(完整版)高二数学数列专题练习题(含答案),推荐文档
高中数学《数列》练习题(含答案解析)
高中数学《数列》练习题(含答案解析)一、单选题1.已知等差数列{an }的前n 项和为Sn ,且48S S =13,则816S S =( )A .310 B .37C .13D .122.已知等比数列{an }的前n 项和为Sn ,则“Sn +1>Sn ”是“{an }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.现有下列说法:①元素有三个以上的数集就是一个数列; ①数列1,1,1,1,…是无穷数列; ①每个数列都有通项公式;①根据一个数列的前若干项,只能写出唯一的通项公式; ①数列可以看着是一个定义在正整数集上的函数. 其中正确的有( ). A .0个B .1个C .2个D .3个4.数列{}n a 的前n 项和为n S ,且1(1)(21)n n a n +=-⋅+,则2021S =( )A .2020B .2021C .2022D .20235.已知等差数列{}n a 中,6819,27a a ==,则数列{}n a 的公差为( ) A .2B .3C .4D .56.标准对数视力表(如图)采用的“五分记录法”是我国独创的视力记录方式.标准对数视力表各行为正方形“E ”字视标,且从视力5.1的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”的边长的视力4.0的视标边长为a ,则视力4.9的视标边长为( )A .4510aB .91010aC .4510a -D .91010a -7.已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a8.已知{}n a 是等差数列,公差0d >,其前n 项和为n S ,若2a 、52a+、172a +成等比数列,()12n n n a S +=,则不正确的是( ) A .1d= B .1020a = C .2n S n n =+ D .当2n ≥时,32n n S a ≥9.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .1010101110.等差数列{}n a 前n 项和为n S , 281112a a a ++=,则13S =( ) A .32B .42C .52D .62二、填空题11.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________. 12.已知等差数列{}n a 的前n 项和为n S ,若65210,6Sa a =+=,则d =_________.13.设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517S S =______.14.已知等差数列{}n a 的前n 项和为nS,且1516a a +=-,936S =-,则n S 的最小值是______.三、解答题15.已知数列{}n a 为等差数列,{}n b 是公比为2的等比数列,且满足11221,5a b b a ==+=(1)求数列{}n a 和{}n b 的通项公式; (2)令n n n c a b =+求数列{}n c 的前n 项和n S ;16.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式;(2)2n nb a =-+求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 17.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利? 18.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}nb 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.参考答案与解析:1.A【分析】运用等差数列前n 项和公式进行求解即可. 【详解】设等差数列{an }的公差为d , ①41181461582832a d a d a d S S +==⇒=+,显然0d ≠, ①8161182820283161204012010a d d d a d S d S d ++===++, 故选:A 2.D【分析】由110++>⇒>n n n S S a ,举反例102=>n na 和12nn a =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n na ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n na =-,但是1n n S S +<,故不必要; 故选:D 3.B【分析】根据给定条件,利用数列的定义逐一分析各个命题,判断作答.【详解】对于①,数列是按一定次序排成的一列数,而数集的元素无顺序性,①不正确; 对于①,由无穷数列的意义知,数列1,1,1,1,…是无穷数列,①正确; 对于①0.1,0.01,0.001,0.0001,得到的不足近似值,依次排成一列得到的数列没有通项公式,①不正确;对于①,前4项为1,1,1,1的数列通项公式可以为1,N n a n =∈,cos 2π,N n b n n *=∈等,即根据一个数列的前若干项,写出的通项公式可以不唯一,①不正确;对于①,有些数列是有穷数列,不可以看着是一个定义在正整数集上的函数,①不正确, 所以说法正确的个数是1. 故选:B 4.D【分析】根据数列{}n a 的通项公式,可求得12342,2a aa a +=-+=-,依此类推,即可求解.【详解】①1(1)(21)n n a n +=-⋅+,故12343,5,7,9a a a a ==-==-故202112320202021S a a a a a =+++⋅⋅⋅++357940414043=-+-+⋅⋅⋅-+2101040432023=-⨯+=.故选:D. 5.C【分析】利用862d a a =-,直接计算公差即可. 【详解】等差数列{}n a 中,6819,27aa ==,设公差为d ,则86227198d a a =-=-=,即4d =.故选:C. 6.D【分析】由等比数列的通项公式计算.【详解】设第n 行视标边长为n a ,第n 1-行视标边长为()12n a n -≥,由题意可得()12n n a n -=≥,则()1101102nn a n a --=≥,则数列{}n a 为首项为a ,公比为11010-的等比数列, 所以101191010101010a a a ---⎛⎫== ⎪⎝⎭,则视力4.9的视标边长为91010a -,故选:D. 7.B【分析】令10t n =-≥,则1n t =+,22641411ttyt t t t ,然后利用函数的知识可得答案. 【详解】令10t n =-≥,则1n t =+,22,641411tty tt t t当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B . 8.A【分析】利用等差数列的求和公式可得出1n a na =,可得出10d a =>,根据已知条件求出1a 的值,可求得n a 、n S 的表达式,然后逐项判断可得出合适的选项.【详解】因为{}n a 是等差数列,则()()1122nn n n a n a a S ++==,所以,1n a na =, 所以,110n n d a a a +=-=>,因为()()2521722a a a +=+,可得()()2111522172a a a +=+,整理可得21191640a a --=,因为10a >,故12d a ==,A 错;12n a na n ==,则1020a =,B 对;()()112nn n a S n n +==+,C 对;当2n ≥时,()233202n n S a n n n n n -=+-=-≥,即32n n S a ≥,D 对.故选:A. 9.C【解析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 10.C【分析】将2811a a a ++化成1a 和d 的形式,得到二者关系,求得7a ,利用13713S a =求得结果. 【详解】()()28111111()71031812a a a a d a d a d a d ++=+++++=+=164a d ∴+=,即74a = ()1131371313134522a a S a +∴===⨯= 故选:C.【点睛】思路点睛:该题考查的是有关数列的问题,解题思路如下:(1)根据题中所给的条件,结合等差数列通项公式,将其转化为关于首项与公差的式子; (2)化简求得数列的某一项;(3)结合等差数列求和公式,得到和与项的关系,求得结果. 11.6±【分析】根据等差和等比中项的定义求出,a b 得值,即可求解. 【详解】因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±. 12.1【分析】由等差中项性质可求4a ,又510S =依据等差数列的前n 项和公式及通项公式列方程即可求得公差 【详解】由266a a +=有43a =,而510S = ①结合等差数列的前n 项和公式及通项公式113322a d a d +=⎧⎨+=⎩即可得1d = 故答案为:1【点睛】本题考查了等差数列,利用等差中项求项,结合已知条件、前n 项和公式、通项公式求公差13.1【分析】利用等差数列性质及前n 项和公式计算作答.【详解】在等差数列{}n a 中,891715a a =,所以1151511588117171179915(15(152152117(17)(1717)2))2a a S a a a a a a S a a a a ++⨯====⋅=++⨯. 故答案为:1 14.42-【分析】根据给定条件求出等差数列{}n a 的首项、公差,探求数列{}n a 的单调性即可计算作答.【详解】设等差数列{}n a 的公差为d ,由1591636a a S +=-⎧⎨=-⎩得112416989362a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得1122a d =-⎧⎨=⎩, 因此,()1212214n a n n =-+-⨯=-,令0n a =,解得7n =,于是得数列{}n a 是递增等差数列,其前6项为负,第7项为0,从第8项开始为正, 所以6S 或7S 最小,最小值为()656122422⨯⨯-+⨯=-. 故答案为:42-15.(1)21n a n =-,12n n b -=(2)221nn S n =+-【分析】(1)根据等差数列和等比数列的通项公式得到2d =,根据通项公式的求法得到结果;(2)1221n n n n c a b n -+=+=-分组求和即可.【详解】(1)设{}n a 的公差为d , 由已知,有215d ++=解得2d =,所以{}n a 的通项公式为21,n a n n *=-∈N , {}n b 的通项公式为12,n n b n -*=∈N .(2)1221n n n n c a b n -+=+=-,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:212(121)21122n n n n n S n -+-=+=+--.16.(1)2n a n =-;(2)1n nT n =+.【解析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=, 所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n nT n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题17.(1)2n a n =;(2)第2年该公司开始获利.【分析】(1)根据题意得出数列的首项和公差,进而求得通项公式 (2)根据题意算出总利润,进而令总利润大于0,解出不等式即可. 【详解】(1)由题意知,数列{}n a 是12a =,公差2d =的等差数列, 所以()()112122n a a n d n n =+-=+-⨯=.(2)设引进这种设备后,净利润与年数n 的关系为()F n ,则()()2121222520252n n F n n n n n -⎡⎤=-+⨯-=--⎢⎥⎣⎦. 令()0F n >得220250n n -+<,解得1010n -<+ 又因为n *∈N ,所以2n =,3,4,…,18, 即第2年该公司开始获利.18.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ① 则1231111012112222Γ33333-----=++++n nn . ①由①-①得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n n T --=++++,① 231112133333n n n n n T +-=++++,① ①-①得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n n n T =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2n n S T <. [方法三]:构造裂项法由(①)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭. 则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二. [方法四]:导函数法设()231()1-=++++=-n n x x f x x x x x x ,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nx x . 又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n n n n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n nS T,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nnc n,使1+=-n n nb c c,求得nT的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.。
