完整版材料科学基础复习题

合集下载

材料科学基础复习题及答案

材料科学基础复习题及答案

一、填空题1. 每个面心立方晶胞中的原子数为 4 ,其配位数为12 。

3a, 配2.晶格常数为a的体心立方晶胞, 其原子数为 2 , 原子半径为4/位数为 8 ,致密度为 0.68 。

3. 刃型位错的柏氏矢量与位错线互相垂直 , 螺型位错的柏氏矢量与位错线互相平行。

4. 螺型位错的位错线平行于滑移方向,位错线的运动方向垂直于位错线。

5. 在过冷液体中,晶胚尺寸小于临界尺寸时不能自发长大。

6. 均匀形核既需要结构起伏,又需要能量起伏。

7. 纯金属结晶时,固液界面按微观结构分为光滑界面和粗糙界面。

8.纯金属的实际开始结晶温度总是低于理论结晶温度,这种现象称为过冷,理论结晶温度与实际开始结晶温度之差称为过冷度。

9.合金中的基本相结构,有固溶体和金属化合物两类,其中前者具有较高的综合机械性能,适宜做基体相;后者具有较高的熔点和硬度,适宜做强化相。

10. 间隙相和间隙化合物主要受组元的原子尺寸因素控制。

11.相律是分析相图的重要工具,当系统的压力为常数时,相律的表达式为f=c-p+1。

12.根据相律,二元合金结晶时,最多可有 3 个相平衡共存,这时自由度为0 。

13.根据相区接触法则可以推定,两个单相区之间必定有一个两相区,两个两相区之间必须以单相区或三相共存水平线隔开。

二元相图的三相区是一条水平线,该区必定与两相区以点接触,与单相区以线接触。

14.铸锭的宏观组织是由表层细晶区、柱状晶区、中心等轴晶区三个区组成。

15.莱氏体是共晶转变所形成的奥氏体和渗碳体组成的混合物。

16. 相变反应式L(液)→α(固)+β(固)表示共晶反应;γ(固)→α(固)+β(固)表示共析反应。

17. 固溶体合金结晶时,其平衡分配系数K o 表示固液两平衡相中的 溶质浓度之比。

18. 铁碳合金中,一次渗碳体由 液相 产生,二次渗碳体由 奥氏体 产生,三次渗碳体由 铁素体 产生。

19. 一个滑移系是由 滑移面 和 滑移方向 组成。

20. 面心立方晶格的滑移系有 12 个,体心立方晶格的滑移系有 12 个。

材料科学基础综合复习题

材料科学基础综合复习题

B、无扩散型相变 C、半扩散型相变 8、过冷奥氏体等温转变温度越低,所得组织的硬度() A、越高 B、越低 C、变化不大 9、过冷奥氏体连续冷却,当冷却速度≤Vc 时,冷速越快,冷却 后所得硬度 () A、越高 B、越低 C、有时高有时低 10、高分子链的几何形态可分为三种() A、结晶型部分结晶型无定型 B、线型支链型体型 C、线型无定型体型 选择题(3) 1、T10 钢中的含碳量是() A、0.1% B、1% C、10% 2、40CrNiMo 中,含碳量是()
选择题(1) 1、塑料的使用状态为() A、粘流态 B、玻璃态 C、高弹态 2、按用途分,40Cr 钢属于() A、渗碳钢 B、调质钢 C、弹簧钢 3、40Cr 钢中,合金元素 Cr 的主要作用是() A、提高淬透性,强化铁素体 B、提高淬透性和红硬性 C、提高硬度,耐磨性 4、按用途分,ZoCrMnTi 钢属于() A、渗碳钢 B、调质钢 C、弹簧钢 5、ZoCrMnTi 钢中,加入 Ti 的主要目的是() A、提高耐磨性 B、提高淬透性 C、细化晶粒 6、按用途分,60SiZMn 钢属于()
2、在过冷奥氏体三种转变产物中,硬度由高到低依次是() A、珠光体>贝氏体>马氏体 B、贝氏体> 马氏体>珠光体 C、马氏体>贝氏体>珠光体 3、片状珠光体的性能主要取决于片层间距,片层间距越小,() A、强度、硬度越低,塑性越好; B、强度、硬度越高,塑性越低; C、强度、硬度越高,塑性越好; 4、同种钢,片状珠光体与粒状珠光体比较,片状珠光体的()A、 强度、硬度高,塑性、韧性差;B、强度、硬度低,塑性、韧性 好; C、强度、硬度高,塑性、韧性好; 5、下贝氏体与上贝氏体比较,下贝氏体的() A、硬度高,强度高,韧性好; B、硬度高,强度高,韧性差; C、硬度低,强度低,韧性好; 6、马氏体具有高硬度、高强度的主要原因是() A、固溶强化相变强化时效强化 B、固溶强化细晶强化淬火应力大 C、细晶强化位错强化淬火应力大 7、按相变过程中,形核和长大特点分,马氏体转变属于() A、扩散型相变

材料科学基础试题库完整可编辑版

材料科学基础试题库完整可编辑版

一、单项选择题(请在每小题的4个备选答案中,选出一个最佳答案,共10小题;每小题2分,共20分)1、材料按照使用性能,可分为结构材料和 。

A. 高分子材料;B. 功能材料;C. 金属材料;D. 复合材料。

2、在下列结合键中,不属于一次键的是:A. 离子键;B. 金属键;C. 氢键;D. 共价键。

3、材料的许多性能均与结合键有关,如大多数金属均具有较高的密度是由于:A. 金属元素具有较高的相对原子质量;B. 金属键具有方向性;C. 金属键没有方向性;D.A 和C 。

3、下述晶面指数中,不属于同一晶面族的是:A. (110);B. (101);C. (011-);D. (100)。

4、 面心立方晶体中,一个晶胞中的原子数目为:A. 2;B. 4;C. 6;D. 14。

5、 体心立方结构晶体的配位数是:A. 8;B.12;C. 4;D. 16。

6、面心立方结构晶体的原子密排面是:A. {111};B. {110};C. (100);D. [111]。

7、立方晶体中(110)和(211)面同属于 晶带A. [110];B. [100];C. [211];D. [--111]。

6、体心立方结构中原子的最密排晶向族是:A. <100>;B. [111];C. <111>;D. (111)。

6、如果某一晶体中若干晶面属于某一晶带,则:A. 这些晶面必定是同族晶面;B. 这些晶面必定相互平行;C. 这些晶面上原子排列相同;D. 这些晶面之间的交线相互平行。

7、金属的典型晶体结构有面心立方、体心立方和密排六方三种,它们的晶胞中原子数分别为:A. 4, 2, 6; B. 6, 2, 4; C. 4, 4, 6; D. 2, 4, 67、在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为:A. 肖脱基缺陷;B. 弗兰克缺陷;C. 线缺陷;D. 面缺陷7、两平行螺旋位错,当柏氏矢量同向时,其相互作用力:A. 为零;B. 相斥;C. 相吸;D. 不变8、面心立方结构的滑移系数目为:A. 12;B.8;C. 3;D. 24。

材料科学基础试题及答案

材料科学基础试题及答案

材料科学基础试题及答案一、单项选择题(每题2分,共20分)1. 材料科学中,材料的基本组成单元是()。

A. 分子B. 原子C. 离子D. 电子答案:B2. 金属的塑性变形主要是通过()来实现的。

A. 弹性变形B. 位错运动C. 相变D. 断裂答案:B3. 在材料科学中,硬度的定义是()。

A. 材料抵抗变形的能力B. 材料抵抗磨损的能力C. 材料抵抗压缩的能力D. 材料抵抗拉伸的能力答案:B4. 材料的热处理过程中,淬火的主要目的是()。

A. 提高硬度B. 增加韧性C. 减少变形D. 提高导电性答案:A5. 以下哪种材料不属于复合材料?A. 碳纤维增强塑料B. 钢筋混凝土C. 不锈钢D. 玻璃钢答案:C二、填空题(每空1分,共20分)1. 材料的强度是指材料在受到______作用时,抵抗______的能力。

答案:外力;破坏2. 材料的断裂韧性是指材料在______条件下,抵抗______的能力。

答案:裂纹存在;断裂3. 材料的疲劳是指材料在______作用下,经过______循环后发生断裂的现象。

答案:交变应力;多次4. 材料的导热性是指材料在______条件下,抵抗______的能力。

答案:温度梯度;热量传递5. 材料的电导率是指材料在单位电场强度下,单位时间内通过单位面积的______。

答案:电荷量三、简答题(每题10分,共30分)1. 简述材料的弹性模量和屈服强度的区别。

答案:弹性模量是指材料在弹性范围内,应力与应变的比值,反映了材料抵抗形变的能力。

屈服强度是指材料在受到外力作用下,从弹性变形过渡到塑性变形时的应力值,反映了材料抵抗塑性变形的能力。

2. 描述材料的疲劳破坏过程。

答案:材料的疲劳破坏过程通常包括三个阶段:裂纹的萌生、裂纹的扩展和最终断裂。

在交变应力作用下,材料内部的微裂纹逐渐扩展,当裂纹扩展到一定程度,材料无法承受继续增加的应力时,就会发生断裂。

3. 什么是材料的热处理?请列举几种常见的热处理方法。

材料科学基础复习题(含答案)

材料科学基础复习题(含答案)

