新北师大版七年级数学上册第二章__有理数总复习
2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题(教师版)
2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题专题课1 绝对值的应用类型1 绝对值的非负性①|a |≥0.①若|a |+|b |=0,则a =b =0.1.若|x |=x ,则x 的取值范围是( )A .x >0B .x ≤0C .x ≥0D .x <0 2.若|x -2|=2-x ,则x 的取值范围是__________. 3.已知|x -3|+|y -1|=0,求2x +3y 的值.4.已知有理数|x -2|与|y -3|互为相反数,求x +y +xy 的值.类型2 绝对值的最值问题5.当a =2时,|2-a |+2会有最小值,且最小值是________. 6.当b =12 时,5-|2b -1|会有最大值,最大值是________.7.已知x 为有理数,则|x -5|+|x -3|的最小值是________.8.同学们都知道:|5-(-2)|表示5与-2之差的绝对值,实际上也可以理解成5和-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)若|x -2|=5,则x =________;(2)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|有最小值,请写出当x 在什么范围时|x-3|+|x -6|有最小值,并求出最小值;(3)当x 取何值时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值是多少?专题课2 有理数的大小比较类型1 利用数轴比较有理数的大小1.如图,数轴上的四个点分别表示有理数a ,b ,c ,d ,则下列说法正确的是( )A .a >bB .c <0C .b <cD .-1>d2.已知有理数在数轴上对应的点如图所示,则a ,-a ,-1,1的大小关系是( )A .a <-1<1<-aB .-a <-1<a <1C .a <-1<-a <1D .-a <-1<1<a 3.大于-2.5而小于3.5的整数共有( )A .6个B .5个C .4个D .3个4.已知a ,b 两数在数轴上的位置如图所示,试在数轴上找出表示-a ,-b 的点,并用“<”连接a ,b ,-a ,-b .5.在数轴上表示下列各数,并把这些数用“>”连接起来: 3.5,3.5的相反数,-12 ,绝对值等于3的数,最大的负整数.类型2 利用比较大小的法则比较有理数的大小 6.下列各数中:-1,0,12,0.5,最小的数是( )A .0.5B .0C .12D .-1 7.下列比较大小结果正确的是( )A .-3<-4B .-(-3)<|-3|C .-12 >-13D .|-16 |>-178.比较大小:1100 ________-0.009;-2 0192 020 ________-2 0202 019 .9.已知数:0,-2,1,-3,5.用“>”把各数连接起来.类型3 利用绝对值比较大小 10.比较下列各对数的大小: (1)-0.1与-0.2;(2)-45 与-56 ;(3)-821 与-|-17 |.类型4 利用特殊值比较有理数的大小11.如图,数轴上的点表示的有理数是a ,b ,则下列式子正确的是( )A .-a <bB .a <bC .|a |<|b |D .-a <-b 12.如果a >0,b <0,a <|b |,那么a ,b ,-a ,-b 的大小关系是( ) A .-b >a >-a >b B .a >b >-a >-b C .-b >a >b >-a D .b >a >-b >-a专题课3 一线串起有理数类型1 数轴与有理数1.数轴上,如果表示数a 的点在原点的左边,那么a 是( )A .正数B .负数C .零D .以上皆有可能2.点M 为数轴上表示-2的点,将点M 沿数轴向右平移5个单位到点N ,则点N 表示的数是( )A .3B .5C .-7D .3或-7【变式】 在数轴上,点A ,B 分别表示数a ,2,若将点B 在数轴上平移3个单位长度后与点A 重合,则数a 为( )A .5B .-1C .5或-1D .5或-2 3.在数轴上,点A 表示数-4,距A 点3个单位长度的点表示的数是________.4.请在数轴上表示下列各数:-|-3|,4,-1.5,-5,212 并将它们用“>”连接起来,并回答表示最大数与最小数两点之间相距多少个单位长度?5.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A,再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.(1)画出数轴,标出A,B,C三点在数轴上的位置,并写出A,B,C三点表示的数;(2)根据点C在数轴上的位置,点C可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?(3)若蚂蚁从点D出发,先向右爬了7个单位长度,再向左爬了4个单位长度,此时它恰好回到了原点,求点D表示的数.类型2数轴与相反数6.已知数轴上A,B两点间的距离是6,它们分别表示的两个数a、b互为相反数(a>b),那么a=________,b=________.7.在数轴上,点A表示1,点B、点C所表示的数互为相反数,且点C与点A间的距离为3,则点B所表示的数是________.8.小明做题时,画了一个数轴,在数轴上原有一个点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在了-3的相反数的位置,想想,要把数轴画正确,原点要向哪个方向移动几个单位长度?( )A.向右移6个单位长度B.向右移3个单位长度C.向左移6个单位长度D.向左移3个单位长度9.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?类型3数轴与绝对值10.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是( )A.点A B.点B C.点C D.点D 11.如图,已知数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.-4 B.0 C.-2 D.4 12.已知a,b是不为0的有理数,且|a|=-a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是( )13.有理数a,b在数轴上的位置如图所示,且|a|=2,|b|=3,则a=________,b=________.14.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A处出发去寻找B,C,D处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)B→D(________),C→________(-3,-4);(2)若贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程.类型4利用数轴探究问题15.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,-52 ,-3,观察数轴,与点A 的距离3的点表示的数是________,A ,B 两点之间的距离为________;(2)以点A 为分界点,把数轴折叠,与点B 重合的点表示的数是________;(3)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是0.5;若此数轴上M ,N 两点之间的距离为11(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则点M 表示的数是________,点N 表示的数是________. 16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是________; ①从-2到2有5个整数,分别是________________; ①从-3到3有7个整数,分别是________________________; ①从-100到100有________个整数;(2)根据以上规律,直接写出,从-3.9到3.9有7个整数,从-10.1到10.1有________个整数;(3)在单位长度是1 cm 的数轴上任意画一条长为1 000 cm 的线段AB ,线段AB 盖住的整点最多有多少个?专题课4 有理数的加减运算技巧有理数的加减运算的简便方法归纳 方法1 相反数结合法【例1】 计算:(-2)+3+1+(-3)+2+(-4).方法2 同号结合法——把正数和负数分别结合相加 【例2】 计算:(+9)-(+10)+(-2)-(-8)+3.方法3 同分母结合法 【例3】 计算:(1)-23 -35 +78 -13 -25 +18 ;(2)-479 -(-315 )-(+229 )+(-615 ).方法4 凑整结合——分数相加,把相加得整数的数先结合相加 【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18 |+78 .方法5 分解——将一个数拆分成两个数的和或差 【例5】 计算:-156 +(-523 )+2434 +312 .方法6 裂项相消法【例6】 观察下列各式:12 =11×2 =1-12 ,16 =12×3 =12 -13 ,112 =13×4 =13 -14 ,…,根据规律完成下列各题. (1)19×10=________; (2)计算12 +16 +112 +120 +…+19 900的值为________.易错点 分解带分数时易弄错符号【例7】 计算:634 +313 -514 -312 +123 .强化训练 计算:(1)(-7)-(+5)+(-4)-(-10);(2)-9+6-(+11)-(-15);(3)3.5-4.6+3.5-2.4;(4)12 +(-23 )+45 +(-12 )+(-13 );(5)-478 -(-512 )+(-412 )-318 ;(6)0.25+112 +(-23 )-14 +(-512 );(7)|-12 |-(-2.5)-(-1)-|0-212 |;(8)0+1-[(-1)-(-37 )-(+5)-(-47 )]+|-4|;(9)-205+40034 +(-20423 )+(-112 );(10)-12 -16 -112 -120 -130 -142 -156 -172 ;(11)1-2-3+4+5-6-7+8+…+97-98-99+100.专题课5 有理数的混合运算技巧有理数混合运算的简便方法归纳 方法1 运用乘法的交换律和结合律【例1】 计算:531 ×(-29 )×(-2115 )×(-412 ).方法2 运用乘法对加法的分配律 【例2】 计算:(1)-16×(34 -78 +12 )+(-1)2020.(2)391314 ×(-14);方法3 逆用乘法对加法的分配律【例3】 计算:4×(-367 )-3×(-367 )-6×367 .方法4 除法变乘法,再利用乘法对加法的分配律 【例4】 计算:(113 -58 +712 )÷(-124 ).强化训练计算:(能用简便方法的尽量用简便方法计算) (1)-0.75×(-112 )÷(-214 );(2)-(3-5)×32÷(-1)3;(3)(-1.5)×45 ÷(-25 )×34 ;(4)-14-(12 -23 +14 )×12;(5)(-5)÷(-127 )×(-214 )÷7;(6)1318 ÷(-7);(7)(-5)-(-5)×110 ÷110 ×(-5);(8)2×(-137 )-234 ×13+(-137 )×5+14 ×(-13);(9)12.5×6.787 5×18 +1.25×678.75×0.125+0.125×533.75×18 ;(10)-14-(-512 )×411 +(-2)3÷|-32+1|;(11)1-(-112 )÷(12 -14 -16 );(12)1-0.52 -|0.5-23 |÷13 ×|-2-(-3)2|;(13)[(-1)2 021-(32 -56 -19 )×18]÷|-22|.2021-2022学年北师大版七年级数学上册第二章有理数及其运算章末专题复习练习题专题课1绝对值的应用类型1绝对值的非负性①|a|≥0.①若|a|+|b|=0,则a=b=0.1.若|x|=x,则x的取值范围是( C )A.x>0 B.x≤0 C.x≥0 D.x<02.若|x-2|=2-x,则x的取值范围是x≤2.3.已知|x-3|+|y-1|=0,求2x+3y的值.解:因为|x-3|和|y-1|均为非负数,即|x-3|≥0, |y-1|≥0,又因为|x-3|+|y-1|=0,所以|x-3|=0,|y-1|=0.所以x-3=0,y-1=0.所以x=3,y=1.所以2x+3y=2×3+3×1=9.4.已知有理数|x-2|与|y-3|互为相反数,求x+y+xy的值.解:因为|x-2|与|y-3|互为相反数,所以|x-2|=-|y-3|.