优选第九章数模和模数转换
数模转换讲解
用二进制代码表示量化后的输入模拟电压。
量化和编码是在同一个电路中完成的。下图说明了两种量 化方法:
22
-1/15V
若用此范围表示
001会更准确
量化误差=
量化误差=
2
当输入电压不为 的整数倍时,必然产
23
生误差,称为量化误差。
输入为双极性时: 输出一般采用二进制补码表示。可用下图表示:
=1V
第一次积分:对输入模拟电压定 时积分,时间为T1,由控制逻辑 电路决定;
C
1 Idt I
C
CR
电容C上电压
dt
第二次积分:对参考电源VREF定
速积分, O的变化速度由
VREF,R和C决定。
31
t1时刻电容电压 c 即 o 值为:
o
权电阻网络D/A转换器
D/A 转 换
倒T型电阻网络D/A转换器 权电流型D/A转换器 权电容网络D/A转换器
器
开关树型D/A转换器
并联比较型 计数型
A/D
直接转换型 反馈比较型
转
逐次渐进型
换 器
间接转换型 双积分型(V-T变换型)
V—F变换型 3
第二节 D/A转换器 权电阻网络
一、权电阻网络D/A转换器 1.原理
非线性误差有时导致 转换特性局部非单调性, 从而引起系统不稳定。
注意:运放和参考 电源多为外接,电 阻网络和模拟开关 在集成DAC内部。
15
例:在10位倒T型电阻网络DAC中,VREF=-10V。为保证VREF偏离 标准值所引起的误差小于1/2LSB,计算VREF相对稳定度应取多少? 解:
1.计算1/2LSB: 当输入数字量D=1时,输出电压为LSB。故:
数字电子技术基础第九章模数与数模转换
vo
+
I=IREF
=
VREF R1
S3
S2
S1
S0
I
I
I
I
I
VREF
R1 VR+
Tr A2
2
T3
T2
4
8
16
16
T1
T0
Tc
VR— +
IREF
IE3
IE2
IE1
IE0
IEC
R
2R
2R
2R
2R 2R
IBB
偏置 电流
VEE
R
R
R
IE3=I/2,IE2=I/4,IE1=I/8,IE0=I/16
电流的参 考方向
i0
二. 倒T形电阻网络D/A转换器(4位)
图中S0~S3为模拟电子开关,由输入数码Di控制, 当Di=1时,Si接运算放大器反相输入端(虚地),电流Ii流入求和电路; 当Di=0时,Si将电阻2R接地。 所以,无论Si处于何种位置,与Si相连的2R电阻均接“地”(地或虚地)。
电流的参 考方向
电流的真 实方向也 如此
参考电压源VREF、运算放大器A2、R1、Tr、R与VEE组成基准电 流IREF产生电路,A2和R1、Tr的cb结组成电压并联负反馈电路 ,以稳定输出电压,即Tr的基极电压。Tr的集电结,电阻R到 VEE为反馈电路的负载,由于电路处于深度负反馈,根据虚短 的原理,其基准电流为:
I I REF
VREF R1
000 001 010 011 100 101 110 111 D
根据解码网络的不同,D/A转换器分不同类型,常见的 有: 倒T型电阻网络D/A转换 权电阻网络D/A转换 权电流型D/A转换等
数模转换与模数转换
数模转换与模数转换数模转换(Digital-to-Analog Conversion,简称DAC)和模数转换(Analog-to-Digital Conversion,简称ADC)是数字信号处理中常用的两种信号转换方法。
数模转换将数字信号转换为模拟信号,而模数转换则将模拟信号转换为数字信号。
本文将就数模转换和模数转换的原理、应用以及未来发展进行探讨。
一、数模转换(DAC)数模转换是将数字信号转换为模拟信号的过程。
在数字系统中,所有信号都以离散的形式存在,如二进制码。
为了能够将数字信号用于模拟系统中,需要将其转换为模拟信号,从而使得数字系统与模拟系统能够进行有效的接口连接。
数模转换的原理是根据数字信号的离散性质,在模拟信号上建立相似的离散形式。
常用的数模转换方法有脉冲幅度调制(Pulse Amplitude Modulation,简称PAM),脉冲宽度调制(Pulse Width Modulation,简称PWM)和脉冲位置调制(Pulse Position Modulation,简称PPM)等。
这些方法根据传输信号的不同特点,在转换过程中产生连续的模拟信号。
数模转换在很多领域有广泛应用。
例如,在音频领域,将数字音频信号转换为模拟音频信号,使得数字音频可以通过扬声器播放出来。
另外,在电信领域,将数字信号转换为模拟信号后,可以用于传输、调制解调、功率放大等过程。
二、模数转换(ADC)模数转换是将模拟信号转换为数字信号的过程。
模拟信号具有连续的特点,而数字系统只能处理离散的信号。
因此,当需要将模拟信号用于数字系统时,就需要将其转换为数字形式。
模数转换的原理是通过采样和量化来实现。
采样是将模拟信号在时间上进行离散化,而量化是将采样信号在幅度上进行离散化。
通过这两个过程,可以将连续的模拟信号转换为离散的数字信号。
模数转换在很多领域都有应用。
例如,在音频领域,将模拟音频信号转换为数字音频信号,使得音频信号可以被数字设备处理和存储。
第9章数模和模数转换
Vref 2n
i
1 LSB 2
~
Vref 2n
i
1 2
LSB
Xi
i = 0, 1, 2,…, n-1.