材料科学基础考前重点复习题1. Mn 的同素异构体有一为立方结构,其晶格常数α为0.632nm ,密度ρ为26.7g/cm 3,原子半径r 等于0.122nm ,问Mn 晶胞中有几个原子,其致密度为多少?答案解析:习题册 P9 2-22.2. 如图1所示,设有两个α相晶粒与一个β相晶粒相交于一公共晶棱,并形成三叉晶界,已知β相所张的两面角为80℃,界面能ααγ为0.60Jm -2, 试求α相与β相的界面能αβγ。

图1答案解析:习题册 P17 3-42.3. 有两种激活能分别为1Q =53.7kJ/mol 和2Q =201kJ/mol 的扩散反应,观察在温度从25℃升高到800℃时对这两种扩散的影响,并对结果进行评述。

答案解析:习题册 P21 4-8.4. 论述强化金属材料的方法、特点和机理。

答:(1)结晶强化。

通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,提高金属材料的性能。

包括细化晶粒,提高金属材料纯度。

(2)形变强化。

金属材料在塑性变形后位错运动的阻力增加,冷加工塑性变形提高其强度。

(3)固溶强化。

通过合金化(加入合金元素)组成固溶体,使金属材料强化。

(4)相变强化。

合金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构,使金属材料强化。

(5)晶界强化。

晶界部位自由能较高,存在着大量缺陷和空穴。

低温时,晶界阻碍位错运动,晶界强度高于晶粒本身;高温时,沿晶界扩散速度比晶内扩散速度快,晶界强度显著降低。

强化晶界可强化金属材料。

5. 什么是回复,请简述金属材料冷变形后回复的机制。

试举例说明回复的作用。

答:(1)回复是冷变形金属在低温加热时,其显微组织无可见变化,但物理性能、力学性能却部分恢复到冷变形以前的过程。

(2)回复机制:低温回复主要与点缺陷迁移有关,冷变形时产生大量的点缺陷,空穴与间隙原子。

温度较高时,中温回复会发生位错运动和重新分布。

位错滑移,异号位错相遇而抵消,位错缠结重新排列,位错密度降低。

材料科学基础试题及答案

材料科学基础试题及答案

材料科学基础试题及答案一、选择题1. 材料科学中的“四要素”是指()。

A. 组织、性能、加工、应用B. 材料、结构、性能、加工C. 材料、结构、性能、应用D. 结构、性能、加工、应用答案:C2. 下列哪种材料属于金属材料?()。

A. 铝合金B. 碳纤维C. 聚氯乙烯D. 陶瓷答案:A3. 材料的硬度是指()。

A. 材料抵抗变形的能力B. 材料抵抗破坏的能力C. 材料抵抗穿透的能力D. 材料抵抗摩擦的能力答案:A4. 材料的疲劳是指()。

A. 材料在高温下的性能变化B. 材料在重复应力作用下的性能变化C. 材料在腐蚀环境下的性能变化D. 材料在高压下的的性能变化答案:B5. 材料的蠕变是指()。

A. 材料在低温下的性能变化B. 材料在长期静载荷作用下发生的缓慢持久变形C. 材料在高速下的的性能变化D. 材料在潮湿环境下的性能变化答案:B二、填空题1. 材料的_________是指材料在受到外力作用时,能够承受的最大应力,是材料的重要性能指标之一。

答案:强度2. 材料的_________是指材料内部微观结构的排列方式,它直接影响材料的宏观性能。

答案:晶体结构3. 材料的_________是指材料在一定条件下,能够进行塑性变形而不断裂的性质。

答案:韧性4. 材料的_________是指材料在高温下保持性能不变的能力,对于高温环境下使用的材料尤为重要。

答案:热稳定性5. 材料的_________是指材料对电磁场的响应能力,对于电子和通信领域的材料尤为重要。

答案:电磁性能三、简答题1. 请简述材料科学中的“相图”及其作用。

答:相图是用来描述在不同温度、压力和成分比例下,材料可能存在的不同相(如固态、液态、气态)之间的平衡关系的图表。

它可以帮助科学家和工程师了解和预测材料在特定条件下的行为,对于材料的设计、加工和应用具有重要的指导意义。

2. 何为材料的“疲劳寿命”?请举例说明。

答:材料的疲劳寿命是指材料在反复应力作用下能够承受循环次数的总和,直到发生疲劳破坏为止。

材料科学基础试题及答案

材料科学基础试题及答案

材料科学基础试题及答案一、名词解释(每题5分,共25分)1. 晶体缺陷2. 扩散3. 塑性变形4. 应力5. 比热容二、选择题(每题2分,共20分)1. 下列哪种材料属于金属材料?A. 玻璃B. 塑料C. 陶瓷D. 铜2. 下列哪种材料属于陶瓷材料?A. 铁B. 铝C. 硅酸盐D. 聚合物3. 下列哪种材料属于高分子材料?A. 玻璃B. 钢铁C. 聚乙烯D. 陶瓷4. 下列哪种材料属于半导体材料?A. 铜B. 铝C. 硅D. 铁5. 下列哪种材料属于绝缘体?A. 铜B. 铝C. 硅D. 玻璃三、简答题(每题10分,共30分)1. 请简述晶体结构的基本类型及其特点。

2. 请简述塑性变形与弹性变形的区别。

3. 请简述材料的热传导原理。

四、计算题(每题15分,共30分)1. 计算一个碳化硅晶体的体积。

已知碳化硅的晶胞参数:a=4.05 Å,b=4.05 Å,c=8.85 Å,α=β=γ=90°。

2. 计算在恒定温度下,将一个100 cm³的铜块加热100℃所需的热量。

已知铜的比热容为0.39J/(g·℃),铜的密度为8.96 g/cm³。

五、论述题(每题20分,共40分)1. 论述材料科学在现代科技发展中的重要性。

2. 论述材料制备方法及其对材料性能的影响。

答案:一、名词解释(每题5分,共25分)1. 晶体缺陷:晶体在生长过程中,由于外界环境的影响,导致其内部结构出现不完整或不符合理想周期性排列的现象。

2. 扩散:物质由高浓度区域向低浓度区域自发地移动的过程。

3. 塑性变形:材料在受到外力作用下,能够产生永久变形而不恢复原状的性质。

4. 应力:单位面积上作用于材料上的力。

5. 比热容:单位质量的物质温度升高1℃所吸收的热量。

二、选择题(每题2分,共20分)1. D2. C3. C4. C5. D三、简答题(每题10分,共30分)1. 晶体结构的基本类型及其特点:晶体结构的基本类型有立方晶系、四方晶系、六方晶系和单斜晶系。