所以|x-2|+|y-3|=0.所以x-2=0,y-3=0.所以x=2,y=3.所以x+y+xy=2+3+2×3=11.类型2 绝对值的最值问题5.当a =2时,|2-a |+2会有最小值,且最小值是2. 6.当b =12 时,5-|2b -1|会有最大值,最大值是5.7.已知x 为有理数,则|x -5|+|x -3|的最小值是2.8.同学们都知道:|5-(-2)|表示5与-2之差的绝对值,实际上也可以理解成5和-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)若|x -2|=5,则x =7或-3;(2)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|有最小值,请写出当x 在什么范围时|x -3|+|x -6|有最小值,并求出最小值;(3)当x 取何值时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值是多少? 解:(2)当3≤x ≤6时,|x -3|+|x -6|有最小值,最小值为3. (3) 当x =2时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值为7.专题课2 有理数的大小比较类型1 利用数轴比较有理数的大小1.如图,数轴上的四个点分别表示有理数a ,b ,c ,d ,则下列说法正确的是( C )A .a >bB .c <0C .b <cD .-1>d2.已知有理数在数轴上对应的点如图所示,则a ,-a ,-1,1的大小关系是( A )A .a <-1<1<-aB .-a <-1<a <1C .a <-1<-a <1D .-a <-1<1<a 3.大于-2.5而小于3.5的整数共有( A )A .6个B .5个C .4个D .3个4.已知a ,b 两数在数轴上的位置如图所示,试在数轴上找出表示-a ,-b 的点,并用“<”连接a ,b ,-a ,-b .解:-a ,-b 对应的点如图所示. 由数轴上点的位置可得-b <a <-a <b .5.在数轴上表示下列各数,并把这些数用“>”连接起来: 3.5,3.5的相反数,-12 ,绝对值等于3的数,最大的负整数.解:各数分别为:3.5,-3.5,-12,±3,-1.在数轴上表示如图:这些数由大到小用“>”连接为:3.5>3>-12 >-1>-3>-3.5.类型2 利用比较大小的法则比较有理数的大小 6.下列各数中:-1,0,12,0.5,最小的数是( D )A .0.5B .0C .12D .-1 7.下列比较大小结果正确的是( D )A .-3<-4B .-(-3)<|-3|C .-12 >-13D .|-16 |>-178.比较大小:1100 >-0.009;-2 0192 020 >-2 0202 019 .9.已知数:0,-2,1,-3,5.用“>”把各数连接起来. 解:5>1>0>-2>-3.类型3 利用绝对值比较大小 10.比较下列各对数的大小: (1)-0.1与-0.2;解:因为|-0.1|=0.1,|-0.2|=0.2,且0.1<0.2,所以-0.1>-0.2.(2)-45 与-56;解:因为|-45 |=45 =2430 ,|-56 |=56 =2530 ,且2430 <2530 , 所以-45 >-56 .(3)-821 与-|-17 |.解:-|-17 |=-17.因为|-821 |=821 ,|-17 |=17 =321 ,且821 >321 , 所以-821 <-|-17 |.类型4 利用特殊值比较有理数的大小11.如图,数轴上的点表示的有理数是a ,b ,则下列式子正确的是( B )A .-a <bB .a <bC .|a |<|b |D .-a <-b 12.如果a >0,b <0,a <|b |,那么a ,b ,-a ,-b 的大小关系是( A ) A .-b >a >-a >b B .a >b >-a >-b C .-b >a >b >-a D .b >a >-b >-a专题课3 一线串起有理数类型1 数轴与有理数1.数轴上,如果表示数a 的点在原点的左边,那么a 是( B )A .正数B .负数C .零D .以上皆有可能2.点M 为数轴上表示-2的点,将点M 沿数轴向右平移5个单位到点N ,则点N 表示的数是( A )A .3B .5C .-7D .3或-7【变式】 在数轴上,点A ,B 分别表示数a ,2,若将点B 在数轴上平移3个单位长度后与点A 重合,则数a 为( C )A .5B .-1C .5或-1D .5或-2 3.在数轴上,点A 表示数-4,距A 点3个单位长度的点表示的数是-7或-1. 4.请在数轴上表示下列各数:-|-3|,4,-1.5,-5,212 并将它们用“>”连接起来,并回答表示最大数与最小数两点之间相距多少个单位长度? 解:如图所示.4>212>-1.5>-|-3|>-5.最大数与最小数两点之间相距9个单位长度.5.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A ,再向右爬了2个单位长度到达点B ,然后又向左爬了10个单位长度到达点C .(1)画出数轴,标出A ,B ,C 三点在数轴上的位置,并写出A ,B ,C 三点表示的数; (2)根据点C 在数轴上的位置,点C 可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?(3)若蚂蚁从点D 出发,先向右爬了7个单位长度,再向左爬了4个单位长度,此时它恰好回到了原点,求点D 表示的数. 解:(1)如图:A ,B ,C 三点表示的数分别为4,6,-4.(2)点C 可以看作是蚂蚁从原点出发,向左爬了4个单位长度得到的.(3)从原点向右爬4个单位长度,再向左爬7个单位长度,可以到D ,结合数轴可得,点D 表示的数为-3.类型2数轴与相反数6.已知数轴上A,B两点间的距离是6,它们分别表示的两个数a、b互为相反数(a>b),那么a=3,b=-3.7.在数轴上,点A表示1,点B、点C所表示的数互为相反数,且点C与点A间的距离为3,则点B所表示的数是2或-4.8.小明做题时,画了一个数轴,在数轴上原有一个点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在了-3的相反数的位置,想想,要把数轴画正确,原点要向哪个方向移动几个单位长度?( A )A.向右移6个单位长度B.向右移3个单位长度C.向左移6个单位长度D.向左移3个单位长度9.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?解:(1)点C表示的数是-1.(2)点C表示的数是0.5,D表示的数是-4.5.类型3数轴与绝对值10.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是( D )A.点A B.点B C.点C D.点D 11.如图,已知数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( C )A .-4B .0C .-2D .412.已知a ,b 是不为0的有理数,且|a |=-a ,|b |=b ,|a |>|b |,那么用数轴上的点来表示a ,b 时,正确的是( C )13.有理数a ,b 在数轴上的位置如图所示,且|a |=2,|b |=3,则a =2或-2,b =3.14.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A 处出发去寻找B ,C ,D 处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)B →D (+3,-2),C →A (-3,-4);(2)若贝贝的行走路线为A →B →C →D ,请计算贝贝走过的路程.解:|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10(米).答:贝贝走过的路程为10米.类型4 利用数轴探究问题15.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,-52,-3,观察数轴,与点A 的距离3的点表示的数是4或-2,A ,B 两点之间的距离为3.5;(2)以点A 为分界点,把数轴折叠,与点B 重合的点表示的数是4.5;(3)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是0.5;若此数轴上M ,N 两点之间的距离为11(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则点M 表示的数是-6.5,点N 表示的数是4.5.16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是-1,0,1;①从-2到2有5个整数,分别是-2,-1,0,1,2;①从-3到3有7个整数,分别是-3,-2,-1,0,1,2,3;①从-100到100有201个整数;(2)根据以上规律,直接写出,从-3.9到3.9有7个整数,从-10.1到10.1有21个整数;(3)在单位长度是1 cm的数轴上任意画一条长为1 000 cm的线段AB,线段AB盖住的整点最多有多少个?解:依题意,得①当线段AB起点在整点时覆盖1 001个数;①当线段AB起点不在整点,即在两个整点之间时覆盖1 000个数.综上所述,线段AB盖住的整点最多有1 001个.专题课4有理数的加减运算技巧有理数的加减运算的简便方法归纳方法1相反数结合法【例1】计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.方法2同号结合法——把正数和负数分别结合相加【例2】计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)-(10+2)=20-12=8.方法3同分母结合法【例3】计算:(1)-23 -35 +78 -13 -25 +18; 解:原式=(-23 -13 )+(-35 -25 )+(78 +18) =-1-1+1=-1.(2)-479 -(-315 )-(+229 )+(-615). 解:原式=[-479 -(+229 )]+[-(-315 )+(-615)] =-7-3=-10.方法4 凑整结合——分数相加,把相加得整数的数先结合相加【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18 |+78. 解:原式=0.75-3+0.25+18 +78=(0.75+0.25)+(18 +78)-3 =1+1-3=-1.方法5 分解——将一个数拆分成两个数的和或差【例5】 计算:-156 +(-523 )+2434 +312. 解:原式=(-1-56 )+(-5-23 )+(24+34 )+(3+12) =[(-1)+(-5)+24+3]+[(-56 )+(-23 )+34 +12] =21+(-14) =2034.方法6 裂项相消法【例6】 观察下列各式:12 =11×2 =1-12 ,16 =12×3 =12 -13 ,112 =13×4 =13 -14,…,根据规律完成下列各题.(1)19×10 =19 -110 ; (2)计算12 +16 +112 +120 +…+19 900 的值为99100 .易错点 分解带分数时易弄错符号【例7】 计算:634 +313 -514 -312 +123. 解:原式=6+34 +3+13 -5-14 -3-12 +1+23=(6+3-5-3+1)+(34 +13 -14 -12 +23) =2+1=3.强化训练计算:(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(3)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7-7=0.(4)12 +(-23 )+45 +(-12 )+(-13); 解:原式=[12 +(-12 )]+[(-23 )+(-13 )]+45=0+(-1)+45=-15.(5)-478 -(-512 )+(-412 )-318; 解:原式=-478 +512 -412 -318=(-478 -318 )+(512 -412) =-8+1=-7.(6)0.25+112 +(-23 )-14 +(-512); 解:原式=14 +112 +(-23 )-14 +(-512) =(14 -14 )+[112 +(-23 )+(-512)] =-1.(7)|-12 |-(-2.5)-(-1)-|0-212|; 解:原式=12 +2.5+1-212=12 +1+(2.5-212) =112.(8)0+1-[(-1)-(-37 )-(+5)-(-47)]+|-4|; 解:原式=1-[(-1)+37 -5+47]+4 =1-[(-1+37 +47)-5]+4 =10.(9)-205+40034 +(-20423 )+(-112); 解:原式=(-205)+400+34 +(-204)+(-23 )+(-1)+(-12) =(400-205-204-1)+(34 -23 -12) =-10+(-512) =-10512.