电视信号频谱特性
5电视传像原理与CRT显示技术
全电视信号
负极性黑白全电视信号:图像信号、复合 同步脉冲、复合消隐脉冲的电信号以及 (色同步信号)
同步脉冲电平为100 %,消隐脉冲与黑电平 为75 %,白色电平为(12.5 ±2.5) %
便于幅度分离电路分离同步信号
负极性黑白全电视信号
电视图像信号
1、图像内容与电信号的关系
图像亮度只有正值; 系列脉冲,宽度与图像有关 随着横向黑白条数的增加,电信号频率以场频
兼容制彩色电视系统传送的信号
三个参数:
Y=0. 30 R+0. 59 G+0. 11 B R-Y=0. 70R一0. 59 G一0. 11B
亮度信号
B-Y=-0. 30R一0. 59 G+0. 89B G-Y=-0. 30R + 0. 41G-0.11 B
色差信号
选用R-Y,B-Y两个色差信号进行传送其主要理由
若频率相同,相位不一致
差半行;差半场
收、发端扫描电流波形不同
同步脉冲是控制逆程的起点,所以同步脉 冲的前沿表示上一行(场)正程的结束
按我国电视标准,行同步脉冲的频率等于 行频为15.625kHz,行周期为64 μs。在电 视技术中常以64μs作为时间单位,并以H表 示,即1 H = 64μs。
不同的彩色电视体制所选用的显像三基色是不 同的。
彩色电视色度重现范围 两种制式显像三基色三角形,如图。
由图可知,这两个三角形所组成的色 域都比彩色印刷、染料或胶卷的色域 大,所以显像管彩色电视能重现自然 界绝大多数颜色。 从理论上讲,三基色越靠近光谱轨迹, 越能重现出更多饱和度高的色彩。 但荧光粉的发光效率随着材料色饱和 度的提高而降低,即亮度会降低。 故只能在色饱和度和亮度之间作折衷 选择。
(整理)电视机复习题整理好的
单元一一、填空题1. 我国广播电视采用隔行扫描方式,其主要扫描参数为:行频f H= 15625H Z;场频f V = 50 H Z;帧频f Z = 25 H Z。
2. 黑白全电视信号由图像信号、复合消隐信号和复合同步信号组成。
3. 全电视信号有脉冲性、周期性和单极性的特点。
4. 光是一定波长范围内的电磁波,波长范围为380nm~780nm 。
不同波长的光射入人眼,将引起不同的彩色感觉。
5. 彩色三要素是指亮度、色调、色饱和度,其中色调与色饱和度合称为色度。
6. 彩色电视中采用相加混色的方法,选用红、绿、蓝作为三基色。
7. 兼容制彩色电视传送的两个色差信号是R_-Y 和B-Y 。
8. 对于PAL制彩色电视,亮度信号的带宽为6MHz ,色差信号的带宽为 1.3 MHz ,色副载波频率为 4.43 MHz 。
9. 所谓正交调幅是指将两个调制信号分别调制在频率相同、相位相差90度的两个正交载波上,然后按矢量叠加起来的调幅;所谓平衡调幅,是载波被抑制掉的调幅。
10. NTSC制色度信号采用1/2 行频间置,PAL制色度信号采用1/4 间置。
11. SECAM制是将两个色差信号对两个频率不同的副载波进行调频,然后逐行轮换插入亮度信号的高频端,形成彩色电视信号。
12. 彩色全电视信号由亮度信号、色度信号、色同步信号、复合消隐信号和复合同步信号组成。
13. 色同步信号位于行同步后肩消隐电平上,由9~11 个副载波周期构成。
14. NTSC制色同步信号的初相位是180度。
PAL制色同步信号的初相位是:N行+135度,P行-135度。
15. 在我国,采用图像信号调幅、伴音信号调频的方式形成高频电视信号。
共有68个标准电视频道和38个增补频道,每一频道高频电视信号的带宽为8MHz ,各频道伴音载频都比图像载频高 6.5 MHz。
二、单项选择题1. 我国彩色电视的扫描体制为(C )。
A.逐行扫描B.投影制C.隔行扫描D.分时扫描2. 行扫描周期为(B )。
数字电视信号指标
数字电视信号指标数字电视信号指标是评估数字电视信号质量和性能的一组参数。
在数字电视广播中,通过使用这些指标来确保信号的可靠接收和高清晰度的视频和音频传输。
本文将介绍几个常用的数字电视信号指标。
1. 信号强度信号强度是指接收器接收到的信号的功率。
它通常以dBm为单位表示。
数字电视信号的合适信号强度范围是-60 ~ -20 dBm,这取决于地理位置、天线类型和其他环境因素。
信号强度太弱可能导致图像和声音的质量下降,甚至无法接收。
2. 信噪比信噪比是指信号与背景噪声之间的比率。
它以dB为单位表示。
较高的信噪比表示信号较强且噪声较小,这有助于提高图像和音频的质量。
广播电视频道通常要求至少有一定的信噪比,以确保清晰度和可靠性。
3. 谱效率谱效率是指数字电视信号在频谱带宽中所能达到的信息传输速率。
它以bits/s/Hz为单位表示。
谱效率的提高可以实现更高的数据传输速率,从而支持更多的频道和更高的分辨率。