材料科学基础_综合复习题

材料科学基础_综合复习题

材料科学基础复习题一、选择题1. 原子结合键包括物理键和化学键, 下述结合键中属于化学键的是.(A) 金属键(B) 离子键(C) 分子键(D) 共价键2. 原子结合键包括物理键和化学键, 下述结合键中属于物理键的是.(A) 氢键(B) 离子键(C) 分子键(D) 共价键3. 工业用硅酸盐属于.(A) 金属材料(B) 陶瓷材料(C) 复合材料(D) 高分子材料4. 布拉菲点阵共有中.(A) 8 (B) 10 (C) 12 (D) 145. BCC、FCC和HCP等三种典型晶体结构中, 单位晶胞的原子数分别为.(A) 2, 4, 6 (B) 4, 2, 6 (C) 3, 4, 5 (D) 6, 2, 46. 晶面间距表示相邻两个平行晶面之间的垂直距离, 其大小反映了晶面上原子排列的紧密程度, 一般规律是.(A) 在简单立方点阵中, 低指数的晶面间距较大(B) 在简单立方点阵中, 高指数的晶面间距较大(C) 晶面间距越大, 该晶面上原子排列越紧密(D) 晶面间距越大, 该晶面上原子排列越稀疏7. BCC、FCC和HCP等三种典型晶体结构中, 原子配位数依次为.(A) 8, 12, 8 (B) 8, 12, 10 (C) 12, 8, 6 (D) 8, 12, 128. 密堆积结构的致密度为.(A) 0.68 (B) 0.74 (C) 0.82 (D) 1.09. MgO陶瓷晶体具有NaCl型结构, 单位晶胞的离子数为.(A) 4 (B) 6 (C) 8 (D) 1010. SiC陶瓷晶体具有金刚石型结构, 该结构一般特征是.(A) 原子结合键为共价键(B) 原子配位数为4(C) 单位晶胞包含8个原子(D) 属于面心立方点阵, 为密堆积结构11. 下述晶体缺陷中属于点缺陷的是.(A) 空位(B) 位错(C) 相界面(D) 间隙原子12. 下述晶体缺陷中属于线缺陷的是.(A) 空位(B) 位错(C) 晶界(D) 间隙原子13. 下述晶体缺陷中属于面缺陷的是.(A) 表面(B) 位错(C) 相界面(D) 空位14. 下述界面中界面能最小的是.(A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面15. 下述界面中界面能最大的是.(A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面16. 理想密排六方金属的c/a为.(A) 1.6 (B)(C) (D) 117. 在晶体中形成空位的同时又产生间隙原子, 这样的缺陷称为.(A) 肖脱基空位(B) 弗兰克尔空位(C) 线缺陷(D) 面缺陷18. 面心立方晶体的挛晶面是.(A) {112} (B) {110} (C) {111} (D) {123}19. 体心立方晶体的挛晶面是.(A) {112} (B) {110} (C) {111} (D) {123}20. 铸铁与碳钢的区别在于有无.(A) 莱氏体(B) 珠光体(C) 铁素体(D) 渗碳体21. 在二元系合金相图中, 计算两相相对量的杠杆法则只能用于.(A) 单相区中(B) 两相区中(C) 三相平衡水平线上(D) 无限制22. Hume-Rothery提出有利于大量固熔的原子尺寸条件为两组元的原子半径差对熔剂原子半径的比不超过.(A) 10% (B) 14% (C) 15% (D) 20%23. 碳与钒结合形成金属化合物, 下述说法正确的是.(A) 该化合物属于简单间隙化合物(B) 该化合物属于复杂间隙化合物(C) 该化合物具有体心立方结构(D) 该化合物具有面心立方结构24. 以下关于渗碳体的描述中, 正确的是.(A) 渗碳体是钢中很重要的一种复杂间隙相(B) 渗碳体晶体结构非常复杂, 属于正交晶系(C) 渗碳体为铁与碳固熔形成的间隙固熔体(D) 渗碳体为铁与碳固熔形成的置换固熔体25. 下述关于Ni-Cu系二元合金的描述中, 正确的是.(A) 室温下组织为单相组织(B) 室温下组织为两相组织(C) 凝固时发生匀晶转变(D) 凝固时发生共晶转变26. 凝固后是否形成晶体, 主要由液态物质的决定.(A) 温度梯度(B) 粘度(C) 冷却速度(D) 压力27. 金属结晶形核时, 临界晶核半径r K与过冷度ΔT及表面自由能σ之间的关系为.(A) ΔT越大, r K越小(B) ΔT越大, r K越大(C) σ越大, r K越小(D) σ越大, r K越大28. 纯金属均匀形核, 形成临界晶核时体积自由能的减少只能补偿表面能的.(A) 13(B)23(C)34(D)4529. 原子扩散的驱动力是.(A) 组元的浓度梯度(B) 组元的化学势梯度(C) 温度梯度(D) 表面张力30. 菲克第一定律描述了稳态扩散的特征, 即浓度不随变化.(A) 距离(B) 时间(C) 温度(D) 压力31. 在置换固熔体中, 原子扩散的方式一般为.(A) 原子互换机制(B) 间隙机制(C) 空位机制(D) 填隙机制32. 在间隙固熔体中, 原子扩散的方式一般为.(A) 原子互换机制(B) 间隙机制(C) 空位机制(D) 填隙机制33. 在科肯道尔效应中, 惰性标记发生移动的主要原因是扩散偶中.(A) 两组元的原子尺寸不同(B) 仅存在一组元的扩散(C) 两组元的扩散速率不同(D) 两组元的温度不同34. 晶体的类型与结构是影响固体材料中原子扩散的重要因素, 基本规律是.(A) 与金属相比, 晶态化合物的扩散系数低(B) 与金属相比, 晶态化合物的扩散系数高(C) 非密堆结构的晶体比密堆结构的晶体具有更高的扩散系数(D) 密堆结构的晶体比非密堆结构的晶体具有更高的扩散系数35. D L, D B, D S分别表示晶内扩散、晶界扩散和表面扩散的扩散系数, 则在一般情况下, 三者的大小关系为.(A) D L > D B > D S(B) D S > D B > D L(C) D B > D L > D S(D) D S > D L > D B36. 合金凝固时极易得到树枝晶组织, 其主要原因是.(A) 固-液界面前沿液相中存在正温度梯度(B) 固-液界面前沿液相中存在负温度梯度(C) 固-液界面前沿液相中存在成分过冷区(D) 固-液界面前沿液相中存在难熔质点37. 下述关于交滑移的描述中, 正确的是.(A) 发生交滑移时会出现曲折或波纹状的滑移带(B) 体心立方金属最容易发生交滑移(C) 层错能低的金属易发生交滑移(D) 交滑移必须通过刃型位错实现38. 多晶体发生塑性变形时, 为了满足协调变形, 每个晶粒至少需要开动个独立的滑移系.(A) 3 (B) 4 (C) 5 (D) 639. 再结晶后的晶粒长大是通过方式进行的.(A) 大晶粒吞食小晶粒(B) 小晶粒蚕食大晶粒(C) 晶界向曲率中心移动(D) 晶界背向曲率中心移动40. w C低于0.014的碳钢发生马氏体转变时, 马氏体M与奥氏体A有K-S取向关系, 即.(A) {110}M // {111}A, <111>M // <110>A(B) {111}M // {110}A, <111>M // <110>A(C) {110}M // {111}A, <110>M // <111>A(D) {112}M // {111}A, <111>M // <110>A41. 含Ni约30% 的Fe-Ni合金发生马氏体相变时, 马氏体与奥氏体之间的位向关系为西山关系, 即.(A) {110}M // {111}A, <111>M // <110>A(B) {110}M // {111}A, <110>M // <112>A(C) {110}M // {111}A, <110>M // <111>A(D) {112}M // {111}A, <111>M // <110>A42. 以下关于马氏体相变的描述中, 正确的是.(A) 马氏体相变为无扩散性相变(B) 马氏体相变是通过形核-长大方式进行的(C) 马氏体相变速率极低(D) 马氏体相变速率极高43. 固态相变的阻力一般包括.(A) 新、旧相比体积差所增加的应变能(B) 新、旧相为维持共格/半共格关系所增加的应变能(C) 新、旧相界面增加的表面能(D) 新、旧相之间的体积自由能差44. 固态相变的驱动力是.(A) 新、旧相比体积差所增加的应变能(B) 新、旧相为维持共格/半共格关系所增加的应变能(C) 新、旧相界面增加的表面能(D) 新、旧相之间的体积自由能差45. 固态相变时空位处易于形核的主要原因是.(A) 空位促进熔质原子的扩散(B) 空位释放的能量可提供形核驱动力(C) 空位阻碍熔质原子的扩散(D) 空位群凝聚成位错, 促进形核46. 下述固态相变中属于扩散型相变的是.(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变47. 下述固态相变中属于无扩散型相变的是.(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变48. 下述固态相变中属于半扩散型相变的是.(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变49. 时效型合金发生脱熔转变期间容易产生过渡相, 其特征是.(A) 过渡相与母相之间形成共格或半共格界面(B) 过渡相与母相之间形成非共格界面(C) 过渡相一般呈盘片状(D) 过渡相一般呈球状50. 调幅分解的特点是.(A) 成分改变(B) 成分不变(C) 有核相变(D) 无核相变选择题参考答案1. ABD2. AC3. B4. D5. A6. AC7. D8. B9. C 10. ABC11. AD 12. B 13. AC 14. A 15. C16. B 17. B 18. C 19. A 20. A21. B 22. C 23. AD 24. AB 25. AC26. BC 27. AD 28. B 29. B 30. B31. C 32. B 33. C 34. AC 35. B36. C 37. ABC 38. C 39. AC 40. A41. B 42. ABD 43. ABC 44. D 45. ABD46. AD 47. B 48. C 49. AC 50. AD二、简答题1. 固态相变基本特点.答: 固态相变的特点是:(1) 相变阻力大. 