边角边判定

合集下载

《“边角边”判定三角形全等》教学设计(湖北省县级优课)

《“边角边”判定三角形全等》教学设计(湖北省县级优课)

12.2.2 三角形全等判定(SAS)教学内容本节课主要内容是探索三角形全等的条件(SAS),及利用SAS全等三角形.教学目标1.知识与技能领会“边角边”判定两个三角形的方法并会应用.2.过程与方法经历探究三角形全等的判定方法的过程,学会解决简单的推理问题.3.情感、态度与价值观培养合情推理能力,感悟三角形全等的应用价值.重、难点及关键1.重点:会用“边角边”证明两个三角形全等.2.难点:应用结合法的格式表达问题.3.关键:在实践、观察中正确选择判定三角形全等的方法.教具准备投影仪、直尺、圆规.教学方法采用“操作──实验”的教学方法,让学生有一个直观的感受.教学过程一、回顾交流,操作分析【动手画图】【投影】作一个角等于已知角.【学生活动】动手用直尺、圆规画图.已知:∠AOB.求作:∠A1O1B1,使∠A1O1B1=∠AOB.【作法】(1)作射线O1A1;(2)以点O为圆心,以适当长为半径画弧,交OA 于点C, 交OB于点D;(3)以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;(4)以点C1为圆心,以CD 长为半径画弧,交前面的弧于点D1;(5)过点D1作射线O1B1,∠A1O1B1就是所求的角.【导入课题】教师叙述:请同学们连接CD 、C 1D 1,回忆作图过程,分析△COD 和△C 1O 1D 1 中相等的条件.【学生活动】与同伴交流,发现下面的相等量:OD=O 1D 1,OC=O 1C 1,∠COD=∠C 1O 1D 1,△COD ≌△C 1O 1D 1.归纳出规律:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”).二、范例点击,应用新知【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,•使CE=CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC ≌△DEC ,就可以得出AB=DE .在△ABC 和△DEC 中,CA=CD ,CB=CE ,如果能得出∠1=∠2,△ABC 和△DEC•就全等了.证明:在△ABC 和△DEC 中∴△ABC ≌△DEC (SAS )∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等)三、辨析理解,正确掌握【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射12CA CD CB CE =⎧⎪∠=∠⎨⎪=⎩。

三角形全等的判定“边角边”判定定理教案

三角形全等的判定“边角边”判定定理教案

三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解并掌握“边角边”判定定理(SAS),能够运用该定理证明两个三角形全等。