(10)-12 -16 -112 -120 -130 -142 -156 -172; 解:原式=-(12 +16 +112 +120 +130 +142 +156 +172) =-(1-12 +12 -13 +13 -14 +14 -15 +15 -16 +16 -17 +17 -18 +18 -19 ) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100)=-1+1-1+1-…-1+1=0.专题课5 有理数的混合运算技巧有理数混合运算的简便方法归纳方法1 运用乘法的交换律和结合律【例1】 计算:531 ×(-29 )×(-2115 )×(-412). 解:原式=-531 ×29 ×3115 ×92=-(531 ×3115 )×(29 ×92) =-13×1 =-13.方法2 运用乘法对加法的分配律【例2】 计算:(1)-16×(34 -78 +12)+(-1)2020. 解:原式=-16×34 +16×78 -16×12+1 =-12+14-8+1=-5.(2)391314×(-14); 解:原式=(40-114)×(-14) =40×(-14)-114×(-14) =-560+1=-559.方法3 逆用乘法对加法的分配律【例3】 计算:4×(-367 )-3×(-367 )-6×367. 解:原式=-367×(4-3+6) =-27.方法4 除法变乘法,再利用乘法对加法的分配律【例4】 计算:(113 -58 +712 )÷(-124). 解:原式=(43 -58 +712)×(-24) =43 ×(-24)-58 ×(-24)+712×(-24) =-32+15-14=-31.强化训练计算:(能用简便方法的尽量用简便方法计算)(1)-0.75×(-112 )÷(-214); 解:原式=-34 ×(-32 )×(-49) =-12.(2)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=-2×9÷1=-18.(3)(-1.5)×45 ÷(-25 )×34; 解:原式=32 ×45 ×52 ×34=94.(4)(2020·成都成华区期末)-14-(12 -23 +14)×12; 解:原式=-1-12 ×12+23 ×12-14×12 =-1-6+8-3=-2.(5)(-5)÷(-127 )×(-214)÷7; 解:原式=-5×79 ×94 ×17=-54.(6)1318÷(-7); 解:原式=1318 ×(-17) =(14-78 )×(-17) =-2+18=-178.(7)(-5)-(-5)×110 ÷110×(-5); 解:原式=(-5)-(-5)×110×10×(-5) =-5-25=-30.(8)2×(-137 )-234 ×13+(-137 )×5+14×(-13); 解:原式=-137 ×(2+5)-13×(234 +14) =-107×7-13×3 =-10-39=-49.(9)12.5×6.787 5×18 +1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)-14-(-512 )×411+(-2)3÷|-32+1|; 解:原式=-1+112 ×411-8÷8 =-1+2-1=0.(11)1-(-112 )÷(12 -14 -16); 解:原式=1+112 ÷(612 -312 -212) =1+112 ÷112=1+1=2.(12)1-0.52-|0.5-23 |÷13 ×|-2-(-3)2|; 解:原式=-4-16×3×11 =-4-112=-192.(13)[(-1)2 021-(32 -56 -19 )×18]÷|-22|.解:原式=[(-1)-32 ×18+56 ×18+19×18]÷4 =(-1-27+15+2)÷4 =(-11)÷4=-114.。
北师大版七年级上册第二章有理数总结复习
word 格式-可编辑-感谢下载支持 第二章有理数及其运算知识点 1. 有理数包括 和 ;整数包含: 、 、 ;分数包含: 、 。
正整数和正分数通称为正有理数,负整数和负分数通称为负有理数。
;π不是有理数1、下列各数:-20、-0.5、0、+55、4、-221、+91、1、-2,是正数的有_________,是整数的有_________,是分数数的有_________,是非整数的有_________。
2. 正数都比0大,负数都比0小, 既不是正数也不是负数。
3. 正数和负数经常用来表示 的量。
1、海中一潜艇所在高度为-30米,此时观察到海底一动物位于潜艇的正下方30米处,则海底动物的高度为______2、黄山主峰一天早晨气温为-1℃,中午上升了8℃,夜间又下降了10℃,那么这天夜间黄山主峰的气温是____.3、比—1大1的数为4、如果水位上升35米用+35表示,那么下降100米表示为_________,水位无变化表示为_________。
4. 数轴有三要素: 、 、 。
数轴上的两个点表示的数, 边的总比 边的大。
1、在数轴上表示数:-2,2112,,0,1, 1.522--.按从小到大的顺序用"<"连接起来.5. 相反数:只有 不同的两个数互为相反数,a a 和-互为相反数,0的相反数是0。
在任意的数前面添上“ ”号,就表示原来的数的相反数。
1、1--的相反数是______,2、下面说法正确的有( )① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.8)的相反数是 3.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数.3、数轴上表示3的点和表示-6的点的距离是 。
4、)2(--的相反数是 。
6. 绝对值:数轴上表示一个数的点与原点的 叫做该数的绝对值,用“|a|”表示。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
当a 是正数时,a a =;当a 是负数时,a a =-;当a =0时,0a =1、数轴上分属于原点两侧且与原点的距离相等的两点间的距离为5,那么这两个点表示的数为________.2、|x|=5则x 的值是_________。
七年级数学上册 第二章 有理数及其运算 (知识归纳+考点攻略+方法技巧)复习课件(新版)北师大版
2最0新19北/11师/8大版初中数学精品
数学8·课标版(BS)
第二章复习
方法技巧 用正数和负数表示具有相反意义的量,关键是看规定 哪种意义的量为正,则与之相反意义的量为负.
2最0新19北/11师/8大版初中数学精品
数学1·6 课标版(BS)
第二章复习 ►考点五 有理数的大小比较
用“>”或“<”填空:
(1)9___>_____-16; (2)-175___<_____-125;(3)0___>_____-7.
[解析] 因为正数大于负数,所以 9>-16;因为在数轴
7
2
数学5·课标版(BS)
第二章复习
(4) 运 算 律 : ① 交 换 律 : a·b = _____ ; ② 结 合 律 : (a·b)·c =
__a_·(_b_8(·1_.c))_法有则;理一③数:乘的两法除数对法相加除法,的同分号配得律_:_b_·a_a(,b+异c号)=得_a__b___+___,_a_c并__把. 绝对
2最0新19北/11师/8大版初中数学精品
数学2·1 课标版(BS)
第二章复习
易错警示
(1)-22 与(-2)2 不同,-22 的底数是 2,(-2)2 的底数
是-2;
(2)在计算 12÷
12―13―14时,要清楚除法没有分配律;
(3)有理数的混合运算一定要按照顺序进行,同时要注
意每一步运算的符号.
幂
底数
指数
2019/11/8
最新北师大版初中数学精品
6数学·课标版(BS)
北师大版七年级数学上册第二章《有理数及其运算》复习教案
(2)有理数的性质,如相反数、绝对值的概念和理解。
(3)有理数的加减乘除运算规则,包括同号相加、异号相加、乘法法则等。
(4)混合运算的顺序和法则,以及在实际问题中的应用。
举例:
-重点讲解正负数的加减法运算,如3 + (-2)的计算方法和规则。
最后,通过这节课的教学,我认识到要关注每一个学生的个体差异。对于学习有困难的学生,我需要给予更多的关心和指导,帮助他们克服困难,提高学习效果。同时,对于学习优秀的学生,我也要适当提高要求,让他们在掌握基础知识的同时,拓展思维,提高解决问题的能力。
3.培养学生具备良好的逻辑思维能力,通过有理数运算掌握数学推理方法。
4.培养学生养成数学运算的准确性和规范性,提高运算速度和效率。
5.引导学生体会数学在生活中的广泛应用,激发学习数学的兴趣和积极性。
6.培养学生面对数学问题敢于探究、勇于创新的精神,发展数学思维能力。
三、教学难点与重点
1.教学重点
本节课的核心内容包括:
北师大版七年级数学上册第二章《有理数及其运算》复习教案
一、教学内容
北师大版七年级数学上册第二章《有理数及其运算》复习教案,主要包括以下内容:
1.有理数的概念:正数、负数、整数、分数、有理数的定义及其分类。
2.有理数的性质:相反数、绝对值、有理数的加减乘除运算性质。
3.有理数的运算:
(1)有理数的加减法运算:同号相加、异号相加、加减混合运算。
-难点巩固:通过复杂混合运算的题目,训练学生识别运算顺序,正确运用括号,解决实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《有理数及其运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相反意义的量,比如温度上升和下降?”这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾有理数的奥秘。
北师大版七年级数学上册第二章知识点整理
北师大版七年级数学上册第二章知识点整理北师大版七年级数学上册第二章知识点整理七年级上册第二章有理数及其运算1.有理数:有理数=整数+分数(包括有限小数+无限循环小数)整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l 正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l 负数的概念:数轴上0左边的数,形如-3,-0.2,-100…(负号不能省略). l 0既不是正数也不是负数,0是整数也是偶数.① 正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;② 不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3. 相反数:(1)只有符号不同的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0的相反数是0;a,b互为相反数 a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;(3)一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4. 绝对值:(1)几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值≥0 ,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;(4)比较两个负数,绝对值大的反而小;5.倒数:(1)乘积为1的两个数互为倒数,所以数a(a≠0) 的倒数是 1/a,0没有倒数;(2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.(3)用1除以一个非0数,商就是这个数的倒数.6. 有理数的四则运算:⑴ 加法法则:① 同号两数相加,符号不变,把绝对值相加;② 异号两数相加,绝对值相等时(即互为相反数的两个数)相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③ 一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加).⑵ 减法法则:① 减去一个数,等于加上这个数的相反数,依据加法法则② 加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶ 乘法法则:① 两数相乘,同号得正,异号得负,把绝对值相乘;② 任何数同0相乘,得0;(另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.)③ 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷ 除法法则:① 两数相除,同号得正,异号得负,把绝对值相除;② 0除以任何非0的数都得0.③ 除以一个数,等于乘上这个数的倒数,即 .⑸ 乘方:① 求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;② 负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③ 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂 2n+1,2n-1; 偶次幂 2n);0的正整数次幂都是0.⑹ 混合运算:① 从左到右的顺序进行;② 先乘方,再乘除,后加减;如有括号,应先算括号里面的;7. 科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;(3)精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;(4)有效数字:在近似数中,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。