固态相变时的阻力包括新、旧相之间的表面能以及新、旧相由于比体积差或新、旧相界面原子错配而额外增加的弹性应变能; 另外, 固相中原子扩散速率极低也是造成固态相变阻力大的一个重要原因.(2) 新相晶核与母相之间存在一定的晶体学位向关系. 固态相变时, 为了减少新、旧两相之间的界面能, 新相晶核与母相晶体之间往往存在一定的晶体学位向关系, 常以低指数、原子密度大且匹配较好的晶面和晶向互相平行; 并且, 新相往往在母相的某一特定晶面(惯习面)上形成.(3) 母相晶体缺陷对相变起促进作用. 由于母相晶体中存在的各种缺陷(如晶界、相界、位错、空位等)周围晶格有畸变, 自由能较高, 因此容易在这些区域优先形核.(4) 易于出现过渡相. 过渡相是为了克服相变阻力而形成的一种协调性中间转变产物. 通常首先在母相中形成成分与母相相近的过渡相, 然后在一定条件下由过渡相逐渐转变为稳定相.2. 位错促进固态相变形核的主要原因.答: 由于固态相变阻力大, 固相中的形核几乎总是非均匀的, 往往借助晶体中的结构缺陷(空位,位错,晶界等)形核.新相在位错处形核有三种情况: 一是新相在位错线上形核, 新相形成处, 位错消失, 释放的能量使形核功降低而促进形核; 二是位错不消失, 而且依附在新相界面上, 成为半共格界面中的位错部分, 补偿了失配, 因而降低了能量, 使生成晶核时所消耗的能量减少而促进形核; 三是当新相与母相成分不同时, 由于熔质原子在位错线附近偏聚(形成柯氏气团)有利于新相沉淀析出, 也对形核起促进作用.3. 非扩散型相变的基本特征.答: 无扩散型相变的基本特点是:(1) 存在由于均匀切变引起的形状改变, 使晶体发生形状改变.(2) 由于相变过程无扩散, 新相与母相的化学成分相同.(3) 新相与母相之间有一定的晶体学位向关系.(4) 相界面移动速度极快, 可接近声速.4. 说明Al-Cu等时效型合金脱熔过程出现过渡相的原因.答: 时效处理时脱熔的一般顺序为:偏聚区(或称G.P.区) →过渡相(亚稳相) →平衡相.脱熔时不直接析出平衡相的原因, 是由于平衡相一般与基体形成新的非共格界面, 界面能大, 而亚稳定的脱熔产物往往与基体完全或部分共格, 界面能小. 在相变初期, 界面能起决定性作用, 界面能小的相, 形核功小, 容易形成. 所以首先形成形核功最小的过渡结构, 再演变成平衡稳定相.5. 调幅分解的主要特征.答: (1) 调幅分解过程的成分变化是通过上坡扩散实现的. 首先出现微区的成分起伏, 随后通过熔质原子从低浓度区向高浓度区扩散, 使成分起伏不断增幅, 直至分解为成分不同的两平衡相为止.(2) 调幅分解不经历形核阶段, 新、旧相结构相同, 不存在明显的相界面. 由于无需形核, 所以分解速度很快.6. 脱熔相颗粒粗化机理.答: 参见教材P292-293的“8.4.3.2 颗粒粗化”一节. (需要画图!!)7. 零件热处理的作用.答: 零件热处理的作用如下:(1) 通过适当的热处理可以显著提高零件的力学性能, 延长机器零件的使用寿命.(2) 恰当的热处理工艺可以消除铸、锻、焊等热加工工艺造成的各种缺陷, 细化晶粒, 消除偏析, 降低内应力, 使零件的组织和性能更加均匀.(3) 热处理也是机器零件加工工艺过程中的重要工序.(4) 此外, 通过热处理还可使工件表面具有抗磨损、耐腐蚀等特殊物理化学性能.8. 过共析钢淬火时加热温度的选择依据.答: 过共析钢的淬火加热温度限定在Ac1以上30~50℃是为了得到细小的奥氏体晶粒和保留少量渗碳体质点, 淬火后得到隐晶马氏体和其上均匀分布的粒状碳化物, 从而不但可以使钢具有更高的强度、硬度和耐磨性, 而且也具有较好的韧性. 如果过共析钢淬火加热温度超过Ac cm, 碳化物将全部熔入奥氏体中, 使奥氏体中的含碳量增加, 降低钢的M s和M f 点, 淬火后残留奥氏体量增多, 会降低钢的硬度和耐磨性; 淬火温度过高, 奥氏体晶粒粗化、含碳量又高, 淬火后易得到含有显微裂纹的粗片状马氏体, 使钢的脆性增大; 此外, 高温加热淬火应力大、氧化脱碳严重, 也增大钢件变形和开裂倾向.9. 马氏体相变的基本特征.答: (1) 无扩散性. 马氏体转变的过冷度很大, 转变温度低, 原子扩散无法进行, 因此是非扩散型相变.(2) 切变共格性. 马氏体转变是新相在母相特定的晶面(惯习面)上形成, 并以母相的切变来保持共格关系的相变过程.(3) 变温形成. 马氏体转变有其开始转变温度(M s点)与转变终了温度(M f点). 当过冷奥氏体冷到M s点, 便发生马氏体转变, 转变量随温度的下降而不断增加, 一旦冷却中断, 转变便很快停止.(4) 高速长大. 马氏体转变没有孕育期, 形成速度很快, 瞬间形核, 瞬间长大.(5) 不完全性. 一般来说, 奥氏体向马氏体的转变是不完全的, 即使冷却到M f点, 也不能获得100%的马氏体, 即总有一部分残余奥氏体.10. 细晶强化/固熔强化/弥散强化/加工硬化机理.答: (关于弥散强化机理)由塑性相与硬脆相组成的(两相)合金, 倘若硬脆的第二相呈弥散粒子均匀地分布在塑性相基体上, 则可显著提高合金的强度, 此即弥散强化. 这种强化的主要原因是由于弥散细小的第二相粒子与位错的交互作用(位错绕过或切过第二相粒子), 阻碍了位错的运动, 从而提高了合金的塑性变形抗力.(关于加工硬化机理)在塑性变形过程中, 随着金属内部组织的变化, 金属的力学性能也将产生明显的变化, 即随着变形程度的增加, 金属的强度、硬度增加, 而塑性、韧性下降, 这一现象即为加工硬化或形变强化.关于加工硬化的原因, 目前普遍认为与位错的交互作用有关. 随着塑性变形的进行, 位错密度不断增加, 因此位错在运动时的相互交割加剧, 产生固定割阶、位错缠结等障碍, 使位错运动的阻力增大, 引起变形抗力的增加, 从而提高了金属的强度.11. 孪生变形特点.答: 孪生变形是金属塑性变形的基本方式之一, 是指在切应力的作用下, 晶体的一部分沿一定的晶面(孪生面)和一定的晶向(孪生方向)相对于另一部分晶体作均匀地切变, 在切变区域内, 与孪生面平行的每层原子的切变量与它距孪生面的距离成正比, 并且不是原子间距的整数倍. 其特点为:(1) 孪生变形引起的切变不会改变晶体的点阵类型, 但可使变形部分的位向发生变化, 并且与未变形部分的晶体以挛晶界为分界面构成了镜面对称的位向关系.(2) 一般说来, 孪生的临界分切应力要比滑移的临界分切应力大得多, 只有在滑移很难进行的条件下, 晶体才进行孪生变形.(3) 孪生对塑性变形的贡献比滑移小得多, 例如镉单纯依靠孪生变形只能获得7.4% 的伸长率. 但是, 由于孪生变形后晶体位向发生变化, 可能使原来取向不利的滑移系转变为新的有利取向, 从而引发晶体的进一步滑移, 提高金属的塑性变形能力.(4) 孪生变形的速度极快, 常引起冲击波, 发出音响.12. 根据阿累尼乌斯(Arrhenius)公式: D = D0exp(-Q/RT), 分析影响扩散的主要因素.答: 上述公式中, Q为原子扩散激活能, T为温度, 它们是影响扩散的主要因素. 很显然, Q 越小, 或扩散温度T 越高, 则D越大, 扩散越易进行. 而扩散激活能Q取决于材料的键能. 高熔点纯金属的键能高于低熔点的, 因此前者的激活能较高, 其自扩散系数较小; 通常致密度大的晶体结构中, 原子扩散激活能较高, 扩散系数较小; 不同类型的固熔体, 熔质原子的扩散激活能不同, 间隙原子的扩散激活能都比置换原子的小, 所以扩散速度比较大; 晶体缺陷处, 原子排列混乱, 能量较高, 激活能往往较低, 因此扩散容易. 对于一定的晶体结构来说, 表面扩散最快, 晶界次之, 亚晶界又次之, 晶内最慢; 在位错、.空位等缺陷处的原子比完整晶格处的原子扩散容易得多.13. (扩散的微观机理)间隙/空位机制.答: (1) 间隙机制: 晶体中存在的间隙原子通过晶格间隙之间的跃迁实现的扩散; 间隙固熔体中间隙原子(C,H,N,O等)的扩散就是这种机制; 为了实现这种扩散, 扩散原子必须具有越过能垒的自由能.(2) 空位机制: 晶体中扩散原子离开自己的点阵位置去填充空位, 而原先的点阵位置形成了新的空位, 如此反复, 实现原子的扩散; 置换固熔体(或纯金属)中原子的扩散即为空位扩散; 在空位扩散中, 扩散原子除具有越过能垒的自由能外, 还必须具有空位形成能.14. 简述Cu-Ni 扩散偶惰性标记移动规律及其原因.答: Cu-Ni 扩散偶惰性标记会向Ni 棒一侧移动. 由于Ni 的熔点(1452℃)比Cu 的熔点(1083℃)高, 表明Ni 原子的结合能高于Cu 原子的, 因此, 扩散偶中Ni 原子进入Cu 晶体点阵要比Cu 原子进入Ni 晶体点阵容易, 即Ni 原子在Cu 棒中的扩散速度要快于Cu 原子在Ni 棒中的扩散速度, Ni 原子向Cu 棒一侧发生了物质的净输送, 其结果就是惰性标记往Ni 棒一侧移动.15. 成分过冷条件及其影响因素.16. 包晶反应速度慢的原因.17. 正常凝固合金圆棒宏观偏析规律.18. 纯金属晶体长大形态与温度梯度的关系.19. 纯金属晶体长大机制.20. 润湿角对异质形核功的影响规律.21. 均匀形核率与过冷度的关系及其原因.答: 均匀形核时, 形核率方程为exp()exp()A Q N C kT kT=-- 式中, A 为临界晶核的形核功; Q 为原子越过液-固界面的扩散激活能; T 为温度.上式表明, 过冷度对形核率的影响受形核功和原子扩散激活能控制: 一方面, 当过冷度较小时, N 与exp(-A / kT ) 成正比, 故随着过冷度的增大, exp(-A / kT ) 数值也增大, 形核率就越大; 另一方面, 当过冷度足够大时, 随着过冷度的增大, 原子扩散速度要减慢, 此时, N 主要受exp(-Q / kT ) 数值影响, 而Q 值随温度改变很小, 故随着过冷度的增大, 形核率反而减小.22. 金属结晶的热力学、动力学、结构和能量条件.23. 间隙固熔体两组元不能无限互熔的原因.24. 分析γ-Fe 熔碳量高于α-Fe 的原因.三、作图/计算题类型1. 晶面/晶向绘制(应掌握三轴系统的).2. 典型结构金属滑移系表示及绘制.3. 典型二元合金相图绘制(共晶型/包晶型).4. 合金平衡凝固冷却曲线绘制.5. 合金平衡结晶金相组织图绘制.6. 根据点阵类型, 参数及原子量计算晶体材料的密度.12、已知Cu的原子量为63.5,原子半径是0.1278 nm。