2. 培养学生运用几何知识解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队合作能力。

二、教学内容1. 三角形全等的概念。

2. “边角边”判定定理(SAS)的定义及证明过程。

3. 运用“边角边”判定定理解决实际问题。

三、教学重点与难点1. 教学重点:掌握“边角边”判定定理(SAS),能够运用该定理证明两个三角形全等。

2. 教学难点:如何判断两个三角形是否全等,以及如何运用“边角边”判定定理进行证明。

四、教学方法1. 采用讲授法,讲解三角形全等的概念和“边角边”判定定理。

2. 采用案例分析法,分析实际问题,引导学生运用“边角边”判定定理解决问题。

3. 采用小组讨论法,培养学生团队合作精神,提高解决问题的能力。

五、教学过程1. 导入:通过复习三角形全等的概念,引入“边角边”判定定理。

2. 讲解:讲解“边角边”判定定理(SAS)的定义及证明过程,让学生理解并掌握。

3. 案例分析:分析实际问题,引导学生运用“边角边”判定定理解决问题。

4. 小组讨论:让学生分组讨论,运用“边角边”判定定理证明三角形全等。

5. 总结:对本节课的内容进行总结,强调“边角边”判定定理的应用。

6. 作业布置:布置相关练习题,巩固所学知识。

教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

关注学生在解决问题时的创新意识和逻辑思维能力,为后续教学做好准备。

六、教学评价1. 通过课堂讲解、案例分析和小组讨论,评价学生对“边角边”判定定理(SAS)的理解和掌握程度。

2. 评价学生在解决实际问题时,能否正确运用“边角边”判定定理,以及证明的逻辑性和准确性。

3. 观察学生在小组讨论中的表现,评估其团队合作能力和交流沟通能力。

七、教学拓展1. 引导学生思考其他三角形全等的判定定理,如“角边角”(ASA)、“角角边”(AAS)等,让学生了解并掌握更多判定定理。

三角形全等的判定“边角边”判定定理教案

三角形全等的判定“边角边”判定定理教案

三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的判定方法。

2. 让学生掌握“边角边”(SAS)判定定理,并能运用其判定两个三角形全等。

3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。

二、教学内容1. 三角形全等的概念。

2. “边角边”(SAS)判定定理。

三、教学重点与难点1. 教学重点:三角形全等的概念,SAS判定定理。

2. 教学难点:SAS判定定理在实际问题中的应用。

四、教学方法1. 采用讲授法讲解三角形全等的概念和SAS判定定理。

2. 利用多媒体演示和实物模型辅助教学,增强学生的直观感受。

3. 开展小组讨论和练习,培养学生的合作精神和解决问题的能力。

五、教学过程1. 导入新课:通过复习三角形全等的概念,引入“边角边”判定定理。

2. 讲解三角形全等的概念:三角形全等指的是在平面内,两个三角形的所有对应角度相等,对应边长比例相等。

3. 讲解“边角边”(SAS)判定定理:如果两个三角形的一边和与其相邻的两个角分别与另一个三角形的一边和与其相邻的两个角相等,这两个三角形全等。

4. 演示和练习:利用多媒体演示和实物模型,让学生直观地理解SAS判定定理。

让学生进行一些练习题,巩固所学知识。

5. 小组讨论:让学生分组讨论如何运用SAS判定定理解决实际问题,并分享讨论成果。

6. 总结与拓展:对本节课的内容进行总结,强调SAS判定定理在三角形全等问题中的应用。

提出一些拓展问题,激发学生的学习兴趣。

7. 布置作业:布置一些有关三角形全等和SAS判定定理的练习题,巩固所学知识。

六、教学评价1. 通过课堂讲解、练习和小组讨论,评价学生对三角形全等概念和SAS判定定理的理解程度。

2. 观察学生在练习题中的解题思路和解答过程,评价其运用SAS判定定理的能力。

3. 收集学生的讨论成果,评价其合作精神和解决问题的能力。

七、教学反思1. 反思本节课的教学内容安排是否合适,教学方法是否得当。

12.2三角形全等的判定“边角边”判定三角形全等(教案)

12.2三角形全等的判定“边角边”判定三角形全等(教案)
-难点2:在复杂的几何图形中,学生可能无法快等策略来辅助识别。
-难点3:在书写证明过程时,学生可能忘记标注已知的全等关系或使用错误的几何符号,需要教师提供清晰的示范和指导。
在教学过程中,教师应针对上述重点和难点内容,通过直观演示、实际操作、案例分析、小组讨论等多种教学方法,帮助学生深刻理解“边角边”判定法则,并能够熟练运用到几何问题的解决中。同时,教师应注重对学生的个别辅导,及时发现并解决他们在学习过程中遇到的问题。
五、教学反思
在今天的教学过程中,我发现学生们对“边角边”判定法则的理解和应用存在一些问题。首先,他们对“夹角”的概念还不够清晰,容易与“角”混淆。在讲解和练习过程中,我通过强调和举例,帮助他们更好地理解了这一点。但在后续的教学中,我还需要继续关注这个知识点,确保学生能够牢固掌握。
其次,学生在运用“边角边”判定法则解决实际问题时,对如何快速识别符合条件的三边和夹角还不够熟练。在实践活动和小组讨论中,我发现他们在识别过程中存在一定的困扰。为了解决这个问题,我计划在下一节课中增加一些识别技巧的讲解,并结合更多实际案例进行分析,让学生在实践中提高识别能力。
重点难点解析:在讲授过程中,我会特别强调“边”和“夹角”的识别以及全等证明的步骤。对于难点部分,我会通过具体例子和对比分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与“边角边”判定法则相关的实际问题。
实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠和拼接三角形纸片,学生可以直观地看到“边角边”判定法则的应用。
最后,我也要反思自己在教学过程中的表达方式和教学手段。在讲解重点难点时,是否能够更加生动形象地传达知识点?如何更好地激发学生的学习兴趣和积极性?这些都是我需要在今后的教学中不断探索和改进的地方。希望通过我的努力,能够让几何教学变得更加有趣、有效。