最新北师大版初中数学章节目录大全
初中数学北师大版目录七年级上册目录第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从三个方向看物体的形状回顾与思考复习题第二章有理数及其运算1.有理数2.数轴3.绝对值4.有理数的加法5.有理数的减法6.有理数的混合运算7.有理数的乘法8.有理数的除法9.有理数的乘方10.科学计数法11.有理数的混合运算12.用计算器进行运算回顾与思考复习题第三章整式及其加减1.字母表示数2.代数式3.整式4.整式的加减5.探索与表达规律回顾与思考复习题第四章基本平面图图形1.线段、射线、直线2.比较线段的长短3.角4.角度比较5.多边形和圆的初步认识回顾与思考复习题第五章基本平面图图形1. 认识一元一次方程2. 求解一元一次方程3. 应用一元一次方程水箱变高了4.应用一元一次方程打折销售15.应用一元一次方程“希望工程”义演6.应用一元一次方程追赶小明回顾与思考复习题第六章数据的收集与整理1. 数据的收集2. 普查和抽样调查3. 数据的表示4. 统计图的选择回顾与思考复习题七年级下册目录第一章整式的乘除1.同底数幂的乘法2.幂的乘方与积的乘方3.同底数幂的除法4.整式的乘法5.平方差公式6.完全平方公式7.整式的除法回顾与思考复习题第二章相交线与平行线1.两条直线的位置关系2.探索直线平行的条件3.平行线的特征4.用尺规作角回顾与思考复习题第三章变量之间的关系1. 用表格表示的变量间关系2. 用关系式表示的变量间关系3. 用图象表示的变量间关系第四章三角形1.认识三角形2.图形的全等3.探索三角形全等的条件4.用尺规作三角形5.利用三角形全等测距离回顾与思考复习题第五章轴对称1. 轴对称现象2. 探索轴对称性质23. 简单的轴对称图形4. 利用轴对称进行设计回顾与思考复习题第六章频率与概率1. 感受可能性2. 频率的稳定性3. 等可能事件的概率回顾与思考复习题八年级上册目录第一章勾股定理1. 探索勾股定理2. 一定是直角三角形吗3. 勾股定理的应用回顾与思考复习题第二章实数1.认识无理数2.平方根3.立方根4.估算5.用计算器开方6.实数7.二次根式回顾与思考复习题第三章位置与坐标1.确定位置2.平面直角坐标系3.轴对称与坐标变化回顾与思考复习题第四章一次函数1.函数2.一次函数与正比例函数3.一次函数的图象4.一次函数的应用回顾与思考复习题第五章二元一次方程组1.认识二元一次方程组2.求解二元一次方程组3.应用二元一次方程组--鸡兔同笼34.应用二元一次方程组--增收节支5.应用二元一次方程组--里程碑上的数6.二元一次方程与一次函数7.用二元一次方程组确定一次函数表达式*8. 三元一次方程组回顾与思考复习题第六章数据的分析1. 平均数2. 中位数与众数3. 从统计图分析数据的集中趋势4. 数据的离散程度回顾与思考复习题第七章平行线的证明1. 为什么要证明2. 定义与命题3. 平行线的判定4. 平行线的性质5. 三角形内角和定理回顾与思考复习题八年级下册目录第一章三角形的证明1. 等腰三角形2. 直角三角形3. 线段的垂直平分线4. 角平分线回顾与思考复习题第二章一元一次不等式与一元一次不等式组1. 不等关系2. 不等式的基本性质3. 不等式的解集4. 一元一次不等式5. 一元一次不等式与一次函数6. 一元一次不等式组回顾与思考复习题第三章图形的平移与旋转1.图形的平移42.图形的旋转3.中心对称4.简单的图案设计回顾与思考复习题第四章因式分解1. 因式分解2. 提公因式法3. 公式法回顾与思考复习题第五章分式与分式方程1.认识分式2.分式的乘除法3.分式的加减法4.分式方程回顾与思考复习题第六章平行四边形1.平行四边形的性质2.平行四边形的判定3.三角形的中位线4.多边形的内角和与外角和回顾与思考复习题九年级上册目录第一章特殊平行四边形1.菱形的性质与判定2.矩形的性质与判定3.正方形的性质与判定回顾与思考复习题第二章一元二次方程1.认识一元二次方程2.用配方法求解一元二次方程3.用公式法求解一元二次方程4.用因式分解法求解一元二次方程*5. 一元二次方程的跟与系数的关系6.应用一元二次方程回顾与思考复习题第三章概率的进一步认识1.用树状图或表格求概率2.用频率估计概率5回顾与思考复习题第四章图形的相似1.成比例线段2.平行线分线段成比例3.相似多边形4.探索三角形相似的条件*5. 相似三角形判定定理的证明6.利用相似三角形测高7.相似三角形的性质8.图象的位似回顾与思考复习题第五章投影与视图1. 投影2. 视图回顾与思考复习题第六章反比例函数1.反比例函数2.反比例函数的图象与性质3.反比函数的应用回顾与思考复习题九年级下册目录第一章直角三角形的边角关系1. 锐角三角形2. 30°,45°,60°角的三角形函数值3. 三角函数的计算4. 解直角三角形5. 三角函数的应用6. 利用三角函数测高回顾与思考复习题第二章二次函数1. 二次函数2. 二次函数的图象与性质3. 确定二次函数的表达式4. 二次函数的应用5. 二次函数与一元二次方程回顾与思考复习题第三章圆1. 圆2. 圆的对称性6*3. 垂径定理4.圆周角和圆心角的关系5.确定圆的条件6.直线和圆的位置关系*7.切线长定理8.圆内接正多边形9.弧长及扇形的面积回顾与思考复习题7。
第二 章 有理数及其运算 单元复习 22—23学年北师大版数学七年级上册
加法的交换律: a+b=b+a.
加法的结合律: (a+b)+c=a+(b+c
).
探究新知
方法点拨
使用运算律通常有下列情形:
(1)互为相反数的加数放在一起相加(相反数结合法);
(2)能凑整的加数放在一起相加(凑整法);
(3)同号的加数放在一起相加(同号结合法) ;
(4)同分母或易于通分的分数放在一起相加(同分母结合法).
负数的奇数次幂是负数.
当指数不断增加时,底数大于1 的幂的增长速度相当快 .
底数为10的幂的特点:10的n次幂
等于1的后面有n个0.
把一个大于10的数,写成 a×10n 的形式,其中1≤a<10,n是__正整数
_____,这种方法叫做科学记数法.
方法点拨:用科学记数法表示大于10的数的“三步法”
1.定a:确定a,a必须满足1≤a<10;
注意:一个数可以看作这个数本身的一次方,例如8就
是81,通常指数为1时省略不写.
当底数是负数或分数时一定要用括号把底数括起来.
探究新知
结论:正数的任何次幂都是正数.
负数的偶次幂是正数;负数的奇次幂是负数.
0的任意正整数次幂都是0.
利用有理数的乘方解决实际问题时,关键是找到
每次变化后所得的结果与变化次数之间的关系.
-8 + 10 - 6 - 4 ,看作和式,读作“负8、正10、负6、负4的
和”,按运算意义可读作“负8加10减6减4”.
有同分母、有相反数、有整数进行有理数的加减
混合运算时,可以考虑加法的交换律、结合律使
运算简便,在利用运算律时要注意:1.相加得整的
可先相加;2.同分母的可先相加;3.互为相反数的可
七年级数学(北师大版) 上册知识点总结(带关键习题)
北师大版七年级数学上册知识点总结前言:七年级上知识点很简单,主要是衔接作用,很多知识点在六年级涉及过,现在是对六年级的加深与拓展。
重点难点章节有三个:第二章有理数及其运算、第三章整式及其加减、第五章一元一次方程.第一章丰富的图形世界备注:本单元两个易错点: 1、图形的展开与折叠2、“三视图”判断图形个数1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥3、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面.体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
4、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,且各面都是长方形。
(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱.棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。
圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。
侧面展开图是扇形,底面是圆。
球: 由一个面(曲面)围成的几何体。
5、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
6、正方体的平面展开图:11种总结规律:一线不过四,田凹应弃之;相间、Z端是对面,间二、拐角邻面知。
3—3型7、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
新北师大版七年级数学上册第二章《有理数》难题、易错题讲解
七年级数学上册第二章《有理数》难题、易错题讲解类型一 0+0型例:已知|m-3|+|n+2|=0,求m 、n 的值。
练习:1、已知|x+2|+|y+32|=0,试比较x ,y 的大小。
2、|a-21|+|b+31|+|c+52|=0 (1)试比较a 、b 、c 的大小。
(2)计算|a|+|(-b)|+|c|的值。
3、若|x+1|+|y-2|+|z+3|=0,求|x|+|y|+|z|的值。
4、试讨论:x 为有理数,|x-1|+|x-3|有没有最小值?如果有,求出这个最小值;如果没有,请说明理由。
类型二 化简计算型例:计算|9911001-|+|10011011-| - |9911011-|练习1、 实数a 、b 在数轴上的位置如图所示,化简|a|+|b|-|a+b|2、若a 、b 、c 三数在数轴上对应位置如图所示,化简|a|-|a+b|+|c-b|+|a+c|3、若有理数a 、b 在数轴上的位置如图所示,化简:|a+b|-|a-b|-|-b|4、a 、b 、c 三个数在数轴上的位置如图所示,化简式子: cc b b a a ||||||++5、|2131-|++-+-|4151||3141|…|2011120121-|类型三 比较大小(数轴上可特值法)例:有理数a 、b 在数轴上的位置如图所示,则下列结论中,正确的是( )A 、a+b >a >b >a-bB 、a >a+b >b >a-bC 、a-b >a >b >a+bD 、a-b >a >a+b >b练习 1、如果a 、b 均为有理数,且b <0,则a 、a-b 、a+b 的大小关系。
( )A 、a <a+b <a-bB 、a <a-b <a+bC 、a+b <a <a-bD 、a-b <a+b <b2、有理数a 、b 在数轴上的对应点的位置如图所示,用不等号把a 、b 、-a 、-b 连接起来:________________________类型四 探索规律型 例:观察下列等式:311⨯=)311(21-,)4121(21421-=⨯,)5131(21531-=⨯ (1)猜想:=+)2(1n n ____________________ (2)试写出:)3(1+n n =__________________________练习1 、一只跳蚤从数轴上的原点出发,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,按这样的规律跳100次,跳蚤到圆原点的距离是____________个单位。
最新北师大版七年级数学上册第二章知识点整理