1 2
LSB
Vref 2n1
称为量化误差
9.3.1 ADC的工作过程
1. 采样与保持 采样:按一定的时间间隔取信号一瞬间的值。
输入信号 采样脉冲 采样信号
为采样时间
TS 为采样周期
x2 4
x3 8
Vref 23 R
x122 x2 21 x3 20
Vref 23 R
X
V0 iRf
Vref 23
Rf R
X
当 Rf
R
时, V0
Vref 23
X
9.1.4 R-2R倒梯形DAC
从每个节点(ABC)向右看,等效电阻都是2R。因
此每过一个节点,电流减小一半。
x1
Vref R
x2
Vref 2R
x3
Vref 4R
R f Vref 22 R
x122 x2 21 x3 20
Vref 23
X
其中取 R 2R f ,x1, x2 , x3 取值为0或1。
9.1.3 R-2R T形电阻网络DAC
(1) 当 x3 = x2 = 0, x1 = 1 时
普通电视图象信号,最高频率达 5.5MHz,用 24位真彩 色,采样频率用 11MHz,则转换输出码率为 264Mb ps,即 31.47MByte ps。用普通光盘可以存储约 20秒种。
大学电子技术基础课后习题答案第9章-数模与模数转换器
9 数模与模数转换器9.1 D/A 转换器9.1.1 10位倒T 形电阻网络D/A 转换器如图题9.1.1所示。
(1)试求出输出电压的取值范围。
(2)若要求电路输入数字量为200H 时输出电压v o =5V ,试问V REF 应取何值?解:(1)由式(9.1.6)可知,10位D/A 转换器输出电压O v 为910022f REFOii i R R v R D ==-⋅⋅∑当98D D …0D =00…0时 O v =0 V当98D D …0D =11…1时,REFO R v R=-,已知f R R =,所以O REF v R =-于是可得到输出电压的取值范围为:0REF V V -。
(2)根据式(1) 109212O REFifii R v V R D =⋅⋅=-⋅⋅∑将98D D …0D =1000000000代入上式,的REF V =﹣10V 。
9.1.2 在图9.1.8所示的4位权电流D/A 转换器中,已知REF V =6V ,1R =48k Ω,当输入3210D D D D =1100时,O v =1.5V ,试确定f R 的值。
解:n 位权电流D/A 转换器的输出电压为1122n fiREF O i n i R R v D R -==⋅⋅∑于是,有11022n O f n iREF i i R v R V D -=⋅⋅=⋅⋅∑依题意,已知n=4,REF V =6V ,1R =48k Ω,3210D D D D =1100,O v =1.5V,代入上式得f R =16k Ω。
9.1.5 可编程放大器(数控可变增益放大器)电路如图题9.1.5所示。
(1)推导电路电压放大倍数/V O I A v v =的表达式。
(2)当输入编码为(001H )和(3FFH )时,电压放大倍数V A 分别为多少? (3)试问当输入编码为(000H )时,运放1A 处于什么状态?解:(1)图题9.1.5中运放3A 组成电压增益为﹣1的反相比例放大器,O v =﹣REF V 。
数模和模数转换
自动控制系统
通过模数转换,实现模拟信号与数字信号之 间的转换,构建自动控制系统。
05
数模和模数转换的挑战与未 来发展
精度和分辨率的提高
总结词
随着技术的发展,对数模和模数转换 的精度和分辨率的要求越来越高。
详细描述
为了满足高精度和分辨率的需求,需 要采用先进的工艺、算法和校准技术, 以提高转换器的性能。这涉及到对噪 声抑制、非线性校正等方面的深入研 究和技术创新。
重要性
实现数字信号和模拟信号之间的相互转换,使得数字系统和模拟系统能够进行有效 的信息交互。
在信号处理中,数模和模数转换是实现信号滤波、放大、调制解调等操作的基础。
在通信中,数模和模数转换是实现信号传输、编解码、调制解调等操作的关键环节。
历史背景
早期的数模和模数转换器主要依 赖于机械和电子元件,精度和稳
于长距离传输和低功耗应用。
Σ-Δ DAC
03
Σ-Δ DAC采用过采样和噪声整形技术,具有高分辨率和低噪声