高二数列书本练习题及答案
高二数列书本练习题及答案数列是高中数学中的一个重要概念,它在数学的各个分支中都有应用。
由于数列的性质和特点较为复杂,掌握数列的相关知识对于高二学生来说非常重要。
为了帮助同学们更好地理解和掌握数列的概念和运算方法,本文整理了一些高二数列书本练习题,并提供了相应的答案供参考。
1. 题目:已知数列 {an} 的通项公式为 an = 3n + 2,计算 a1 + a2 + ... + a20 的值。
解答:根据数列的通项公式 an = 3n + 2,可得到数列的前 20 项如下:a1 = 3(1) + 2 = 5a2 = 3(2) + 2 = 8...a20 = 3(20) + 2 = 62将所有的数列项相加可得:a1 + a2 + ... + a20 = 5 + 8 + ... + 62由于这是一个等差数列,可以利用等差数列求和公式来计算:等差数列前 n 项和 Sn = (a1 + an) * n / 2代入具体的数值,计算得:Sn = (5 + 62) * 20 / 2 = 67 * 10 = 670所以 a1 + a2 + ... + a20 的值为 670。
2. 题目:已知数列 {bn} 为等差数列,且 b1 = 7,b4 = 19,求公差 d 及第 n 项。
解答:根据等差数列的性质,可得:b4 - b1 = (b1 + 3d) - b1 = 3d = 19 - 7 = 12解方程 3d = 12,可得:d = 4由已知条件 b1 = 7,可以求出第 n 项的通项公式为:bn = b1 + (n - 1)d代入具体的数值,得到第 n 项为:bn = 7 + (n - 1) * 4 = 7 + 4n - 4 = 4n + 3所以公差 d = 4,第 n 项为 4n + 3。
3. 题目:已知数列 {cn} 为等比数列,且 c1 = 2,c5 = 32,求公比 q 及第 n 项。
解答:根据等比数列的性质,可得:c5 / c1 = q^4 = 32 / 2 = 16解方程 q^4 = 16,可得:q = 2由已知条件 c1 = 2,可以求出第 n 项的通项公式为:cn = c1 * q^(n-1)代入具体的数值,得到第 n 项为:cn = 2 * 2^(n-1)所以公比 q = 2,第 n 项为 2^(n-1)。
高二数学数列模块考试卷+答案详解(试卷版)
高二数学数列模块考试卷+答案详解(试卷版)总分100分,考试时间90分钟一.选择题(共10小题,共30分)1.已知等差数列{a n}的前n项和为S n,且S21=42,若记b n=2,则数列{b n}()A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列又不是等比数列2.已知等比数列{a n}的公比为正数,且a3•a9=a72,a2=1,则a1等于()A.B.C.D.23.已知等差数列{a n}的前n项和为S n,且S21=42,若记b n=2,则数列{b n}()A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列又不是等比数列4.已知等比数列{a n}的首项为1,若4a1,2a2,a3成等差数列,则数列{}的前5项和为()A.B.2 C.D.5.设{a n}是等差数列,a1+a3+a5=9,a6=9.则这个数列的前6项和等于()A.12 B.24 C.36 D.486.设等差数列{a n}的公差d不为0,a1=9d.若a k是a1与a2k的等比中项,则k=()A.2 B.4 C.6 D.87.若等差数列{a n}的前5项和S5=25,且a2=3,则a7=()A.12 B.13 C.14 D.158.设{a n}的首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1=()A.2 B.﹣2 C. D.﹣9. 在数列{a n}中,a1,a2,a3成等差数列,a2,a3,a4成等比数列,a3,a4,a5的倒数成等差数列,则a1,a3,a5( )A.成等差数列 B.成等比数列 C.倒数成等差数列 D.不确定10. 已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n}的前5项和为( )A .158或5B .3116或5C .3116D .158二.填空题(共6小题,共30分)11.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则2a 10﹣a 12的值为 . 12.等比数列{a n }中,a 3=2,a 5=6,则a 9= .13.在数列{a n }中,a 1=1,a 2=2,且a n+2﹣a n =1+(﹣1)n(n ∈N *),则S 10= .14.已知{a n }为等差数列,S n 为{a n }的前n 项和,n ∈N *,若a 3=16,S 20=20,则S 10值为 . 15.等比数列{}n a 的前n 项和为n S ,若102010,30S S ==则30S = ___________ 16.已知等比数列{}n a 的前n 项和为113,6n n S x -=⋅-则x 的值为_______三.解答题(共4小题,共40分)17.已知数列{a n }满足a n+2﹣a n+1=a n+1﹣a n 对于任意n ∈N *恒成立,且a 1=1,a 3=2,数列{b n }的前n 项和为S n ,且满足S n +b n =1(n ∈N*) (Ⅰ)求数列{a n },{b n }的通项公式 (Ⅱ)设c n =a n •b n ,数列{c n }的前n 项和为T n (1)求T n (2)求满足不等式≤9的所有的n 的值.18.已知正项数列{a n }的前n 项和S n 满足S n =(n ∈N*)(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =(﹣1)n a n +(﹣1)n a n 2,求数列{b n }的前2n 项和T 2n .19.已知正项数列{a n}满足+=﹣2(n≥2,n∈N*),且a6=11,前9项和为81.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{lgb n}的前n项和为lg(2n+1),记c n=,求数列{c n}的前n项和T n.20.已知等差数列{a n}满足a2=5,a5+a9=30.{a n}的前n项和为S n(Ⅰ)求数列{a n}的通项公式a n及前n项和S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.答案详解一.选择题(共10小题,共30分)1解:S21=42===,∴a9+a13=4,a11=2,∴a112﹣a9﹣a13=0,∴b n=2=1,∴数列{b n}既是等差数列又是等比数列,故选:C2.解:∵等比数列{a n}的公比为正数,且a3•a9=a72,∴=,可得a6=a7,∴公比q=a2=1,则a1===.故选:B.3.解:S21=42===,∴a9+a13=4,a11=2,∴a112﹣a9﹣a13=0,∴b n=2=1,∴数列{b n}既是等差数列又是等比数列,故选:C4.解:等比数列{a n}的首项为1,∵4a1,2a2,a3成等差数列,∴2×2a2=a3+4a1,∴4a1q=a1(q2+4),解得q=2.∴a n=2n﹣1,=.则数列{}的前5项和==.故选:C.5.解:设等差数列{a n}的公差为d,由等差数列的通项公式可得a1+a3+a5=a1+a1+2d+a1+4d=3a1+6d=9,即a1+2d=3;a6=a1+5d=9.∴d=2,a1=﹣1,则这个数列的前6项和s6=6×(﹣1)+×2=24,故选B.6.解:因为a k是a1与a2k的等比中项,则a k2=a1a2k,[9d+(k﹣1)d]2=9d•[9d+(2k﹣1)d],又d≠0,则k2﹣2k﹣8=0,k=4或k=﹣2(舍去).故选B.7.解:设{a n}的公差为d,首项为a1,由题意得,解得,∴a7=1+6×2=13,故选B.8.解:∵{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,∴S1=a1,S2=2a1﹣1,S4=4a1﹣6,由S1,S2,S4成等比数列,得:,即,解得:.故选:D.9. B10. C二.填空题(共6小题,共30分)11.解:∵a n为等差数列且a4+a6+a8+a10+a12=5a1+35d=120∴a1+7d=24∵2a10﹣a12=2a1+18﹣a1﹣11d=a1+7d=24 故答案为:2412.解:设等比数列{a n }的公比为q ,∵a 3=2,a 5=6, ∴q 2=3,则a 9==6×32=54.故答案为:54.13.解:因为a 1=1,a 2=2,且a n+2﹣a n =1+(﹣1)n(n ∈N *), 当n=1时,a 3﹣a 1=0得到a 3=1;当n=2时,a 4﹣a 2=2,所以a 4=4;…得到此数列奇次项为1,偶次项以2为首项,公差为2的等差数列,所以S 10=1×5+5×2+×2=35.故答案为3514.解:由题意a 3=16,故S 5=5×a 3=80,由数列的性质S 10﹣S 5=80+25d ,S 15﹣S 10=80+50d ,S 20﹣S 15=80+75d , 故S 20=20=320+150d ,解之得d=﹣2又S 10=S 5+S 10﹣S 5=80+80+25d=160﹣50=110故答案为:110 15.{}n a 是等比数列,1020103020,,S S S S S ∴--仍成等比数列,又()210203030301010,30,30,7010S S S S -==∴-=∴=答案:70 16.12三.解答题(共4小题,共40分)17.解:(Ⅰ)数列{a n }满足a n+2﹣a n+1=a n+1﹣a n 对于任意n ∈N *恒成立, ∴数列{a n }为等差数列, ∵a 1=1,a 3=2, ∴2d=a 3﹣a 1=2﹣1=1, ∴d=,∴a n =1+(n ﹣1)=(n+1),∵数列{b n }的前n 项和为S n ,且满足S n +b n =1, 当n=1时,S 1+b 1=1,即b 1=, 当n ≥2时,S n ﹣1+b n ﹣1=1, ∴S n +b n ﹣(S n ﹣1+b n ﹣1)=0 即3b n =b n ﹣1,∴数列{b n }是以为首项,以为公比的等比数列,∴b n=2•()n,(Ⅱ)由b n=2•()n,∴S n==1﹣,∴1﹣S n=()n,∵c n=a n•b n=(n+1)•()n,∴T n=2•()1+3•()2+…+(n+1)•()n,∴T n=2•()2+3•()3+…+n•()n+(n+1)•()n+1,∴T n=+()1+()2+()3+…+()n﹣(n+1)•()n+1=+﹣(n+1)•()n+1=﹣•()n,∴T n=﹣•()n,∵≤9,∴﹣•()n≤9•()n,∴≤(9+)•()n,即9+≥•3n,当n=1时,左边=,右边=,成立,当n=2时,左边=,右边=,成立,当n=3时,左边=,右边=,故不成立,综上所述n的值为1,218.解:(Ⅰ)由S n=,得当n=1时,,得a1=1;当n≥2时,,化简得:(a n﹣a n﹣1﹣2)(a n+a n﹣1)=0,得a n﹣a n﹣1=2(n≥2).∴数列{a n}是以1为首项,以2为公差的等差数列,∴a n=1+2(n﹣1)=2n﹣1;(Ⅱ)∵b n=(﹣1)n a n+(﹣1)n a n2,∴T2n=b1+b2+b3+b4+…+b2n=(﹣1﹣12)+(3+32)+(﹣5﹣52)+(7+72)+…+[(4n﹣1)+(4n﹣1)2]=(﹣1+3)+(﹣5+7)+…+[﹣(4n﹣3)+(4n﹣1)]+(﹣12+32)+(﹣52+72)+…+[﹣(4n ﹣3)2+(4n﹣1)2]=2n+8[1+3+5+…+(2n﹣1)]=2n+8•=8n2+2n.19.解:(Ⅰ)由正项数列{a n}满足+=﹣2(n≥2,n∈N*),得,整理得a n+1+a n﹣1=2a n,所以{a n}为等差数列.由a6=11,前9项和为81,得a1+5d=11,d=81,解得a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.(II)当n=1时,lgb1=lg3,即b1=3.当n≥2时,lgb1+lgb2+…+lgb n=lg(2n+1)…①,lgb1+lgb2+…+lgb n﹣1=lg(2n﹣1)…②①﹣②,得,∴b n=,(n≥2).b1=3满足上式,因此b n=,(n≥2).c n==,∴数列{c n}的前n项和T n=+…++,又2T n=+…+,以上两式作差,得T n=+2﹣,,因此,T n=﹣.20.解:(Ⅰ)设等差数列{a n}的公差为d,由a2=5,a5+a9=30可得,,解得a1=3,d=2,∴a n=a1+(n﹣1)d=3+2(n﹣1)=2n+1,∴S n===n(n+2)=n2+2n,(Ⅱ)由(Ⅰ)可得b n===(﹣),∴数列{b n}的前n项和T n=[(1﹣)+(﹣)+(﹣)+…+(﹣)+(﹣)],=(1+﹣﹣)=﹣﹣【点评】本题考查了等差数列的通项公式和前n项和公式和裂项求和,属于中档题。
