流体力学三大方程的推导
流体力学的三大实验原理
流体力学的三大实验原理流体力学是研究流体运动和流体力学性质的学科,是物理学的一个重要分支。
在流体力学的研究中,实验是一种重要的方法,通过实验可以观察流体的行为,并验证理论模型的有效性。
以下将介绍流体力学的三大实验原理。
第一大实验原理是质量守恒定律,也称为连续性方程。
它表达了在流体中质量的守恒性质,即单位时间内通过某一截面的质量流量保持不变。
具体而言,对于稳定不可压缩流体,该方程可以表示为:∮ρv·dA = 0其中,∮表示对闭合曲面取积分,ρ是流体的密度,v是流体的速度,dA是曲面的面积元素。
该方程说明了流体在运动过程中质量的连续性,即入口处的质量流量等于出口处的质量流量。
通过实验可以验证这一原理,例如使用水流经过一个管道,在入口处和出口处分别测量流体的质量流量,验证质量守恒定律的成立。
第二大实验原理是动量守恒定律,也称为动量方程。
动量守恒定律表达了流体中动量的守恒性质,即单位时间内通过某一截面的动量流量保持不变。
对于稳定不可压缩流体,动量守恒定律可以表示为:∮(ρv⋅v)·dA = -∮pdA + ∮τ·dA + ∮ρg·dV其中,p是流体的压强,τ是流体的切应力,g是重力加速度,dV是体积元素。
该方程说明了流体在运动过程中动量的守恒性,即流体的动量增加或减少必然伴随着外力的作用或者压强的变化。
通过实验可以验证动量守恒定律,例如通过测量流体经过一个管道时的压强变化以及受到的外力,验证动量守恒定律的成立。
第三大实验原理是能量守恒定律,也称为能量方程。
能量守恒定律表达了流体中能量的守恒性质,即单位时间内通过某一截面的能量流量保持不变。
对于稳定不可压缩流体,能量守恒定律可以表示为:∮(ρv⋅v+pg)·dA = ∮(τ⋅v)·dA + ∮q·dA + ∮ρg·h·dA其中,q是流体的热流量,h是流体的高度。
该方程说明了流体在运动过程中能量的守恒性,即流体的能量增加或减少必然伴随着外界对流体的做功或者热量的输入。
流体力学三大方程推导
流体力学连续性方程,动量方程,能量守恒方程推导过程——广州新宿一次狼我在做热设计仿真的时候复习了流体力学的连续性方程,动量方程和能量守恒方程,就整理出来,分享一下。
其中涉及到欧拉法,场论,随体导数,流体力学连续性方程(即质量守恒方程),流体力学N-S 方程(即动量方程),动量方程在流体力学中有两种,一种是理想流体动量方程,一种是粘性流体动量方程,粘性流体的动量方程也叫纳维-斯托克斯方程,也简称N-S 方程。
最后就是能量守恒方程。
首先要讲一下流体力学的欧拉法,在课本中还讲了拉格朗斯法,因为连续性方程和N-S 方程是用欧拉法得出的,和拉格朗日法没什么关系。
我就不讲拉格朗日法,以免产生混乱。
欧拉方法的着眼点不是流体质点而是空间点。
设法在空间中的每一点上描述出流体运动随时间的变化状况。
如果每一点的流体运动都已知道,则整个流体的运动状况也就清楚了。
欧拉方法中流体质点的运动规律数学上可表示为下列矢量形式:假设空间一点的坐标(x,y,z,t),其中x,y,z 是该空间的坐标,t 是此刻时间。
u,v,w 是这一空间点的三个方向速度。
p,ρ,T 是这一空间点的压力,密度和温度。
这样就有了每一个点的速度,压力,密度,温度,就可以描述运动流体的状态。
这里需要强调一点的是下面这六个式子,可以换一个角度把他们看成方程,对后面理解连续性方程和N-S 方程有帮助,比如u=x+2y+3z),,,();,,,();,,,();,,,();,,,();,,,(t z y x T T t z y x t z y x p p t z y x w w t z y x v v t z y x u u ======ρρ因为后面需要随体导数的概念,还需要把速度函数表示成矢量的形式。
前面u,v,w 是标量,是ν在(x,y,z,t)直角坐标系三个方向的速度。
),(t r νν=随体导数表示流体质点在欧拉场内(见流体运动学)运动时所具有的物理量对时间的全导数。
从张量的角度推导流体力学三大基本方程
从张量的角度推导流体力学三大基本方程首先要讲一点,从张量的角度来看,流体力学的三大基本方程就是物理学家们在最初探讨介质流动的基本思路,也就是物理四大基本方程组的应用。
因此,我们可以借助张量的思维,来解释它们之间的联系和关系。
物理学家莱布尼茨首次提出物理的四大基本方程,有基于的物质的物理过程,包括动能守恒定律、牛顿第二定律、热力学定理和电磁学方程,这四个定理被称为"物理四大基本方程"。
运用张量计算,物理四大基本方程组可以表示为扩散方程(物体总动能守恒)、质量守恒方程(物体质量守恒)、动量守恒方程(物体总动量守恒)和能量守恒方程(物体总能量守恒)。
因此,从张量的角度来看,流体力学的三大基本方程就可以被推导出来了,它们分别是物质及能量流量守恒方程(散度定律)、恒定流体能量方程(动量守恒方程)和变量流体压力方程(勒莱塔方程)。
物质及能量流量守恒方程,就是基于张量计算的变量物质流动的物理过程,它表示物体总本量的流动的等离子体及其能量的守恒,其正视图扩散方程可以表示为:∇•∇*T=0,T表示物质总本量的流动及其能量;恒定流体能量方程,主要对物体动量而言,基于张量表示,比如动量方程:。