材料科学基础试题及答案

材料科学基础试题及答案

材料科学基础试题及答案一、选择题(每题2分,共20分)1. 材料科学主要研究的是材料的哪些方面?A. 材料的加工方法B. 材料的微观结构C. 材料的性能D. 所有以上选项答案:D2. 金属材料的强度主要取决于其什么?A. 化学成分B. 微观结构C. 宏观尺寸D. 外部环境答案:B3. 以下哪个不是材料的力学性能?A. 硬度B. 韧性C. 导热性D. 弹性答案:C4. 陶瓷材料通常具有哪些特性?A. 高熔点B. 低热导率C. 低电导率D. 所有以上选项答案:D5. 聚合物材料的哪些特性使其在许多应用中受到青睐?A. 可塑性B. 轻质C. 良好的化学稳定性D. 所有以上选项答案:D二、填空题(每空1分,共10分)6. 材料的微观结构包括_______、_______和_______。

答案:晶粒、晶界、相界7. 材料的热处理过程通常包括_______、_______和_______。

答案:加热、保温、冷却8. 金属的塑性变形主要通过_______机制进行。

答案:位错滑移9. 材料的断裂韧性是指材料在_______条件下抵抗断裂的能力。

答案:受到冲击或应力集中10. 复合材料是由两种或两种以上不同_______的材料组合而成。

答案:性质三、简答题(每题10分,共30分)11. 简述金属的疲劳现象及其影响因素。

答案:金属疲劳是指金属在反复加载和卸载过程中,即使应力水平低于材料的屈服强度,也可能发生断裂的现象。

影响金属疲劳的因素包括应力幅度、加载频率、材料的微观结构、环境条件等。

12. 解释什么是相图,并说明其在材料科学中的重要性。

答案:相图是表示不同组分在特定条件下的相平衡状态的图形。

它在材料科学中的重要性体现在帮助科学家和工程师理解材料的相变行为,预测材料的性能,以及指导材料的加工和应用。

13. 描述聚合物材料的玻璃化转变温度(Tg)及其对聚合物性能的影响。

答案:玻璃化转变温度是聚合物从玻璃态转变为橡胶态的温度。

材料科学基础复习题

材料科学基础复习题

材料科学基础复习题第一章原子结构一判断题1.共价键是由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

2. 范德华力既无方向性亦无饱和性,氢键有方向性但无饱和性。

3. 绝大多数金属均以金属键方式结合,它的基本特点是电子共有化。

4. 离子键这种结合方式的基本特点是以离子而不是以原子为结合单元。

5. 范德华力包括静电力、诱导力、但不包括色散力。

二、简答题原子间的结合键对材料性能的影响第二章晶体结构一、填空1.按晶体的对称性和周期性,晶体结构可分为7 空间点阵,14 晶系, 3 晶族。

2.晶胞是能代表晶体结构的最小单,描述晶胞的参数是a ,b ,c ,α,β,γ。

3. 在立方,菱方,六方系中晶体之单位晶胞其三个轴方向中的两个会有相等的边长。

4. 方向族<111>的方向在铁的(101)平面上,方向族<110>的方向在铁的(110)平面上。

5. 由hcp(六方最密堆积)到之同素异形的改变将不会产生体积的改变,而由体心最密堆积变成即会产生体积效应。

6. 晶体结构中最基本的结构单元为,在空间点阵中最基本的组元称之为。

7.某晶体属于立方晶系,一晶面截x轴于a/2、y轴于b/3、z轴于c/4,则该晶面的指标为8. 硅酸盐材料最基本的结构单元是,常见的硅酸盐结构有、、、。

9. 根据离子晶体结构规则-鲍林规则,配位多面体之间尽可能和连接。

二判断题1.在所有晶体中只要(hkl)⊥(uvw)二指数必然相等。

2. 若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。

3. 所谓原子间的平衡距离或原子的平衡位置是吸引力与排斥力的合力最小的位置。

4.晶体物质的共同特点是都具有金属键。

5.若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。

6. 在立方晶系中若将三轴系变为四轴系时,(hkIl)之间必存在I=-(h+k)的关系与X1,X2,X3,X4间夹角无关。

7.亚晶界就是小角度晶界,这种晶界全部是由位错堆积而形成的。

(完整word版)高校材料科学基础复习题及答案

(完整word版)高校材料科学基础复习题及答案

高校材料科学基础复习题及答案姓名:班级:学号:得分:一、单项选择题:(每一道题1分)第1章原子结构与键合1.高分子材料中的C-H化学键属于。

(A)氢键(B)离子键(C)共价键2.属于物理键的是。

(A)共价键(B)范德华力(C)氢键3.化学键中通过共用电子对形成的是。

(A)共价键(B)离子键(C)金属键第2章固体结构4.面心立方晶体的致密度为 C 。

(A)100% (B)68% (C)74%5.体心立方晶体的致密度为 B 。

(A)100% (B)68% (C)74%6.密排六方晶体的致密度为 C 。

(A)100% (B)68% (C)74%7.以下不具有多晶型性的金属是。

(A)铜(B)锰(C)铁8.面心立方晶体的孪晶面是。

(A){112} (B){110} (C){111}9.fcc、bcc、hcp三种单晶材料中,形变时各向异性行为最显著的是。

(A)fcc (B)bcc (C)hcp10.在纯铜基体中添加微细氧化铝颗粒不属于一下哪种强化方式?(A)复合强化(B)弥散强化(C)固溶强化11.与过渡金属最容易形成间隙化合物的元素是。

(A)氮(B)碳(C)硼12.以下属于正常价化合物的是。

(A)Mg2Pb (B)Cu5Sn (C)Fe3C第3章晶体缺陷13.刃型位错的滑移方向与位错线之间的几何关系?(A)垂直(B)平行(C)交叉14.能进行攀移的位错必然是。

(A)刃型位错(B)螺型位错(C)混合位错15.在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为。

(A)肖特基缺陷(B)弗仑克尔缺陷(C)线缺陷16.原子迁移到间隙中形成空位-间隙对的点缺陷称为(A)肖脱基缺陷(B)Frank缺陷(C)堆垛层错17.以下材料中既存在晶界、又存在相界的是(A)孪晶铜(B)中碳钢(C)亚共晶铝硅合金18.大角度晶界具有____________个自由度。

(A)3 (B)4 (C)5第4章固体中原子及分子的运动19.菲克第一定律描述了稳态扩散的特征,即浓度不随变化。

材料科学基础 复习题

材料科学基础 复习题

材料科学基础复习题材料科学基础复习题介绍一、填空题1.材料科学的核心问题是结构和性能之间的关系。

材料的结构是理解和控制性能的中心环节,结构的最微细水平是原子结构,第二个水平是原子排列方式,第三个水平是显微组织。

2.根据材料的性能特点和用途,材料分为结构材料和功能材料。

根据原子间的键合特性,材料可分为四类:金属、陶瓷、聚合物和复合材料。

第一章材料的原子结构一、填空1.金属材料中原子结合以金属键为主,陶瓷材料(无机非金属材料)以共价键和离子键是主要的键,而高分子材料主要是共价键、氢键和范德华键。

第二章材料的结构一、填空1、晶体是基元(原子团)以周期性重复方式在三维空间作有规则的排列的固体。

2、晶体与非晶体的最根本区别是晶体原子排布长程有序,而非晶体是长程无序短程有序。

3.晶胞是晶体结构中最小的单元。

4、根据晶体的对称性,晶系有三大晶族,七大晶系,十四种布拉菲bravais点阵,三十二种点群,230种空间群。

5.常见的金属晶格类型有体心立方、面心立方和紧密排列的六边形。

6.FCC晶体最紧密排列的方向是<110>,最紧密排列的表面是{111},最紧密排列的表面的堆叠顺序是ABCABC。

7、fcc晶体的致密度为0.74,配位数为12,原子在(111)面上的原子配位数为6。

8.BCC晶体最紧密排列的方向为<111>,最紧密排列的表面为{110},密度为0.68,配位数为8。

9、晶体的宏观对称要素有对称点、对称轴、对称面。

10.CSCL型结构属于简单立方晶格,NaCl型结构属于面心立方晶格,CaF2型结构属于面心立方格子。

11.MgO晶体为NaCl型结构,对称型为3l44l36l29pc,晶系为高级晶系,晶系为立方晶系,晶体键型为离子键。

12、硅酸盐晶体结构中的基本结构单元是硅氧四面体[sio4]。

13.几种硅酸盐晶体的复合阴离子为[Si2O7]6-,[si2o6]4-,[si4o10]4-,[alsi3o8]1-。

材料科学基础试题及答案

材料科学基础试题及答案

材料科学基础试题及答案一、选择题1. 材料科学中的“三基”指的是什么?A. 基础理论、基本技能、基本方法B. 基本元素、基本结构、基本性质C. 基本元素、基本化合物、基本合金D. 基本元素、基本结构、基本性质答案:D2. 材料的硬度通常与哪种性质有关?A. 弹性B. 韧性C. 塑性D. 强度答案:D3. 以下哪个不是金属材料的特性?A. 高熔点B. 良好的导电性C. 良好的延展性D. 良好的热塑性答案:D二、简答题1. 简述材料的疲劳现象。