【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)
【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)试题部分一、选择题:1. 已知数列{an}为等差数列,a1=3,a5=15,则公差d为()A. 3B. 4C. 5D. 62. 数列{an}的通项公式为an = 2n 1,则数列{an}的前5项和为()A. 25B. 30C. 35D. 403. 若数列{an}满足an+1 = 2an,且a1=1,则数列{an}是()A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定4. 用数学归纳法证明1+3+5+…+(2n1)=n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论1+3+5+…+(2n1)=n²5. 已知数列{an}的通项公式为an = n² + n,则数列{an+1 an}的前5项和为()A. 20B. 25C. 30D. 356. 数列{an}为等比数列,a1=2,a3=8,则a5=()A. 16B. 24C. 32D. 647. 已知数列{an}满足an+2 = an+1 + an,a1=1,a2=1,则a5=()A. 3B. 4C. 5D. 68. 若数列{an}的通项公式为an = 3n 2,则数列{an}的前n项和为()A. n(3n1)/2B. n(3n+1)/2C. n(3n2)/2D. n(3n+2)/29. 用数学归纳法证明等式2^n > n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论2^n > n²10. 已知数列{an}的通项公式为an = 2^n,则数列{an+1 / an}的值为()A. 1B. 2C. 3D. 4二、判断题:1. 数列{an}的通项公式为an = n²,则数列{an}是等差数列。
高二数学数列练习题(答案)
.高二《数列》专题1.S n 与a n 的关系:an S (n 1)1S S (n 1)n n 1,已知S n 求a n ,应分n 1时a1 ;n 2时,a n=两步,最后考虑a1 是否满足后面的a n .2.等差等比数列等差数列等比数列定义a n a n 1 d (n 2)an1 ( * )q n N an通项a n a1 (n1)d ,a n a m (n m)d ,( n m),如果a, G,b 成等比数列,那么G 叫做a 与如果a, A,b 成等差数列,那么A叫做a 与b的等差中中项项.a bA 。
2b 的等比中项.等差中项的设法:等比中项的设法:aq,a,aq前n 项和n n( n 1) S n a a ,S n d ( ) na1 n 12 2若m n p q ,则性质*a a a a (m, n, p,q N ,m n p q) 若m n p q2 * 若则有2m p q, a m a p a q ,( p,q,n,m N )2m p q ,则S、S2n S n、S3n S2n为等差数列S n、S2n S n、S3n S2n为等比数列n函数看数列a dn (a d) An Bn 12d d2 2s n (a)n An Bnn 12 2a1 n na q Aqnqa a1 1 ( 1)n ns q A Aq qn1 q 1 q.an *1 n N(1)定义法:证明( )an为一个常数*(1)定义法:证明a n 1 a n (n N ) 为一个常数;(2)中项:证明2a an n1*a 1(n N ,n2)n判定(2)等差中项:证明*2a a 1 a (n Nn ,n 2)n n 1n(3)通项公式: a cq (c, q 均是不为0 常n方法(3)通项公式: a n kn b( k,b 为常数)( *n N )数)(4) 2s An Bn (A,B 为常数)(n*n N )( 4 )ns Aq A (A,q 为常数,nA 0,q 0,1 )3.数列通项公式求法。
人教版高二数列练习题及答案
人教版高二数列练习题及答案以下是人教版高二数列练习题的内容及答案:第一题:已知数列{an}的公差为d,且a1=3,a4=10。
求证:an=3n+1.解答:由已知可知,a1 = 3,a2 = a1 + d,a3 = a1 + 2d,a4 = a1 + 3d。
将已知值代入,得:3 = 3 + d,10 = 3 + 3d,解方程组,可得d=2,将d代入an=3n+1,可得an = 3n + 1。
第二题:已知数列{an}的前三项为1,4,9,且an+1 = 2an - 1,求a10的值。
解答:根据已知,an+1 = 2an - 1,代入前三项,得:a2 = 2a1 - 1 = 2 - 1 = 1,a3 = 2a2 - 1 = 2 - 1 = 1,a4 = 2a3 - 1 = 2 - 1 = 1,可以看出,此数列为常数数列,即an = 1。
因此,a10 = 1。
第三题:已知等差数列{an}的公差为2,a5 + a7 = 22,求a1和an 表达式。
解答:由已知可得,a5 + a7 = 22。
将an = a1 + (n-1)d代入,得:a1 + 4d + a1 + 6d = 22,2a1 + 10d = 22,由等差数列求和公式Sn = n(a1 + an)/2,可知n=5时,Sn=a5=5(a1+an)/2。
代入a5的值,得:5(a1 + a1 + 4d)/2 = 22,10a1 + 20d = 44,整理得5a1 + 10d = 22,联立方程组,可解得a1=1,d=2。
综上,a1 = 1,an = a1 + (n-1)d = 1 + 2(n-1) = 2n - 1。
第四题:已知等差数列{an}的前两项为3,7,且a1 + a7 = 63,求an表达式。
解答:由已知可得a1 + a7 = 63。
将an = a1 + (n-1)d代入,得:a1 + a1 + 6d = 63,2a1 + 6d = 63,由等差数列求和公式Sn = n(a1 + an)/2,可知n=7时,Sn=a7=7(a1+an)/2。
高二数学数列试题答案及解析
高二数学数列试题答案及解析1.在数列{an }中,a1=2,,则an=()A.2+lnn B.2+(n-1)lnn C.2+nlnn D.1+n+lnn【答案】A【解析】因为根据已知a1=2,,运用累加法可知an=2+lnn 选A.2.在等比数列中,已知,则该数列的前15项的和。
【答案】11【解析】因为在等比数列中,已知,则根据连续三项的和依然成等比数列可知,该数列的前15项的和11.故答案为11.3.三个数a,b,c既是等差数列,又是等比数列,则a,b,c间的关系为 ( )A.b-a=c-b B.b2=acC.a=b=c D.a=b=c≠0【答案】D【解析】由于此数列即是等差数列,又是等比数列,所以此数列是一定是非零常数列,所以a=b=c≠0.4.设数列的前项和为,则 .【答案】1007【解析】.5.已知等比数列满足,且,则当时, .【答案】【解析】因为6.数列的一个通项公式是( )A.B.C.D.【答案】D【解析】分别观察分子和分母规律可看出通项公式为.7.(本题满分14分)已知数列前项和(1)求数列的通项公式;(2)令,求证:数列{}的前n项和.【答案】(1);(2)见解析。
【解析】(1)由可求出的通项公式.(2)在(1)的基础上,可知,然后采用裂项求和的方法求和即可.(1)数列的通项公式是(2)由(1)知当时,8.在等比数列中,,则()A.B.C.D.【答案】A【解析】主要考查等比数列的概念、通项公式及前n项求和公式。
解:由得,所以,,从而=,故选A。
9.在等比数列中,已知,则= ()A.8B.-8C.D. 16【答案】A【解析】主要考查等比数列的概念、通项公式。
解:因为,所以,,,故选A。
10.等差数列中,,则等于()A. 11B. 9C. 9或18D. 18【答案】B【解析】主要考查等差数列的概念、通项公式及前n项求和公式。
解:由,所以等于9,故选B。
11.。
【答案】2550【解析】主要考查等差数列的概念、通项公式及前n项求和公式。
高中数学--数列大题专项训练(含详解)
高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。
新高二数列测试题及答案
新高二数列测试题及答案一、选择题(每题4分,共20分)1. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,求a_5的值。
A. 31B. 63C. 127D. 2552. 数列{b_n}是等差数列,若b_1+b_2+b_3=9,b_4+b_5+b_6=21,则b_7的值为多少?A. 5B. 7C. 9D. 113. 等比数列{c_n}的前三项依次为c_1=2,c_2=4,c_3=8,求c_5的值。
A. 32B. 64C. 128D. 2564. 数列{d_n}满足d_1=1,d_{n+1}=3d_n+2,求d_4的值。
A. 28B. 40C. 52D. 685. 数列{e_n}的通项公式为e_n=n^2-n+1,求e_5的值。
A. 15B. 21C. 25D. 31二、填空题(每题5分,共20分)6. 若数列{f_n}是等比数列,且f_1=3,f_3=12,则f_5的值为______。
7. 数列{g_n}的前n项和为S_n,已知S_1=1,S_2=4,S_3=9,求g_4的值。
8. 数列{h_n}满足h_1=2,h_{n+1}=h_n+n,求h_5的值。
9. 数列{i_n}是等差数列,若i_1=2,i_3=8,则i_5的值为______。
三、解答题(每题15分,共40分)10. 已知数列{j_n}满足j_1=1,j_{n+1}=3j_n+2,求证数列{j_n+1}是等比数列,并求出j_5的值。
11. 数列{k_n}的前n项和为S_n,已知S_1=1,S_2=3,S_3=6,求证数列{k_n}是等差数列,并求出k_4的值。
12. 数列{l_n}满足l_1=1,l_{n+1}=2l_n+1,求证数列{l_n+1}是等比数列,并求出l_5的值。
答案:1. B2. D3. D4. A5. D6. 487. 168. 109. 1410. 证明:由题意知j_{n+1}=3j_n+2,所以j_{n+1}+1=3(j_n+1),即数列{j_n+1}是首项为2,公比为3的等比数列。
(完整版)高二等差、等比数列基础练习题及答案
(完整版)高二等差、等比数列基础练习题及答案等差、等比数列基础练习题及答案一、选择题1.数列{a n}满足a1=a2=1,,若数列{a n}的前n项和为S n,则S2013的值为()A. 2013B. 671C. -671D.2.已知数列{a n}满足递推关系:a n+1=,a1=,则a2017=()A. B. C. D.3.数列{a n}的前n项和为S n,若S n=2n-1(n∈N+),则a2017的值为()A. 2B. 3C. 2017D. 30334.已知正项数列{a n}满足,若a1=1,则a10=()A. 27B. 28C. 26D. 295.若数列{a n}满足:a1=2,a n+1=,则a7等于()A. 2B.C. -1D. 20186.已知等差数列{a n}的前n项和为S n,若2a6=a3+6,则S7=()A. 49B. 42C. 35D. 287.等差数列{a n}中,若a1,a2013为方程x2-10x+16=0两根,则a2+a1007+a2012=()A. 10B. 15C. 20D. 408.已知数列{a n}的前n项和,若它的第k项满足2<a k<5,则k=()A. 2B. 3C. 4D. 59.在等差数列{a n}中,首项a1=0,公差d≠0,若 a k=a1+a2+a3+…+a10,则k=()A. 45B. 46C. 47D. 4810.已知S n是等差数列{a n}的前n项和,则2(a1+a3+a5)+3(a8+a10)=36,则S11=()A. 66B. 55C. 44D. 33二、填空题1.已知数列{a n}的前n项和S n=n2+n,则该数列的通项公式a n=______.2.正项数列{a n}中,满足a1=1,a2=,=(n∈N*),那么a n=______.3.若数列{a n}满足a1=-2,且对于任意的m,n∈N*,都有a m+n=a m+a n,则a3=______;数列{a n}前10项的和S10=______.4.数列{a n}中,已知a1=1,若,则a n=______,若,则a n=______.5.已知数列{a n}满足a1=-1,a n+1=a n+,n∈N*,则通项公式a n= ______ .6.数列{a n}满足a1=5,-=5(n∈N+),则a n= ______ .7.等差数列{a n}中,a1+a4+a7=33,a3+a6+a9=21,则数列{a n}前9项的和S9等于______.三、解答题1.已知数列{a n}的前n项和为S n,且=1(n∈N+).(1)求数列{a n}的通项公式;(2)设(n∈N+),求的值.2.数列{a n}是首项为23,第6项为3的等差数列,请回答下列各题:(Ⅰ)求此等差数列的公差d;(Ⅱ)设此等差数列的前n项和为S n,求S n的最大值;(Ⅲ)当S n是正数时,求n的最大值.3.