∇•(Y×Y )=0, Y表示动量;最后是变量流体压力方程,这是在勒莱塔方程的基础上的进一步发展,它结合了物质及能量流浪的特性,表示为:Φ=Φ(F/L-q*h),其中F表示动量、L表示动量流浪速度、q表示物质流浪的密度以及h表示压力的空间变化。
总之,流体力学三大基本方程实质上都是应用物理四大基本方程和张量思维,在有限时间和空间范围内对物体总本量和其能量变化和动力学过程进行守恒性分析的方法。
鉴于其复杂性,可以用来研究复杂物理过程,比如流体动力学。
流体力学最基本的三个方程
流体力学最基本的三个方程流体力学是研究流体运动及其相关物理现象的学科。
它的基础有三个最基本的方程,即连续性方程、动量守恒方程和能量守恒方程。
本文将详细介绍这三个方程的含义和应用。
一、连续性方程:连续性方程,也称为质量守恒方程,描述了流体运动中质量守恒的原理。
它的数学表达式为:∂ρ/∂t+∇·(ρv)=0其中,ρ是流体的密度,v是流体的速度矢量,∂/∂t表示对时间的偏导数,∇·表示向量的散度。
连续性方程的物理意义是说,质量在流体中是守恒的,即单位体积内的质量永远不会改变。
这是由于流体是连续的,无法出现质量的增减。
这个方程告诉我们,流体在流动过程中的速度变化与流体密度变化是相关的。
当流体流动速度较大时,密度通常会变小,反之亦然。
连续性方程的应用十分广泛。
在管道流动中,我们可以利用连续性方程来推导流速和截面积之间的关系。
在天气预报中,连续性方程被用来描述气象现象,如大气的上升和下沉运动,以及风的生成和消散等。
二、动量守恒方程:动量守恒方程描述了流体运动中动量守恒的原理。
它的数学表达式为:∂(ρv)/∂t + ∇·(ρvv) = -∇p + ∇·(μ∇v) + ρg其中,p是流体的压强,μ是流体的黏度,g是重力加速度。
动量守恒方程可以理解为牛顿第二定律在流体力学中的推广。
它表示流体在外力作用下的加速度与压力梯度、黏性力、重力的平衡关系。
动量守恒方程的物理意义是说,流体的运动与施加在流体上的各种力密切相关。
当外力作用于流体时,会引起流体的加速度,也即速度的变化。
这个方程告诉我们,流体的加速度是与外力、黏性力和重力共同作用而产生的。
动量守恒方程的应用十分广泛。
在飞行器设计中,我们可以利用动量守恒方程来研究气动力的产生和改变。
在水力学中,动量守恒方程可以用来分析水流的运动、喷流和冲击等。
三、能量守恒方程:能量守恒方程描述了流体运动中能量守恒的原理。
它的数学表达式为:∂(ρE)/∂t + ∇·(ρEv) = -∇·(pv) + ∇·(κ∇T) + ρg·v +q其中,E是单位质量流体的比总能量(包括内能、动能和位能),T是流体的温度,κ是流体的热传导系数,q是单位质量流体的热源项。
流体动力学三大方程
流体动力学三大方程流体动力学是研究流体运动和流体力学性质的学科,它以三大方程为基础,这三大方程分别是连续性方程、动量方程和能量方程。
在本文中,将对这三大方程进行详细的介绍和解释。
1. 连续性方程连续性方程是描述流体质点的质量守恒的基本方程。
它表明在流体运动中,质量是守恒的,即单位时间内流入某一区域的质量等于单位时间内流出该区域的质量。
连续性方程的数学表达式是通过流体的速度场和流体密度来描述的。
在一维情况下,连续性方程可以表示为流体密度乘以速度的横向梯度等于零。
2. 动量方程动量方程描述了流体力学中质点的动量变化。
根据牛顿第二定律,动量方程可以表达为流体质点的质量乘以加速度等于质点所受到的合力。
在流体动力学中,动量方程的数学表达式是通过流体的速度场、压力场和粘性力来描述的。
动量方程是解决流体力学问题的基础方程之一,它可以用来计算和预测流体的速度和压力分布。
3. 能量方程能量方程描述了流体质点的能量变化。
在流体动力学中,能量方程的数学表达式是通过流体的速度场、压力场、密度和温度来描述的。
能量方程包括了流体的动能、压力能和内能的变化。
能量方程在研究流体的热力学性质和能量转化过程中起着重要的作用。
通过能量方程,可以计算和预测流体的温度分布和能量转化效率。
这三大方程是流体动力学研究中的核心内容,它们相互联系、相互依赖,共同构成了流体运动的基本规律。
连续性方程保证了质量守恒,动量方程描述了力学平衡,能量方程描述了能量转化。
在实际应用中,这些方程可以用来解决各种流体力学问题,如流体的流动特性、压力分布、速度场、能量转化等。
流体动力学三大方程——连续性方程、动量方程和能量方程是研究流体运动和流体力学性质的基础。
它们通过数学表达式描述了质量守恒、力学平衡和能量转化的规律。
这些方程的应用广泛,能够帮助我们理解和预测流体的运动和性质,对于工程设计、自然灾害和环境保护等领域都具有重要意义。
通过研究和应用这些方程,我们可以更好地掌握和利用流体动力学知识,为社会发展和人类福祉做出贡献。
流体力学方程
流体力学方程流体力学方程是描述流体运动的基本方程,它由质量守恒方程、动量守恒方程和能量守恒方程组成。
这些方程描述了流体在空间和时间上的变化以及与周围环境的相互作用。
流体力学方程在多个领域中具有广泛的应用,包括天气预报、风洞实验、水力工程和生物学等。
一、质量守恒方程质量守恒方程又称连续性方程,它描述了流体的质量在空间和时间上的变化规律。
质量守恒方程可以用以下形式表示:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·(ρv)是速度矢量的散度。