的特点,适用于音频和其他高精度应用。
DAC的应用
音频处理
DAC可将数字音频信号转换为模拟音频信号,用 于音频播放和处理。
仪器仪表
DAC可用于将数字信号转换为模拟信号,实现各 种物理量的测量和输出。
测量仪器
ADC在测量仪器中应用广泛,如电压表、电 流表、温度计等。
控制系统
ADC在控制系统中用于实时监测和调节系统 参数,如工业控制、汽车电子等。
音频处理
ADC在音频处理中用于将模拟音频信号转换 为数字信号,便于存储、传输和处理。
04
数模和模数转换的应用场景
音频处理
第九章数模和模数转换优秀课件
9.2 D/A转模路拟组开成关 DD电= =源10时时组电接 接成路运 地。由放解码网络、模拟开关、求和放求 算大放和器大集和器成基运准
基准参 考电压
R-2R倒T 形电阻解 码网络
9.2 D/A转换器
2. 工作原理 由于集成运算放大器的电流求和点Σ为虚地,
所以每个2R电阻的上端都相当于接地,从网络的A、 B、C点分别向右看的对地电阻都是2R。
第9章
第九章数模和模数 转换
上页 下页 返回
9.1 概述
➢ 数字电路、计算机只能对数字信号进行处理,其 结果为数字量。然而,自然界中绝大多数的物理 量都是连续变化的模拟量。例如温度、速度、压 力等。这些模拟量经传感器转换后所产生的电信 号也是模拟信号。若要数字装置或计算机对这些 信号进行处理,就必须将其转换为数字信号。
9.2 D/A转换器
➢DAC的输入是数字信号。它可以是任何一种编码, 常用的是二进制码。输入可以是正数,也可以是负数, 通常是无符号的二进制数。由于输入数字量的位数是 有限的,所以输出的模拟量也是有限的。例如三位 DAC只能有八个,相应模拟量输出的大小也只有八个 不同值。
9.2 D/A转换器
一、D/A转换基本原理 数/模转换就是将数字量转换成与它成正
比的模拟量。
数字量: (D3D2D1D0)2=(D3×23+D2×22+D1×21+D0×20)10 (1101) 2 =(1×23+1×22+0×21+1×20)10
模拟量: uo=K(D3×23+D2×22+D1×21+D0×20)10 uo=K(1×23+1×22+0×21+1×20)10
(K为比例系数)
例如,某D/A转换器满量程输出电压为10V,如 果 误 差 为 1% , 就 意 味 着 输 出 电 压 的 最 大 误 差 为 ±0.1V。百分数越小,精度越高。
什么是数模转换和模数转换
什么是数模转换和模数转换1. 引言在现代科技和通信领域中,数模转换(Digital-to-Analog Conversion)和模数转换(Analog-to-Digital Conversion)是非常重要的概念。
它们在各种应用中起着至关重要的作用,如音频处理、图像处理、数据转换等。
本文将介绍数模转换和模数转换的定义、原理和应用。
2. 数模转换数模转换是将数字信号转换为模拟信号的过程。
数字信号是以离散的二进制形式表示的信号,而模拟信号是连续变化的信号。
通过数模转换,我们可以将数字信号转换为模拟信号,以便于在模拟领域进行进一步的处理和分析。
数模转换的原理是通过采样和保持、量化和编码三个步骤实现的。
首先,采样和保持将连续的模拟信号转换为离散的采样信号。
然后,量化将采样信号的幅度离散化为一系列的取值。
最后,编码将离散化后的采样信号转换为二进制代码,以便进行数字信号处理。
数模转换广泛应用于音频和视频领域。
例如,在音频播放器中,数模转换器将数字音频信号转换为模拟信号,使得我们可以聆听到高质量的音乐。
同时,在数字电视中,数模转换器将数字视频信号转换为模拟视频信号,使得我们可以观看高清晰度的电视节目。
3. 模数转换模数转换是将模拟信号转换为数字信号的过程。
模拟信号是连续变化的信号,而数字信号是以离散的二进制形式表示的信号。
通过模数转换,我们可以将模拟信号转换为数字信号,以便于在数字领域进行处理和存储。
模数转换的原理是通过采样和量化两个步骤实现的。
首先,采样将连续的模拟信号转换为离散的采样信号。
然后,量化将采样信号的幅度离散化为一系列的取值。
最终,将离散化后的采样信号转换为二进制代码,以表示数字信号。
模数转换在通信领域和数据存储领域得到广泛应用。