已知数列{a n}的前n项和为S n,且S n=2a n-2(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{S n}的前n项和T n.4.已知数列{a n}具有性质:①a1为整数;②对于任意的正整数n,当a n为偶数时,;当a n为奇数时,.(1)若a1=64,求数列{a n}的通项公式;(2)若a1,a2,a3成等差数列,求a1的值;(3)设(m≥3且m∈N),数列{a n}的前n项和为S n,求证:.等差、等比数列基础练习题答案【答案】(选择题解析在后面)1. D2. C3. A4. B5. A6. B7. B8. C9. B10. D12. 2n13. 14. -6;-110 15. 2n-1;2n-116. -17. 18. 8119. 解:(1)当n=1,a1=,当n>1,S n+a n=1,S n-1+a n-1=1,∴a n-a n-1=0,即a n=a n-1,数列{a n}为等比数列,公比为,首项为,∴a n=.(2)S n=1-a n=1-()n,∴b n=n,∴==-,∴=1-+-+…+-=1-=.20. 解:(Ⅰ)由a1=23,a6=3,所以等差数列的公差d=;(Ⅱ)=,因为n∈N*,所以当n=6时S n有最大值为78;(Ⅲ)由,解得0<n<.因为n∈N*,所以n的最大值为12.21. 解:(Ⅰ)列{a n}的前n项和为S n,且S n=2a n-2①.则:S n+1=2a n+1-2②,②-①得:a n+1=2a n,即:(常数),当n=1时,a1=S1=2a1-2,解得:a1=2,所以数列的通项公式为:,(Ⅱ)由于:,则:,=,=2n+1-2.-2-2- (2)=2n+2-4-2n.22. 解:(1)由,可得,,…,,,,a9=0,…,即{a n}的前7项成等比数列,从第8起数列的项均为0.…(2分)故数列{a n}的通项公式为.…(4分)(2)若a1=4k(k∈Z)时,,,由a1,a2,a3成等差数列,可知即2(2k)=k+4k,解得k=0,故a1=0;若a1=4k+1(k∈Z)时,,,由a1,a2,a3成等差数列,可知2(2k)=(4k+1)+k,解得k=-1,故a1=-3;…(7分)若a1=4k+2(k∈Z)时,,,由a1,a2,a3成等差数列,可知2(2k+1)=(4k+2)+k,解得k=0,故a1=2;若a1=4k+3(k∈Z)时,,,由a1,a2,a3成等差数列,可知2(2k+1)=(4k+3)+k,解得k=-1,故a1=-1;∴a1的值为-3,-1,0,2.…(10分)(3)由(m≥3),可得,,,若,则a k是奇数,从而,可得当3≤n≤m+1时,成立.…(13分)又,a m+2=0,…故当n≤m时,a n>0;当n≥m+1时,a n=0.…(15分)故对于给定的m,S n的最大值为a1+a2+...+a m=(2m-3)+(2m-1-2)+(2m-2-1)+(2m-3-1)+...+(21-1)=(2m+2m-1+2m-2+ (21)-m-3=2m+1-m-5,故.…(18分)1. 解:∵数列{a n}满足a1=a2=1,,∴从第一项开始,3个一组,则第n组的第一个数为a3n-2a3n-2+a3n-1+a3n=cos=cos(2nπ-)=cos(-)=cos=-cos=-,∵2013÷3=671,即S2013正好是前671组的和,∴S2013=-×671=-.故选D.由数列{a n}满足a1=a2=1,,知从第一项开始,3个一组,则第n组的第一个数为a3n-2,由a3n-2+a3n-1+a3n=cos=-,能求出S2013.本题考查数列的递推公式和数列的前n项和的应用,解题时要认真审题,注意三角函数的性质的合理运用.2. 解:∵a n+1=,a1=,∴-=1.∴数列是等差数列,首项为2,公差为1.∴=2+2016=2018.则a2017=.故选:C.a n+1=,a1=,可得-=1.再利用等差数列的通项公式即可得出.本题考查了数列递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.3. 解:∵S n=2n-1(n∈N+),∴a2017=S2017-S2016=2×2017-1-2×2016+1=2由a2017=S2017-S2016,代值计算即可.本题考查了数列的递推公式,属于基础题.4. 解:∵,∴a n+12-2a n a n+1+a n2=9,∴(a n+1-a n)2=9,∴a n+1-a n=3,或a n+1-a n=-3,∵{a n}是正项数列,a1=1,∴a n+1-a n=3,即{a n}是以1为首项,以3为公差的等差数列,∴a10=1+9×3=28.故选B.由递推式化简即可得出{a n}是公差为3的等差数列,从而得出a10.本题考查了等差数列的判断,属于中档题.5. 解:数列{a n}满足:a1=2,a n+1=,则a2==,a3==-1 a4==2a5==,a6==-1.a7==2.故选:A.利用数列的递推关系式,逐步求解即可.本题考查数列的递推关系式的应用,考查计算能力.6. 解:∵等差数列{a n}的前n项和为S n,2a6=a3+6,∴2(a1+5d)=a1+7d+6,∴a1+3d=6,∴a4=6,∴=42.故选:B.由已知条件利用等差数列的通项公式能求出a4,由此利用等差数列的前n项和公式能求出S7.本题考查等差数列的前7项和的求法,是基础题,解题时要认真审题,注意等差数列的通项公式和前n项和公式的合理运用.7. 解:∵a1,a2013为方程x2-10x+16=0的两根∴a1+a2013=10由等差数列的性质知:a1+a2013=a2+a2012=2a1007∴a2+a1007+a2012=15故选:B由方程的韦达定理求得a1+a2013,再由等差数列的性质求解.本题主要考查韦达定理和等差数列的性质,确定a1+a2013=10是关键.8. 解:已知数列{a n}的前n项和,n=1可得S1=a1=1-3=-2,∴a n=S n-S n-1=n2-3n-[(n-1)2-3(n-1)]=2n-4,n=1满足a n,∴a n=2n-4,∵它的第k项满足2<a k<5,即2<2k-4<5,解得3<k<4.5,因为n∈N,∴k=4,故选C;先利用公式a n=求出a n=,再由第k项满足4<a k<7,建立不等式,求出k的值.本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.9. 解:∵a k=a1+a2+a3+…+a10,∴a1+(k-1)d=10a1+45d∵a1=0,公差d≠0,∴(k-1)d=45d∴k=46故选B由已知a k=a1+a2+a3+…+a10,结合等差数列的通项公式及求和公式即可求解本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题10. 解:由等差数列的性质可得:2(a1+a3+a5)+3(a8+a10)=36,∴6a3+6a9=36,即a1+a11=6.则S11==11×3=33.故选:D.利用等差数列的通项公式与性质与求和公式即可得出.本题考查了等差数列的通项公式与性质与求和公式,考查了推理能力与计算能力,属于中档题.12. 解:由S n=n2+n,得a1=S1=2,当n≥2时,a n=S n-S n-1=(n2+n)-[(n-1)2+(n-1)]=2n.当n=1时上式成立,∴a n=2n.故答案为:2n.由数列的前n项和求得首项,再由a n=S n-S n-1(n≥2)求得a n,验证首项后得答案.本题考查了由数列的前n项和求数列的通项公式,是基础题.13. 解:由=(n∈N*),可得a2n+1=a n?a n+2,∴数列{a n}为等比数列,∵a1=1,a2=,∴q=,∴a n=,故答案为:由=(n∈N*),可得a2n+1=a n?a n+2,即可得到数列{a n}为等比数列,求出公比,即可得到通项公式本题考查了等比数列的定义以及通项公式,属于基础题.14. 解:∵对于任意的m,n∈N*,都有a m+n=a m+a n,∴取m=1,则a n+1-a n=a1=-2,∴数列{a n}是等差数列,首项为-2,公差为-2,∴a n=-2-2(n-1)=-2n.∴a3=-6,∴数列{a n}前10项的和S10==-110.故答案分别为:-6;-110.对于任意的m,n∈N*,都有a m+n=a m+a n,取m=1,则an+1-a n=a1=-2,可得数列{a n}是等差数列,首项为-2,公差为-2,利用等差数列的通项公式及其前n项和公式即可得出.本题考查了递推式的应用、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.15. 解:在数列{a n}中,由,可知数列是公差为2的等差数列,又a1=1,∴a n=1+2(n-1)=2n-1;由,可知数列是公比为2的等比数列,又a1=1,∴.故答案为:2n-1;2n-1.由已知递推式a n-a n-1=2,可得数列是公差为2的等差数列,由,可知数列是公比为2的等比数列,然后分别由等差数列和等比数列的通项公式得答案.本题考查数列递推式,考查了等差数列和等比数列的通项公式,是基础题.16. 解:由题意,a n+1-a n=-,利用叠加法可得a n-a1=1-=,∵a1=-1,∴a n=-,故答案为-.由题意,a n+1-a n=-,利用叠加法可得结论.本题考查数列的通项,考查叠加法的运用,属于基础题.17. 解:数列{a n}满足a1=5,-=5(n∈N+),可知数列{}是等差数列,首项为,公差为:5.可得=+5(n-1),解得a n═.故答案为:.判断数列{}是等差数列,然后求解即可.本题考查数列的递推关系式的应用,通项公式的求法,考查计算能力.18. 解:等差数列{a n}中,a1+a4+a7=33,a3+a6+a9=21,∴3a4=33,3a6=21;∴a4=11,a6=7;数列{a n}前9项的和:.故答案为:81.根据等差数列项的性质与前n项和公式,进行解答即可.本题考查了等差数列项的性质与前n项和公式的应用问题,是基础题目.19. (1)根据数列的递推公式可得数列{a n}为等比数列,公比为,首项为,即可求出通项公式,(2)根据对数的运算性质可得b n=n,再根据裂项求和即可求出答案本题考查了数列的递推公式和裂项求和,考查了运算能力和转化能力,属于中档题.20. (1)直接利用等差数列的通项公式求公差;(2)写出等差数列的前n项和,利用二次函数的知识求最值;(3)由S n>0,且n∈N*列不等式求解n的值.本题考查了等差数列的通项公式和前n项和公式,考查了数列的函数特性,是基础的运算题.21. (Ⅰ)直接利用递推关系式求出数列的通项公式.(Ⅱ)利用数列的通项公式,直接利用等比数列的前n项和公式求出结果.本题考查的知识要点:数列的通项公式的求法,等比数列前n项和的公式的应用.22. (1)由,可得{a n}的前7项成等比数列,从第8起数列的项均为0,从而利用分段函数的形式写出数列{a n}的通项公式即可;(2)对a1进行分类讨论:若a1=4k(k∈Z)时;若a1=4k+1(k∈Z)时;若a1=4k+2(k∈Z)时;若a1=4k+3(k∈Z)时,结合等差数列的性质即可求出a1的值;(3)由(m≥3),可得a2,a3,a4.若,则a k是奇数,可得当3≤n≤m+1时,成立,又当n≤m时,a n>0;当n≥m+1时,a n=0.故对于给定的m,S n的最大值为2m+1-m-5,即可证出结论.本小题主要考查等差数列的性质、等比数列的性质、数列与函数的综合等基本知识,考查分析问题、解决问题的能力.。
新教材高二数学上册专项练习 数列(答案)
数列(一)一、单选题.1.已知数列{}n a 为等比数列,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则1234a a a a ⋅⋅⋅的值为( )A .5B .512C .1024D .20482.已知等比数列{}n a 中,352184k a a a ++++=,24242,k a a a k ++++=∈N ,则公比q =( )A .5B .4C .3D .23.若数列{}n b 满足()12337212n n b b b b n +++⋅⋅⋅+-=,则数列{}n b 的通项公式为( ) A .2n b n =B .2n n b =C .42n n b =D .221n nb =- 4.已知数列{}n a 是等差数列,n S 为数列{}n a 的前n 项和,12343a a a a +++=,171819205a a a a +++=,则20S =( )A .10B .15C .20D .405.据有关文献记载:我国古代一座9层塔共挂了126盏灯,且相邻两层中的下一层灯数比上一层灯数都多(n n 为常数)盏,底层的灯数是顶层的13倍,则塔的底层共有灯( ) A .39盏B .42盏C .26盏D .13盏6.设等差数列{}n a 的前n 项和为n S ,若22,17m m S S ==,则3m S =( ) A .45B .32C .47D .547.等差数列{}n a 的前n 项和为n S ,若20212020120212020S S =+且13a =,则( ) A .21n a n =+B .1n a n =+C .22n S n n =+D .24n S n n =-8.设等差数列{}n a 的前n 项和n S ,且满足20160S >,20170S <,对任意正整数n ,都有n k S S ≤,则k 的值为( ) A .1006B .1007C .1008D .10099.已知数列{}n a 满足12a =,121nn n a a a +=+,则下列结论正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列B .