4. 位错误率位错误率(BER)是指在数据传输过程中发生的错误位数与总位数之比。
它通常以10的负指数形式表示。
较低的BER表示较小的传输错误,有助于提高信号的可靠性和数据的完整性。
5. 图示质量图像质量是指数字电视信号传输的图像清晰程度和准确性。
图像质量可以通过分辨率、色彩饱和度、对比度和图像噪声等因素来评估。
高质量的图像通常具有清晰度高、细节丰富和色彩准确的特点。
6. 音频质量音频质量是指数字电视信号传输的音频的清晰度和真实性。
音频质量可以通过音频的频率响应、失真和噪声等因素来评估。
高质量的音频通常具有清晰度高、音质逼真的特点。
7. 多路径干扰多路径干扰是指信号在传输过程中由于反射、折射和绕射等原因引起的多个信号路径导致的干扰现象。
多路径干扰会导致信号的衰减和迟滞,从而影响信号质量和可靠性。
8. 信道容量信道容量是指数字电视信号传输的最大数据传输速率。
它受到信道带宽、信号干扰和噪声等因素的影响。
提高信道容量可以实现更高的数据传输速率和更多的频道。
地面数字电视发射系统的技术指标
地面数字电视发射机技术指标的检测地面数字电视广播具有大容量、高可靠性、兼容性强、高安全性、高覆盖性等优点和特点。
我国自主研发的DTMB/TDS-OFDM时域同步正交频分复用技术,其支持高清、标清电视的不同制式,支持室内、移动、便携接收等三种接收方式,支持单频网和多频网两种组网模式,支持多业务的混合模式。
随着国家正式启动地面数字电视项目,地面数字电视开始迅猛发展,而为了保证好的覆盖效果主要还是依赖发射机真实的技术指标。
下面所讨论的地面数字电视广播发射机属于其发射部分。
发射部分主要由传输网络适配器、发射机和天馈线系统等组成,在单频网中还应该有GPS接收机。
为了保证发射系统的正常运行需要有一些必须的测试设备,主要有场强仪、功率计、频谱仪、网络分析仪、标准接收天线、50欧假负载等一、发射功率地面数字电视发射系统的发射功率决定了地面字电视信号的电场强度,直接关系到地面数字电视广播发射系统的有效覆盖范围、覆盖区域服务质量和信号传输可靠性。
数字电视发射机的发射功率为平均功率,与以前模拟发射机的标称功率概念不同,不同的调制标准,其峰均比也不同。
通常1KW(rms)的数字发射机想当于3KW模拟电视发射机的功率容量,功放模块配置、电源配置等基本相同。
地面数字电视发射系统的输出功率应该符合设计要求,达到预期的覆盖效果。
可以通过以下方法测量发射系统的发射功率。
选择周围场地空旷平坦,无建筑物、大片树林等障碍物,无反射波到达的地点作为测量点,测量点与发射天线之间为直视路径,且远离机场、主要交通运输公路、高压输电线、变电所、工厂等,保证没有来自上述设施的明显干扰或背景噪声电平较欲接收信号电平低20dB.接收天线的极化方式与发射天线极化方式一致,记录测量点的信号场强Ec(dBμV/m),由下式计算发射天线的有效辐射功率P t(KW)Pt=10(Ec-106.92+20lg)/10式中:d为到发射天线的距离(Km)二、频谱特性1.带肩比带肩是用来考核数字发射机功率放大器的线性指标,是数字电视发射机的一个重要指标之一。
卫星数字电视信号的频谱整体搬移实验
卫星数字电视信号的频谱整体搬移实验数字电视信号的传输对相位噪声指标要求很苛刻,以至于地面上的数字电视广播需要扩大覆盖范围的时候,往往采用同频转发的方式,在比较低的频段,同频转发难度还是不小的,去年到今年作了一些这方面的工作,深有体会。
这里将要进行的是数字卫星电视信号的频谱整体搬移试验。
方法很简单,就是将卫星电视高频头输出的第一中频信号所选定的频段输入下变频器,使其迁移至预定的频段,然后用滤波器取出,如下图所示。
从上图看,整个系统的结构并不复杂,但是有一个最大的难点就是系统对相位噪声指标要求较高,变频不能以常用的锁相环电路构成本振,因为大家都说用锁相环本振变频以后由于相位噪声太大不能解出信号,所以我们也就不在这方面下功夫了。
锁相环振荡器的相位噪声较大这是大家都知道的,所以数字传输器材中都不用它。
要变频,就必须得有本振信号,而简单的锁相环本振又不能用,选择适用的本振就成了这一实验的关键环节。
LC振荡器的相位噪声较小,但是频率稳定度很差,没有实用价值;晶体振荡器的相位噪声也比较小,但是振荡频率受晶振频点的限制。
为此我们选用过去安由电子研制的一种本振信号源取得了成功,该振源结构如下图所示。
上图的振源采用两个频率合成,一个是频率可调的LC振荡器,频率很低,通常选取所需振源工作频率的1/10-1/20。
例如,当需要一个760MHz的信号源时,可以选用722MHz的晶体振荡器(此频点的选取要看手中的存货情况)和760-722=48MHz的LC振荡器,相加获得760MHz(当然也可以相减获得722-48=674MHz)。