质量守恒方程表明,流体在任意一点的质量密度的变化率等于通过该点的质量流入量与质量流出量之差。
二、动量守恒方程动量守恒方程描述了流体在外力作用下的运动规律。
根据流体力学的推导,动量守恒方程可以用以下形式表示:ρ(∂v/∂t + v·∇v) = -∇p + μ∇²v + ρg其中,p是流体的压力,μ是流体的动力粘度,g是重力加速度。
动量守恒方程表明,流体在任意一点的动量密度的变化率等于流体所受外力(包括压力力、粘性力和重力)的合力。
三、能量守恒方程能量守恒方程描述了流体在热力学过程中能量的转换和传递。
能量守恒方程可以用以下形式表示:∂(ρe)/∂t + ∇·(ρev) = -∇·q + μ∇²v + ρv·g其中,e是流体的单位质量内能,∇·q表示热传导通量,g是重力加速度。
能量守恒方程表明,流体在任意一点的能量密度的变化率等于能量的产生与损失之差。
流体力学方程的求解是复杂的,通常需要借助数值方法进行近似求解。
数值模拟方法如有限差分法、有限元法和计算流体力学方法等被广泛应用于解决流体力学问题。
这些方法能够提供流体在不同条件下的速度、压力和温度等重要参数,为工程设计和科学研究提供可靠依据。
总结:本文介绍了流体力学方程的基本内容,包括质量守恒方程、动量守恒方程和能量守恒方程。
流体力学三大基本方程公式
流体力学三大基本方程公式流体力学是研究流体(液体和气体)行为的一门学科,而其中的三大基本方程就像是流体世界里的三位“大神”,每一个都有自己的风格和特点。
今天我们就来轻松聊聊这三大基本方程,看看它们是如何影响我们日常生活的。
1. 连续方程1.1 理论基础连续方程说的就是流体在流动时质量是守恒的,也就是说流体不会凭空消失或者出现。
这就好比你在喝饮料,吸管里的液体不管你怎么吸,它的总量始终不变。
你想,假如你吸得太快,吸管里液体都没了,那饮料可就喝不到了,真是要命!1.2 实际应用在现实生活中,这个方程的应用可广泛了。
比如,水管里流动的水,流量是一定的。
如果管道变窄,水速就会变快,简直就像是高速公路上的汽车,车道窄了,车速得加快才能不堵车。
你可以想象一下,如果这条“水路”被堵了,后果可就不堪设想,真是“水深火热”啊。
2. 纳维斯托克斯方程2.1 理论基础说到纳维斯托克斯方程,这可是流体力学里的“超级英雄”。
它描述了流体的运动,考虑了粘性、压力、速度等多个因素,就像一位全能运动员,无论是短跑、游泳,还是足球,样样精通!这个方程让我们能够预测流体的流动,简直就像是给流体穿上了“预测未来”的眼镜。
2.2 实际应用说到实际应用,纳维斯托克斯方程可是在天气预报、飞机设计等领域大显身手。
在气象学中,气象学家利用这个方程来模拟风暴、降雨等自然现象,真的是“未雨绸缪”,让我们提前做好准备。
想象一下,若是没有它,我们可能在大雨来临时还在悠哉悠哉地喝着茶,结果被“浇”了个透心凉。
3. 伯努利方程3.1 理论基础最后我们得提提伯努利方程,它可是流体动力学的明星。
简单来说,伯努利方程告诉我们,流体的压力和速度之间有着“爱恨交织”的关系。
流速快的地方,压力就低;流速慢的地方,压力就高。
这就像是你在一个热闹的派对上,越往外挤,周围的人越少,反而显得格外“安静”。
3.2 实际应用伯努利方程的应用那可是多得数不胜数,尤其是在飞行器设计上。
流体力学中的三大基本方程
vy 和 dxdydz y
v z dxdydz z
故单位时间内流出与流入微元体流体质量总变化为:
( ) ( ) ( ) d x d y d z x y z x y z
⑵控制体内质量变化:
因控制体是固定的,质量变化是因密度变化引起的,dt时间内:
2 2 g
:单位重量流体所具有的动能;
理解:质量为m微团以v 运动,具有mv2/2动能,若用 重量mg除之得v2/2g
三者之和为单位重量流体具有的机械能。
物理意义:
理想、不可压缩流体在重力场中作稳定 流动时,沿流线or无旋流场中流束运动 时,单位重量流体的位能,压力能和动 能之和是常数,即机械能是守恒的,且 它们之间可以相互转换 。
y y y y x y z y
运动方程:
y x z 0 x y z
2 y 2
2 2 2 1 p z z z z z z z f ( ) x y z z 2 2 2 t x y z z x y z
当地加速度:流场中某处流体运动速度对时间 的偏导数,反映了流体速度在固定位置处的时 间变化特性 迁移加速度:流场由于流出、流进某一微小区 域而表现出的速度变化率。
流体质点加速度
dx x x x x ax x y z dt t x y z dy y y y y ay x y z dt t x y z dz z z z z az x y z dt t x y z
a在三个坐标轴上的分量表示成:
⑷代入牛顿第二定律求得运动方程: 得x方向上的运动微分方程:
d p x d x d y d z d x d y d z f d x d y d z x d t x
流体力学流速计算公式
流体力学流速计算公式一、伯努利方程推导流速公式(理想不可压缩流体定常流动)1. 伯努利方程。
- 对于理想不可压缩流体作定常流动时,在同一条流线上有p+(1)/(2)ρ v^2+ρ gh = C(p是流体压强,ρ是流体密度,v是流速,h是高度,C是常量)。
- 假设水平流动(h_1 = h_2),则方程变为p_1+(1)/(2)ρ v_1^2=p_2+(1)/(2)ρ v_2^2。
