊥FH ABCD ⊥平面FH AC ⊥又,∴,FH//EG AC EG ⊥又,,AC BD ⊥EG BD G ⋂=∴.AC EDB ⊥平面(Ⅲ)解:∵,EF FB BFC 90⊥∠=︒,∴,所以BF 为四面体B-DEF 的高,BF CDEF ⊥平面又BC=AB=2,∴,BF FC ==又,即,∴, EF BFC ⊥平面EF FC ⊥12DEF S EF FC ∆=⋅. 1111323B DEF V -=⨯⨯=【解析】直线与平面平行的判定与性质;四面体的体积;直线与平面垂直的判定与性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二上学期数学试卷
一、填空题:
1.132111014--的值为 . 2.如右图,该程序运行后输出的结果为 . 3.若2793
15A ⎛⎫= ⎪--⎝⎭,314026B -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,641
1103C -⎛⎫ ⎪= ⎪ ⎪-⎝⎭
,则()A B C += . 4.若关于x,y,z 的线性方程组增广矩阵变换为1002003020m n -⎛⎫ ⎪ ⎪ ⎪-⎝⎭
,方程组的解为241x y z =-⎧⎪=⎨⎪=⎩,
则m n ⋅= .
5.若||1||2||2a b a b ==-=,
,则||a b += . 6.lim(12)n
n x x →∞-如果存在,那么的取值范围是 . 7.已知向量(cos sin )a θθ=,,向量(31)b =-,
,则2a b -的最大值是 . 8.设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则45a b -= .
9.O 为ABC ∆中线AM 上的一个动点,若4AM =,则()OA OB OC ⋅+的最小值为 .
10.已知||2||0a b =≠,且关于x 的方程2||0x a x a b ++⋅=有实根,则a 与b 的夹角的取
值范围是 .
二、选择题:
13.若数列{}n a 满足212n n
a p a +=(p 为正常数,n *∈N ),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列; 乙:数列{}n a 是等比数列,则( )
A .甲是乙的充分条件但不是必要条件
B .甲是乙的必要条件但不是充分条件
C .甲是乙的充要条件
D .甲既不是乙的充分条件也不是乙的必要条件
14.用数学归纳法证明“(1)(2)
()213(21)n n n n n n +++=⋅⋅-”
,从k 1k +到左端需增乘的代数式为( ) A .21k + B .2(21)k + C .211k k ++ D .231
k k ++ 15.已知等差数列{a n }的前n 项和为S n ,若OC a OA a OB 2001+=,且A 、B 、C 三点共线(该直线不过原点O ),则S 200 =( )
A .201
B .200
C . 101
D .100
16.设{}n a 是集合{22|0}s t s t s t Z +≤<∈,且,中所有的数从小到大排成的数列,则50a 的
值是( )
A .1024
B .1032
C .1040
D .1048
21.已知数列{}n a 的前n 项和n S 满足.1,2,2211==+=+a a kS S n n 又
(1)求k 的值;
(2)求n S ;
(3)是否存在正整数,,n m 使
211<--+m S m S n n 成立?若存在求出这样的正整数;若不存在,说明理由.。