晶体振荡器的频率稳定度是不容置疑的,而48MHz的LC振荡器的频率漂移绝对值也是很有限的,顶多零点几MHz,在760MHz的时候频率漂移零点几MHz在很多情况下都是可以允许的,起码在这里是允许的。
另外还有一种方法获取本振信号源也是可行的。
手里各个电视频道和各频道本振的晶体在300MHz以下分布得很均匀,有几十个频点,可用其各次谐波用作变频的本振,相位噪声指标完全可以满足要求,基本上能实现变频的需要。
数字电视原理第5章数字电视的调制与解调
QAM调制特点
QAM(Quadrature Amplitude Modulation,正交振幅调制)是一种 振幅和相位联合调制的数字调制方式。
在QAM调制中,输入的数据流被分 为两路,分别进行幅度和相位的调制 。幅度调制通过改变载波的振幅来实 现,而相位调制则通过改变载波的相 位来实现。两路调制信号在正交状态 改变载波的频率来传递信息,如窄带调频和 宽带调频等。
正交振幅调制(QAM)
同时改变载波的振幅和相位来传递信息,如 16QAM、64QAM等。正交振幅调制具有较高的 频谱利用率和抗干扰性能,在数字电视传输中得 到广泛应用。
数字电视调制原理
02
QAM调制原理
QAM调制概述
QAM调制原理
调制器的设计需要考虑输入信号的格式、调制方式、输出 信号的频率和幅度等因素。实现过程中,需要选择合适的 电路元件和参数,并进行仿真和测试验证。
解调器的设计与实现
解调器功能
将模拟信号转换回数字信号,以便数字设备进行处理。
解调器类型
根据解调方式的不同,解调器可分为振幅解调器、频率解调器和相位解调器等。
02
频带利用率
卫星数字电视系统需要充分利用有限的频带资源,因此采用高效的调制
方式和多路复用技术来提高频带利用率。
03
上行链路与下行链路
卫星数字电视系统中,上行链路将数字信号传输到卫星,而下行链路则
将卫星转发的信号传输到地面接收站。
地面数字电视系统中的应用
OFDM调制
地面数字电视系统主要采用OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)调制 方式,通过将高速数据流分配到多个正交子载波上进行传输。
数字电视主要测试指标
.数字电视的主要测量技术指标1.1.1引言我们要准确把握数字电视传输网络质量的好坏,应该分三步。
第一步:对平均功率,MER,BER这三个指标进行测量。
MER、BER测量门限(实际经验总结)第二步:当这些指标恶化的时候,应该对其它指标进行详细的测量,判断造成网络质量恶化的原因。
因为MER的恶化是最主要的因素,它将直接导致BER的下降并最终影响用户接收机的接收效果。
所以因主要测试调制质量参数,找出问题原因。
调制质量参数主要有:调制误差率、载波抑制、幅度不平衡、正交误差、相位抖动,RS解码前误码率等。
其中调制误差率反映了调制的总体质量;载波抑制、幅度不平衡等反映调制中可能引起误差的主要原因;RS解码前误码率则反映了整个信道的可靠性的性能。
对数字调制的直接测量是找到信号失真源头的有用工具。
调制质量的估价是放在数字解调之后,自适应均衡器附近.第三步:利用星座图进行逐级排查。
当然我们一般的测试工作只需要做第一步就可以,当网络有问题的时候做第二,三步;而且绝大多数时候我们第二,三步是同时进行的。
建议即使网络正常也因该定时在网络前端执行第二,三步操作便于防范问题于未然。
1.1.1.平均功率1.1.1.1.数字信号电平和模拟信号电平的区别因为模拟电视图像内容是通过幅度调制来传送的,图像的内容是随时变化的,所以模拟电视的信道的功率取决于图像内容,根据图像的内容的不同,信道功率不断的变化。
由于模拟电视行/场同步脉冲电平相对稳定,故我们把测量峰值电平作为判别模拟电视信号强弱的测量标准。
所有的数字调制信号都有类似噪声的特性,信号在调制到射频载波之前被进行了随机化处理,所以当发送一个数字信号时,无论它是否传送数据,在频域中观察一般都是相同的。
而且在频域中观察这样的信号通常也说明不了有关的调制方式,例如是QPSK,16QAM,还是64QAM,它只能说明信号的幅度、频率、平坦度、频谱再生等等。
噪声信号的最大响应与噪声信号的功率没有关系。
第3章-广播电视系统
7.γ校正 减小显像管和摄像管光电转换特性的非线形。
3.3.2 切换及特技处理 1. 电子编辑 电子编辑的方式通常有两种,即插入和组合。 2. 特技处理 特技发生器的功能有: ·切换 ·混合 ·划变 ·软 键 , 主 要 是 把 黑 白 摄 像 机 拍 摄 的 图 案 插 入
到节目图像中去 ·键控,分为内键和外键两种
残留边带调幅就是发送一个完整的上边带和一小部 分下边带,抑制大部分下边带。图像信号采用残留边带调 幅可使已调图像信号的频带较窄,滤波器易实现;