- 由此可推导出流速公式v_2=√(v_1^2)+(2(p_1 - p_2))/(ρ)。
2. 适用条件。
- 理想流体(无粘性),实际流体在粘性较小时可近似使用。
- 不可压缩流体,像水在大多数情况下可视为不可压缩流体,气体在低速流动时也可近似为不可压缩流体。
- 定常流动,即流场中各点的流速等物理量不随时间变化。
3. 示例。
- 已知水管中某点1处的压强p_1 = 2×10^5Pa,流速v_1 = 1m/s,另一点2处的压强p_2 = 1.5×10^5Pa,水的密度ρ = 1000kg/m^3。
- 根据v_2=√(v_1^2)+(2(p_1 - p_2))/(ρ),将数值代入可得:- v_2=√(1^2)+frac{2×(2×10^{5-1.5×10^5)}{1000}}- 先计算括号内的值:2×(2×10^5-1.5×10^5)=2×5×10^4=10^5。
- 则v_2=√(1 + 100)= √(101)≈10.05m/s。
二、连续性方程推导流速公式(不可压缩流体定常流动)1. 连续性方程。
- 对于不可压缩流体的定常流动,有S_1v_1 = S_2v_2(S_1、S_2分别是流管中两个截面的面积,v_1、v_2是相应截面处的流速)。
- 由此可推导出流速公式v_2=(S_1)/(S_2)v_1。
2. 适用条件。
- 不可压缩流体,如液体或低速流动的气体。
流体力学中的三大基本方程
dx
dt
p x
fx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
16
同理可得y,z方向上的:
dx
dt
x
t
x
x
x
y
x
y
z
x
z
1
p x
fx
dy
dt
y
t
x
y
x
y
y
y
z
y
z
1
p y
fy
dz
dt
z
t
x
z
x
y
z
y
z
z
z
1
p z
fz
17
向量形式:
dr
r f
1
gradp
dt
——理想流体欧拉运动微分方程
式中:
2x
z 2
)
y
t
x
y
x
y
y
y
z
y
z
fy
1
p y
( 2 y
x2
2 y
y 2
2 y )
z 2
19
z
t
x
z
x
y
z
y
z
z
z
fz
1
p z
( 2z
x 2
2z
y 2
2z )
z 2
1.
含有四个未知量(
,
x
y,完 z整, P的)方程组。
2. 描述了各种量间的依赖关系。
3. 通解、单值条件(几何条件、物理条件、边界条件、初始 条件)→特解。
流体力学的运动方程
流体力学的运动方程流体力学是研究流体的运动以及与周围环境的相互作用的科学领域。
在流体力学中,运动方程是描述流体运动的基本方程。
它们可以基于质量守恒定律、动量守恒定律和能量守恒定律来推导。
1. 质量守恒方程质量守恒方程也称为连续性方程,它描述了流体质量在空间和时间上的守恒。
质量守恒方程的数学表达式如下:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·是散度操作符。
这个方程说明流体质量在空间和时间上保持不变,即流体在任何给定的区域内的质量是恒定的。
方程右边的项表示流体质量的流入和流出。
2. 动量守恒方程动量守恒方程描述了流体运动的动力学行为,它说明流体受外力作用下的加速度以及在流体中传递的动量。
动量守恒方程的数学表达式如下:∂(ρv)/∂t + ∇·(ρvv) = -∇p + ∇·τ + ρg其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·是散度操作符,p是流体的压力,τ是应力张量,g是重力加速度。
这个方程表示了流体受外力作用下的动力学变化。
方程右边的第一项是压力梯度产生的力,第二项是应力产生的力,第三项是重力产生的力。
方程左边的第一项是流体速度的变化率,第二项是流体动量的传递率。
3. 能量守恒方程能量守恒方程描述了流体能量的守恒情况,它说明了流体在运动过程中能量的变化与能量转化。
能量守恒方程的数学表达式如下:∂(ρe)/∂t + ∇·(ρve) = -p∇·v + ∇·(k∇T) + ρv·g + τ:∇v其中,ρ是流体的密度,t是时间,e是单位质量的内能,v是流体的速度矢量,∇·是散度操作符,p是流体的压力,k是热传导系数,T是温度,g是重力加速度,τ是应力张量。
这个方程描述了流体能量随时间的变化。
方程右边的第一项是压力和速度梯度之积产生的功,第二项是热传导产生的能量变化,第三项是重力势能的转化,第四项是应力张量和速度梯度之积产生的功。
水力学三大方程
水力学三大方程指的是连续性方程、动量方程和能量方程。
这三大方程是描述流体力学过程的基本方程,也是水力学研究和应用的基础。
连续性方程
连续性方程也称为质量守恒方程,它表述了流体在运动过程中质量守恒的基本原理。
连续性方程的数学表达式为:
∂ρ/∂t + ∇·(ρu) = 0
其中,ρ表示流体密度,t表示时间,u表示流体的速度,∇表示偏微分算符。
这个方程的物理含义是:任何一段流体管道中的质量流量都相等,即在单位时间内通过截面积相同的两个截面的流体质量相等。
动量方程
动量方程是描述流体运动动力学过程的方程,它表述了流体的动量守恒原理。
动量方程的数学表达式为:
ρ(∂u/∂t + u·∇u) = -∇p + ∇·τ+ ρg