三角形全等的判定“边角边”判定定理教案

三角形全等的判定“边角边”判定定理教案

三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的条件。

2. 引导学生学习“边角边”判定定理,并能运用该定理判断三角形全等。

3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。

二、教学内容1. 三角形全等的概念。

2. “边角边”判定定理的内容及运用。

三、教学重点与难点1. 教学重点:三角形全等的概念,边角边判定定理的运用。

2. 教学难点:理解并运用边角边判定定理判断三角形全等。

四、教学方法1. 采用问题驱动法,引导学生探究三角形全等的条件。

2. 运用案例分析法,让学生通过具体案例理解边角边判定定理。

3. 采用小组讨论法,培养学生的合作交流能力。

五、教学过程1. 导入新课:引导学生回顾三角形的基本概念,提问:如何判断两个三角形完全相同呢?2. 探究三角形全等的条件:让学生通过观察、操作,找出两个三角形全等的条件。

引导学生发现,当两个三角形的两边和夹角分别相等时,这两个三角形全等。

3. 引入“边角边”判定定理:讲解边角边判定定理的内容,让学生理解并掌握该定理。

4. 案例分析:展示一组三角形案例,让学生运用边角边判定定理判断三角形全等。

5. 练习巩固:设计一些练习题,让学生独立完成,检验对边角边判定定理的掌握程度。

6. 课堂小结:回顾本节课所学内容,强调三角形全等的条件和边角边判定定理的运用。

7. 作业布置:布置一些有关三角形全等判定的练习题,让学生课后巩固。

六、教学延伸1. 引导学生思考:除了边角边判定定理,还有哪些判定三角形全等的方法?2. 介绍其他判定三角形全等的方法,如ASA(角边角)、AAS(角角边)等。

七、课堂互动1. 组织学生进行小组讨论,探讨如何运用不同的判定方法判断三角形全等。

2. 选取一些判断题,让学生判断题目给出的三角形是否全等,并解释判断依据。

八、课堂总结1. 回顾本节课所学内容,总结三角形全等的判定方法。

2. 强调在实际应用中,要根据题目给出的条件选择合适的判定方法。

三角形全等的判定——“边角边”判定定理教案

三角形全等的判定——“边角边”判定定理教案

三角形全等的判定——“边角边”判定定理教案教案模板:教案标题:三角形全等的判定,“边角边”判定定理教学目标:1.理解“边角边”判定定理的含义和应用条件;2.掌握使用“边角边”判定定理判断两个三角形是否全等的方法;3.练习运用“边角边”判定定理解决实际问题。

教学重点:1.“边角边”判定定理的内容和原理;2.应用“边角边”判定定理判断全等三角形。

教学难点:应用“边角边”判定定理解决实际问题。

教学准备:1.教材教具:教科书、黑板、彩色粉笔;2.教学辅助材料:练习题。

教学过程:步骤1:导入(5分钟)1.引入新内容:前面我们学习了“角边角”判定定理来判断三角形的全等,今天我们将学习“边角边”判定定理。

2.利用黑板上画出两个全等三角形的示意图,让学生观察,思考如何判断这两个三角形是否全等。

步骤2:知识讲解(15分钟)1.讲解“边角边”判定定理的概念和应用条件。

a.边角边判定定理:若两个三角形的一边分别相等,另两边分别相等,并且这两边之间的夹角相等,则两个三角形全等。

b.应用条件:两个三角形的一边分别相等,另两边分别相等,并且这两边之间的夹角相等。

2.通过示意图和示例,详细解释和分析应用“边角边”判定定理判断全等三角形的方法。

a.首先,观察和比较两个三角形的边长是否相等。

b.然后,观察和比较两个三角形的夹角是否相等。

c.最后,根据“边角边”判定定理的应用条件,判断两个三角形是否全等。

步骤3:示范和练习(25分钟)1.在黑板上画出一个已知的三角形ABC,让学生根据题目给出的条件使用“边角边”判定定理判断是否还存在另一个全等三角形。

2.然后,给出一些练习题,组织学生进行个别或小组练习,巩固“边角边”判定定理的运用。

3.指导学生做练习题时,注意运用几何图形的标记和符号,清晰地表达解题过程和思路。

步骤4:知识总结(5分钟)1.提问学生:你们学会了如何使用“边角边”判定定理判断三角形全等了吗?2.引导学生总结“边角边”判定定理的要点和应用方法。

全等五边形的判定—边角边优秀教案

全等五边形的判定—边角边优秀教案

全等五边形的判定—边角边优秀教案一、教案目标本教案旨在帮助学生通过研究全等五边形的判定方法,提高他们的几何思维能力和问题解决能力。

二、教学内容1. 全等五边形的定义和特点2. 边角边(SAS)判定法的理论原理和应用方法3. 利用边角边判定法判定五边形是否全等的示例和练三、教学步骤1. 导入:通过展示一些具有五边形形状的图片或实物,让学生回顾五边形的定义和特点。