例如,在手机通信中,模数转换器将人的声音转换为数字信号,以便于在网络中传输。
同样地,在数字存储设备中,模数转换器将模拟数据(如声音、图像等)转换为数字数据,以便于存储和处理。
数模和模数转换
按位数分类,数模转换器可分为二进制数模转换器和十进制 数模转换器。按工作方式分类,数模转换器可分为静态数模 转换器和动态数模转换器。按输入/输出接口分类,数模转换 器可分为独立式和并联式数模转换器等。
02
模数转换器(ADC)
定义
模数转换器(ADC)是一种将模拟信 号转换为数字信号的电子设备。它通 过一系列的电子和逻辑电路,将连续 的模拟信号转换为离散的数字信号。
04
数模和模数转换的挑战与解 决方案
量化误差
要点一
总结词
量化误差是由于数模转换器(DAC) 或模数转换器(ADC)的有限分辨率 和动态范围引起的误差。
要点二
详细描述
量化误差是由于数模转换器或模数转 换器的有限分辨率和动态范围引起的 误差。在数模转换中,量化误差表现 为输出模拟信号的不连续性,而在模 数转换中,量化误差表现为输入模拟 信号的失真。
像。
图像识别与处理
02
通过数模转换将图像从模拟信号转换为数字信号,进行图像识
别、分析和处理。
图像压缩与传输
03
利用数模转换技术对图像数据进行压缩和传输,提高传输效率
和降低存储成本。
通信系统
01
02
03
数字信号传输
数模转换将数字信号转换 为模拟信号,用于调制解 调器进行数据传输。
频分复用
通过模数转换将不同频率 的模拟信号转换为数字信 号,实现频分复用,提高 通信容量。
逐次逼近型ADC
逐次逼近型ADC采用一个比较器和逐位逼近的方法,通过 逐步调整参考电压来逼近输入电压,最终得到数字输出。 它的分辨率较高,但转换速率相对较慢。
积分型ADC
积分型ADC通过测量输入电压引起的电容充电时间来得到 数字输出。它的分辨率较高,但受限于积分器的线性度和 稳定性。
第9章 数模转换和模数转换
。
数字电路与逻辑设计
Rf
(2)求和放大器A:为 一个接成负反馈的理想 运算放大器。即:AV= ∞,iI=0,Ro=0。由于 负反馈,存在虚短和虚 断,即V-≈V+=0, iI= 0。
I A vO
VREF
输入数字Di=1时,开关Si将电阻23-iR接到基准电压VREF上, 在23-iR上的电流为
Ii VREF VREF i D = D 2 i i 23 i R 23 R
2
i
VREF ()
注意:该电路转换精度较高,
虑的是恒流源特性问题。
RI f4 2
但电路结构较复杂,主要考 vo I Rf Rf4I (20 D0 21 D1 22 D2 23 D3 )
2 D
i 0
3
i
数字电路与逻辑设计
改进:采用具有电流负 反馈的BJT恒流源电路 的权电流D/A转换器:
数字电路与逻辑设计
第9章 数模转换和模数转换
本章要点 本章分别讲授了数模转换和模数转换的基本原理和常 见的典型电路。文中主要介绍数模转换的基本原理,数模 转换器的转换精度和转换速度,分别介绍了权电阻网络数 模转换器,倒 T型电阻网络数模转换器和权电流型数模转 换器;然后介绍了模数转换的一般原理和步骤,分别介绍 了并联比较型模数转换器,逐次逼近型和双积分型模数转 换器的工作原理。
Rf VREF 3 2Rf VREF 3 i i vO I Rf Rf I i ( D 2 ) ( D 2 ) i i 3 4 R 2 i 0 R 2 i 0 i 0
3
若取反馈电阻Rf=R/2,则输出模拟电压表达式为
VREF 3 vO I Rf 4 ( Di 2i ) 2 i 0
第九章:数模和模数转换器
第九章:数模和模数转换器一、单选题1:想选一个中等速度,价格低廉的A/D转换器,下面符合条件的是()。
A 逐次逼近型B 双积分型C 并联比较型D 不能确定2:下面抑制电网公频干扰能力强的A/D转换器是()。
A 逐次逼近型B 双积分型C 并联比较型D 不能确定3:不适合对高频信号进行A/D转换的是()。
A 并联比较型B 逐次逼近型C 双积分型D 不能确定4:四位DAC和八位DAC的输出最小电压一样大,那么他们的最大输出电压()。
A 一样大B 前者大于后者C 后者大于前者D 不确定5:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下最大输出电压()。