其中,p表示流体的压力,τ表示流体的应力张量,g表示重力加速度。
这个方程的物理含义是:流体的动量随时间和空间的变化而改变,动量的变化量等于受到的力的作用量。
能量方程
能量方程描述了流体运动过程中能量守恒的基本原理。
能量方程的数学表达式为:
ρCv(∂T/∂t + u·∇T) = -p∇·u + ∇·(k∇T) + Q
其中,T表示流体的温度,Cv表示比热容,k表示导热系数,Q表示单位时间单位体积内的热源项。
这个方程的物理含义是:流体在运动过程中受到的压力和内能的变化,以及受到的热量和能量的变化,都会影响流体的温度和温度的变化。
流体力学三大方程的推导
微分形式的连续性方程连续方程是流体力学的基本方程之一,流体运动的连续方程,反映流体运动和流体质量分布的关系,它是在质量守恒定律在流体力学中的应用。
重点讨论不同表现形式的流体连续方程。
用一个微六面体元控制体建立微分形式的连续性方程。
设在流场中取一固定不动的微平行六面体(控制体),在直角坐标系oxyz 中,六面体的边长取为dx ,dy ,dz 。
先看x 轴方向的流动,流体从ABCD 面流入六面体,从EFGH 面流出。
在x 轴方向流出与流入质量之差()()[]x x x x u u u dx dydzdt u dydzdt dxdydzdt x xρρρρ∂∂+-=∂∂用同样的方法,可得在y 轴方向和z 轴方向的流出与流入质量之差分别为()y u dxdydzdt y ρ∂∂()z u dxdydzdt z ρ∂∂这样,在dt 时间内通过六面体的全部六个面净流出的质量为:()()()[]y x z u u udxdydzdt x x x ρρρ∂∂∂++∂∂∂在dt 的时间内,六面体内的质量减少了 , 根据质量守恒定律,净流出六面体的质量必等于六面体内所减少的质量()dxdydzdt t ρ∂-∂()()()[]y x z u u u dxdydzdt dxdydzdt x y z tρρρρ∂∂∂∂++=-∂∂∂∂()()()0y x z u u u x y z tρρρρ∂∂∂∂+++=∂∂∂∂这就是直角坐标系中流体运动的微分形式的连续性方程。
这就是直角坐标系中流体运动的微分形式的连续性方程。
代表单位时间内,单位体积的质量变化代表单位时间内,单位体积内质量的净流出利用散度公式:得到利用矢量场基本运算公式和随体导数公式:得到 )()()()div(z y x u z u y u x u ρρρρ∂∂+∂∂+∂∂= 0)div(=+∂∂u tρρ()()()0y x z u u u x y z tρρρρ∂∂∂∂+++=∂∂∂∂在连续方程中 div()div u u u ρρρ=+⋅∇ρρρ∇⋅+∂∂=u tDt D 0div =+u Dt D ρρdiv 0u u tρρρ∂++⋅∇=∂讨论*表明对不可压流体,体积在随体运动中保持不变。
流体力学三大方程公式及符号含义
流体力学是研究流体运动和力学的学科,涉及流体的运动规律、压力、密度等物理性质。
在流体力学的研究中,三大方程公式是非常重要的理论基础,它们分别是连续方程、动量方程和能量方程。
本文将对这三大方程公式及其符号含义进行详细介绍。
一、连续方程连续方程是描述流体连续性的重要方程,它表达了流体在运动过程中质点的连续性。
连续方程的数学表达式为:\[ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \]其中,符号和含义说明如下:1.1 ∂ρ/∂t:表示密度随时间的变化率,ρ为流体密度。
1.2 ∇·(ρv):表示流体质量流动率的散度,∇为Nabla算子,ρv为流体的质量流速矢量。
这一方程表明了在运动的流体中,质量是守恒的,即单位体积内的质量永远不会减少,这也是连续方程的基本原理。
二、动量方程动量方程描述了流体运动过程中动量的变化和传递,是流体力学中的核心方程之一。
其数学表达式为:\[ \frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = -\nabla p + \nabla \cdot \mathbf{\tau} + \mathbf{f} \]其中,符号和含义说明如下:2.1 ∂(ρv)/∂t:表示动量随时间的变化率。
2.2 ∇·(ρv⃗v):表示动量流动率的散度。
2.3 -∇p⃗:表示流体受到的压力梯度力。
2.4 ∇·τ⃗:表示应力张量的散度,τ为流体的粘性应力张量。
2.5 f⃗:表示单位体积内流体受到的外力。
动量方程描述了流体内部和外部力之间的平衡关系,它是研究流体运动规律和动力学行为的重要方程。
三、能量方程能量方程描述了流体在运动过程中的能量变化规律,包括内能、压力能和动能等能量形式。
流体力学中的三大基本方程资料
d x 1 p fx dt x
同理可得y,z方向上的:
d x x x x x 1 p x y z fx dt t x y z x d y y y y y 1 p x y z fy dt t x y z y d z z z z z 1 p x y z fz dt t x y z z
⑶稳定流动时:所有流体物性参数均不随时间而变, 0 t
(x) (y) (z) 0 x y z div( ) 0
⑷二维平面流动: x
x
y y
0
2.理想流体的运动方程
3.4.1---欧拉运动微分方程