图3―16 残留边带调幅的幅频特性
图3―17 接收机中放幅频特性
视频信号为一单极性信号,经调制后可以是正极性射频信 号,也可以是负极性射频信号。我国采用的是负极性调制的方 法。
3. 电视发射机的主要指标 根据我国的电视标准,电视发射机有以下主要指 标: ·标 称 射 频 频 道 宽 度 : 8 M H z ·伴 音 载 频 与 图 像 载 频 的 频 距 : ± 6 . 5 M H z ·频 道 下 限 与 图 像 载 频 的 频 距 : - 1 . 2 5 M H z ·图 像 信 号 主 边 带 标 称 带 宽 : 6 M H z ·图像信号VSB标称带宽:0.75MHz。
1.彩色电视摄像机的基本组成 目前,实用化的彩色摄像机主要是三管彩色摄像 机和单管彩色摄像机两种。各种摄像机的构造类似, 一般由以下几部分组成: (1)摄像机头。包括镜头、分光系统、摄像管、 预放器、扫描电路、寻像器、摄像管电源及附属设 备等。
(2)视频信号处理部分。主要包括视频放大、增 益调整、白电平调整、黑电平调整、电缆校正、黑 斑校正、轮廓校正、彩色校正、γ校正、杂散光补偿、 矩阵电路及消隐电路等。
B=2(Δfm+Fmax)=2(50+15)=130kHz
广播电视信号频谱结构和频道
2
57.75
64.25
56.5~64.5
52.5
3
65.75
72.25
64.5~72.5
52.5
4
77.25
83.75
76~84
80
5
85.25
91.75
84~92
88
FM
87~108
(75M)
VHF
Ⅲ
6
168.25
174.75
167~175
171
7
176.25
182.75
175~183
179
我国增补频道参数见表07-03-5。
表07-03-5我国有线电视增补频道划分
频段
频道
图像载频
伴音载频
频带
中心频率
A1
1
112.25
118.75
111~119
115
2
120.25
126.75
119~127
123
3
128.25
134.75
127~135
131
4
136.25
142.75
135~143
139
8
184.25
190.75
183~191
187
9
192.25
198.75
191~199
195
10
200.25
206.75
199~207
203
11
208.25
214.75
207~215
211
12
216.25
222.75
215~223
219(247M)
电视原理第二章 电视图像传送原理
29
第二章 电视图像传送原理
消隐信号分为行消隐信号和场消隐信 号。 行消隐信号的宽度为12 μs, 场消隐 信号的宽度为25TH+12 μs。 因为采用隔 行扫描, 奇数场的场消隐起点与前面的一 个行消隐差半行, 偶数场的场消隐起点与 前面的一个行消隐相差一行, 如图2-9所示。 行消隐信号和场消隐信号合在一起称为复 合消隐信号。
隔行扫描动画演示
18
第二章 电视图像传送原理
• 作业:
第二章 电视图像传送原理
2.2 黑白全电视信号
2.2.1电视图像基本参数 • 图像宽高比 • 图像宽高比也称幅型比。根据人眼的 视觉特性,视觉最清楚的范围是垂直视角 为15°,水平视角为20°的一个矩形视野, 因而电视接收机的屏幕通常为矩形, 矩形 画面的宽高比为4∶3。
第二章 电视图像传送原理
2.2.2 场频
选择场扫描频率主要应考虑不能出现 光栅闪烁。人眼的临界闪烁频率与屏幕亮 度、图像内容、观看条件以及荧光粉的余 辉时间等因素有关,为了不引起人眼的闪 烁感觉,场频应高于48 Hz。 随着屏幕亮 度的提高,屏幕尺寸的加大,观看距离的 变近,场频应相应提高。
22
第二章 电视图像传送原理
20
第二章 电视图像传送原理
矩形屏幕的大小用对角线长度表示, 并习惯用英寸作单位, 一般家用电视机的 35 cm(14英寸)、 46 cm(18英寸)、 51 cm(20英寸)、 74 cm(29英寸)等 都是指屏幕对角线长度。 观看电视的最佳距离分别为2 m、 2.5 m、 3 m、 4 m, 眼睛应与荧光屏中心处 在同一水平线。 为增强临场感与真实感, 还可加大幅型比, 例如, 高清晰度电视或 大屏幕高质量电视要求水平视角加大, 观 看距离约为屏高的三倍, 幅型比定为 21 16∶9。
电视信号的频谱分析
维普资讯
k 一 H2 —十 一 ,一
一 2 — , —
F fy _ J +
= 一嚣 一 …
() 右 7式 边第一 可化 项 为 ∑ Fe 一 F + m
21 1 s F c 。 + 式中 1 的幅度 : 为F 的相角。 式右 为F m ‘ 边第三项可化成
十 』 一
.