北师大版七年级数学上册第二章知识点整理七年级上册第二章有理数及其运算有理数:有理数=整数+分数整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l负数的概念:数轴上0左边的数,形如-3,-0.2,-100….l0既不是正数也不是负数,0是整数也是偶数.①正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0;a,b互为相反数a+b=0;求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.绝对值:几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.对于任何有理数a,都有a的绝对值≥0,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;比较两个负数,绝对值大的反而小;倒数:乘积为1的两个数互为倒数,所以数a的倒数是1/a,0没有倒数;求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.用1除以一个非0数,商就是这个数的倒数.有理数的四则运算:⑴加法法则:①同号两数相加,符号不变,把绝对值相加;②异号两数相加,绝对值相等时相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律.⑵减法法则:①减去一个数,等于加上这个数的相反数,依据加法法则②加减混合运算,通过减法法则将减法转化为加法,统3 / 5一成只含有加法运算的和式;减法没有交换律.⑶乘法法则:①两数相乘,同号得正,异号得负,把绝对值相乘;②任何数同0相乘,得0;③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷除法法则:①两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;科学记数法把一个大于10的数表示成的形式,这种记数方法叫科学记数法;准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;有效数字:在近似数中,从左边个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;5 / 5。
北师大版七年级数学上册第二章有理数 单元复习题( 无答案)
北师大版七年级数学上册第二章有理数 单元复习题一.选择题(共25小题)1.计算│﹣3+2│的结果是( )A .﹣5 B .5 C .﹣1 D .12.如图,数轴上有O ,A ,B 三点,点O 表示原点,点A 表示的数为﹣1,若OB =3OA ,则点B 表示的数为( )A .1B .2C .3D .43.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2B .﹣122和(﹣12)2 C .(﹣2)2和22D .﹣(﹣12)2和﹣1224.已知│2x ﹣1│=7,则x 的值为( )A .x =4或x =﹣3B .x =4C .x =3或﹣4D .x =﹣35.若1<x <2,则│x -2│x -2-│x -1│1-x+│x │x 的值是( )A .﹣3B .﹣1C .2D .16.若(x ﹣y ﹣3)2+│y +2│=0,则x ·y 的值是( ) A .2 B .﹣4 C .﹣2 D .10 7.下列说法中,正确的是( ) A .若a >│b │,则a >b B .若a ≠b ,则a 2≠b 2 C .若│a │=│b │,则a =b D .若│a │>│b │,则a >b 8.已知|x ﹣3|+(2x ﹣3y ﹣m )2=0,且y 是正数,则m 的取值范围是( ) A .m >5 B .m <3 C .m >9 D .m <6 9.若a 2=16,b 2=25,且ab <0,则a ﹣b 的值为( ) A .﹣9 B .﹣2 C .±9 D .1 10.比﹣3大1的数是( )A .1B .﹣2C .﹣4D .1 11.若│x +2│+(y ﹣3)2=0,则x ﹣y 的值为( ) A .﹣5 B .5 C .1 D .﹣112.如图,数轴上点A 对应的数是32,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .﹣12B .﹣2C .72D .1213.若1x=﹣4,则x 的值是( )A .4B .14C .﹣14D .﹣414.已知有理数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .c <a <bB .│a│<│b│C .a +b >0D .│c ﹣b│=c ﹣b15.如图,点O 为数轴的原点,若点A 表示的数是﹣1,则点B 表示的数是( )16.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数是( )A .﹣2020B .12000C .2020D .﹣1200017.若│x +1│+(y ﹣2019)2=0,则x y =( ) A .0 B .1 C .﹣1 D .2019 18.数轴上:原点左边有一点M ,从M 对应着数m ,有如下说法:①﹣m 表示的数一定是正数; ②若│m│=8,则m =﹣8; ③在﹣m ,1m ,m 2,m 3中,最大的数是m 2或﹣m ; ④式子│m +1m│的最小值为2.其中正确的个数是( )A .1个B .2个C .3个D .4个19.如图,O ,A ,B ,C 四点在数轴上,其中O 为原点,且AC =2,OA =2OB ,若C 点所表示的数为m ,则B 点所表示的数正确的是( )A .﹣2(m +2)B .m -22C .m +22D .2-m 220.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m 恰好经过7步运算可得到1,则所有符合条件的m 的值有( )A .3个B .4个C .5个D .6个21.定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为n2k ;(其中k 是使n2k 为奇数的正整数),并且运算可以重复进行,例如,取n =26.则:若n =49,则第449次“F 运算”的结果是( ) A .98 B .88 C .78 D .6822.如图,已知A ,B 两点在数轴上,点A 表示的数为﹣10,OB =3OA ,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动(点M 、点N 同时出发).经过几秒,点M 、点N 分别到原点O 的距离相等?( )A .2秒B .10秒C .2秒或10秒D .以上答案都不对23.若│a ﹣1│+(b +2)2=0,则a ﹣2b 的值为( ) A .﹣2 B .﹣5 C .2 D .5 24.若m 、n 满足│m +1│+(n ﹣2)2=0,则m n 的值等于( ) A .﹣1B .1C .﹣2D .14二.填空题(共15小题)26.若m ,n 满足│m ﹣2│+(n +1)2=0,则m n 的值为 .27.如图,已知A ,B 两点在数轴上,点A 表示的数为﹣10,点B 表示的数为30,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动,其中点M 、点N 同时出发,经过 秒,点M 、点N 分别到原点O 的距离相等.28.若a 、b 互为相反数,c 、d 互为倒数,则(a +b )2﹣2cd = . 29.若a ,b 互为相反数,x ,y 互为倒数,则2(a +b )+74xy 的值是 .30.已知│1-x │2=3,则x = .31.若A 、B 、P 是数轴上的三点且点A 表示的数为﹣2,点B 表示的数为1,点P 表示的数为x ,当其中一点到另外两点的距离相等时,则x 的值为 .32.若a 是最大的负整数,b 是绝对值最小的数,c 与a 2互为相反数,则(a +b )3﹣c 2006= . 33.已知x 2=4,│y│=5,xy <0,那么x 3﹣y 2= .34.已知│m ﹣n +4│和(n ﹣3)2互为相反数,则m 2﹣n 2= .35.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是1,那么a +bm +m 2﹣2cd 的值为 .36.有一面积为1m 2的正方形纸板,第一次剪掉一半,第二次剪掉剩下的一半,如此下去,第五次剪后剩下的纸板的面积是 m 2.37.已知│a│=6,│b│=2,且a <0,b >0,那么a +b 的值为 . 38.│a ﹣b│=b ﹣a ,│a│=4,│b│=3,则(a +b )2= . 39.计算:﹣12×(16+14-13)= .40.“转化”是一种解决问题的常用策略,有时画图可以帮助我们找到转化的方法,例如借助图(1),可以把算式1+3+5+7+9+11转化为62=36.请你观察图(2),可以把算式12+14+18+116+132 转化为= .三.解答题(共15小题) 41.计算:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9); (2)(23-112-115 )×(﹣60);42.计算①(12+23-34-56)×(-12). ②-22×14+[4÷(-23)2-1]+(-1)2021.43.计算(1)(﹣4)﹣(+13)+(﹣5)﹣(﹣9)+7; (2)614-3.3-(-6)-(-334)+4+3.3;(3)-81÷(-214)×49÷(-16); (4)(-24)×(138+213-0.75).44.从有关方面获悉,在我市农村已经实行了农民新型合作医疗保险制度.享受医保的农民可在规定的医院就医并按规定标准报销部分医疗费用,如表是医疗费用报销的标准:医疗费用标准门诊 住院0~5000元 5001~20000元20000以上 每年报销比例标准30%30%40%50%(说明:住院医疗费用的报销分段计算,如:某人住院医疗费用共30000元.则5000元按30%报销、15000元按40%报销、余下的10000元按50%报销;题中涉及到的医疗费均指允许报销的医疗费) (1)某农民在2009年门诊看病自己共报销医疗费180元,则他在这一年中门诊医疗费用共多少元?(2)某农民住院费用10000元,则该农民按标准能报销医疗费多少元?(3)某农民住院费用29000元,则该农民报销医疗费用后.自付住院费用占住院费用的百分之几?45.2020年春节将至,某商场计划购进一批鼠年吉祥物“鼠来宝”,生产厂家订价为每个“鼠来宝“60元,由于临近春节,生产厂家进行促销活动,商场以八折的价格购进,结果比计划多购进了100个“鼠来宝”. (1)该商场购进这批“鼠来宝”共花费多少元?(2)该商场将每个“鼠来宝”在进价的基础上提高50%进行销售.由于“鼠来宝”深受人们的喜欢,所以很快售完,商场以同样的进价又购进了300个“鼠来宝”,并以同样的售价进行销售,到小年了,还有第二次购进的30%的“鼠来宝”没卖出去,求此时商场获利多少元?(3)在(2)的条件下,过完小年商场将剩下的“鼠来宝”以售价的五折进行降价处理,那么商场将两次购进的“鼠来宝”全部销售完后共获利多少元? 46.计算与化简:(1)12﹣(﹣6)+(﹣9); (2)(﹣48)×(﹣12﹣58+712);(3)﹣32÷(﹣2)2×│﹣113│×6+(﹣2)3.47.计算:﹣14+│2﹣(﹣3)2│+12÷(﹣32). 48.计算:[(16-14)×12]2+2004.49.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.下面我们用四个卡片代表四名同学(如图):(1)列式,并计算:①﹣3经过A,B,C,D的顺序运算后,结果是多少?②5经过B,C,A,D的顺序运算后,结果是多少?(2)探究:数a经过D,C,A,B的顺序运算后,结果是45,a是多少?50.如图,在数轴上A点表示数a,B点表示数b,且a、b满足|a+12|+(b﹣6)2=0.(1)求A、B两点之间的距离;(2)点C、D在线段AB上,AC为14个单位长度,BD为8个单位长度,求线段CD的长;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q以2个单位长度/秒的速度从D点出发沿正方向运动,求经过几秒,点P、点Q到点C的距离相等.51.如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为﹣5,b,4.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.(1)在图1的数轴上,AC=个长度单位;数轴上的一个长度单位对应刻度尺上的cm;(2)求数轴上点B所对应的数b;(3)在图1的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.52.计算.(1)﹣42×(﹣2)+[(﹣2)3﹣(﹣4)]; (2)﹣12018﹣(﹣2)3﹣2×(﹣3).53.计算:(1)16÷(﹣2)3﹣(﹣18)×(﹣4)+(﹣1)2020;(2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].54.计算:(1)(﹣34+712﹣58)×(﹣24) (2)﹣23﹣|﹣3|+4﹣(﹣38)×(﹣3)55.计算题:(1)8+(﹣3)2×(﹣2)﹣(﹣3) (2)﹣12﹣24×(﹣16+23﹣34)。
北师大版七年级上册第二章《有理数》综合复习:考点总结(无答案)
倒数:乘积为1的两个、数互为倒数. , 互为倒数,则 ;反之亦然.
负倒数:乘积为 的两个数互为负倒数.若 , 互为负倒数,则 .反之亦然.
例如: ,3与 互为倒数.
若 ,则 与 互为负倒数.Байду номын сангаас
倒数是成对出现的,单独一个数不能称为倒数;
互为倒数的两个数的乘积一定是 ;0没有倒数;
求一个非零有理数的倒数,把它的分子和分母颠倒位置即可.
一般地,数 的相反数是 ;这里以 表示任意一个数,可以为正数、0、负数,也可以是任意一个代数式.注意 不一定是负数.
当 时, ;当 时, ;当 时, .