理论依据:是牛顿第二定律在流体力学上的具体应用,它建 立了理想流体的密度、速度、压力与外力之间的关系。 1775年由欧拉推出流体力学中心问题是流速问题,流体流速 与其所受到外力间的关系式即是运动方程。
dxdydz f
f x dxdydz
② 表面力: 理想流体,没有粘性,所以表面力只有压力 X方向上作用于垂直x轴方向两个面的压力分别为:
p dx pM p x 2
p dx pN p x 2
X方向上质点所受表面力合力: p (pM pN)dydz dxdydz x
流体力学中的分方程
理论依据:质量守恒定律在微元体中的应用 数学描述:
[单位时间流出的质量]-[单位时间流入的质量]+[单位时间 质量的累积or增量]=0
•公式推导: (1)单位时间内流入、流出微元体流体总质量变化
假定流体连续地 充满整个流场,从中 任取出以 o x,y,z 点为中心的微小六面 体空间作为控制体如 右图。控制体的边长 为dx,dy,dz,分别 平行于直角坐标轴x,
流体力学中的三大基本方程
刘颖杰
1 连续性微分方程
理论依据:质量守恒定律在微元体中的应用 数学描述:
[单位时间流出的质量]-[单位时间流入的质量]+[单位时间 质量的累积or增量]=0
•公式推导: (1)单位时间内流入、流出微元体流体总质量变化
假定流体连续地 充满整个流场,从中 任取出以 o x , y , z 点为中心的微小六面 体空间作为控制体如 右图。控制体的边长 为dx,dy,dz,分别 平行于直角坐标轴x,
a在三个坐标轴上的分量表示成:
⑷代入牛顿第二定律求得运动方程: 得x方向上的运动微分方程:
d p x d x d y d z d x d y d z f d x d y d z x d t x
单位体积流体的运动微分方程:
d p x fx d t x
⑵几何意义:
z :单位重量流体的位置水头; (距离某一基准面的高度) P/r : 单位重量流体的压力水头,或静压头; (具有的压力势能与一段液柱高度相 当)
2 : 单位重量流体具有的动压头or速度水头,速度压头。 2g
物理中:质量为m以速度v垂直向上抛能达到的 最高高度为v2/2g
三者之和为单位重量流体的总水头。
几何意义:
理想、不可压缩流体在重力场中作稳态流动时,沿一根 流线(微小流束)的总水头是守恒的,同时可互相转换。
3.2 伯努利方程的应用
①
可求解流动中的流体v、 P及过某一截面的流量;
以伯努利方程为原理测量 流量的装置。
②
皮托管(毕托管):测量流 场中某一点流速的仪器。
皮托曾用一两端开口弯成 直角的玻璃管测塞那河道 中任一点流速。
工程流体力学中的流体力学方程推导
工程流体力学中的流体力学方程推导工程流体力学是研究流体在各种工程中的力学行为和性质的学科。
在工程实践中,了解流体的运动规律和应力分布对设计和优化工程系统至关重要。
流体力学方程是描述流体运动的基本方程,其推导过程是工程流体力学的重要基础。
工程流体力学中的流体力学方程包括连续性方程、动量方程和能量方程。
首先,我们推导连续性方程。
连续性方程是描述质量守恒的基本方程。
根据质量守恒原理,单位时间内通过某一截面的流入和流出质量相等。
我们假设流体是不可压缩的,即密度恒定。
根据流体连续性原理,单位时间内通过截面的流入和流出质量之差与密度的乘积等于流体的质量改变率。
通过数学推导,可以得到连续性方程为:∇·(ρv) + ∂ρ/∂t = 0其中,∇·(ρv)表示速度矢量v的散度,∂ρ/∂t表示密度随时间的变化率。
接下来是动量方程的推导。
动量方程描述流体运动的力学规律。
根据牛顿第二定律,单位时间内作用在流体上的合外力等于流体动量的变化率。
根据流体动力学原理和应力张量的定义,可以推导出动量方程为:ρ(Dv/Dt) = -∇p + ∇·τ + ρg其中,ρ(Dv/Dt)表示速度矢量v的准确导数,-∇p表示压力力,∇·τ表示应力张量的散度,ρg表示流体受重力作用的体积力。
最后是能量方程的推导。
能量方程描述流体内部能量的传输和变化。
根据能量守恒原理,单位时间内作用在流体上的合外力与单位时间内输入的热量、外界对流体做功和单位时间内能量的变化率之和相等。
根据热力学第一定律和流体力学原理,可以得到能量方程为:ρ(De/Dt) = -p∇·v + ∇·(k∇T) + ρg·v + Q其中,ρ(De/Dt)表示能量密度e的准确导数,-p∇·v表示压力力的功率,∇·(k∇T)表示热传导项,k表示热导率,∇·(k∇T)表示温度梯度的散度,ρg·v表示流体受重力作用在流体速度上做的功率,Q表示单位时间内输入的热量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微分形式的连续性方程连续方程是流体力学的基本方程之一,流体运动的连续方程,反映流体运动和流体质量分布的关系,它是在质量守恒定律在流体力学中的应用。
重点讨论不同表现形式的流体连续方程。
用一个微六面体元控制体建立微分形式的连续性方程。
设在流场中取一固定不动的微平行六面体(控制体),在直角坐标系oxyz 中,六面体的边长取为dx ,dy ,dz 。
先看x 轴方向的流动,流体从ABCD 面流入六面体,从EFGH 面流出。