A 一样大B 前者大于后者C 后者大于前者D 不确定6:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下分辨率()。
A 一样大B 前者大于后者C 后者大于前者D 不确定7:下列A/D转换器类型中,相同转换位数转换速度最高的是()。
A 并联比较型B 逐次逼近型C 双积分型D 不能确定8.一个无符号8位数字量输入的DAC,其分辨率为位。
9.将一个时间上连续变化的模拟量转换为时间上断续(离散)的模拟量的过程称为。
A.采样B.量化C.保持D.编码10.以下四种转换器,是A/D转换器且转换速度最高。
A.并联比较型B.逐次逼近型C.双积分型D.施密特触发器二、判断题1:D/A转换器的建立时间等于数字信号由全零变全1或由全1变全0所需要的时间。
()2:D/A转换器的转换精度等于D/A转换器的分辨率。
()3:采用四舍五入量化误差分析时,A/D转换过程中最小量化单位与量化误差是相等的。
()4:在A/D转换过程中量化误差是可以避免的。
()5:由于R-2R 倒T 型D/A转换器自身的优点,其应用比权电阻DAC广泛。
()6:倒T型网络D/A转换器由于支路电流不变,所以不需要建立时间。
()7:A/D转换的分辨率是指输出数字量中只有最低有效位为1时所需的模拟电压输入值。
数模转换和模数转换
• 1.倒T型电阻网络D/A转换器 • 如图9-1-2所示为一个4位倒T型电阻网络D/A转换器(按同样结构可将
它扩展到任意位),它由数据锁存器(图中未画)、模拟电子开关 (S0~S3) , R~ 2R倒T型电阻网络、运算放大器(A)及基准电压U REF组 成。
上一页 下一页 返回
9. 2 模数转换电路
• 3. ADC0809应用说明 • (1)ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。 • (2)初始化时,使ST和OE信号全为低电平。 • (3)送要转换的那一通道的地址到A,B,C端口上。 • (4)在ST端给出一个至少有100ns宽的正脉冲信号。 • (5)是否转换完毕,可以根据EOC信号来判断。 • (6)当EOC变为高电平时,这时给GE为高电平,转换的数据就输出给
的取样频率由取样定理确定。 • 根据采样定理,用数字方法传递和处理模拟信号,并不需要信号在整
个作用时间内的数值,只需要采样点的数值。所以,在前后两次采样 之间可把采样所得的模拟信号暂时存储起来以便将其进行量化和编码。 • 2.量化和编码 • 经过采样、保持后的模拟电压是一个个离散的电压值。对这么多离散 电压直接进行数字化(即用有限个。
• 1.集成D/A转换器DA7520 • 常用的集成D/A转换器有DA7520,DAC0832,DA00808 , DA01230,
MC1408、AD7524等,这里只对DA7520做介绍。 • DA7520的外引线排列及连接电路如图9-1-3所示. • DA7520的主要性能参数如下: • (1)分辨率:十位; • (2)线性误差 • (3)转换速度
数模模数转换
能分解的最小量。
图中为
1 2n
1 ,要减少量化误差,只要增
16
加数字编码信号的位数。
图9-3 D/A转换器输出特性
15
0 0000
1111
例如:输入二进制代码为千位数码,其输 出电压可能的最小变化为等值输出的1/1024。
下图为一个n位D/A转换器的方框图。
D0 数 字 D1 输 入
Dn-1
D/A转换器可以看作是一个译码器,它是将 输入的二进制数字信号器(或称编码信号)转换(翻 译)成模拟信号,并以电压或电流形式输出。
图9-3表示了4位二进制代码的数字信号经
过D/A转换器后的输出模拟信号电压的对应关
系。每一个二进制代码的编码数字信号,都可以
翻译成一个相对应的十进制数值。
例如:(1010)2→(10)10 ,量化级到信息所
二、数据传输系统 目前在通信(例如移动数字电话)、遥控、遥
测、数据广播、数字电视等,需要进行远距离传 送,采用数字信号比模拟信号抗干扰性强、保密 性强。其系统方框图如下:
9.2 数模(D/A)转换器
一、基本原理 所谓D/A(数模)转换器就是将离散的数字