数列1n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列 C .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为12的等比数列D .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为2的等比数列 10.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图所示的是由“杨辉三角”拓展而成的三角形数阵,图中虚线上的数1,3,6,10,…构成数列{}n a ,记n a 为该数列的第n 项,则63a =( ) A .2016 B .4032C .2020D .4040二、填空题.11.已知数列{}n a 的前n 项和为n S ,且满足1(1)n a n d =+-,285a a =,则n S =___________.12.设等比数列{}n a 满足132410,5a a a a +=+=,则21222log log log n a a a +++=_________.13.已知等差数列{}n a 的公差0d ≠,且1a 、3a 、9a 成等比数列,15921018a a a a a a ++=++_________.14.在等差数列{}n a 中,120212022202120220,0,0a a a a a >+><,则使0n S >成立的最大自然数n 为_______.15.已知两个等差数列{}n a 和{}n b 的前n 项和分别为n S ,n T ,且21n n S nT n =+,则35a b =________.16.某数除以2余1,除以3余2,除以5余2,若该数不超过2022,则该数的最大值为_________. 三、解答题.17.(1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数. (2)四个数成递增等差数列,中间两数的和为2,首末两项的积为8-,求这四个数. 18.设等差数列{}n a 的前n 项和为n S ,已知3624,18a a ==. (1)求数列{}n a 的通项公式;(2)当n 为何值时,n S 最大,并求n S 的最大值.19.贺同学入读某大学金融专业,过完年刚好得到红包10000元,她决定以此作为启动资金投资股票,每月月底获得的收益是该月月初投入资金的20%,并从中拿出500元作为自己的生活费,余款作为资金全部投入下个月的炒股,如此继续.设第n 个月月底的股票市值为n a . (1)求证:数列{}2500n a -为等比数列;(2)贺同学一年(共12个月)在股市约赚了多少元钱?(111.27.43≈,121.28.92≈)数列(二)一、单选题.1.已知数列{}n a 满足1(2)(1)n n n a n a ++=+,且213a =,则n a =( ) A .11n n -+ B .121n - C .121n n -- D .11n +2.已知数列{}n a 满足11a =,1,1,n n n a n a a n +⎧=⎨+⎩为奇数为偶数,则2021a =( )A .4039B .2021C .1011D .1010二、多选题.3.若公差为d 的等差数列{}n a 满足143n n a a n ++=-,则下列结论正确的为( ) A .数列{}1n n a a ++也是等差数列B .2d =C .112a =-D .13是数列{}n a 中的项三、填空题.4.已知数列{}n a 满足12a =,()11nn n a a ++=-,则数列{}n a 的通项公式为______.四、解答题.5.已知数列{}n a 的各项均为正实数,且其前n 项和n S 满足2*2()n nn S a a n =+∈N . (1)证明:数列{}n a 是等差数列; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 6.已知数列{}n a 满足125a =,且*113220,n n n n a a a a n ++-+=∈N . (1)证明:2n a ⎧⎫⎨⎬⎩⎭为等差数列,并求{}n a 的通项公式;(2)令2nn nc a =,12n n S c c c =+++,求n S .7.已知正项数列{}n a 的前n 项和为n S ,且11a =,n a *n ∈N 且2n ≥). (1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .8.已知数列{}n a 为等差数列,前n 项和为n S ,且满足2718a a +=,8312S a =. (1)求数列{}n a 的通项公式;(2)设3n n n b a =+,求数列{}n b 的前n 项和n T .9.已知数列{}n a 是首项为1,公差为2的等差数列,数列{}n b 满足12b =,311212316n n n n b b b b b a a a a a ++++++=+. (1)求数列{}n b 的通项公式; (2)求数列{}n b 的前n 项和n S .10.在数列{}n a 中,18a =,42a =,且满足212n n n a a a +++=. (1)求数列{}n a 的通项公式;(2)设n S 是数列{}n a 的前n 项和,求n S .参考答案(一)一、单选题. 1.【答案】C【解析】设等比数列{}n a 的公比为q ,因为2312a a a ⋅=,所以2231112a a a q a q a =⋅=,解得3142a q a ==,因为4a 与72a 的等差中项为54,则有475224a a +=⨯,即3445224a a q +⋅=⨯,解得12q =,所以41316a a q ==,故1511622n n n a --⎛⎫=⨯= ⎪⎝⎭, 则123416,8,4,2a a a a ====,所以1234168421024a a a a ⋅⋅⋅⨯⨯⨯==,故选C . 2.【答案】D【解析】等比数列{}n a 满足0,0n a q ≠≠,()242352124224284242k k k k a a a a a a a a a a a a q q ++++++++++⋅====+++,故选D .3.【答案】D【解析】由题得()12337212n n b b b b n +++⋅⋅⋅+-=,(1) 所以()11231372122n n b b b b n --+++⋅⋅⋅+-=- (2)n ≥,(2), (1)-(2)得()212n n b -=,所以221n nb =-(2)n ≥. 由12b =,221n n b =-适合12b =, 所以221n nb =-,故选D . 4.【答案】C【解析】数列{}n a 是等差数列,n S 为数列{}n a 的前n 项和,根据等差数列的性质得到:20161612184284,,,,S S S S S S S S S ----仍成等差数列, 记412343S a a a a =+++=,设5687483S S a a a a x -=+++=+,910128111232S S a a a a x -=+++=+,13141516161233S S a a a a x -=+++=+,17181201692013452S S a a a a x x -=+++=+=⇒=, 20201616121844281510S S S S S S S S S S x =-+-+-+-+=+,计算可得到结果为20,故选C . 5.【答案】C【解析】依题意,9层塔从上层到下层挂灯盏数依次排成一列可得等差数列{},,9k a k k *∈≤N ,9113a a =,于是得19119113996312622a a a a S a ++=⨯=⨯==,解得12a =,926a =, 所以塔的底层共有灯26盏,故选C . 6.【答案】A【解析】由题可知:232,,m m m m m S S S S S --成等差数列, 所以()2322m m m m m S S S S S -=+-,又22,17m m S S ==,所以345m S =,故选A . 7.【答案】A【解析】设{}n a 的公差为d ,∵()112n n n S na d -=+,∴111222n S n d d a d n a n -=+⋅=⋅+-, 即n S n ⎧⎫⎨⎬⎩⎭为等差数列,公差为2d,由20212020120212020S S -=,知122dd =⇒=, 故21n a n =+,()232122n n n S n n ++==+,故选A .8.【答案】C【解析】根据等差数列的前n 项和公式及等差数列的性质可得,()()120161008100920162016201622a a a a S ++==;()1201720171009201720172a a S a +==,又2016201700S S ><,,∴数列的公差为负数,100810090a a ∴+>,10090a <, 10080a ∴>,10090a <, ∴数列{}n a 的前n项和中,1008S 最大,即n k S S ≤时,1008k =,选项C 正确,故选C . 9.【答案】C 【解析】∵121n n n a a a +=+,∴111111222n n n n a a a a ++==⋅+, 1n a ⎧⎫∴⎨⎬⎩⎭既不是等比数列也不是等差数列; ∴1111112n n a a +⎛⎫-=- ⎪⎝⎭,∴数列11n a ⎧⎫-⎨⎬⎩⎭是公比为12的等比数列,故选C .10.【答案】A【解析】依题意,212a a -=,323a a -=,434a a -=,…,于是有11()n n a a n n *+-=+∈N ,则当2n ≥时,121321(1)()()()1232n n n n n a a a a a a a a n -+=+-+-++-=++++=, 而11a =满足上式,因此,(1)2n n n a +=, 所以63636420162a ⨯==,故选A . 二、填空题. 11.【答案】2n【解析】因为1(1)n a n d =+-,285a a =, 所以5(1)172d d d +=+⇒=,所以{}n a 是以2为公差的等差数列,所以2(121)2n n n S n +-==, 故答案为2n .12.【答案】272n n -+【解析】因为等比数列满足132410,5a a a a +=+=,所以241312a a q a a +==+, 又2131110a a a a q +=+=,解得18a =,故141822n n n a --⎛⎫=⋅= ⎪⎝⎭,422log log 24nn a n -==-,所以()21222log log log 3214n a a a n +++=++++-()272342n n n n +-⋅=-⎦=+⎡⎤⎣,故答案为272n n-+.13.【答案】12【解析】由已知可得2319a a a =,即()()211128a d a a d +=+,0d ≠,1a d ∴=,因此,159552101810103513102a a a a a d a a a a a d ++====++,故答案为12. 14.【答案】4042【解析】由等差数列的性质可得14042202120220a a a a ++=>, 又202120220a a <,所以20212022,a a 异号,又10a >,所以等差数列{}n a 必为递减数列,202120220,0a a ∴><,14043202220a a a =∴<+,所以()144042042404202a a S +=>,()144043043404302a a S +=<,使0n S >成立的最大自然数n 为4042,故答案为4042. 15.【答案】519【解析】设等差数列{}n a 的首项为1a ,公差为1d ,等差数列{}n b 的首项为1b ,公差为2d , 则11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+, 故11111112221211(1)(1)()2222(1)(1)()2222n n d d dn n na d a n n a S n n d d d T nb d b n n b -++-+-===-++-+-, 又已知21n n S n T n =+,不妨令111122d d a ⎧=⎪⎪⎨⎪-=⎪⎩且2212212d d b ⎧=⎪⎪⎨⎪-=⎪⎩,解得1112a d =⎧⎨=⎩且1234b d =⎧⎨=⎩,故31151121225434419a a d b b d ++⨯===++⨯,故答案为519.16.【答案】1997【解析】由题意,除以3余2且除以5余2的最小整数为35217⨯+=,恰满足除以2余1,故满足条件的所有整数从小到大的排列是以17为首项,30为公差的等差数列, 2022以内的最大的项为1766301997+⨯=,故答案为1997. 三、解答题.17.【答案】(1)4,3,2;(2)2-,0,2,4. 【解析】(1)设这三个数依次为a d -,a ,a d +,由题意可得:()()96a d a a d a a d a d -+++=⎧⎨-=+⎩,解得31a d =⎧⎨=-⎩,所以这三个数依次为4,3,2.(2)设这四个数依次为3a d -,a d -,a d +,3a d +(公差为20d >),由题意可得()()2338a d a d a d a d -++=⎧⎨-+=-⎩,解得11a d =⎧⎨=⎩或11a d =⎧⎨=-⎩(舍),故所求的四个数依次为2-,0,2,4.18.【答案】(1)302n a n =-;(2)当14n =或15时,n S 最大,n S 的最大值为210. 