/
∑ ∑2m l I
得 , ,) 傅立叶级数的三角函彀式郊 r 、 :
\ 』 L
u
3 f - f fv H- v
f H一 v
H
2 H一 £
H 十 z
”擎 十 …) ∑ ∑ 2 Is t + + j (  ̄T + : 18 l o 1 c "t
促 进作 用 。
将( ) 2 式中的变量 Y代以积分变量 后 , 再代入 () 4
式 的 j )中得 到 (
一
志 』 J,- 一 』 'v J T ( )( v u e ¨
() 5
1 电视信号频谱 的数 学分析
电视信号在水平方 向以行周期 7 重复 , 竖 在 直方 向以场周期 n 重复 , 所以电视信号可视 为一 周 期函数 f x , ( , )它是 、 Y的周期函数 , , 即: ( T m ’ =f c )将该 周期函数用傅立叶级数 +? ) C , .
文章编号 :0462 2o )l 0 30 10—oX(0 2o一 3—3 0
尽管现行 电视广播制式已经实行 了几十年 , 人 们对电视信号频谱 的认识却是 一个从感性到理性, 从一维到三维的逐步过程。 到目前为止 , 们对电视 人 信号频谱的全面认识理解和研究尚有待进一步完善
和深 化 。
得 出 电视 图象 ( 包括 静止 的 和 活动 的) 的频谱 能 量大 部分 集 中在行 频及 其倍 频 mf 近 的狭 窄频 H附
模拟电视信号的形成和传输
将图像信号的每一帧与同步信号对应,确保接收 端正确解码图像。
行同步
将图像信号的每一行与同步信号对应,确保接收 端正确解码行信息。
复合视频信号的形成
复合处理
将图像信号、声音信号和复合同步信号进行复合处理,形成复合 视频信号。
调制方式
将复合视频信号调制到特定频段上,以便于传输和接收。
频谱分布
复合视频信号的频谱分布包含了图像、声音和同步信息,以满足传 输和接收的需求。
01
早期发展
模拟电视信号起源于20世纪20年代,当时采用的是机械扫描方式,后
来逐渐发展为电子扫描方式。
02
彩色电视
1950年代,随着彩色电视的发明和普及,模拟电视信号得到了广泛应
用。
03
数字化趋势
随着数字技术的发展,模拟电视信号逐渐被数字电视信号取代。目前,
大部分国家和地区的电视广播已经实现了数字化,模拟电视信号正在逐
传输方式比较
传输介质
模拟电视信号和数字电视信号都可以通过多种传输介质进行传输, 如卫星、有线电视网络和地面广播等。
传输效率
数字电视信号的传输效率更高,能够在有限的带宽内传输更多的信 息。
抗干扰能力
数字电视信号具有更强的抗干扰能力,能够更好地抵御噪声和干扰 的影响。
发展前景比较
技术发展趋势
随着技术的不断进步,数字电视 信号已成为主流的电视信号传输 方式,模拟电视信号正在逐步被 淘汰。
无图像
检查信号源是否正常,检查电视机天线是否 连接良好,重新启动电视机。
颜色失真
调整电视机色彩设置,检查电视机内部的色 度调节器是否正常。
画面闪烁
检查电视机与信号线的连接是否牢固,更换 信号线或调整电视机设置。
模拟电视信号介绍
NTSC 59.94 Hz
行扫描线 行频 亮度信号带宽
525条 15,734.264 Hz 4.2 MHz
声音载波
4.5 MHz (System-M)
色度信号
I、Q
色信号载频 (455/2)fH = 3.579545MHz
色信号调频方 式 色差信号带宽
彩色同步频率
相位及振幅正交调变
I=1.3 MHz Q=0.6 MHz 3.58 MHz
行同步信号:保持发送端与接收端行信号一致,在行逆程发出,叠加在行消隐之上。宽度:4.7μs,脉冲前沿滞后行消隐信号前沿 1.3μs,电平幅度25%,周期:64μs。
场同步信号:保持发送端与接收端场信号一致,在场逆程发出,叠加在场消隐之上。宽度:160μs,前肩160μs,电平幅度:25%。
复合同步信号:将行场同步信号复合在一起,称为复合同步信号。
残留边带图像频带:B1=1.25+6.25=7.5MHz伴音频带:B2=0.5MHz 每个频道分配:8MHz,图像载频与伴音载频相差6.5MHz
4 电视彩色制式