量转换为连续变化模拟量的数模转换器,又称为 D/A转换器或DAC。
运算放大器A1、三极管TR、电阻RR、R组 成了基准电流发生电路。基准电流IREF是由外加 的基准电压VREF和电阻RR决定。由于T3和TR具 有相同的VBE,而发射极回路电阻相差一倍,所 以它们的发射极电流也必然相差一倍。故有:
IREF
2IE3
VREF RR
VREF RR
I
将式(9-4)代入式(9-3)得:
当代码为0时,对应的恒流源接地。 故输出电压为:
康华光《电子技术基础-数字部分》配套题库-章节题库(数模与模数转换器)
第9章数模与模数转换器一、选择题1.数/模转换器的分辨率取决于()。
A.输入数字量的位数,位数越多分辨率越高;B.输出模拟电压U O的大小,U O越大,分辨率越高;C.参考电压U REF的大小,U REF越大,分辨率越高;D.运放中反馈电阻的大小,电阻越大,分辨率越高【答案】A【解析】分辨率以输出二进制数或十进制数的位数表示,它表明A/D转换器对输入信号的分辨能力。
n位二进制数字输出的A/D转换器应能区分输入模拟电压的2n个不同等级大小,能区分输入电压的最小差异为满量程输入的1/2n。
2.不适合对高频信号进行A/D转换的是()。
A.并联比较型B.逐次逼近型C.双积分型D.不能确定【答案】C【解析】双积分型A/D转换器的原理是运用RC对时间进行积分,当有高频信号时,会影响RC积分器固定频率的时钟脉冲计数,影响结果。
3.一个八位D/A转换器的最小输出电压增量为0.02V,当输入代码为01001101时,输出电压为()。
A .1.54VB .1.04VC .2.00VD .1.80V【答案】A【解析】V O =(01001101)2×0.02V =(26+23+22+20)×0.02V =77×0.02V =1.54V 。
4.在双积分A/D 转换器中,输入电压在取样时间T 1内的平均值V I 与参考电压V REF应满足的条件是( )。
A .|V I |≥|V REF |B .|V I |≤|V REF |C .|V I |=|V REF |D .无任何要求【答案】B【解析】双积分A/D 转换器的原理是将输入的模拟电压信号转换成与之成正比的时间宽度信号,然后在这个时间宽度里对固定频率的时钟脉冲计数,计数的结果就是正比于输入模拟电压的数字信号。
如果输入电压在取样时间T 1内的平均值V I >参考电压V REF ,当计数第一次就截止,无法测出比例,无法测出电压。
5.一个12位的逐次近式A/D 转换器,参考电压为4.096V ,其量化单位为( )。
第九章数模(DA)和模数(AD)转换电路
第九章 数模(D/A )和模数(A/D )转换电路一、 内容提要模拟信号到数字信号的转换称为模—数转换,或称为A/D (Analog to Digital ),把实现A/D 转换的电路称为A/D 转换器(Analog Digital Converter ADC );从数字信号到模拟信号的转换称为D/A (Digital to Analog )转换,把实现D/A 转换的电路称为D/A 转换器( Digital Analog Converter DAC )。
ADC 和DAC 是沟通模拟电路和数字电路的桥梁,也可称之为两者之间的接口。
二、 重点难点本章重点内容有:1、D/A 转换器的基本工作原理(包括双极性输出),输入与输出关系的定量计算;2、A/D 转换器的主要类型(并联比较型、逐次逼近型、双积分型),他们的基本工作原理和综合性能的比较;3、D/A 、A/D 转换器的转换速度与转换精度及影响他们的主要因素。
三、本章习题类型与解题方法 DAC网络DAC 权电阻 ADC 直接ADC间接ADC权电流型DAC权电容型DAC开关树型DAC输入/输出方式 并行 串行 倒梯形电阻网络DAC这一章的习题可大致分为三种类型。
第一种类型是关于A/D 、D/A 转换的基本概念、转换电路基本工作原理和特点的题目,其中包括D/A 转换器输出电压的定量计算这样基本练习的题目。
第二种类型是D/A 转换器应用的题目,这种类型的题目数量最大。
第三种类型的题目是D/A 转换器和A/D 转换器中参考电压V REF 稳定度的计算,这种题目虽然数量不大,但是概念性比较强,而且有实用意义。