例如:3的相反数为
的相反数为
0的相反数为0
互为相反数的两个数的和为零,即若 与 互为相反数,则 ;
反之,若 ,则 与 互为相反数.
一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.
注意:数轴上的点不都代表有理数,如 .
利用数轴比较有理数的大小:
数轴上右边的点所对应的数总大于左边的点所对应的数.因此,正数总大于零,负数总小于零,正数大于负数.
例1:⑴画出数轴,在数轴上表示下列各数,并把数用“ ”连接.
⑵ 和 的大小关系是: ____
⑶数轴上与原点的距离是3个单位长度的点所表示的数是__________.
正数前面的“ ”可以省略,注意 与 表示是同一个正数.
用正、负数表示相反意义的量:
如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然.
“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.
譬如:用正数表示向南,那么向北 可以用负数表示为 .
有理数:整数与分数统称有理数.
北师大数学七年级上册第二章有理数
第01讲_有理数知识图谱正数和负数知识精讲一.正数与负数正数比0大的数叫做正数像,,等大于0的数(“”通常省略不写)叫做正数负数比0小的数叫做负数像,,这样在正数前面加上“”(读作“负号”,“”不能省略)的数叫做负数,负数小于0.*注意:(1)0既不是正数也不是负数(2)不是所有带负号“-”的数都是负数。
如“-a”,如果a本身是个正数,那么-a就是负数;如果a本身是个负数,那么-a就是正数二.相反意义的量相反意义的量负数与正数表示意义相反的量,在实际问题中,如果用正数表示某种意义的量,那么负数表示其相反意义的量。
“上升”与“下降”若米表示上升6米则米表示下降米“向东”与“向西”若米表示向东走米则米表示向西走3米“增加”与“减少”若表示产量增加了则表示产量减少了判断是否为相反意义的量: 相反意义的量必须包含两个要素: 1. 它们的意义相反; 2. 它们都表示同一类量. (具体的数量可以不相同) ①身高1.84米和体重50公斤(×) ②收入200元,支出50元(√)③向北走3千米,向东走2千米(×) ④胜3局,负2局(√)⑤节约水4吨,浪费粮食2千克(×) ⑥盈利5万元与支出5万元(×)三点剖析一.考点:正数和负数的概念二.重难点:相反意义的量.三.易错点:1.0既不是正数,也不是负数; 2.“+”可以省略,“-”不能省略.正数和负数例题1、 已知下列各数88.1,5,2006,14.3,722,0,34,4+----中,其中负数的个数是( ) A.2个 B.3个 C.4个 D.5个【答案】 C【解析】 该题考查的是负数的概念.负数是小于0的数,正数是大于0的数,可知是负数的有4-,43-, 3.14-, 5-,共4个,所以本题的答案是C .例题2、 下列各数中,不是负数的是( ) A.﹣2B.3C.5-8D.﹣0.10【答案】 B【解析】 A 、﹣2是负数,故本选项不符合题意; B 、3是正数,不是负数,故本选项符合题意; C 、﹣是负数,故本选项不符合题意;D 、﹣0.10是负数,故本选项不符合题意; 例题3、 有下列各量:①身高1.84米和身高1.74米;②收入200元,支出50元;③向北走3千米,向东走2千米;④胜3局,负2局;⑤节约水4吨,浪费粮食2千克;⑥盈利5万元与支出5万元.其中具有相反意义的量的是__________________ 【答案】 ②④.【解析】 ①两者同为身高,不具有相反的意义;③向北和向东不具有相反意义;⑤节约水和浪费粮食不具有相反意义;⑥盈利和支出不具有相反意义.例题4、 如果水位升高2m 时,水位的变化记为+2m ,那么水位下降3m 时,水位的变化情况是________. 【答案】 -3m【解析】 ∵水位升高2m 时水位变化记作+2m , ∴水位下降3m 时水位变化记作-3m .随练1、 如果向右走5步记为+5,那么向左走3步记为( )A.+3B.﹣3C.+D.﹣【答案】 B【解析】 如果向右走5步记为+5,那么向左走3步记为﹣3;随练2、 有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( )A.+2B.﹣3C.+3D.+4【答案】 A【解析】 A 、+2的绝对值是2; B 、﹣3的绝对值是3; C 、+3的绝对值是3; D 、+4的绝对值是4. A 选项的绝对值最小.随练3、 在﹣2,+3.5,0,-23,﹣0.7中,负分数有( )A.1个B.2个C.3个D.4个 【答案】 B【解析】 ∵3.5,-23,﹣0.7是分母不为1的数,∴3.5,-23,﹣0.7是分数,∵-23<0,﹣0.7<0,∴-23,﹣0.7是负分数.有理数知识精讲一.有理数的概念二.有理数的分类有理数整数与分数统称有理数*有限小数和无限循环小数能化为分数,属于有理数例如0.1212121212…,1.23456,等无理数无限不循环小数叫无理数例如:(π=3.1415926535……)是无限不循环小数,不属于有理数;看起来是分数的形式,但仍然是无限不循环小数,不属于有理数; 0.12122122212222……数字排列有一定的规律但并不循环,不属于有理数()⎧⎧⎪⎪⎪⎨⎨⎪正整数正数零有理数按定义分类负整数* “四非”三点剖析一.考点:有理数概念,有理数的分类.二.重难点:有理数的分类.三.易错点:1.正数和零统称为非负数;2.负数和零统称为非正数; 3.正整数和零统称为非负整数;4.负整数和零统称为非正整数.有理数的概念例题1、 下列说法正确的是( ) A.在一个数前面加“-”号就得到负数 B.0既不是正数,也不是负数,但0是有理数 C.非负数就是正数 D.不带“-”号的数是正数【答案】 B【解析】 A ,反例:在“0” 前面加“-”号,不能得到负数.B 正确.C ,0是非负数,但不是正数.D ,0不带“-”号,但也不是正数例题2、 下列说法正确的个数是( ) ①一个数前面加“-”号就得到负数; ②0既不是正数也不是负数,但是是有理数; ③非负数就是正数; ④不带“-”号的数就是正数. A.1 B.2 C.3 D.4 【答案】 A【解析】 ①错误,②正确,③非负数还包括0,所以错误,④错误.非负数 正数和0统称为非负数 将下列数正数:非正数:非负整数非正数负数和0统称为非正数非负整数满足:①是非负数 ②是整数即:0和正整数非正整数满足:①是非正数 ②是分数 即:0和负整数()(,)⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数也不是负数负整数负有理数负分数例题3、 已知数:+(-2),-|-3|,117,0.101001000…,-1.32,π-3.14,0其中有理数有________个 【答案】 5【解析】 +(-2),-|-3|,117,-1.32,0是有理数. 例题4、 下列说法:①0是整数;②112-是分数;③5.6不是分数;④3是正数也是整数;⑤3.14是正数也是有理数;⑥π是正数也是有理数.其中正确的有( ) A.1个 B.2个 C.3个 D.4个 【答案】 D【解析】 ①0是整数,正确;②112-是负分数,正确;③35.655=是分数,故本选项错误;④3是正数也是整数,正确;⑤3.14是正数也是有理数,正确;⑥π是正数但是不是有理数,它是无理数,故本选项错误; 其中正确的有①②④⑤. 随练1、 ﹣0.135( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数 【答案】 D【解析】 ﹣0.135既是分数也是负数.故选D .有理数的分类例题1、 下列各数:1330.70125---,,,,,中,负分数有__________个;负整数有__________个;自然数有__________个【答案】 2;1;2【解析】 负分数:12-、0.7-,负整数:3-,自然数:0、1例题2、 按要求选择下列各数:3,π,0, 3.5-,13,0.03-,0.26+,1-,132,94-,1,7-,2.4.(1)属于整数的有________________________________________________ (2)属于分数的有________________________________________________ (3)属于非正数的有______________________________________________ (4)属于非负数的有______________________________________________ (5)属于非负整数的有____________________________________________ (6)属于有理数的有______________________________________________【答案】 (1)3、0、1-、1、7-(2) 3.5-、13、0.03-、0.26+、132、94-、2.4(3)0、-3.5、0.03-、1-、94-、7-(4)3、π、0、13、0.26+、132、1、2.4(5)3、0、1(6)3、0、 3.5-、13、0.03-、0.26+、1-、132、94-、1、7-、2.4 【解析】 非正数包括0和负数,非负数包括0和正数,非负整数包括0和正整数随练1、 在4-,23,0,2.7这四个有理数中,整数有_______________.【答案】 4-,0【解析】 该题考查的是有理数的分类.23为分数,2.7为小数,4-,0为整数.随练2、把下列各数填在相应的括号里:-5,13+,0.62,4,0,-1.1,76,-6.4,-7,173-,7.(1)正整数:{________…};(2)负整数:{________…};(3)分数:{________…};(4)整数:{________…}.【答案】(1)4,7(2)-5,-7(3)13+,0.62,-1.1,76,-6.4,173-(4)-5,4,0,-7,7【解析】(1)正整数:{4,7…};(2)负整数:{-5,-7…};(3)分数:{13+,0.62,-1.1,76,-6.4,173-…};(4)整数:{-5,4,0,-7,7.…},数轴知识精讲规定了原点、正方向和单位长度的直线叫做数轴原点、正方向、单位长度称为数轴的三要素,三者缺一不可.原点在直线上任取一个点表示0这个点叫做原点。