【解析】(1)设等差数列{}n a 的公差为d , 因为3624,18a a ==,所以63263a a d -==--, 所以3(3)302n a a n d n =+-=-.(2)因为229n S n n =-+,所以对称轴为292n =, 当14n =或15时,n S 最大,所以n S 的最大值为14210S =.19.【答案】(1)证明见解析;(2)65370(元).【解析】(1)依题意,第1个月底股票市值为()110000120%50011500a =+-=, ()1120%500 1.2500n n n a a a +=+-=-,则()12500 1.22500n n a a +-=-,又125001150025009000a -=-=,∴数列{}2500n a -是首项为9000,公比为1.2的等比数列.(2)由(1)知125009000 1.2n n a --=⨯,111225009000 1.266870a ∴-=⨯≈,即1266870250069370a ≈+=, 即到第12个月底贺同学的股票市值为69370元, 故贺同学一年(共12个月)在股市约赚了69370500121000065370+⨯-=(元).参考答案(二)一、单选题.1.【答案】D【解析】数列{}n a 满足1(2)(1)n n n a n a ++=+,且213a =, ∴112a =,112n n a n a n ++=+, ∴11n n a n a n -=+,121n n a n a n ---=,⋯,2123a a =, 累乘可得:12121122113n n n n a a a n n n a a a n n n -----⋅=⋅⋅+-, 可得:211121n a n n =⋅=++,故选D . 2.【答案】C【解析】由题意211a a ==,2221k k a a ++=,2121k k a a +=+,所以2221k k a a +=+, 所以{}2n a 是首项为1,公差为1的等差数列,21(1)n a n n =+-=,所以202120201101011011a a =+=+=,故选C .二、多选题.3.【答案】ABC【解析】由143n n a a n ++=-,易知{}1n n a a ++是等差数列,A 正确; 由143n n a a n ++=-,得2141n n a a n +++=+,所以24n n a a +-=,因为{}n a 是等差数列,所以2d =,B 正确;由121a a +=,则111a a d ++=,所以112a =-,即522n a n =-, 若52132n a n =-=,则n 不是整数,所以C 正确,D 错误, 三、填空题.4.【答案】()()111n n a n +=-+【解析】因为()11n n n a a ++=-,所以()1121n n n a a ++++=-,得()221nn n a a +-=-⋅-. 所以当n 为奇数时,22n n a a +-=;当n 为偶数时,22n n a a +-=-.又12a =,()11nn n a a ++=-,所以23a =-,所以1a ,3a ,5a ,…,21k a -,…构成以2为首项,2为公差的等差数列, 2a ,4a ,6a ,…,2k a ,…构成以3-为首项,2-为公差的等差数列.所以当n 是奇数时,121122n a n n +⎛⎫-=+ ⎪⎝⎭=+; 当n 是偶数时,()32112n n a n ⎛⎫=---=-+ ⎪⎝⎭,故数列{}n a 的通项公式为()()111n n a n +=-+,故答案为()()111n n a n +=-+. 四、解答题. 5.【答案】(1)证明见解析;(2)1n n +. 【解析】(1)当1n =时,由21112a a a =+,得11a =,当2n ≥,由2211122n n n n n n S a a S a a ---⎧=+⎨=+⎩, 两式相减得:22112n n n n n a a a a a --=-+-,整理得:()()111n n n n n n a a a a a a ---+=+-,因10n n a a -+>,故11n n a a --=,于是数列{}n a 是首项11a =、公差1d =的等差数列.(2)由(1)可知:n a n =,故1(1)n b n n =+111n n =-+, 于是11111111223111n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. 6.【答案】(1)证明见解析,232n a n =+,*n ∈N ;(2)(31)21n n S n =-⋅+. 【解析】(1)证明:∵113220n n n n a a a a ++-+=,∴1223n n a a +-=,*n ∈N , ∴2n a ⎧⎫⎨⎬⎩⎭为等差数列,首项为125a =,公差为3, ∴253(1)32n n n a =+-=+,即232n a n =+,*n ∈N . (2)根据题意,得1(32)2n n c n -=+⋅,21582112(32)2n n S n -=+⨯+⨯+++⋅,① 2125282(31)2(32)2n n n S n n -=⨯+⨯++-⋅++⋅,②①-②得215323232(32)2n n n S n --=+⨯+⨯++⨯-+⋅53(22)(32)2n n n =+--+⋅,故(31)21n n S n =-⋅+.7.【答案】(1)21n a n =-;(2)21n n T n =+. 【解析】(1)∵1(2)n n n a S S n -=-≥,∴2)n a n =≥,又)*2,,0n n a n n a =≥∈>N ,∴1(2)n =≥,∴数列1===为首项,1为公差的等差数列,∴1(1)n n =+-=,∴2n S n =,当2n ≥时,()221121n n n a S S n n n -=-=--=-,当1n =时,11a =,满足上式,∴数列{}n a 的通项公式为21n a n =-.(2)由(1)可知,21n a n =-,12233411111n n n T a a a a a a a a +=++++11111335572121n n =++++⨯⨯⨯(-)(+)1111111221251133n n ⎡⎤⎛⎫⎛⎫⎛⎫=⨯-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=⨯- ⎪+⎝⎭21n n =+, ∴当*n ∈N 时,21n n T n =+. 8.【答案】(1)2n a n =;(2)123322n n T n n ++-=+. 【解析】(1)设等差数列{}n a 的公差为d ,依题意有()11116188781222a d a d a d a d +++=⎧⎪⎨⨯+=+⎪⎩,解得122a d =⎧⎨=⎩, ∴数列通项公式为2n a n =.(2)323n n n n b a n =+=+,()1112233332(12)333(1)222n n nn T n n n n n ++-∴=++++++=++=++-, 故123322n n T n n ++-=+. 9.【答案】(1)()2,1212,2n n n b n n =⎧=⎨--⨯≥⎩;(2)()12232()n n S n n *+=---⨯∈N . 【解析】(1)因311212316n n n n b b b b b a a a a a ++++++=+, 则当2n ≥时,因为311212316n n n n b b b b b a a a a a --++++=+, 两式相减得:11n n n n n n b b b a a a ++=-,即112n n n nb b a a ++=⨯, 而当1n =时,12126b b a a =+,得224b a =-, 21212b b a a ≠⨯,因此,当2n ≥时,数列n n b a ⎧⎫⎨⎬⎩⎭是公比为2的等比数列, 则2,12,2n n n n b n a =⎧=⎨-≥⎩, 又{}n a 是首项为1,公差为2的等差数列,即21n a n =-,于是得()2,1212,2n n n b n n =⎧=⎨--⨯≥⎩, 所以数列{}n b 的通项公式为()2,1212,2n n n b n n =⎧=⎨--⨯≥⎩. (2)当1n =时,12S =, 当2n ≥时,()2323252212n n S n =-⨯-⨯---⨯,()341243252212n n S n +=-⨯-⨯---⨯,两式相减得()()231232222212n n n S n +-=--⨯-⨯+++-⨯ ()()()3211221214212223212n n n n n -++⨯-=--+-⨯=+-⨯-,则有()12232n n S n +=---⨯,而12S =满足上式,所以数列{}n b 的前n 项和()12232()n n S n n *+=---⨯∈N .10.【答案】(1)210n a n =-+;(2)229,5940,6n n n n S n n n ⎧-+≤=⎨-+≥⎩. 【解析】(1)由212n n n a a a +++=可得{}n a 是等差数列,且公差412824141a a d --===---, 所以()()11821210n a a n d n n =+-=--=-+. (2)由210n a n =-+,可得{}n a 的前n 项和()2821092n n n T n n -+==-+, 当5n ≤时,2100n a n =-+≥,212129n n n n S a a a a a a T n n =+++=+++==-+, 当6n ≥时,2100n a n =-+<,此时n n a a =-, 所以12567n n S a a a a a a =+++++++ ()12567n a a a a a a =++-++++ ()()()222555225959940n n T T T T T n n n n =--=-=⨯-+⨯--+=-+,综上所述:229,5940,6n n n n S n n n ⎧-+≤=⎨-+≥⎩.。
高中数学数列经典题型专题训练试题(含答案)
高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。
高二数列练习题及答案
高二数列练习题及答案题目一:已知数列an的通项公式为an = 3n + 2,求前5项的和Sn。
解答一:首先,我们将数列的通项公式代入求和公式中,得到:S5 = a1 + a2 + a3 + a4 + a5将an = 3n + 2代入,可得:S5 = (3*1+2) + (3*2+2) + (3*3+2) + (3*4+2) + (3*5+2)计算得出:S5 = 5 + 8 + 11 + 14 + 17 = 55所以,前5项的和Sn为55。
题目二:已知数列bn的通项公式为bn = 2^n,求前6项的和Sn。
解答二:同样地,我们将数列的通项公式代入求和公式中,得到:S6 = b1 + b2 + b3 + b4 + b5 + b6将bn = 2^n代入,可得:S6 = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6计算得出:S6 = 2 + 4 + 8 + 16 + 32 + 64 = 126所以,前6项的和Sn为126。
题目三:已知数列cn的通项公式为cn = (n+1)*(n+2),求前4项的和Sn。
解答三:同样地,我们将数列的通项公式代入求和公式中,得到:S4 = c1 + c2 + c3 + c4将cn = (n+1)*(n+2)代入,可得:S4 = (1+1)*(1+2) + (2+1)*(2+2) + (3+1)*(3+2) + (4+1)*(4+2)计算得出:S4 = 2*3 + 3*4 + 4*5 + 5*6 = 6 + 12 + 20 + 30 = 68所以,前4项的和Sn为68。
题目四:已知数列dn的通项公式为dn = 2^n + n^2,求前3项的和Sn。
解答四:同样地,我们将数列的通项公式代入求和公式中,得到:S3 = d1 + d2 + d3将dn = 2^n + n^2代入,可得:S3 = 2^1 + 1^2 + 2^2 + 2^2 + 3^2计算得出:S3 = 2 + 1 + 4 + 4 + 9 = 20所以,前3项的和Sn为20。
最全面高二数学数列练习题(含答案)(精华版)
高二 《数列 》专题(n 1) S 1 S nS n 求 a n , 应分 n 1 时 a 1; n 2 时 ,1 . S n 与 a n 的关系 : a n, 已知 S n (n 1)1 a n =两步 , 最后考虑 a 1 是否满足后面的 a n .2. 等差等比数列等差数列 等比数列a n a nN *)1 q(n d ( n2 )定义a n a n 1通项a na 1 ( n 1)d , a na m (n m)d ,( n m),如果 a, G,b 成等比数列 , 那么 G 叫做 a 与 a, A, b A 叫做 a 与 b 的 等差中如果 成等差数列 , 那么 a b b 的等比中项 . 项. 中项 A 。