1.NTSC制式 NTSC(National Television Systems Committee)彩色电视制是1952年美国国家电视标准委员会定义的彩色电
复合消隐和复合同步信号叠加如下图
2.4 行场扫描参数
PAL扫描参数
NTSC扫描参数 在模拟电视技术中,由于黑白与彩色电视的兼容性,扫描设定是一致的。
2.5 视频信号的频带
图像信号的频带宽度,对电视频道的设置很重要。一般图像信号的频宽决定了视频信号的宽度。图像信号频带宽度是最高频率与最 低频率之差,即B= fmax—fmin 。 当图像信号背景不变时:fmin=0 当图像像素黑白相间变化,如图:设n为每行分解的像素(黑白相间的条纹数),取n=583,行扫描正程时间T正= 52µs,在显示 一行图像扫描中,黑白间隙每秒的变化次数最大为n/2,则最高频率fmax 为:
地面数字电视信号的技术参数与测试
地面数字电视信号的技术参数与测试作者:林清叶来源:《活力》2012年第06期[关键词]地面数字;电视信号;技术参数;测试一、地面数字电视信号的技术参数数字电视和模拟电视的频谱结构及能量分布完全不同。
由于数字电视信号中的调幅是平衡调幅,抑制了载波,因而从频谱分析仪上看,一个数字频道的已调信号,像一个抬高了的噪声平台,均匀地平铺于整个限定带宽内。
伴音信号在MPEG-2编码时,已经与图像信号以包的形式复用到了一起。
数字电视系统的测试相对于模拟电视来说是一个全新的概念,我们必须按数字电视的标准,结合实际情况,选用新的测试仪器,去探讨它的测试方法以及数字电视的参数指标。
1.地面数字电视的载噪比。
数字信号信噪比(S/N)指传输信号的平均功率与噪声的平均功率之比。
数字信号载噪比(C/N)指已调制信号的平均功率与噪声的平均功率之比,载噪比中的已调制信号的功率包括了传输信号的功率和调制载波的功率。
数字调制信号对网络参数的要求主要反映在载噪比上,载噪比越大,信号质量越好,反之信号质量就差,模拟电视会出现“雪花干扰”,数字电视会出现马赛克,严重时会造成图像不连续甚至不能对图像解码。
2.地面数字电视的比特误码率。
比特误码率BER的定义是误码的比特数与传输的总比特数之比。
误码的实质与信号的信噪比有关,是信号受到噪声、脉冲抖动、工业干扰及突发信号如雷电等所至,因此我们可以由测量信噪比算出BER。
数字电视信号是离散的信号,接收到的数字电视信号要么是稳定、清晰的图像,要么就是中断(包括马赛克、静帧),具有“断崖效应”的特点。
信号的这种变化,与传输的误码率有关,BER测量侦测并统计每个误码,问题可能是由瞬间干扰或突发噪声引起,并不完全表征网络设备状况,这时BER指标只具有参考价值。
3.地面数字电视的调制误差率。
调制误差率MER是信号理想的矢量幅度的平方和与信号误差矢量幅度平方和之比,以dB表示。
在数字电视中,MER是表征数字信号质量的最重要指标,它精确表明数字信号在调制和传输过程中所受到的损伤,也一定程度上说明该信号是否能被解调还原,以及解调还原后信号质量状况。
第三章电视机高、中频电路
三、传统全频道电子调谐器工作原理
1、变容二极管和开关二极管
电子调谐器是采用通过调节变容二极管的两端电压来改 变调谐频率选择频道,通过改变开关二极管两端电压来 实现频段转换。因此变容二极管和开关二极管是电子调 谐器的两个关键性器件。下面 分别简述它们的特点。
(1)变容二极管 它是一个电压控制器件,是一种PN 结电容大小随反向偏置电压变化而明显变化的二极管, 对该管加以连续变化的反向偏置电压时,可等效为可变 电容器。如图下幻灯片所示3-6是变容二极管反向偏压与 结电容的关系曲线和符号图。
2、电子调谐器的性能要求
(1)与天线、馈线及中放级阻抗匹配良好
(2)具有良好的选择性 (3)要有平坦的幅频特性和足够的带宽(如下幻灯片图3-4)
(4)VHF/UHF频段分离特性好
(5)功率增益高、噪声系数小
1)功率增益 指的是从天线输入,到调谐器中频输出端的功 率放大倍数。提高功率增益有利于提高电视机的灵敏度。 2)噪声系数 调谐器的噪声系数指调谐器输入信噪比于输出 信噪比之比。调谐器的噪声系数越小越好,即信号噪声比要大, 否则电视画面将出现噪波点。 (6)具有自动增益控制电路 (AGC)各个电视频道信号幅 度差异很大,要求调谐器能随输入信号强弱自动控制高放的增 益,为此高频头内高放级的放大倍数被设计成可以用外电压控 制的,