(一)D/A 转换器输出电压的定量计算【例9 -1】图9 -1是用DAC0830接成的D/A 转换电路。
DAC0830是8位二进制输入的倒T 形电阻网络D/A 转换器,若REF V =5 V ,试写出输出电压2O V 的计算公式,并计算当输人数字量为0、12n - (72)和2n -1(82-1)时的输出电压。
《数模和模数转换》课件
量化
将采样得到的样值进行量 化处理,将连续的模拟量 转化为离散的数字量。
编码
将量化后的数字量转换成 二进制或多进制的数字代 码。
ADC的分类
逐次逼近型ADC
逐次逼近型ADC采用逐次比较的 方法,将输入模拟信号与内部参 考电压进行比较,逐步逼近输入 信号的电压值。
并行比较型ADC
并行比较型ADC采用多个比较器 ,将输入模拟信号与多个参考电 压进行比较,以得到输入信号的 数字代码。
此外,新型封装技术的采用也将有助于减小转换器的尺寸。例如 ,采用球栅阵列封装(BGA)和晶片级封装(WLP)等新型封装技术 ,可以减小封装体积并提高集成度。
PART 05
总结
数模和模数转换的重要性和应用领域
01
重要性和应用领域
数模和模数转换是数字信号处理中的关键技术,广泛应用于通信、雷达
、音频处理、图像处理等领域。通过数模和模数转换,可以实现信号的
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
2023-2026
ONE
KEEP VIEW
《数模和模数转换》 PPT课件
REPORTING
CATALOGUE
目 录
• 数模转换器(DAC) • 模数转换器(ADC) • 数模和模数转换的应用 • 数模和模数转换的未来发展 • 总结
PART 01
数模转换器(DAC)
DAC工作原理
数字信号输入
将数字信号输入到DAC中。
PART 03
数模和模数转换的应用
音频处理
数字音频播放
将模拟音频信号转换为数字信号,通 过数字音频播放器进行播放,可以实 现更高质量的音频输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双1.向电模路拟组开成关 DD电= =源10时时组电接 接成路运 地。由放解码网络、模拟开关、求和放求 算大放和器大集和器成基运准
基准参 考电压
R-2R倒T 形电阻解 码网络
9.2 D/A转换器
2. 工作原理 由于集成运算放大器的电流求和点Σ为虚地,
所以每个2R电阻的上端都相当于接地,从网络的A、 B、C点分别向右看的对地电阻都是2R。
第9章
优选第九章数模和模数转换
上页 下页 返回
9.1 概述
➢将模拟量转换为数字量的过程称为模/数转换简称 A/D转换。实现A/D转换的电路被称之为模/数转换器, 简称ADC(Analog to Digital Converter)。 ➢ADC转换所得到的数字信号经计算机处理,其输出 仍为数字信号。而过程控制装置往往需要模拟信号去 控制,所以经计算机处理后得到的数字信号必须转换 为模拟信号。把数字量转换为模拟量的过程称作数/模 转换器,简称DAC(Digital to Analog Converter)。
1.分辨率
分辨率是指输出电压的最小变化量与满量程输出
电压之比。
输出电压的最小变化量就是对应于输入数字量最
低位为1,其余各位均为0时的输出电压。
满量程输出电压就是对应于输入数字量全部为1
时的输出电压。
对于n位D/A转换器,分辨率可表示为:
分辨率
1 2n 1
位数越多,能够分辨的最小输出电压变化量就
越小,分辨率就越高。也可用位数n来表示分辨率。
vo
20R
21R
22R
23R
S3
S2
S1
S0
VREF
a3
a2
a1
a0
ቤተ መጻሕፍቲ ባይዱ
图9-1 二进制权电阻DAC原理图
9.2 D/A转换器
iI
a3
VREF 20 R
a2
VREF 21 R
a1
VREF 22 R
a0
VREF 23 R
VREF 23 R
(a3
23
a2
22
a1
21
a0
20)
VREF 23 R
3
9.2 D/A转换器
2. 转换速度
D/A转换器从输入数字量到转换成稳定的模拟 输出电压所需要的时间称为转换速度。