在x 轴方向流出与流入质量之差()()[]x x x x u u u dx dydzdt u dydzdt dxdydzdt x xρρρρ∂∂+-=∂∂用同样的方法,可得在y 轴方向和z 轴方向的流出与流入质量之差分别为()y u dxdydzdt y ρ∂∂()z u dxdydzdt z ρ∂∂这样,在dt 时间内通过六面体的全部六个面净流出的质量为:()()()[]y x z u u udxdydzdt x x x ρρρ∂∂∂++∂∂∂在dt 的时间内,六面体内的质量减少了 , 根据质量守恒定律,净流出六面体的质量必等于六面体内所减少的质量()dxdydzdt t ρ∂-∂()()()[]y x z u u u dxdydzdt dxdydzdt x y z tρρρρ∂∂∂∂++=-∂∂∂∂()()()0y x z u u u x y z tρρρρ∂∂∂∂+++=∂∂∂∂这就是直角坐标系中流体运动的微分形式的连续性方程。
这就是直角坐标系中流体运动的微分形式的连续性方程。
代表单位时间内,单位体积的质量变化代表单位时间内,单位体积内质量的净流出利用散度公式:得到利用矢量场基本运算公式和随体导数公式:得到 )()()()div(z y x u z u y u x u ρρρρ∂∂+∂∂+∂∂= 0)div(=+∂∂u tρρ()()()0y x z u u u x y z tρρρρ∂∂∂∂+++=∂∂∂∂在连续方程中 div()div u u u ρρρ=+⋅∇ρρρ∇⋅+∂∂=u tDt D 0div =+u Dt D ρρdiv 0u u tρρρ∂++⋅∇=∂讨论*表明对不可压流体,体积在随体运动中保持不变。
适用于定常或不定常流体。
⑴ 对于定常流动, ,连续方程可简化为, 0t ∂=∂ ⑵ 对于不可压缩流体, ,连续方程可简化为, 0=DtD ρ()0div v ρ=0divv =——微分形式 *表明定常运动时,单位体积内流进流出的质量相等。
适用于可压或不可压流体。
0D divv Dtρρ+=因为 ()0div v tρρ∂+=∂微分形式的运动方程运动方程是流体运动的最基本的运动学原理,即找出流体运动和它受到的作用力之间的关系的数学表达式,依据的理论原理是牛顿的运动定律或动量定理,下面利用欧拉法形式建立微分形式的运动方程。
作用于流体的力质量力流体的作用力表面力 分析对象:流体中以界面 包围的体积为的流体块 στ质量力质量力(体力):是指作用于所有流体质点的力。
如重力、万有引力等。
(1)质量力是长程力:它随相互作用的元素之间的距离的增加而减小,对于一般流体的特征运动距离而言,均能显示出来。
(2)它是一种分布力,分布于流体块的整个体积内,流体块所受的质量力与其周围有无其他流体存在并无关系。
通常情况下,作用于流体的质量力通常就是指重力。
如果 表示单位质量的流体的质量力,规定其为:其中 是作用在质量为 的流体块上的质量力。
不难看出, 可以看做力的分布密度。
F 0lim m F F mδδδ→'=F ' δF例如:对处于重力作用的物体而言,质量力的分布密度或者说单位质量的流体的质量力就是重力加速度 。
g m δ表面力表面力:是指流体内部之间或者流体与其他物体之间的接触面上所受到的相互作用力。
如流体内部的粘性应力和压力、流体与固体接触面上的摩擦力等。
(1)表面力是一种短程力:源于分子间的相互作用。
表面力随相互作用元素之间的距离增加而迅速减弱,只有在相互作用元素间的距离与分子距离同量级时,表面力才显现出来。
(2)流体块内各部分之间的表面力是相互作用而相互抵消的,只有处于界面上的流体质点所受的,由界面外侧流体所施加的表面力存在。
(3)表面力也是一种分布力,分布在相互接触的界面上。
定义单位面积上的表面力为:其中 是作用于某个流体面积上 的表面力 0lim p p δσδδσ→'=δσp ' δ矢量 是质量力的分布密度,它是时间和空间点的函数,因而构成了一个矢量场。
而矢量为流体的应力矢,它不但是时间和空间点的函数,并且在空间每一点还随着受力面元的取向不同而变化。
所以要确定应力矢 ,必须考虑点的矢径 、该点受力面元的方向(或者说面元的法向单位矢 )以及时间 t 。
确切地说应力矢是两个矢量( 、 )和一个标量函数 t 。
质量力和表面力的比较n r p F 质量力和表面力有着本质的差别。
p n r在运动流体中选取一小六面体体元,其边长分别为: 为了导出流体的运动方程,首先来分析小体元的受力情况。
δδδx y z,,=+dV x y z dtρδδδ质量力表面力根据牛顿第二定律: x yz x δy δzδx 方向质量力分析x x m F F x y zδρδδδ==x 方向的质量力 x 方向表面力分析周围流体对小体元的六个表面有表面力的作用,而通过六个侧面作用于小体元沿 x 方向的表面力分别为:z y x x p p xx xx δδδ∂∂⎪⎭⎫ ⎝⎛+zy p xx δδ-小体元所受的x 方向的表面力 = 前后侧面之和: 前后侧面: z y x xp xx δδδ∂∂x xx p -xxp z y δδxδ?