2. 讲解:简要介绍边角边判定法的理论原理和应用方法,重点解释其中的几何推理过程。

3. 演示:给出一个边角边判定五边形全等的示例,详细展示解题过程,引导学生理解和掌握边角边判定法的应用。

4. 练:提供一些练题,要求学生利用边角边判定法判定五边形是否全等,并解释他们的解题过程和思路。

5. 总结:归纳边角边判定法的关键步骤和要点,检查学生是否掌握。

6. 拓展:提供更复杂的例题挑战学生,激发他们的研究兴趣和思考能力。

四、教学工具1. 五边形形状的图片或实物2. 教师演示板或电子白板3. 练题册或工作纸五、教学评估1. 利用练题和解题过程,评估学生对边角边判定法的理解和应用能力。

2. 观察学生在实际解题中的几何推理过程和思维能力,评估他们的几何思维水平和问题解决能力。

六、教学延伸1. 引导学生思考其他全等五边形判定方法的可能性,并鼓励他们自主探索和研究。

2. 鼓励学生应用全等五边形判定方法解决实际生活和职业中的问题,培养他们的应用能力和创新思维。

3. 推荐相关的几何研究资源和参考书籍,供有兴趣的学生深入研究和研究。

该教案旨在通过简明扼要地介绍全等五边形的判定方法,帮助学生掌握这一几何概念并提高他们的问题解决能力。

教案结构清晰,包含了导入、讲解、演示、练习、总结和拓展等几个教学步骤。

通过练习和评估,可以检查学生对边角边判定法的理解和应用水平。

此外,教案还提供了教学工具和延伸部分来帮助学生拓展学习和应用全等五边形判定方法的能力。

三角形全等的判定——“边角边”判定定理教案

三角形全等的判定——“边角边”判定定理教案

三角形全等的判定——“边角边”判定定理教案授课人:丁俏尹教学内容:本节课的主要内容是探索三角形全等的条件“边角边”以及利用”SAS”判定定理证明三角形全等。

教学目标:一、知识与技能探索、领会“SAS”判定两个三角形全等的方法。

二、过程与方法1、经历探索三角形全等的判定方法的过程。

2、能灵活地运用三角形全等的条件,进行有条理地思考和简单推理。

3、利用三角形的全等解决实际问题,体会数学与实际生活的联系。

三、情感态度与价值观培养学生合理的推理能力,感悟三角形全等的应用价值,体会数学与实际生活的联系,学会团队合作,培养自己主动参与、勇于探究的精神。

教学重点、难点:1、重点:通过学习、会利用“边角边”证明两个三角形全等。

2、难点:通过学习、会正确运用“SAS”判定定理,在实际观察中正确选择判定三角形的方法。

教学方法:采用“操作——实验”的教学方法,让学生有一个直观的感受教学用具:多媒体、纸板、常用画图工具3.证明两个三角形全等时有些图形中常常包含一些隐含条件:如对顶角,公共角,公共边。

4.证明边相等或者角相等常常转化为证三角形全等。

五、课后作业[1]必做题:课本第78页练习第2、3题[2]选做题:1、已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:∠B=∠C2、如图,AB∥EF,AB=EF,BD=EC,那么①△ABC与△FED全等吗?为什么?②AC∥FD吗?为什么?CB EDFA3、思考:两边一角分别相等包括“两边夹角”和“两边及其中一边的对角”分别相等两种情况,前面已探索出“SAS”判定三角形全等的方法,那么由“SSA”的条件能判定两个三角形全等吗?学生课后自主完成巩固本节知识,查漏补缺。

板书三角形全等的判定——“边角边”判定定理1、定理:在两个三角形中,如果有两边及他们的夹角对应相等,那么这两个三角形全等(简记为SAS)2、证明三角形全等的过程1)准备条件2)指明范围3)摆齐条件写出结论4)。