不同的DAC其转换速度也是不相同的,一般约 在几微秒到几十微秒的范围内。
9.2 D/A转换器
3. 转换精度
转换精度是指电路实际输出的模拟电压值和理论 输出的模拟电压值之差。通常用最大误差与满量程 输出电压之比的百分数表示。通常要求D/A转换器 的误差小于ULSB/2。
例如,某D/A转换器满量程输出电压为10V,如 果 误 差 为 1% , 就 意 味 着 输 出 电 压 的 最 大 误 差 为 ±0.1V。百分数越小,精度越高。
转换精度是一个综合指标,包括零点误差、增益 误差等,它不仅与D/A转换器中元件参数的精度有 关,而且还与环境温度、集成运放的温度漂移以及 D/A转换器的位数有关。
9.2 D/A转换器
因此流过四个2R电阻的电流分别为I/2、I/4、 I/8、I/16。电流是流入地,还是流入运算放大器, 由输入的数字量Di通过控制电子开关Si来决定。故 流入运算放大器的总电流为:
I I D3 I D2 I D1 I D0 2 4 8 16
9.2 D/A转换器
由于从UREF向网络看进去的等效电阻是R,因 此从UREF流出的电流为:
9.2 D/A转换器
4. 非线性误差
通常把D/A转换器输出电压值与理想输出电压值 之间偏差的最大值定义为非线性误差。
D/A转换器的非线性误差主要由模拟开关以及 运算放大器的非线性引起。
5. 温度系数
在输入不变的情况下,输出模拟电压随温度变化 而变化的量,称为DAC的温度系数。
一般用满刻度的百分数表示温度每升高一度输 出电压变化的值。
9.2 D/A转换器
组成D/A转换器的基本指导思想:将数字量按 权展开相加,即得到与数字量成正比的模拟量。
n位D/A转换器方框图
D/A转换器的种类很多,主要有: 权电阻网络DAC、 T形电阻网络DAC 倒T形电阻网络DAC、 权电流DAC
9.2 D/A转换器
二、 二进制权电阻DAC
RF
_
iI
A +
9.2 D/A转换器
➢DAC的输入是数字信号。它可以是任何一种编码, 常用的是二进制码。输入可以是正数,也可以是负数, 通常是无符号的二进制数。由于输入数字量的位数是 有限的,所以输出的模拟量也是有限的。例如三位 DAC只能有八个,相应模拟量输出的大小也只有八个 不同值。
9.2 D/A转换器
一、D/A转换基本原理 数/模转换就是将数字量转换成与它成正
3、电路特点:
(1)解码网络仅有R和2R两种规格的电阻, 这对于集成工艺是相当有利的;
(2)这种倒T形电阻网络各支路的电流是直 接加到运算放大器的输入端,它们之间不存在传 输上的时间差,故该电路具有较高的工作速度。
因此,这种形式的DAC目前被广泛的采用。
9.2 D/A转换器
三、 DAC的主要技术参数
比的模拟量。
数字量: (D3D2D1D0)2=(D3×23+D2×22+D1×21+D0×20)10 (1101) 2 =(1×23+1×22+0×21+1×20)10
模拟量: uo=K(D3×23+D2×22+D1×21+D0×20)10 uo=K(1×23+1×22+0×21+1×20)10
(K为比例系数)
9.2 D/A转换器
例: 若DAC的最大输出电压为10V,要想使转换误 差在10mV以内,应选多少位DAC?
解:要想转换误差在10mV以内,就必须能分辨出 10mV电压。就是说分辨率必须小于10/(10×103) =1/1000。根据分辨率可以表示DAC的精度这一结 论,至少需要10位DAC,若考虑其它因素,需选12 位DAC。
ai
i0
2i
9.2 D/A转换器
➢权电阻DAC的优点是简单直接,但当位数较多时, 电阻的值域范围太宽。这就使得阻值种类太多,制 成集成电路困难;对高位权电阻的精度和稳定性要 求很苛刻,这是因为各位电阻值与二进制数位成反 比,高位权电阻的误差对输出电流的影响比低位权 电阻大得多。
9.2 D/A转换器
I U REF R
9.2 D/A转换器
故:
I
UREF 24 R
(D323
D22 2
D121
D020 )
9.2 D/A转换器
因此输出电压可表示为 :
9.2 D/A转换器
对于n位的倒T形电阻网络DAC,有 :
由此可见,输出模拟电压uO与输入数字量D成 正比,实现了数模转换。
9.2 D/A转换器