因此,周围流体通过六个侧面作用于小体元沿x 方向的表面力合力为:z x y y p p yx yx δδδ∂∂⎪⎪⎭⎫ ⎝⎛+zx p yx δδ-y x z z p p zx zx δδδ∂∂⎪⎭⎫ ⎝⎛+yx p zx δδ-右左侧面: 上下侧面: z y x z p y p x p zx yx xx δδδ∂∂∂∂∂∂⎪⎪⎭⎫ ⎝⎛++据牛顿运动定律:小体元受力等于其质量与加速度的乘积:z y x z p y p xp z y x F z y x dt du zx yx xx x δδδ∂∂∂∂∂∂δδρδδδρδ⎪⎪⎭⎫ ⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=z p y p x p F dt du zx yx xx x ∂∂∂∂∂∂ρ1x 方向合力分析单位质量流体在 x 方向的运动方程方程可以简化为:单位质量流体在 y 方向的运动方程单位质量流体在 z 方向的运动方程 同理可得:⎪⎪⎭⎫ ⎝⎛+++=z p y p x p F dt dw zz yz xz z ∂∂∂∂∂∂ρ1⎪⎪⎭⎫ ⎝⎛+++=z p y p x p F dt dv zy yy xy y ∂∂∂∂∂∂ρ1矢量形式⎪⎪⎭⎫⎝⎛+++=zp y p x p F dt V d zy x ∂∂∂∂∂∂ρ 1P F dt V d ∙∇+=ρ1xx xy xz yx yy yz zx zy zz p p p P p p p x y z p p p ∂∂∂∂∂∂⎛⎫⎪⎛⎫∇∙= ⎪⎪⎝⎭ ⎪⎝⎭或者: 流体运动方程的普遍形式微分形式的能量方程1、动能方程2、热流量方程 3、伯努利方程能量守恒定律是自然界的普遍规律,流体在运动过程中也是遵循该定律。
孤立系统(与外界没有质量、能量的交换):流体在运动过程可以伴随着各种形式的能量之间的相互转换,但起总能量是不变的; 非孤立系统:总能量的变化,等于外力(包括质量力和系统外部的表面力)对系统所做的功和所吸收的热量。
系统的能量对于能量,主要指为三种形式:内能、动能及重力势能。
单位质量的内能------e :流体分子热运动而具有的能量; 单位质量的动能------v 2/2表示单位质量的重力势能-------gz :由万有引力起,与位置的高差有关;gzv e e s ++=221τρτρττd gz v e d e E s )21(2++==⎰⎰单位质量的总能量(储存能)-------e s : 则体积为τ的流体系统的能量E:热力学第一定理对于一个静止的热力学系统(或起始和终止状态处于静止的系统):系统储存能的增加等于外力对系统所作的功与外界传递给系统的热量之和。
一个确定的流体团也可看作一个热力学系统,流体质点总在流动中,设该系统偏离平衡态不远:系统总能量的变化率(包括内能和动能)等于外力对系统的作功功率与通过导热向系统的传热功率之和。
对于某一系统,单位时间对系统所作的功(实际上就是功率)用 表示,单位时间加给系统的热量用Q 表示,则系统能量E 的变化率为:dW dt Q tWDt DE +=d d 将热力学第一定律应用于流体运动,把上式各项用有关的流体物理量表示出来,即是能量方程。
在系统的总能量中,已考虑单位质量的重力势能,则质量力作功功率中将不包括重力作功功率。
推导微分形式的能量方程的思路:根据热力学第一定律,系统能量的变化率等于外力单位时间对系统所作的功与通过热传导向系统单位时间所传的热量之和。
即: 单位时间系统能量的变化=单位时间外力对系统所作的功+单位时间外界传递给系统的热量外力对系统所作的功=质量力所作的功+表面力所作的功外界传递给系统的热量=传导热+辐射热下面用有关的流体的物理量来表达上述各项。
①单位时间系统能量的变化 方法1微元系统能量的时间变化率也分为两部分,一部分是控制体内储存能的变化,其单位时间的变化率为z y x e ts d d d )(ρ∂∂z y x we z ve y ue x s s s d d d )()()(⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂ρρρ另一部分为经控制面迁移的能量引起的,单位时间经全部控制面净流出的储存能为()()()0y x z u u u x y z tρρρρ∂∂∂∂+++=∂∂∂∂这样微元系统总的储存能的时间变化率为这两部分之和:zy x DtDe zy x v Dt D e Dt De zy x v e Dt D e Dt De z y x v e e Dt Dz y x v div e e v e t z y x e v div e t z y x we z ve y ue x e t Dt DE s s ss s ss s s s s s s s s s s d d d d d d )div (d d d div d d d div )(d d d ))(()(d d d )()(d d d )()()()(ρρρρρρρρρρρρρρρρρρ=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+∇⋅+∂∂=⎥⎦⎤⎢⎣⎡+∂∂=⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂+∂∂=①单位时间系统能量的变化 方法2在t 时刻微元六面体系统的储存能,其系统能量的随体导数:z y x e s d d d ρz y x DtDe dxdydz DtDe dxdydz Dt e D dxdydz e Dt D Dt DE s s s s d d d )()(ρρρρ=+==()0s D e dxdydz Dtρ=由于系统质量的随体导数等于零。