全等三角形的判定边角边

全等三角形的判定边角边

角边角
两个角和其中一角的对边 对应相等的两个三角形不 一定全等。
角角边
两个角和其中一个角的对 边对应相等的两个三角形 不一定全等。
边角边判定定理的拓展应用
证明两个三角形全等,可以通过边角 边判定定理来判断,即三边和三个角 分别相等的两个三角形一定全等。
在实际应用中,可以利用边角边判定 定理来解决一些实际问题,如测量不 可直接测量的距离、角度等问题。
全等三角形的判定 边角边
目 录
• 全等三角形的基本概念 • 边角边判定定理 • 边角边判定定理与三角形全等的关系 • 边角边判定定理的变式与拓展 • 边角边判定定理在几何问题中的应用
01
CATALOGUE
全等三角形的基本概念
全等三角形的定义
01
两个三角形全等是指能够完全重 合,即一个三角形的三个顶点分 别对应另一个三角形的三个顶点 ,且三条边分别对应相等。
如果两个三角形全等,那么它们 的对应角相等,对应边也相等。
可以通过测量一个三角形的角度 和边长,来求解另一个三角形的
角度和边长。
在实际几何问题中,边角边判定 定理可以用于求解一些角度和长 度问题,比如求解一个三角形的
高、中线、角平分线等。
在几何图形中的综合应用
边角边判定定理可以用于证明一些几何定理 和性质,比如等腰三角形的性质、直角三角 形的性质等。
实际应用中的问题
在实际应用中,由于测量误差和计算误差等原因,可能会出 现无法准确判断两个三角形是否全等的情况。因此,在应用 边角边定理时需要考虑到这些因素。
04
CATALOGUE
边角边判定定理的变式与拓展
边角边判定定理的变式
01
02
03
边边角

第2课时 “边角边”判定三角形全等

第2课时  “边角边”判定三角形全等
∴ △ABD≌△ABC (SAS) ∴ BD=BC
D
A
C
课堂练习
3 .如图:点E,F在BC上,BE=CF, AB=DC, ∠B= ∠C.求证: ∠A= ∠D. 证明: ∵ BE=CF, ∴ BF=CE 在△AFB 和△DEC中, AB=DC ∠B=∠C BF=CE ∴ △AFB ≌ △DEC
A
D
B
判定两个三角形全等的方法: 两边和它们的夹角分别相等的两个 三角形全等. 简写成“边角边”或“SAS”.
举例分析
例2:如图,有一池塘,要测池塘两端A,B的距离, 可先在平地上取一个点C,从点C不经过池塘可以直接到 达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延 长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的 距离,为什么?
第十二章 全等三角形
12.2 三角形全等的判定 第2课时 “边角边”判定三角形 全等
复习引入
1.什么是全等三角形? 能够完全重合的两个三角形叫做全等三角形. 2.全等三角形有哪些性质? 全等三角形的对应边相等,对应角相等. 3.“SSS”具体内容是什么? 三边分别相等的两个三角形全等.
新知探究
已知△ABC,画一个三角形△A′B′C′, 使AB=A′B′ ,∠B=∠B′ ,BC =B′C′ .
求证: △ACB ≌△ADB. C 分析: 要证△ACB ≌△ADB. 这两个条件够吗? 还要什么条件呢? 还要一条边 D A B
已知: 如图,AC=AD ,∠CAB=∠DAB. 求证: △ACB ≌ △ADB. 证明: 在△ACB 和 △ADB中 C
AC = A D (已知)
A
B
∠CAB=∠DAB(已知)
交于点O, 要证△ABE≌△ACD需添加什么条件? A

三角形全等的判定二 《边角边》判定

三角形全等的判定二  《边角边》判定

教学设计课题名称:12.2 三角形全等的判定二《边角边》判定姓名:傅春明工作单位:陆丰市铜锣湖农场中学学科年级:八年级数学(上) 教材版本:新人教版一、教学内容分析《边角边》定理是新人教版八年级上册第12章“三角形全等判定”的第二课时,它是同学们在学习了全等图形的概念以及学习第一种判定方法“SSS”定理的基础上,进一步学习三角形全等的判定方法,为后续学习内容奠定了基础,是初中数学的重要基础内容。