材料的疲劳现象是指在周期性或波动载荷作用下,材料在远低于其静载荷强度极限的情况下发生断裂。

疲劳通常发生在材料表面或内部缺陷处,由于应力集中而引发微裂纹,随着载荷的循环作用,裂纹逐渐扩展直至断裂。

2. 什么是材料的热处理,它对材料性能有何影响?热处理是一种通过加热和冷却过程来改变金属材料内部结构,从而改善其性能的方法。

热处理可以提高材料的硬度、强度、韧性等,同时也可以通过退火、正火等方法来降低硬度,提高塑性,以适应不同的使用需求。

三、计算题1. 已知某金属的杨氏模量为200 GPa,泊松比为0.3,求该金属在拉伸应力为100 MPa时的应变。

根据胡克定律,应力(σ)与应变(ε)的关系为:σ = E * ε,其中E是杨氏模量。

将已知数据代入公式得:ε = σ / E = 100 MPa / 200 GPa = 5e-4。

2. 某材料在单轴拉伸试验中,当应力达到250 MPa时,其伸长量为0.0005 m。

求该材料的杨氏模量。

杨氏模量E可以通过应力与应变的比值计算得出:E = σ/ ε。

已知应力σ = 250 MPa,伸长量ΔL = 0.0005 m,原长度L未知,但可以通过应变的定义ε = ΔL / L来推导。

由于应变ε很小,可以假设伸长量ΔL远小于原长度L,从而近似ε ≈ ΔL。

代入数据得:E = 250 MPa / 0.0005 = 500 GPa。

四、论述题1. 论述合金化对金属材料性能的影响。

《材料科学基础》复习题题库(含答案-各校通用)

《材料科学基础》复习题题库(含答案-各校通用)

考试复习重点资料(最新版)资料见第二页封面材料科学基础复习试题一1名词解释(30分,每题5分)(1)材料科学与工程(2)晶胞(3)非晶态(4)塑性形变(5)铸造(6)聚合物2简答题(30分,每题10分)(1)最常见的金属晶体结构有哪几种?(2).制备高分子材料包括哪些过程?每一过程的作用和控制因素是什么?(3)什么是再结晶?如何选定再结晶退火温度?钢的再结晶退火温度是多少?3论述题(30分,每题15分)(1)与金属材料和无机非金属材料比较,高分子材料的组成和结构有什么特征?(2)复合材料的基本概念,分析复合材料相对于金属、陶瓷和高分子材料有什么优点?4计算题(60分,每题15分)(1)铜原子半径为0.128nm,为面心立方结构,计算(a)铜金属的理论密度,(b)配位数,(c)原子堆积系数。

(2)直径为12.83mm的试棒,标准长度为50mm,轴向受200KN的作用力后拉长0.456mm,且直径变成12.79mm,(a)此试棒的弹性模量是多少?(b)剪切模量是多少?(3)长度为380mm圆柱形铜棒,屈服强度为220Mpa,在6660N外力作用下,伸长0.50mm,此铜棒直径是多少?(4)聚丙烯数均聚合度是6789,请计算其数均分子量?聚丙烯数均分子量是6789g/mol,请计算其数均聚合度?材料科学基础复习试题二1名词解释(30分,每题5分)(1)材料(2)晶格(3)晶态(4)弹性形变(5)合金(6)可锻性2简答题(30分,每题10分)(1)聚合物共聚物形态结构有那些基本类型?其结构是怎样的?各举一个例子(2)什么是复合材料,以及复合材料各相的作用?(3)简述三种简单金属晶体结构,并分别给出两个代表性金属。

3论述题(30分,每题15分)(1)归纳金属、陶瓷、高分子材料在组成和结构方面的主要异同点。

(2)硬度的测试方法相对于其他力学性能测试方法有什么特点,及归纳总结硬度的几种测试方法的异同点。

4计算题(60分,每题15分)(1)计算(a)面心立方金属的原子致密度;(b)面心立方化合物NaCl的离子致密度(离子半径rNa +=0.097,rCl-=0.181);(c)由计算结果,可以引出什么结论?(2)一条212cm长的铜线,直径是0.76mm。

材料科学基础试题及答案

材料科学基础试题及答案

材料科学基础试题及答案一、选择题1. 材料科学中的“四要素”是指()。

A. 组成、结构、性能、加工B. 组成、结构、性能、应用C. 材料、工艺、设备、产品D. 材料、结构、性能、应用答案:B2. 下列哪种材料属于金属材料?A. 碳纤维B. 聚氯乙烯C. 铝合金D. 陶瓷答案:C3. 材料的屈服强度与抗拉强度之间的关系是()。

A. 屈服强度大于抗拉强度B. 屈服强度等于抗拉强度C. 屈服强度小于抗拉强度D. 无固定关系答案:A4. 非晶态材料的特点之一是()。

A. 高强度B. 各向同性C. 无长程有序D. 高导热性答案:C5. 下列关于纳米材料的描述,正确的是()。

A. 纳米材料仅指尺寸在纳米级别的材料B. 纳米材料具有宏观材料的所有性质C. 纳米材料因其尺寸效应表现出特殊性能D. 纳米材料的应用受到限制答案:C二、填空题1. 材料的______和______是决定其宏观性能的基本因素。

答案:组成、结构2. 金属材料的塑性变形主要是通过______和______来实现的。

答案:滑移、孪晶3. 陶瓷材料的主要特点是______、______和______。

答案:高硬度、高强度、耐磨损4. 复合材料是由两种或两种以上不同______、______和______的材料组合而成。

答案:材料类型、性能、形态5. 形状记忆合金在______作用下能够恢复到原始形状。

答案:温度三、简答题1. 简述材料的疲劳现象及其影响因素。

答:材料的疲劳现象是指在反复的应力作用下,材料逐渐产生并扩展裂纹,最终导致断裂的现象。

影响疲劳的因素包括应力的大小和作用方式、材料的微观结构、表面状态、环境条件等。

2. 说明金属材料的冷加工硬化现象及其应用。

答:冷加工硬化是指金属材料在冷加工过程中,由于晶粒变形和位错密度的增加,导致材料的硬度和强度提高,塑性降低的现象。

该现象在制造高强度、高硬度的零件和工具中具有重要应用。

3. 描述陶瓷材料的断裂机理。

材料科学基础复习题及答案

材料科学基础复习题及答案

一、填空题1. 每个面心立方晶胞中的原子数为 4 ,其配位数为12 。

3a, 配2。

晶格常数为a的体心立方晶胞,其原子数为 2 ,原子半径为4/位数为 8 ,致密度为 0。

68 。

3。

刃型位错的柏氏矢量与位错线互相垂直 , 螺型位错的柏氏矢量与位错线互相平行 .4. 螺型位错的位错线平行于滑移方向,位错线的运动方向垂直于位错线。

5. 在过冷液体中,晶胚尺寸小于临界尺寸时不能自发长大。

6. 均匀形核既需要结构起伏,又需要能量起伏。

7。

纯金属结晶时,固液界面按微观结构分为光滑界面和粗糙界面. 8.纯金属的实际开始结晶温度总是低于理论结晶温度,这种现象称为过冷,理论结晶温度与实际开始结晶温度之差称为过冷度。

9.合金中的基本相结构,有固溶体和金属化合物两类,其中前者具有较高的综合机械性能,适宜做基体相;后者具有较高的熔点和硬度,适宜做强化相。

10. 间隙相和间隙化合物主要受组元的原子尺寸因素控制.11.相律是分析相图的重要工具,当系统的压力为常数时,相律的表达式为f=c-p+1。

12.根据相律,二元合金结晶时,最多可有 3 个相平衡共存,这时自由度为0 。

13.根据相区接触法则可以推定,两个单相区之间必定有一个两相区,两个两相区之间必须以单相区或三相共存水平线隔开。

二元相图的三相区是一条水平线,该区必定与两相区以点接触,与单相区以线接触。

14.铸锭的宏观组织是由表层细晶区、柱状晶区、中心等轴晶区三个区组成。

15.莱氏体是共晶转变所形成的奥氏体和渗碳体组成的混合物。

16。

相变反应式L(液)→α ⎥+β ⎥表示共晶反应;γ(固)→α ⎥+β ⎥表示共析反应。

17。

固溶体合金结晶时,其平衡分配系数K o 表示固液两平衡相中的 溶质浓度之比。

18. 铁碳合金中,一次渗碳体由 液相 产生,二次渗碳体由 奥氏体 产生,三次渗碳体由 铁素体 产生。

19。

一个滑移系是由 滑移面 和 滑移方向 组成。

20。

面心立方晶格的滑移系有 12 个,体心立方晶格的滑移系有 12 个。

材料科学基础复习题及答案

材料科学基础复习题及答案

单项选择题:(每一道题1分)第1章原子结构与键合1.高分子材料中的C-H化学键属于。

(A)氢键(B)离子键(C)共价键2.属于物理键的是。

(A)共价键(B)范德华力(C)氢键3.化学键中通过共用电子对形成的是。

(A)共价键(B)离子键(C)金属键第2章固体结构4.面心立方晶体的致密度为 C 。

(A)100% (B)68% (C)74%5.体心立方晶体的致密度为 B 。

(A)100% (B)68% (C)74%6.密排六方晶体的致密度为 C 。

(A)100% (B)68% (C)74%7.以下不具有多晶型性的金属是。

(A)铜(B)锰(C)铁8.面心立方晶体的孪晶面是。

(A){112} (B){110} (C){111}9.fcc、bcc、hcp三种单晶材料中,形变时各向异性行为最显著的是。

(A)fcc (B)bcc (C)hcp10.在纯铜基体中添加微细氧化铝颗粒不属于一下哪种强化方式?(A)复合强化(B)弥散强化(C)固溶强化11.与过渡金属最容易形成间隙化合物的元素是。