全频道调谐器有电子调谐式和机械调谐两种。
二、电子调谐器
1、电子调谐器的电路组成 其组成框图如图3-2所示
从图中看出高频头内部由VHF高频调谐器和UHF高频调谐器 两大部分组成。 高频调谐器的作用 (1)输入回路 具有选频(调谐)、阻抗匹配功能。
(2)高频放大器 是放大由输入回路送来的微弱信号高频 电视信号,并对信号进一步选频,以抑制抗干扰。放大后的 高频信号送至混频器实现变频,能受AGC电路控制。 (3)本机振荡器 本机振荡其实一个正弦波自激振荡器,其 作用是产生频率准确和稳定的正弦波信号,其振荡频率f0高 于输入回路接收的电视信号图像载频fp和伴音载频fs供给混频 器。 (4)UHF混频放大器
电视原理(图像信号系统)原理思考题及答案
电视原理(图像信号系统)原理思考题及答案11级图像信号系统原理思考题及答案本⽂档由黄纲、张鉴、黄鑫、李跃虎整理制作其中,有⼀些错误或不合理的地⽅,请⼤家批评指正。
第⼀章电视基础知识1、什么是像素?答:将⼀幅图分解为许多细⼩的局部单元,将这种⼩单元称为像素。
2、像素有多⼤?答:⼀幅图像的像素为有限⼤,有限多。
3、像素⼤的图像清楚,还是像素⼩的图像清楚?答:图像的像素越⼩,像素密度越⼤,图像清晰度越⾼,包含的信息量越多。
4、什么是⼀帧图像?答:⼀幅平⾯图像上所有像素的集合。
5、图像的清晰度与像素有什么关系?答:图像的像素越⼩,像素密度越⼤,图像清晰度越⾼,包含的信息量越多。
6、对图像进⾏扫描的作⽤是什么?答:传送图像。
7、⽤什么⽅法传送⼀幅图像?答:扫描、抽样。
8、什么是⼈眼的视觉惰性?答:⼈眼对亮度感觉的出现和消失有⼀个滞后时间(暂留时间),约0.05s ~ 0.2s,只要两幅间断图像的间隔时间⼩于这个时间,⼈眼就会感到画⾯是连续的,变化的也是连续的,不会有间断的感觉。
9、图像为什么会活动?答:只要按扫描的顺序还原每个像素,只要抽样速度⾜够快,⼈眼就能感觉到正常的活动图像。
10、怎样⽤静⽌图像产⽣出活动的图像?答:只要两幅间断图像的间隔时间⼩于0.05s ~ 0.2s,⼈眼就会感到画⾯是连续的,变化的也是连续的,不会有间断的感觉。
11、怎样传送活动图像?答:采⽤扫描抽样的⽅式获得图像信息,可以只⽤⼀个信号通道。
12、怎样将图像光信号变成图像电信号?答:摄像管:是将光信号转换成电信号的器件。
13、怎样从图像电信号还原出可见的图像?答:显像管:是将电信号还原成图像信号的器件,显像管因电⼦束打击荧光粉⽽发光。
14、扫描电⼦束的偏转是怎样被控制的?答:电⼦束偏转控制器:偏转线圈。
15、什么是扫描光栅?答:当⾏、场偏转线圈分别加有扫描电波时,电⼦束便在⽔平和垂直偏转⼒的共同作⽤下进⾏有规律的扫描,屏幕上变出现⼀条条有规律的亮线,这些亮线常被称为光栅。
电视成像原理
4
6.1 引言
扫描的实质是将原来随空间和时间变化的函数变成只随时 间变化的函数,即fB(x,y,t)→fB(t),所以传输通道的输出u(t)= fB(t),即单一时间函数的亮度信息变量。
在电视成像中,为了使人感觉到连续活动的图像,每秒钟 需要出现1000万个像素,能够达到如此高的记录速度的,只 有电子扫描技术。
隔行扫描
一帧图像逐行扫描完成后,整个屏幕亮一次。根据人眼视 觉惰性及临界闪烁频率,在保证无闪烁感的条件下,要求电 视屏幕每秒钟亮的次数须在48次以上。
提高帧频,会增加图像信号的传输带宽。为了消除闪烁感 又不使图像信号传输带宽过宽,提出了隔行扫描方案。
13
6.1 引言
隔行扫描是将一帧电视图像分成两场进行交错扫描。第一场 对图像的奇数场扫描,第二场对图像的偶数场扫描。奇偶两场 光栅均匀相嵌,构成一幅完整画面。
聚焦系统:聚焦线圈的磁场和聚焦阳极的电场。
偏转系统:两对磁偏转线圈(偏转角一般小于10o)。
摄像管未工作时,光电导靶两个表面间有数十伏的电压差;工作时, 光照使受光面产生光生载流子,两表面间产生放电电流,靶的绝缘面 电位上升。一帧时间内,放电电荷是连续积累的。