2aq等比中项的设法 : , a , aq等差中项的设法 :前 nn 2n( n 1) 2, S n( a 1a n ) S nna 1d项和 m n p q , 则若 性*a m a na p a q (m, n, p ,q N , m n p q)若2*若 2m q,则有ap a p a q ,( p, q , n , m N )质m2m p q , 则S n 、 S 2nS n 、 S 3 nS 2 n 为等差数列S n 、 S 2 n S n 、 S 3nS 2n 为等比数列函数a 1 qnq nAqa a ndn 2(a 1 d) An B n看数dd 222 a 1a 1 qs nn( a 1) n An Bnq n Aq n(q s A 1)2n1 q 1 列a n N * ) 1( n为一个常数 (1 )定义法 :证明*N ) (n 为一个常数 ; ( 1 ) 定义法 : 证明 a a a n 1n n( 2 ) 中项 : 证 明*( 2 ) 等 差 中 项 : 证 明 2a na n a n 1 (n N ,1 2*ana n a n 1 (n N , n 2)判定1 n 2)n(c , q 均是不为 0 常(3 )通项公式 : a ncq方法*b ( k , b 为常数 ( 3 ) 通项公式 : a n kn )( n N )数) 2*n( A, B 为常数 )( n N ( 4 ) s nAnBn s n AqA )(A,q( 4 )为 常 数 ,0,1 )A 0,q 3. 数列通项公式求法 。
高二数列专题训练(优秀经典练习及答案详解)
高二数学期末复习 (理科)数列 (答案附后)一、选择题1.若数列{a n }是等差数列,且a 3+a 7=4,则数列{a n }的前9项和S 9 = ( ) A.272 B .18 C .27 D .362.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和的值 最大时,n 的值为( )A .6B .7C .8D .93.已知等差数列{a n }的前n 项和为S n ,并且S 10>0,S 11<0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的值为( )A .5B .6C .4D .74. 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2, b 10=12,则a 8=( )A .0B .3C .8D .115.在等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为( ) A .1 B .-12 C .1或-12 D .-1或12 6.已知等比数列{a n }满足a 1=2,a 3a 5=4a 26,则a 3的值为( ) A.12 B .1 C .2 D.147.设数列{a n }满足:2a n =a n +1(a n ≠0)(n ∈N *),且前n 项和为S n ,则S 4a 2的值为( )A.152B.154 C .4 D .28.已知数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R ),且S 25=100,则a 12+a 14 等于( )A .16B .8C .4D .不确定9.已知等比数列{a n }的首项为1,若4a 1,2a 2,a 3成等差数列,则数列{1a n }的前5项和为( )A.3116 B .2 C.3316 D.1633 10.已知数列{a n }满足a 1=5,a n a n +1=2n ,则a 7a 3=( )A .2B .4C .5 D.52 11.已知函数f (n )=⎩⎨⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 20012.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则mn =( )A.32B.32或23C.23 D .以上都不对 二、填空题13.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. 14.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9, 则k =________.15.已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.16.设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|_______. 三、解答题17.设数列{}n a 的前n 项和为n S .已知11a =,131n n a S +=+,n *∈N .(Ⅰ)求数列n {}a 的通项公式; (Ⅱ)求数列n n {}a 的前n 项和n T .18.已知等差数列{a n }满足a 3=7,a 5+a 7=26,数列{a n }的前n 项和S n .(1) 求a n 及S n ; (2)令b n =n a 211-(n ∈N *),求数列{b n }的前n 项和T n .19. 已知数列}{n a 满足()2,34,3,1*1121≥∈-===-+n N n a a a a a n n n , (1)证明:数列}{1n n a a -+是等比数列,并求出}{n a 的通项公式 (2)设数列}{n b 的前n 项和为n S ,且对任意*N n ∈,有 1222211+=+++n na b a b a b nn 成立,求n S20.已知数列{a n }的前n 项和n n S n N 11() 2.()2-+=-+∈n a ,数列{b n }满足b n =2n ·a n .(1)求证数列{b n }是等差数列,并求数列{a n }的通项公式;(2)设n2log =n nc a ,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2c n c n +2的前n 项和为T n ,求满足T n <2521(n ∈N *) 的n 的最大值.高二数学期末复习 (理科)数列 参考答案1.B [S 9=9(a 1+a 9)2=9(a 3+a 7)2=9×42=18.]2.B [∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n .设前k 项和最大,则有⎩⎪⎨⎪⎧a k ≥0,a k +1≤0,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0.∴193≤k ≤223. ∵k ∈N *,∴k =7.故满足条件的n 的值为7.]3.A [由S 10>0,S 11<0知a 1>0,d <0,并且a 1+a 11<0,即a 6<0,又a 5+a 6>0, 所以a 5>0,即数列的前5项都为正数,第5项之后的都为负数,所以 S 5最大,则k =5.]4.B [因为{b n }是等差数列,且b 3=-2,b 10=12,故公差d =12-(-2)10-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8. 所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.]5.C [根据已知条件得⎩⎪⎨⎪⎧a 1q 2=7,a 1+a 1q +a 1q 2=21, ∴1+q +q 2q 2=3.整理得2q2-q -1=0,解得q =1或q =-12.] 6.B [∵{a n }为等比数列,设公比为q ,由a 3·a 5=4a 26可得:a 24=4a 26,∴a 26a 24=14,即q 4=14.∴q 2=12,a 3=a 1·q 2=1.] 7.A [由题意知,数列{a n }是以2为公比的等比数列.故S 4a 2=a 1(1-24)1-2a 1×2=152.]8.B [由数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R ),可知数列{a n }是等差数列,由S 25=(a 1+a 25)×252=100,解得a 1+a 25=8,所以a 1+a 25=a 12+a 14=8.]9.A [设数列{a n }的公比为q ,则有4+q 2=2×2q ,解得q =2,所以a n =2n -1.1a n =12n -1,所以S 5=1-(12)51-12=3116.故选A.] 10.B [依题意得,a n +1a n +2a n a n +1=2n +12n =2,即a n +2a n =2,数列a 1,a 3,a 5,a 7,…是一个以5为首项,以2为公比的等比数列,因此a 7a 3=4,选B.]11..B [由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012 =-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.]12.B[设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到c =1,d =2,则m =a +b =92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23.]13.解析 设等差数列公差为d ,∵由a 3=a 22-4,得1+2d =(1+d )2-4,解得d 2=4,即d =±2.由于该数列为递增数列,故d =2. ∴a n =1+(n -1)×2=2n -1. 答案 2n -114. 解析 a 7-a 5=2d =4,则d =2.a 1=a 11-10d =21-20=1,S k =k +k (k -1)2×2=k 2=9.又k ∈N *,故k =3.15.解析 由题意可知,b 6b 8=b 27=a 27=2(a 3+a 11)=4a 7,∵a 7≠0,∴a 7=4,∴b 6b 8=16. 答案 16 16.解析 由数列{a n }首项为1,公比q =-2,则a n =(-2)n -1,a 1=1,a 2=-2,a 3=4,a 4=-8, 则a 1+|a 2|+a 3+|a 4|=1+2+4+8=15. 答案 15 17.(1) 由题意,131n n a S +=+,则当2n ≥时,131n n a S -=+.两式相减,得14n n a a +=(2n ≥). 又因为11a =,24a =,214a a =,所以数列{}n a 是以首项为1,公比为4的等比数列所以数列{}n a 的通项公式是14n n a -=(n *∈N ).(2)∵ 2112323124344n n n T a a a na n -=++++=+⨯+⨯++⋅,∴2314412434(1)44n n n T n n -=⨯+⨯+⨯++-⋅+⋅,两式相减得,2114314444414nn nn n T n n ---=++++-⋅=-⋅-,整理得,311499n n n T -=⋅+ (n *∈N ).18. (1) 设等差数列{a n }的公差为d ,∵a 3=7,a 5+a 7=26,∴,解得a 1=3,d=2.∴a n =3+2(n ﹣1)=2n+1.∴数列{a n }的前n 项和S n ==n 2+2n .(2) b n ===,∴数列{b n }的前n 项和T n =++…+==.19.解:(1)由1134-+-=n n n a a a 可得2),(31211=--=--+a a a a a a n n n n ,}{1n n a a -∴+是以2为首项,3为公比的等比数列112211)()()(a a a a a a a a n n n n n +-++-+-=∴--- 113131)31(2--=+--=n n (2)1=n 时,3,3,31111===S b a b 2≥n 时,1322,2)12(12-⨯===--+=n n n nnn na b n n na b12323323223-⨯⨯++⨯⨯+⨯⨯+=n n n S1)3333231(2121+⨯++⨯+⨯+⨯=-n n设12103333231-⨯++⨯+⨯+⨯=n n x则n n n n x 33)1(33323131321⨯+⨯-++⨯+⨯+⨯=-2133)333(32021--⨯=+++-⨯=--n nn n nn n x23321+⨯⎪⎭⎫ ⎝⎛-=n n n S20.(1)证明:在S n =-a n -⎝ ⎛⎭⎪⎫12n -1+2中,令n =1,可得S 1=-a 1-1+2=a 1,得a 1=12. 当n ≥2时,S n -1=-a n -1-⎝ ⎛⎭⎪⎫12n -2+2,∴a n =S n -S n -1=-a n +a n -1+⎝ ⎛⎭⎪⎫12n -1,即2a n =a n -1+⎝ ⎛⎭⎪⎫12n -1. ∴2n ·a n =2n -1·a n -1+1.∵b n =2n ·a n ,∴b n =b n -1+1.又b 1=2a 1=1,∴{b n }是以1为首项,1为公差的等差数列. 于是b n =1+(n -1)·1=n ,∴a n =n2n .(2)∵c n =log 2n a n =log 22n =n ,∴2c n c n +2=2n (n +2)=1n -1n +2.∴T n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1n +2=1+12-1n +1-1n +2.由T n <2521,得1+12-1n +1-1n +2<2521,即1n +1+1n +2>1342,f (n )=1n +1+1n +2单调递减,920,f(4)=1130,f(5)=1342,∴n的最大值为4.∵f(3)=。
高中数学--《数列》测试题(含答案)