(A)氮(B)碳(C)硼12.以下属于正常价化合物的是。

(A)Mg2Pb (B)Cu5Sn (C)Fe3C第3章晶体缺陷13.刃型位错的滑移方向与位错线之间的几何关系?(A)垂直(B)平行(C)交叉14.能进行攀移的位错必然是。

(A)刃型位错(B)螺型位错(C)混合位错15.在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为。

(A)肖特基缺陷(B)弗仑克尔缺陷(C)线缺陷16.原子迁移到间隙中形成空位-间隙对的点缺陷称为(A)肖脱基缺陷(B)Frank缺陷(C)堆垛层错17.以下材料中既存在晶界、又存在相界的是(A)孪晶铜(B)中碳钢(C)亚共晶铝硅合金18.大角度晶界具有____________个自由度。

(A)3 (B)4 (C)5第4章固体中原子及分子的运动19.菲克第一定律描述了稳态扩散的特征,即浓度不随变化。

(A)距离(B)时间(C)温度20.在置换型固溶体中,原子扩散的方式一般为。

(完整版)材料科学基础试卷及答案7套

(完整版)材料科学基础试卷及答案7套

试题1一. 图1是Na2O的理想晶胞结构示意图,试回答:1.晶胞分子数是多少;2.结构中何种离子做何种密堆积;何种离子填充何种空隙,所占比例是多少;3.结构中各离子的配位数为多少,写出其配位多面体;4.计算说明O2-的电价是否饱和;5.画出Na2O结构在(001)面上的投影图。

二. 图2是高岭石(Al2O3·2SiO2·2H2O)结构示意图,试回答:1.请以结构式写法写出高岭石的化学式;2.高岭石属于哪种硅酸盐结构类型;3.分析层的构成和层的堆积方向;4.分析结构中的作用力;5.根据其结构特点推测高岭石具有什么性质。

三. 简答题:1.晶体中的结构缺陷按几何尺寸可分为哪几类?2.什么是负扩散?3.烧结初期的特征是什么?4.硅酸盐晶体的分类原则是什么?5.烧结推动力是什么?它可凭哪些方式推动物质的迁移?6.相变的含义是什么?从热力学角度来划分,相变可以分为哪几类?四. 出下列缺陷反应式:1.NaCl形成肖特基缺陷;2.AgI形成弗仑克尔缺陷(Ag+进入间隙);3.TiO2掺入到Nb2O3中,请写出二个合理的方程,并判断可能成立的方程是哪一种?再写出每个方程的固溶体的化学式。

4.NaCl溶入CaCl2中形成空位型固溶体五. 表面力的存在使固体表面处于高能量状态,然而,能量愈高系统愈不稳定,那么固体是通过何种方式降低其过剩的表面能以达到热力学稳定状态的。

六.粒径为1μ的球状Al2O3由过量的MgO微粒包围,观察尖晶石的形成,在恒定温度下,第一个小时有20%的Al2O3起了反应,计算完全反应的时间:⑴用杨德方程计算;⑵用金斯特林格方程计算。

七.请分析熔体结构中负离子团的堆积方式、聚合度及对称性等与玻璃形成之关系。

八.试从结构和能量的观点解释为什么D晶界>D晶内?九.试分析二次再结晶过程对材料性能有何影响?工艺上如何防止或延缓二次再结晶的发生?十.图3是A-B-C三元系统相图,根据相图回答下列问题:1.写出点P,R,S的成分;2.设有2kgP,问需要多少何种成分的合金Z才可混熔成6kg成分为R的合金。

材料科学基础总复习题

材料科学基础总复习题

《材料科学基础》复习题第1章原子结构与结合键一、选择题1、具有明显的方向性和饱和性。

A、金属键B、共价键C、离子键2、以下各种结合键中,结合键能最大的是。

A、离子键、共价键B、金属键C、分子键3、以下各种结合键中,结合键能最小的是。

A、离子键、共价键B、金属键C、分子键4、以下关于结合键的性质与材料性能的关系中,是不正确的。

A、具有同类型结合键的材料,结合键能越高,熔点也越高。

B、具有离子键和共价键的材料,塑性较差。

C、随着温度升高,金属中的正离子和原子本身振动的幅度加大,导电率和导热率都会增加。

二、填空题1、构成陶瓷化合物的两种元素的电负性差值越大,则化合物中离子键结合的比例。

2、通常把平衡距离下的原子间的相互作用能量定义为原子的。

3、材料的结合键决定其弹性模量的高低,氧化物陶瓷材料以键为主,结合键—故其弹性模量;金属材料以键为主,结合键故其弹性模量;高分子材料的分子链上是键,分子链之间是键,故其弹性模量。

第2章晶体结构(原子的规则排列)一、名词解释1、点阵2、晶胞3、配位数4、同素异晶转变5、组元6、固溶体7、置换固溶体8、间隙固溶体9、金属间化合物10、间隙相二、选择题1、体心立方晶胞中四面体间隙的r B/r A和致密度分别为A 0.414,0.68B 0.225,0.68C 0.291,0.682、晶体中配位数和致密度之间的关系是—。

A、配位数越大,致密度越大B、配位数越小,致密度越大C、两者之间无直接关系3、面心立方晶体结构的原子最密排晶向族为。

A <100> B、<111> C、<110>4、立方晶系中,与晶面(011)垂直的晶向是—。

A [011]B [100]C [101]5、立方晶体中(110)和(211)面同属于—晶带。

A [101] B[100] C [111] 6、金属的典型晶体结构有面心立方、体心立方和密排六方三种,它们的晶胞中原子数分别为—:A、4;2;6B、6;2;4 D、2;4;66、室温下,纯铁的晶体结构为晶格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释1. 空间点阵:是表示晶体结构中质点周期性重复规律得几何图形.2. 同素异构:是指某些元素在t和p变化时,晶体结构发生变化得特征.3. 固溶体:当一种组分(溶剂)内溶解了其他组分(溶质)而形成的单一、均匀的晶态固体,其晶体结构保持溶剂组元的晶体结构时,这种相就称固溶体。

4. 电子浓度:固溶体中价电子数目e 与原子数目之比。

5. 间隙固溶体:溶质原子溶入溶剂间隙形成的固溶体6. 晶胞: 能完全反映晶格特征得最小几何单元7. 清洁表面:是指不存在任何吸附、催化反应、杂质扩散等物理化学效应得表面,这种表面的化学组成与体内相同,但周期结构可以不同于体内。

8. 润湿:是一种流体从固体表面置换另一种流体的过程。

9. 表面改性:是利用固体表面的吸附特性,通过各种表面处理来改变固体表面得结构和性质以适应各种预期要求。

10. 晶界:凡结构相同而取向不同的晶体相互接触,其接触面称为晶界。

11. 相平衡:一个多相系统中,在一定条件下,当每一相的生成速度与它的消失速度相等时,宏观上没有任何物质在相间传递,系统中每一个相的数量均不随时间而变化,这时系统便达到了相平衡。

12. 临界晶胚半径rk :新相可以长大而不消失的最小晶胚半径.13.枝晶偏析: 固溶体非平衡凝固时不同时刻结晶的固相成分不同导致树枝晶内成分不均匀的现象(或树枝晶晶轴含高熔点组元较多,晶枝间低熔点组元较多的现象).14. 扩散:由构成物质的微粒得热运动而产生得物质迁移现象。

扩散的宏观表现为物质的定向输送。

15. 反应扩散: 在扩散中由于成分的变化,通过化学反应而伴随着新相的形成(或称有相变发生)的扩散过程称为“反应扩散”,也称为“相变扩散。

16. 泰曼温度:反应开始温度远低于反应物熔点或系统低共熔温度,通常相当于一种反应物开始呈现显著扩散作用的温度,此温度称为泰曼温度或烧结温度。

18. 相变:随自由能变化而发生的相的结构变化。

19. 什么是相律:表示材料系统相平衡得热力学表达式,具体表示系统自由能、组元数和相数之间得关系。

20. 二次再结晶:指少数巨大晶粒在细晶消耗时成核长大得过程,又称晶粒异常长大和晶粒不连续生长。

21. 均匀成核:组成一定,熔体均匀一相,在结晶温度下析晶,发生在整个熔体内部,析出物质组成与熔体一致。

22. 固溶强化:溶质原子加入到溶剂原子中形成固溶体,固溶体在23. 相:化学成分相同,晶体结构相同并有界面与其他部分分开的均匀组成部分。

24. 过冷度: 实际开始结晶温度与理论结晶温度之间的差。

25. 固态相变:固态物质在温度、压力、电场等改变时,从一种组织结构转变成另一种组织结构。

26. 稳定分相:分相线和液相线相交(分相区在液相线上), 分相后两相均为热力学的稳定相。

27. 马氏体相变:一个晶体在外加应力的作用下通过晶体的一个分立体积的剪切作用以极迅速的速率而进行的相变。

28. 无扩散型固态相变:在相变过程中并不要求长程扩散,只需要原子作一些微量地移动,其移动距离通常小于这些移动原子与相邻原子间的间距,并且这些原子之间保持一定的关系。