二、教学目标1、知识与能力:(1)让学生在探究的过程中得出“SAS”判定方法。

(2)使学生会运用”SAS”判定方法解决实际问题。

2、过程与方法(1)初步渗透综合法和分析法的思想方法,提高学生演绎推理的条理性和逻辑性。

(2)在探究的过程中提高学生观察、分析归纳能力,(3) 体会利用数学建模解决实际问题的方法。

3、情感与态度:(1)在合作探究三角形全等条件的过程中,积累数学活动经验,学会与他人合作交流。

三、学习者特征分析学生通过前面的学习,已了解了三角形全等的概念及性质,掌握了全等三角形的对应边、对应角的关系,这为探索三角形全等的条件做好了知识上的准备。

从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点,而且八年级学生还不具备独立系统地推理论证几何问题的能力,思维有一定的局限性,考虑问题不够全面。

四、教学策略选择与设计根据本节课的教学特点和学生的实际:本节课采用“→创设问题情境→引导探索→发现归纳→运用与拓展”来展开,并用多媒体辅助演示和训练,在探索三角形全等判别方法的过程中,不是简单地让学生去发现课本上给出的判别方法而是让学生通过动手操作经历知识形成,从而调动、引导学生发现三角形全等的判别方法,给学生创设自主探索、合作交流、独立获取知识的机会,进而让学生更好地理解和掌握三角形全等的判定方法,且教师给于充分肯定。

五、教学重点及难点教学重点:理解“边角边公理”,并能利用它们判定两个三角形全等。

三角形全等的判定——“边角边”》教学设计

三角形全等的判定——“边角边”》教学设计

三角形全等的判定——“边角边”》教学设计八年级课题:三角形全等的判定——“边角边”课型本课通过探究“边角边”条件,使学生掌握判定两个三角形全等的方法。

教学媒体:多媒体知识技能:1.掌握“边角边”条件的内容。

2.能用“边角边”证明两个三角形全等。

3.了解“边边角”不能判定三角形全等。

教学过程:一、情境引入从上节课我们知道,三边对应相等的两个三角形全等。

我们回忆一下,两个三角形中明确四种情况两个三角形全等吗?二、探究新知1.探究:“边角边”条件是否能判定两个三角形全等。

做一做:画△ABC,使AB=4cm,∠A=60°,AC=5cm。

再换两条线段和一个角试一试:满足三个条件对应和本节课要探究的问题。

教师巡视,学生作图,剪三角形,同桌比较,确认所得结论。

进一步研究三角形的画法,从学生思考、判断、实践中体会三角形的全等条件。

2.探究“边边角”条件是否能判定两个三角形全等。

做一做:以3cm,4cm为三角形的两边,长度为3cm的边所对的角为45°,动手画一个三角形,把所画的三角形与同桌同学画的三角形进行比较,那么所有的三角形都全等吗?学生发现所画三角形有两种不同情况。