高中数学--《数列》测试题(含答案)1.已知等比数列{an}中,a5=4,a7=6,则a9等于()A.7 B.8 C.9 D.10【答案解析】C【考点】等比数列的通项公式.【分析】设等比数列{an}的公比为q,由题意可得q2,由等比数列的通项公式可得a9=a7q2,代入求解可得.【解答】解:设等比数列{an}的公比为q,则q2===,∴a9=a7q2=6×=9故选C【点评】本题考查等比数列的通项公式,属基础题.2.等差数列{an}中,a4+a8=10,a10=6,则公差d等于()A. B. C.2 D.﹣【答案解析】A【考点】等差数列的通项公式.【分析】由已知求得a6,然后结合a10=6代入等差数列的通项公式得答案.【解答】解:在等差数列{an}中,由a4+a8=10,得2a6=10,a6=5.又a10=6,则.故选:A.【点评】本题考查了等差数列的通项公式,考查了等差数列的性质,是基础题.3.+2与﹣2两数的等比中项是()A.1 B.﹣1 C.±1 D.【答案解析】C【考点】等比数列的通项公式.【分析】利用等比中项的定义及其性质即可得出.【解答】解: +2与﹣2两数的等比中项==±1.故选:C.【点评】本题考查了等比中项的定义及其性质,考查了推理能力与计算能力,属于基础题.4.已知数列{an}中,an=3n+4,若an=13,则n等于()A.3 B.4 C.5 D.6【答案解析】A【考点】数列的函数特性;等差数列的通项公式.【分析】由an=3n+4=13,求得n的值即可.【解答】解:由an=3n+4=13,解得 n=3,故选A.【点评】本题主要考查数列的函数特性,属于基础题.5.在各项均为正数的等比数列,若,数列的前项积为,若,则的值为A.4 B.5 C.6 D.7【答案解析】B6.已知等比数列的首项为,公比为,给出下列四个有关数列的命题::如果且,那么数列是递增的等比数列;:如果且,那么数列是递减的等比数列;:如果且,那么数列是递增的等比数列;:如果且,那么数列是递减的等比数列.其中为真命题的个数为A.1 B.2 C.3 D.4【答案解析】C7.等差数列的前项和为,若,则的值A.21 B.24 C.28 D.7【答案解析】C8.等差数列中,若,则的值为A.250 B.260 C.350 D.360D9.等差数列中,若,则等于()A.3 B.4 C.5 D.6【答案解析】C10.在等比数列中,则( )A. B. C. D.【答案解析】A.11.已知数列满足:>0,,则数列{ }是()A. 递增数列B. 递减数列C. 摆动数列D. 不确定【答案解析】B由等比数列的定义可知根据条件>0,可确定数列{ }是等比数列,并且是递减数列.12.在等差数列中,,则此数列前13项的和为()A.36 B.13 C.26 D.52【答案解析】C13.数列前n项的和为()A.B.C.D.B14.已知是等比数列,,则公比=()A B C 2 D【答案解析】D15.数列的一个通项公式是()A.B.C. D.【答案解析】B16.设是等差数列,若,则数列{an}前8项的和为()A.128B.80C.64D.56【答案解析】C17.等比数列{an}中,若a5=5,则a3a7=.A. 5B. 10C. 25D.【答案解析】C18.已知,则数列是( )A.递增数列B.递减数列C.常数列D.摆动数列【答案解析】A19.在等比数列{an}中,an+1<an,a2·a8=6,a4+a6=5,则=________ 【答案解析】20.已知,则数列是( )A.递增数列B.递减数列C.常数列D.摆动数列【答案解析】A。
高二数学数列与级数练习题及答案
高二数学数列与级数练习题及答案一、选择题1. 若数列 {an} 的前 n 项和为 Sn = 3n^2 + 4n,则数列 {an} 的通项公式为:A. an = 3n^2 + 4nB. an = 3n^2 + 2nC. an = 3n + 4D. an = 3n + 2答案: B2. 已知数列 {an} 的通项公式为 an = 2n^2 - 3n,数列的第一项为 a1 = -1。
则数列的前 n 项和 S_n = 2n^3 - n^2 - n 的正确表达式为:A. Sn = n^2 + nB. Sn = n^2 - nC. Sn = 2n^2 - nD. Sn = 2n^2 + n答案: C3. 数列 {an} 是等差数列,已知其中的 a1 = 3,an = 8,n = 29。
求数列的公差 d。
答案: d = (an - a1) / (n - 1) = (8 - 3) / (29 - 1) = 5 / 284. 若数列 {an} 是等比数列,且 a1 = 2,an = 16,n = 5。
求数列的公比 q。
答案: q = (an / a1)^(1 / (n - 1)) = (16 / 2)^(1 / (5 - 1)) = 25. 一个等差数列的首项为 a1 = 2,公差为 d = 3,前 n 项和为 S_n = 75。
求 n 的值。
答案: n = (2Sn - a1n) / (2a1 + (n - 1)d) = (2 * 75 - 2 * n) / (2 * 2 + (n - 1) * 3),解方程可得n ≈ 15.533,因为 n 为正整数,所以n ≈ 16。
二、填空题1. 求数列 {an} 的前 n 项和:an = 2n + 1,其中 n = 1, 2, 3, ...答案:Sn = n^2 + n2. 数列 {an} 是等比数列,已知其中的 a1 = 5,公比为 q = 3/2,求a6。
答案:a6 = a1 * q^(6-1) = 5 * (3/2)^5 = 273.75三、解答题1. 数列 {an} 是等差数列,已知其中的 a3 = 5,a6 = 11,求数列的通项公式和数列的前 n 项和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《数列》专题练习1.与的关系:,已知求,应分时;n S n a 11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩n S n a 1=n 1a =1S 时,=两步,最后考虑是否满足后面的.2≥n n a 1--n n S S 1a n a 2.等差等比数列等差数列等比数列定义()1n n a a d--=2n ≥*1()n na q n N a +=∈通项,dn a a n )1(1-+=(),()n m a a n m d n m =+->mn m n n n q a a q a a --==,11中项如果成等差数列,那么叫做与,,a A b A a 的等差中项.。
b 2a b A +=等差中项的设法:da a d a +-,,如果成等比数列,那么叫做与的等,,a G b G a b 比中项.abG =2等比中项的设法:,,aq a aq前项n 和,)(21n n a a nS +=d n n na S n 2)1(1-+=时;时1=q 1,na S n =1≠q qqa a q q a S n n n --=--=11)1(,11*(,,,,)m n p q a a a a m n p q N m n p q +=+∈+=+若,则2m p q =+qp ma a a +=2若,则q p n m +=+qp nm a a a a =2*2,,(,,,)m p q m p q a a a p q n m N =+=⋅∈若则有性质、、为等差数列n S 2n n S S -32n n S S -、、为等比数列n S 2n n S S -32n n S S -函数看数列12221()()22n n a dn a d An B d d s n a n An Bn=+-=+=+-=+111(1)11nn n n n n a a q Aq q a as q A Aq q q q===-=-≠--判定方法(1)定义法:证明为常数;)(*1N n a a n n ∈-+(2)等差中项:证明,*11(2N n a a a n n n ∈+=+-)2≥n (1)定义法:证明为一个常数)(*1N n a a n n ∈+(2)等比中项:证明21n n a a -=*1(,2)n a n N n +⋅∈≥(3)通项公式:均是不为0常数)(,nn a cq c q =3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法(型);n n n c a a =+1(4)利用公式;(5)构造法(型);(6)倒数法等11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩b ka a n n +=+14.数列求和(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。
5.的最值问题:在等差数列中,有关 的最值问题——常用邻项变号法求解:n S {}n a n S (1)当 时,满足 的项数m 使得取最大值.0,01<>d a ⎩⎨⎧≤≥+001m m a a m S (2)当时,满足的项数m 使得取最小值。
0,01><d a ⎩⎨⎧≥≤+001m m a a m S 也可以直接表示,利用二次函数配方求最值。
在解含绝对值的数列最值问题时,注意转化思想的应n S 用。
一、选择题1.已知为等差数列,若,则的值为(){}n a π=++951a a a 28cos()a a +A .B .C .D .21-23-21232.在等比数列中,若则( ){}n a ,243119753=a a a a a =1129a a A .9 B .1 C .2 D .33.已知等差数列的前项和为且则( ){}n a n ,21,551S a a S n =+,209=a =11S A .260B .220C .130D .1104.各项均不为零的等差数列中,若则S 2 009等于( ){}n a ),2,(*112≥∈=--+-n N n a a a n n n A .0 B .2 C .2 009 D .4 0185.在△ABC 中,tan A 是以为第三项,4为第七项的等差数列的公差,tan B 是以为第三项,9为第六项的4-31等比数列的公比,则这个三角形是()A.钝角三角形B.锐角三角形C.等腰三角形D.非等腰的直角三角形6.记等差数列的前项和为,若,且公差不为0,则当取最大值时,( ){}n a n s 103s s =n s =n A .4或5B .5或6C .6或7D .7或8(3)通项:为常数)()(,na knb k b =+*N ∈n (4)为常数)()2n s An Bn =+(,A B ∈*n N (4)为常数,nn s Aq =A -(,A q ≠≠A 0,q 0,1)7.已知数列的前项和满足,则通项公式为( ){}n a n n S 1)1log 2+=+n S n (A. B. C.D. 以上都不正确)(2*N n a nn ∈=⎩⎨⎧≥==)2(2)1(3n n a n n )(2*1N n a n n ∈=+8.等差数列{}n a 的前项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m =( )n A .38 B .20C .10D .99.设数列的前项和,则的值为( ){}n a n 2n S n =8a A .15B .16C .49D .6410.为等比数列的前项和,已知,,则公比( )n S {}n a n 3432S a =-2332S a =-q =A .3B .4C .5D .611.等比数列{}n a 的前项和为n S ,且41a ,22a ,3a 成等差数列,若则( )n ,11=a 4S =A .7B .8C .15D .1612.已知数列的前项和为,,,,则( ){}n a n n S 11a =12n n S a +=n S =A . B . C . D .12-n 1)23(-n 1)32(-n 121-n 二、填空题:13.已知等比数列为递增数列.若且则数列的公比 .{}n a ,01>a ,5)(212++=+n n n a a a {}n a =q 14.设等比数列的公比前项和为则= .{}n a ,2=q n ,n S 24a S 15.数列的前项和记为则的通项公式{}n a n ()11,1,211n n n S a a S n +==+≥{}n a 16.等比数列的首项为a 1=1,前n 项和为若=,则公比q 等于________.{}n a ,n S S 10S 53132三、解答题17.已知等差数列满足:,,的前n 项和为.{}n a 37a =5726a a +={}n a n S (Ⅰ)求及;n a n S (Ⅱ)令b n=(n N *),求数列的前n 项和.211na -∈{}nb n T 18.已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==.(I )求数列{}n a 的通项公式.(II )设31323log log log nn b a a a =+++ ,求数列1{}n b 的前n 项和.19.已知为等比数列,;为等差数列的前n 项和,.{}n a 256,151==a a n S }{n b ,21=b 8525S S =(1) 求和的通项公式;{}n a }{n b (2) 设,求.n T n n b a b a b a ++=2211n T 20.设各项均为正数的数列的前项和为,满足且构成等比数{}n a n n S 21441,,n n S a n n N *+=--∈2514,,a a a 列.(1) 证明:;2a =(2) 求数列的通项公式;{}n a (3) 证明:对一切正整数,有.n 1223111112n n a a a a a a ++++< 21.2a ,5a 是方程2x 02712=+-x 的两根, 数列{}n a 是公差为正的等差数列,数列{}n b 的前n 项和为n T ,且nT 211-=n b ()*∈N n .(1)求数列{}n a ,{}n b 的通项公式;(2)记n c =n a n b ,求数列{}n c 的前n 项和n S .22.设数列{}n a 满足10a =且1111.11n na a +-=--(Ⅰ)求{}n a 的通项公式;(Ⅱ)设1, 1.nn n k n k b b S ===<∑记S 证明:。