29. 烧结:粉末成型体在低于熔点的高温作用下,产生颗粒间的粘结,通过物质传递迁移,使成型坯体变成具有一定几何形状和性能,即有一定强度的致密体的过程31. 粘度:是流体(液体或气体)抵抗流动的量度。

粘度物理意义:指单位接触面积、单位速度梯度下两层液体间的内摩擦力。

影响熔体粘度的主要因素是温度和化学组成对错2•作用在位错线上的力F的方向永远垂直于位错线并指向滑移面上的未滑移区。

(v)4. 晶面与晶向具有不同的原子密度,因而晶体在不同方向上表现出不同的性质。

(v)5. 高于熔点不太多的温度下,液体内部质点的排列并不是象气体那样杂乱无章的,相反,却是具有某种程度的规律性。

(v)6. 固体颗粒愈小,表面曲率愈大,则蒸气压和溶解度增高而熔化温度升高。

(x)7. 对纯固相:压力可显著改变粉料颗粒间的接触状态,提高固相反应速率。

(v)8. 颗粒愈大,固相反应愈剧烈。

(x )10.固溶体凝固形核的必要条件同样是AG B V0、结构起伏和能量起伏。

(x)1 1 .三元相图垂直截面的两相区内不适用杠杆定律。

(v)13. 和液固转变一样,固态相变也有驱动力并要克服阻力,因此两种转变的难易程度相似。

(x )14. 在一个给定的系统中,物种数可以因分析问题的角度的不同而不同,但独立组分数是一个确定的数。

(v)15. 单组分系统的物种数一定等于1 。

(x )17. 相图中的点都是代表系统状态的点。

(x)18. 恒定压力下,根据相律得出某一系统的f = l ,则该系统的温度就有一个唯一确定的值。

(X)19. 单组分系统的相图中两相平衡线都可以用克拉贝龙方程定量描述。

(v)20. 根据二元液系的p〜x图可以准确地判断该系统的液相是否是理想液体混合物。

(v)21. 在相图中总可以利用杠杆规则计算两相平畅时两相的相对的量。

(v)22. 杠杆规则只适用于T〜x图的两相平衡区。

(X )23. 对于二元互溶液系,通过精馏方法总可以得到两个纯组分。

(x)24. 二元液系中,若A组分对拉乌尔定律产生正偏差,那么B组分必定对拉乌尔定律产生负偏差。

(X)25. 若A、B两液体完全不互溶,那么当有B存在时,A的蒸气压与系统中A的摩尔分数成正比。

(X)30. 在稳态扩散过程中,扩散组元的浓度C只随距离x变化,而不随时间t变化。

(v)32. 固态相变分为形核和核长大两个基本阶段,不遵循液态物质结晶过程的一般规律。

(x)33. 分解反应受控于核的生成数目以及反应界面面积等因素。

(V)34. 对有液、气相参与的固相反应:反应不是通过固相粒子直接接触进行的,压力增大影响不明显,有时相反。

(V)简答题1. 简述晶体的性质答:1)均匀性2)各向异性3 )自限性4)对称性5)最小内能性2. 布拉维点阵分为哪四类答 1 )简单点阵。

2)体心点阵。

3)底心点阵。

4)面心点阵。

3. 硅酸盐的结构特点:答 1 )硅酸盐的基本单元是[SiO 4]四面体。

2)每个氧最多只能被两个[SiO 4]四面体所共有。

3)[SiO 4] 四面体只能是互相孤立地在结构中存在或通过共顶点相互连接。

4)Si-O-Si 的结合键并不形成一直线,而是一折线。

4. 晶胞选取的原则:答: 1 )选取的平行六面体应反映出点阵的最高对称性2)平行六面体内的棱和角相等的数目应最多3)当平行六面体的棱边夹角存在直角时,直角数目应最多4)当满足上述条件的情况下,晶胞应具有最小的体积5. 晶面指数标定步骤:答:1 )在点阵中设定参考坐标系2 )确定待定晶面在三个晶轴上的截距3 )取截距的倒数,并通分化为互质整数比,记为(hkl )6. 缺陷的含义:晶体缺陷就是指实际晶体中与理想的点阵结构发生偏差的区域7. 硅酸盐熔体的粘度与组成的关系答:(1)O/Si 比;(2)一价碱金属氧化物;(3)二价金属氧化物;(4)高价金属氧化物;(5)阳离子配位数;(6)混合碱效应;(7)其它化合物。

8. 简述固体表面的不均匀性答:(1)绝大多数晶体是各向异性(2)同一种物质制备和加工条件不同也会有不同的表面性质。

(3)晶格缺陷、空位或位错而造成表面不均匀。

(4)在空气中暴露,表面被外来物质所污染,形成有序或无序排列,也引起表面不均匀。

(5)固体表面无论怎么光滑,从原子尺寸衡量,实际上也是凹凸不平的。

9. 在固液界面上发生粘附的条件有那些?答:(1)润湿性(2)粘附功(W)(3)粘附面的界面张力(4)相溶性或亲和性10. 晶界的特点:答 ( 1)晶界易受腐蚀后很易显露出来;(2)晶界是原子(或离子)快速扩散的通道,并易引起杂质原子(离子) 偏聚,同时也使晶界处熔点低于晶粒;(3)晶界上原子排列混乱,使之处于应力畸变状态,能阶较高,使得晶 界成为固态相变时优先成核的区域。

11. 相图的作用?答: (1) 知道开始析晶的温度,析晶终点,熔化终点的温度;(2) 平衡时相的种类;(3) 平衡时相的组成 预测瓷胎的显微结构 预测产品性质(4) 平衡时相的含量。

12. 点缺陷的类型(1)空位: 肖脱基空位-离位原子进入其它空位或迁移至晶界或表面 弗兰克尔空位-离位原子进入晶体间隙。

(2)间隙原子:位于晶体点阵间隙的原子。

(3)置换原子:位于晶体点阵位置的异类原子。

13. 简述固态扩散的条件答: (1) 温度足够高( 2)时间足够长( 3)扩散原子能固溶( 4)具有驱动力:化 学位梯度14. 说明固相反应的步骤答: (1) 反应物扩散到界面 (2) 在界面上进行反应 (3)产物层增厚15. 影响固相反应的因素有哪些?答:(1)反应物化学组成与结构的影响(3)反应温度和压力与气氛的影响 16. 矿化剂在固相反应作用:答: (1)影响晶核的生成速度 (2)影响结晶速度及晶格结构 (3)降低体系熔 点,改善液相性质17. 简述相变过程的推动力答:过冷度,过饱和浓度,过饱和蒸汽压18. 影响析晶能力的因素有哪些?答: (1) 熔体的组成 (2) 熔体的结构 (3) 界面情况 (4) 外加剂19. 简要说明成分过冷的形成及其对固溶体组织形态的影响 答: 固溶体凝固时 , 由于溶质原子在界面前沿液相中的分布发生变化而形成的过 冷.20. 为什么晶粒细化既能提高强度,也能改善塑性和韧性?答: 晶粒细化减小晶粒尺寸 ,增加界面面积 ,而晶界阻碍位错运动 ,提高强度; 晶 粒数2)反应物颗粒尺寸及分布的影响 4)矿化剂及其它影响因素量增加,塑性变形分布更为均匀,塑性提高; 晶界多阻碍裂纹扩展,改善韧性.21. 晶体结构与空间点阵的异同异:点的属性、数目、有无缺陷;同:描述晶体中的规律性22. 间隙固溶体与间隙化合物的异同异:结构与组成物的关系;同:小原子位于间隙位置23. 二元相图中有哪些几何规律?相区接触法则;三相区是一条水平线…;三相区中间是由它们中相同的相组成的两相区;单相区边界线的延长线进入相邻的两相区。

24. 材料结晶的必要条件有哪些?过冷;结构起伏;能量起伏;成分起伏(合金)。

25. 影响再结晶温度的因素是:(1)预先的变形程度。

(2)原始晶粒大小。

(3)纯度及成分。

(4)加热速度和保温时间。

26. 简述晶体结构对扩散的影响。

答:晶体结构反映了原子(离子)在空间排列的情况;扩散时原子要发生移动就必需克服周围原子对它的作用力。

原子排列越紧密,原子间的结合力愈强,此时扩散激活能就越大,而扩散系数D就愈小;因此,晶体结构紧密的物质,扩散激活能就大,扩散系数小。

金属的熔点高低和熔化时潜热的大小都能反映金属内部原子间作用力的大小,反映激活能的高低。

金属的熔点越高、熔化时潜热越大,原子排列就越紧密,扩散激活能就越大,扩散系数就越小。

相关文档
最新文档