新北师大版初中数学教材目录
七年级数学上册目录(一)第一章丰富的图形世界§1.生活中的立体图形§2.展开与折叠§3.截一个几何体§4.从三个方向看物体的形状回顾与思考复习题第二章有理数及其运算§1.有理数§2.数轴§3.绝对值§4.有理数的加法§5.有理数的减法§6.有理数的加减混合运算§7.有理数的乘法§8.有理数的除法§9.有理数的乘方§10.科学记数法§11.有理数的混合运算§12.用计算器进行运算回顾与思考复习题第三章整式及其加减§1.字母表示数§2.代数式§3.整式§4.整式的加减§5.探索规律回顾与思考复习题综合与实践探询神奇的幻方第四章基本平面图形§1.线段、射线、直线§2.比较线段的长短§3.角§4.角的比较§5.多边形和圆的初步认识回顾与思考复习题第五章一元一次方程§1.认识一元一次方程§2.求解一元一次方程§3.应用一元一次方程我变高了§4.应用一元一次方程打折销售§5.应用一元一次方程希望工程义演§6.应用一元一次方程能追上小明吗回顾与思考复习题第六章数据的收集与整理§1.数据的收集§2.普查和抽样调查§3.数据的表示§4.统计图的选择回顾与思考复习题七年级数学下册目录第一章整式的乘除§1.同底数幂的乘法§2.幂的乘方与积的乘方§3.同底数幂的除法§4.整式的乘法§5.平方差公式§6.完全平方公式§7.整式的除法回顾与思考复习题第二章相交线与平行线§1、两条直线的位置关系§2、探索直线平行的条件§3、平行线的特征§4、用尺规作角回顾与思考复习题第三章三角形§ 1、认识三角形§ 2、图形的全等§ 3、探索三角形全等的条件§ 4、用尺规作三角形§ 5、利用三角形全等测距离回顾与思考复习题第四章---变量之间的关系§1.用表格表示的变量间关系§2.用关系式表示的变量间关系§3.用图象表示的变量间关系回顾与思考复习题第五章轴对称§1.轴对称现象§2.探索轴对称的性质§3.简单的轴对称图形§4.利用轴对称进行设计回顾与思考复习题第六章频率与概率§1. 感受可能性§2. 频率的稳定性§3. 摸到红球的概率§4. 停留在黑砖上的概率回顾与思考复习题八年级数学上册目录第一章勾股定理§1.探索勾股定理§2.能得到直角三角形吗§3.蚂蚁怎样走最近回顾与思考复习题第二章实数§1.数不够用了§2.平方根§3.立方根§4.公园有多宽§5.用计算器开方§6.实数§7.二次根式回顾与思考复习题第三章位置与坐标§1.确定位置§2.平面直角坐标系§3.坐标与轴对称回顾与思考复习题第四章一次函数§1.函数§2.一次函数§3.一次函数的图象§4.确定一次函数的表达式§5.一次函数图象的应用回顾与思考复习题第五章二元一次方程组§1.谁的包裹多§2.解二元一次方程组§3.鸡兔同笼§4.增收节支§5.里程碑上的数§6.二元一次方程(组)与一次函数§7.三元一次方程组回顾与思考复习题第六章数据的分析§1.平均数§2.中位数与众数§3.从统计图估计数据的代表§4.数据的波动回顾与思考1/2复习题第七章证明(一)§1.你能肯定吗§2.定义与命题§3.直线平行的判定§4.平行线的性质§5.三角形内角和定理回顾与思考复习题综合与实践1.计算器功能探索2.一次函数的应用八年级数学下册目录第一章证明(二)§1.等腰三角形§2.直角三角形§3.线段的垂直平分线§4.角平分线回顾与思考复习题第二章一元一次不等式和一元一次不等式组§1.不等关系§2.不等式的基本性质§3.不等式的解集§4.一元一次不等式§5.一元一次不等式与一次函数§6.一元一次不等式组回顾与思考复习题综合与实践:一元一次不等式与一元一次方程、一次函数的实际应用第三章图形的平移与旋转§1.图形的平移§2.图形的旋转§3.中心对称§4.简单的图案设计回顾与思考复习题第四章分解因式§1.分解因式§2.提公因式法§3.运用公式法回顾与思考复习题第五章分式§1.认识分式§2.分式的乘除法§3.分式的加减法§4.分式方程回顾与思考复习题第六章平行四边形§1.平行四边形的性质§2.平行四边形的判定§3.三角形的中位线§4.多边形的内角和与外角和回顾与思考复习题综合与实践:平面图形的镶嵌九年级数学上册目录第一章---特殊的平行四边形§1.菱形的性质与判定§2.矩形的性质与判定§3.正方形的性质与判定回顾与思考复习题第二章一元二次方程§1.认识一元二次方程§2.配方法§3.公式法§4.因式分解法§5.一元二次方程的应用回顾与思考复习题第三章相似图形§1.成比例线段§2.平行线分线段成比例§3.相似多边形§4.相似三角形的判定§5.黄金分割§6.测量旗杆的高度§7.相似三角形的性质§8.图形的放大与缩小回顾与思考复习题第四章投影与视图§1.投影§2.视图回顾与思考复习题第五章反比例函数§1.反比例函数§2.反比例函数的图象和性质§3.反比例函数的应用回顾与思考复习题第六章对概率的进一步研究§1.游戏公平吗§2.投针实验§3.生日相同的概率回顾与思考复习题综合与实践:1.猜想、证明与拓广2.制作视力表九年级数学下册目录第一章直角三角形的边角关系§1.从梯子的倾斜程度谈起§2.特殊角的三角函数值§3.三角函数的有关计算§4.有触礁的危险吗§5.测量物体的高度回顾与思考复习题第二章二次函数§1.二次函数所描述的关系§2.二次函数的图象与性质§3.确定二次函数的表达式§4.最大面积是多少§5.何时获得最大利润§6.二次函数与一元二次方程回顾与思考复习题第三章圆§1.圆§2.圆的对称性§3.垂径定理§4.圆周角与圆心角的关系§5.确定圆的条件§6.直线和圆的位置关系§7.切线长定理§8.圆内接正多边形§9.弧长及扇形的面积回顾与思考复习题第四章统计与概率§1.视力的变化§2.生活中的概率§3.统计与概率的应用回顾与思考复习题综合与实践1.设计遮阳蓬2.你对促销知多少2/2。
2024年秋新北师大版七年级上册数学教学课件 第二章 有理数及其运算 章末复习
( 负分数 )
3.数轴 规定了原点、正方向和单位长度的直线.
-4 -3 -2 -1 0 1 2 3 4
-4 -3 -2 -1 0 1 2 3 4
(1)在数轴上表示的两个数,右边的数总 比左边的数大;
(2)正数都大于0,负数都小于0;正数大 于一切负数;
(3)所有有理数都可以用数轴上的点表示.
4.相反数 如果两个数只有符号不同,那么称
其中一个数为另一个数的相反数.
-4 -3 -2 -1 0 1 2 3 4
(1)数a的相反数是-a(a是任意一个有理数); (2)0的相反数是0; (3)若a、b互为相反数,则 a+b = 0.
5.倒数 如果两个有理数的乘积为1,那么称
其中的一个数是另一个数的倒数.
-10
-73
(7) 7.54+(-4.4)+(-2.54)+4.4; 5
(8) ( 2 1 )-( 1 5 ); 2
32 36
3
(9) 2.4-( 3 )+(-3.1)+
(10)
(
6
5
)+
(
7
)
-
4;
5
0.7
( -2 ); 1
- 0.5, - 3.5,7, - 4.5, - 4.
相反数: 0.5 3.5 -7 4.5 4 绝对值: 0.5 3.5 7 4.5 4
3. 下面两个圈分别表示负数集合和整数集合,请 将下列各数填在适当的圈中:
5 1 ,0 ,2 , 7 ,1.25 , 7 , 3 , 3
2
3
4
5 1 , 7, 7 ,7, 3
整数集合
4. 比较下列每组数的大小:
第2章 有理数及其运算 小结与复习 (课件)北师大版(2024)数学七年级上册)
例 2 把下列各数填在相应的括号内:-16,26,
-12,-0.92, 35,0,314,0.1008,-4.95.
正数集合:{ 26, 3 ,3 1 , 0.1008, 54
…};
负数集合:{ 26, 12, 0.92, 4.95, …};
整数集合:{ 26, 26, 12, 0,
…};
正分数集合:{ 3 ,3 1 , 0.1008, 54
大的数,也没有最小的数;正数的绝对值是正数,正数的相反数是负
数.因此只有②④正确.
针对训练
1.判断:
①不带“-”号的数都是正数 ( )
×
②如果a是正数,那么-a一定是负数( ) √
③不存在既不是正数,也不是负数的数( )
×
④一个有理数不是正数就是负数 ( )
×
⑤ 0℃表示没有温度
() ×
考点二 有理数的分类
A.1.94×10A10
B.0.194×1010
C.19.4×109
D.1.94×109
解析:194亿=19 400 000 000,根据科学记数法表示数的规律,当原数大于 10时,10的幂指数n=原数整数位数-1,则194亿=1.94×1010.故选A.
[归纳总结]
用科学记数法表示一个大于10的数,就是把这个数表示为a×10n(其 中a是整数位数只有一位的数,n是正整数)的形式.因此,准确地理 解科学记数法的概念,紧紧抓住a,n的条件是解决此类题的关键.
(1)一个数在数轴上对应的点到原点的距离叫做这个数的绝对值
5.比较两个负数的大小 两个负数,绝对值大的反而小.