18
6.2 摄像原理
摄像管阴极
100K
静电偏转
静电偏转是靠加在偏转板上的锯齿波电压,并在偏转板之 间形成电场E而使电子束受力产生偏转。电场力为:
Fe eE
式中e为电子的电荷。
(6-2)
7
6.1 引言
电磁偏转
电磁偏转是靠偏转线圈中所通过的电流形成磁场,使电子
在磁场中运动受力而偏转,其偏转方向由电磁学的左手定则 确定。磁场力为:
C波段卫星接收电视信号干扰案例分析
C波段卫星接收电视信号干扰案例分析数字视频广播(Digital Video Broadcasting,DVB),是由“DVB Project”维护的一系列国际公认的数字电视公开标准。
DVB标准当前被广泛应用于世界上大部分的国家和地区。
DVB系统按信号传播的顺序可以分成前端系统、传输系统和终端系统。
其中前端系统一般位于节目生产[摘要]本文描述了工作中遇到的一次C波段卫星接收受到数字卫星电视信号干扰案例的现象及频谱特征,分析了干扰产生的原因,探讨了邻频情况下,数字卫星电视信号下行频段干扰的解决方案。
[关键词]C波段干扰;数字卫星电视信号下行频段;C波段卫星地球站部门(例如电视台等部门),而终端系统一般位于用户终端中(例如机顶盒)。
DVB系统中的传输系统,主要是指数字电视的信道部分。
最常见的三种传输系统是DVB-C、DVB-S和DVB-T。
DVB-C用于数字有线电视系统,DVB-S用于数字卫星电视系统,DVB-T用于数字地面电视广播系统。
+ 任政 刘超(外交部通信总台)其中,DVB-C使用的频率范围为51-858MHz。
DVB-T使用的频率范围为470-860MHz。
DVB-S使用的C波段频率范围为3G-4.2GHz,Ku波段频率范围为10.95G-12.15GHz。
数字卫星电视已经证明了其相对于其他信息、图像和声音的传输和接收源的优越性,因此在远程信息处理图1 干扰情况示意图字卫星电视下行信号干扰的问题,对A、B两款调制解调器性能进行了比较。
在使用A款调制解调器时,接收情况很好,接收电平和接收信噪比非常稳定。
而在使用B款卫星调制解调器时,发现接收电平和接收信噪比频繁跳动。
两款调制解调器接收的载波信号采用8PSK调制,占用带宽4MHz,频点位于3.8GHz附近,射频接收设备LNB(低噪声变频放大器)本振频率为5150MHz。
用频谱仪仔细观察接收到的信号,发现接收载波附近存在大功率宽频信号,带宽大约在40MHz左右,且位置稳定,结合实际工作地点的周边使用卫星电视较多的实际情况,猜测这些宽频信号为数字卫星电视信号,B款调制解调器的接收跳动异常应该就是这些数字电视信号所引起的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电视信号频谱特性
电视信号频谱特性
电视系统是通过行、场扫描来完成图像的分解与合成的,尽管图像内容是随机的,但电视信号仍具有行、场或帧的准周期特性。
通过对静止图像电视信号进行频谱分析可知:它是由行频、场频的基波及其各次谐波组成的,其能量以帧频为间隔对称地分布在行频各次谐波的两侧。
而对活动图像的电视信号,其频谱分布为以行频及其各次谐波为中心的一簇簇连续的梳状谱,如图07-03-3 所示。
图07-03-3 活动图像电视信号频谱
对于实际的电视信号,谐波的次数越高,其相对于基波振幅的衰减越大。
在整个电视信号的频带中,没有能量的区域远大于有能量的区域。
根据这一性质,彩色电视系统利用频谱交错原理将亮度信号和色差信号进行半行频或1/4 行频间置,完成彩色电视中亮度信号和色度信号的同频带传输。
我国采用的PAL-D 制彩色电视信号,亮度信号带宽为6MHz;在美、日等国采用的NTSC 制电视系统中亮度信号带宽为4.2MHz。
由于人眼对于色度信号的分辨率远低于对亮
度信号的分辨率,因此在彩色电视系统中色度信号的带宽一般均低于
1.3MHz,且调制在彩色副载频上置于亮度信号频谱的高端,以减少亮色信号之间的串扰。
视频图像信号的能量主要分布在行扫描频率fh 及其各次谐波nfh 上,见图07- 03-4。
而在两相邻频率之间能量则很微弱,以至于可以将其看成是空白的。
由。