三、有理数的运算
1.有理数的加法
(1)加法法则 (2)加法的运算律 2.有理数的减法
北师大版七年级上册第二章有理数 有理数难题综合
次,就把这根很粗的面条拉成了许多细的面条(假设在拉的过程中面条没有断),如图所示,这样的捏合,到第多少次后可拉出128根细面条?捏合了10次后可拉出多少根细面条?15.问题:你能比较两个数20102011和20112010的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较n n+1和(n+1)n的大小(n是自然数),然后我们从分析n=1,n=2,n=3……这些简单情形入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算:比较下列各组中两个数的大小:①12_______21②23_______32③34_______43④45_______54⑤56_______65……(2)从第(1)题的结果经过归纳,可以猜想出n n+1和(n+1)n的大小关系是_______.(3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小:20102011_______20112010一、填空题1.计算:-3-3×(-12)=_______.2.计算:15×(-5)÷(-15)×5=_______.3.计算:-23÷49×(-23)2=_______.4.若m、n满足3m-+(n-2)2=0,则m n的值等于_______.5.形如式子abcd叫做二阶列式,它的运算法则用公式表示为abcdad bc=-,依此法则计算23-14=________.二、选择题6.下列计算正确的是( )A.(-3)-(-5)=-8 B.(-3)×(-5)=-8 C.(-3)3=-9 D.-32=-97.计算251758612⎛⎫-+-+⎪⎝⎭×(-2.4)的结果是( )A.-2.9 B.2.9 C.-2.8 D.2.8 8.计算(-2×5)3=( )A .1000B .-1000C .30D .-30 9.下列各式运算结果为正数的是 ( ) A .-3×54 B .(3-5)4×5 C .(1-34)×5 D .10-(2×3)610.计算机中常用的十六进制是逢16进1的计数制,采用数字0-9和字母A ~F 共16个计数符号,这些记数符号与十进制的数之间的对应关系如下表:例如,在十六进制中,E +F =lD .则在十六进制中,A×B = ( ) A . B0 B .1A C .5F D .6E 三、解答题 11.计算: (1)1-12+14-18; (2) -8+4÷(-2);(3)3×(-4)+(-28)÷7; (4)(-7)×(-5)-90÷(-15);(5)12÷(-3-14+113); (6)(-245×156-0.25×5-25)×(-1)5.12.我们平时使用的是十进制的数,表示十进制数要用10个数字:9,8,7,6,5,4,3,2,1,0.例如:80739=8×104+0×103+7×102+3×10+9.但是计算机中使用的二进制数只有两个数字:0和1.那么二进制中的1001101等于十进制中的哪一个数? 13.“*”表示一种新运算,它的意义是a *b =-ab -(a +b ),求: (1)(-3)*5; (2)(-4)*(-5).14.已知a 、b 互为相反数,c 、d 互为倒数,且2x y -+=0,求x 2y -(a +b +cd)x +(a +b )2011-(cd)2011的值.15.如图(1)是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图(1)倒置后与原图(1)拼成图(2)的形状,这样我们可以算出图(1)中所有圆圈的个数为1+2+3+…+n =()12n n +.如果图(1)中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图(3)的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是_______,(2)我们自上往下,在每个圆圈中都按图(4)的方式填上一串连续的整数-23,-22,-21,…,求图(4)中所有圆圈中各数的绝对值之和.一、填空题1.42×2334⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭+÷(-0.25)=_______.2.22×5-(-2)3÷4=_______. 3.用“☆”“★”定义新运算;对于任意实数a 、b ,都有a ☆b =a 和a ★b =b .例如5☆2=5,2★4=4,则(2009★2010)☆(2010★2011)=_______.4.自然数中有许多奇妙而有趣的现象,很多秘密等待着我们去探索!比如:对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数X ,它会掉入一个数字“陷断”,永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷井”的这个固定不变的数X =_____.5.先观察下列等式:111122=-⨯;1112323=-⨯;1113434=-⨯;…….则计算112+⨯123+⨯111344556++=⨯⨯⨯_______.二、选择题6.下列计算结果错误的是 ( )A .1.6+5.9-25.8+12.8-7.4=-12.9B .-9+5×(-6)-(-4)2÷(-8)=-238C .1252581292363-+-=- D .2×(-3)3-4×(-3)+15=-27 7.计算-0.32÷0.5×2÷(-2)3的结果是 ( ) 8.若(x -3)2+4y +=0,则x y 的值是 ( )A .12B .-12C .64D .-64 9.计算(-1)1997+(-1)1998+…+(-1)2011+(-1)2012的值为 ( ) A .l B .-1 C .0 D .1010.定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为2k n(其中k 是使2k n为奇数的正整数),并且运算重复进行,例如,取n =26,则:若n =449,则第2011次“F 运算”的结果是 ( )A .169B .512C .1D .8 三、解答题 11.计算:(1)(-7)×(-5)-90÷(-15); (2)18-6÷(-2)2×(-13);(3)3+50÷22×(-15)-1; (4)(-1)5×[423÷(-4)+(-114)×(-0.4)]÷(-13).12.现有12个加数,其中-3出现了2次,-7出现了2次,-1出现了3次,0出现了1次,5出现了2次.出现了2次.求这12个数的和.13.中央电视台每期的“开心辞典”栏目,都有一个“二十四点”的趣味题,其游戏规则是这样的:任取四个至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4可作运算:(1+2+3)×4=24(注意,此运算与4×(1+2+3)应视为相同方法的运算).现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下 (1)______________;(2)______________;(3)______________.另有四个数3,-5,7,-13,可通过运算式(4)______________使其结果等于24.14.在数学中,为了简便,记1nk k =∑=1+2+3+…+(n -1)+n .1!=1,2!=2×1,3!=3×2×1,…,n !=n ×(n -l)×(n -2)×…×3×2×1. 2011 2012求20112012112012!2011!k k k k ==-+∑∑15.看图填空:如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的长方形,再把面积为14的长方形等分成面积为18的长方形,如此进行下去…… (1)试利用图形揭示的规律计算:1111111112481632641282562n++++++++=_______. 并使用代数方法证明你的结论. (2)请给利用图(2),再设计一个能求:2341111122222n+++++的值的几何图形.11.(1)41.(2)1812.(3)-12(4)-2.12.5.13.(1)3 ×[4+10+(-6) ] (2)10-4-3 ×(-6)(3)4-(-6)÷3×l0 (4) [(-13) × (-5)+7]÷3 14.0.15.(1)112n(2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、若a和b是互为相反数,则a+b=(C )
A.–2a B.2b C.0 D.任意有理数
3、(1)如果a=-13,那么-a=__1____; (2)如果-a=-5.4,那么a=_____35_;.4
(3)如果-x=-6,那么x=_____6_; (4)-x=9,那么x=_____-_9.
精品课件
2、|-8|= 8 ; -|-5|= ;-5
绝对值等于4的数是__±__4___。
3、绝对值等于其相反数的数一定是(C )
A.负数
B.正数
C.负数或零 D.正数或零
4、若 x ,7则 x=_____±_;
精品课件
7
:例 在数轴上表示绝对值不小于2而又不大于
5.1的所有整数;并求出绝对值小于4的所有整
精品课件
5.倒 1 (a≠0); 2)0没有倒数 ;a
3)若a与b互为倒数,则ab=1.
4)倒数是它本身的是-_1__,__0_,__1.
下列各数,哪两个数互为倒数?
8, 1 ,-1,+(-8),1, ( 1 )
8
8
精品课件
6.绝对值
一个数a的绝对值就是数轴上表示数a
5、用-a表示的数一定是(D)
A .负数
B. 正数
C .正数或负数 D.正数或负数或0
6、一个数的相反数是最小的正整数,那么这个数
是(A)
A .–1 B. 1 C .±1 D. 0
7、①互为相反的两个数在数轴上位于原点两旁
( ×)
②在一个数前面添上“-”号,它就成了一个负
( ×) ③ 只要符号不同,这两个数就是相反数( )×
第二章《有理数》总复习
精品课件
一、有理数的基本概念
1.负数 2.有理数 3.数轴 4.互为相反数 5.互为倒数 6.有理数的绝对值 7.有理数大小的比较 8.科学记数法
二、有理数的运算
加、减、乘、除、乘方运算
精品课件
一、有理数的基本概念
1.负数:在正数前面加“—”的数;
0既不是正数,也不是负数。
的点与原点的距离。
3
4
2
-3 –2 –1 0 1 2 3 4
1)数a的绝对值记作︱a︱;
若a>0,则︱a︱= a ; 2) 若a<0,则︱a︱= -a ;
若a =0,则︱a︱= 0 ;
3) 对任何有理数精品课a件 ,总有︱a︱≥0.
[基础练习]
1、-2的绝对值表示它离开原点的距离是
2个单位,记作 |-.2|
9 精品课件
2
[基础练习]
1、把下列各数填在相应的大括号内:
1,-0.1,-789,25,0,-20,-3.14,
6/7
1,25,6/7
正有理数集{1,25 …};
正整数集{ 6/7 …};
正分数集{ 1,25,0…}
自然数集{ -789,…-2}0,;-0.1, 负有理数集{-7839.1,4-20…};
判断: 1)a一定是正数; × 2)-a一定是负数; × 3)-(-a)一定大于0;× 4)0表示没精品课件有。 ×
2.有理数: 整数和分数统称有理数。
有理数
整数 分数
正整数 零 负整数 正分数
负分数
有理数
正有理数 零 负有理数
正整数 正分数
负整数
精品课件
负分数
自然数
例 : 在-3.14, -2, 12, -3, 0,-(-2),|-8|,1,-1中 ,
数的和与积
-5 -4 -3 -2
2 345
-6-5-4-3-2-10 0 1 2 3 4 5 6
绝对值小于4的所有整数的和:
(-3)+(-2)+(-1)+1+2+3+0= 0
绝对值小于4的所有整数的积:
(-3)×(-2)×(-1)×0 × 1×2×3= 0
精品课件
0,±1 1)绝对值小于2的整数有________。 2)绝对值等于它本身的数有零__和__正__数_____。 3)绝对值不大于3的负整数有-_1__,-_2__,-_3___。
4)数a和b的绝对值分别为2和5,且在数轴上
表示a的点在表示b的点左侧,则b的值
为 5.
精品课件
5、已知|x|=3,|y|=2,且x<y,则x+y=_-_1_或_ -5
∵|x|=3,|y|=2 ∴x=±3,y=±2 ∵ x<y ∴x不能为3 ∴x=-3,y=2 或 x=-3,y=-2 ∴x+y=-3+2=-1 或 x+y=-3-2=-5
5
9 24
哪 些 是 整 数 、 分 数 、 正 整 数 、 负 分 数 、 非 负 数
整 数 有 : 12, -3, 0, -8
分 数 有 : -3.14, -2, -(-2),1,-1 5 924
正 整 数 有 :1 2 , | - 8 |
负 分 数 有 : -3.14,-2,-1
54
非 负 数 有 : 12,0,-(-2),|-8|,1
1)数a的相反数是-a
2)0的相反数是0.
3)若a、b互为相反数,则
a+b=0.-4 -2
4 2
-4 -3 –2 –1 0 精品课件 1 2 3 4
[基础练习]
1、-5的相反数是 5;-(-8)的相反数是 -;8
- [+(-6)]=____6_; 0的相反数是 ;0 a的相反数是 -a; 的 1相反数的倒数是___;8
负整数集{ -0.1,-3.精…1品课4件};
3.数 轴
规定了原点、正方向和单位长度的直线.
-3 –2 –1 0 1 2 3 4
1)在数轴上表示的两个数, 右边的数总比左边的数大;
2)正数都大于0,负数都小于0; 正数大于一切负数;
3)所有有理数都可以用数轴上 的点表示。精品课件
[练习] 填空题: ①比-3大的负整数是__-2__,__-_1; ② 已 知 m 是 整 数 且 -4<m<3 , 则 m 为
A数轴上的点只能表示整数 B数轴上的点只能表示分数 C数轴上的点只能表示有理数 D所有有理数都可以用数轴上的点表示出来 (3)在数轴上点A表示-4,如果把原点O向负方向移 动1个单位,那么在新数轴上点A表示的数是( C )
A.-5, B.-4 精品课件 C.-3 D.-2
4.相反数
只有符号不同的两个数,其中一个 是另一个的相反数。
-3_,_-_2_,_-1__,0__,1_,_2。 ③有理数中,最大的负整数是 -1 ,最小
的正整数是 1 。最大的非正数是 0 。 ④与原点的距离为三个单位的点有 2 个,
他们分别表示的有理数是 -3 和 +3 。 精品课件
选择题: (1)在数轴上,原点及原点左边所表示的数(D )
A整数 B负数 C非负数 D非正数 (2) 下 列 语 句 中 正D 确 的 是 ( )