使学生认识到“边边角”不能判定两个三角形一定全等。

结论:两边及其一边所对的角相等,两个三角形全等。

三、总结教师引导学生概括“边角边”判定定理,并让学生类比判断。

四、巩固练在△ABC和△A'B'C'中,已知AB=A'B',∠B=∠B',BC=B'C',△ABC与△A'B'C'全等吗?五、作业预“角角边”条件的内容。

题目:证明△ABD和△CBD全等的条件是AB=CB,∠ABD=∠CBD。

解析:首先,根据“边角边”定理,我们需要找到两个三角形的两条边和它们之间的夹角分别相等。

因此,我们可以观察图中的△ABD和△CBD,发现它们有共同的边BD,且AB=CB,∠ABD=∠CBD。

初中数学教学课例《12.2“边角边”判定三角形全等》教学设计及总结反思

初中数学教学课例《12.2“边角边”判定三角形全等》教学设计及总结反思

角相等)把画好的△A′B′C′剪下来,放到△ABC 上,
它们全等吗?
教帅点拨,学生边学边画图,再让学生把画好的△
A'B'C',剪下放在△ABC 上,观察这两个三角形是否全
等.
根据前面的操作,鼓励学生用自己的语言来总结规
律:
两边和它们的夹角对应相等的两个三角形全
等.(SAS)
强调:角必须是两条相等的对应边的夹角,边必须 是夹相等角的两对边.
生发现三角形全等的判定方法,给学生创设自主探索、 择与设计
合作探究、独立获取知识的机会,进而让学生更好的理
解和掌握三角形全等的判定方法,教师给予充分肯定,
通过本节课的教学,让学生学会自己探索知识,发现掌
握,主动探取知识的能力。
一、复习导入
1、三角形全等判定方法 1:
2、证明四步走
3、情景导入
如图,有一池塘,要测池塘两端 A、B 的距离,可
证明:∵AD∥BC,
∴∠1=∠2(两直线平行,内错角相等).
在△ADC 和△CBA 中,
∴△ADC≌△CBA(SAS).
五、小结与作业
(一)小结
1.判定三角形全等的方法;
2.证明线段、角相等常见的方法有哪些
(二)布置作业
1.已知:如图,AB=AC,F、E 分别是 AB、AC 的
中点.
求证:△ABE≌△ACF.
要内容。在能力培养上,无论是动手操作能力,还是分 教材分析
析问题、解决问题的能力,都可在都可在全等三角形的
教学中得以培养和提高。利用全等三角形可以证明线段
相等、角相等,学好全等三角形对平行四边形的学习打
下良好的基础,因此,全等三角形的教学对以后的学习

三角形全等的判定“边角边”判定定理教案

三角形全等的判定“边角边”判定定理教案

三角形全等的判定-“边角边”判定定理教案一、教学目标:1. 让学生理解并掌握三角形全等的概念。

2. 让学生了解并掌握“边角边”判定定理。

3. 培养学生运用“边角边”判定定理证明三角形全等的能力。

二、教学内容:1. 三角形全等的定义。

2. “边角边”判定定理的内容及其证明。

3. “边角边”判定定理在实际问题中的应用。

三、教学重点:1. 三角形全等的概念。

2. “边角边”判定定理的证明。

四、教学难点:1. 三角形全等的证明。

2. “边角边”判定定理在实际问题中的应用。

五、教学方法:1. 采用讲授法讲解三角形全等的定义和“边角边”判定定理。

2. 利用图形演示法展示三角形全等的证明过程。

3. 运用练习法巩固学生对“边角边”判定定理的理解和应用。

4. 采用小组讨论法培养学生的合作意识和解决问题的能力。

教案一、导入(5分钟)1. 复习三角形全等的概念。

2. 提问:我们已经学习了三角形全等的哪些判定方法?二、新课讲解(15分钟)1. 讲解三角形全等的定义。

2. 引入“边角边”判定定理,讲解其内容及其证明过程。

3. 通过图形演示,让学生直观地理解“边角边”判定定理。

三、实例分析(10分钟)1. 给出实例,让学生运用“边角边”判定定理证明三角形全等。

2. 引导学生分析实例中的关键步骤,巩固对“边角边”判定定理的理解。

四、课堂练习(10分钟)1. 布置练习题,让学生独立完成。

2. 选取部分学生的作业进行点评,讲解错误原因,纠正错误。

五、课堂小结(5分钟)1. 总结本节课所学内容,强调三角形全等的判定方法。

2. 提醒学生在实际问题中运用“边角边”判定定理时,要注意分析题目条件。

六、课后作业(课后自主完成)1. 复习本节课所学内容,整理笔记。

2. 完成课后练习题,巩固对“边角边”判定定理的理解和应用。

六、教学评价:1. 通过课堂讲解、练习和课后作业,评价学生对三角形全等概念和“边角边”判定定理的理解程度。

2. 观察学生在实例分析和练习中的表现,评估其运用“边角边”判定定理解决问题的能力。

三角形全等的判定——“边角边”判定定理教案

三角形全等的判定——“边角边”判定定理教案

三角形全等的判定——“边角边”判定定理教案授课人:丁俏尹教学内容:本节课的主要内容是探索三角形全等的条件“边角边”以及利用”SAS”判定定理证明三角形全等。

教学目标:一、知识与技能探索、领会“SAS”判定两个三角形全等的方法。

二、过程与方法1、经历探索三角形全等的判定方法的过程。

2、能灵活地运用三角形全等的条件,进行有条理地思考和简单推理。

3、利用三角形的全等解决实际问题,体会数学与实际生活的联系。

三、情感态度与价值观培养学生合理的推理能力,感悟三角形全等的应用价值,体会数学与实际生活的联系,学会团队合作,培养自己主动参与、勇于探究的精神。

教学重点、难点:1、重点:通过学习、会利用“边角边”证明两个三角形全等。

2、难点:通过学习、会正确运用“SAS”判定定理,在实际观察中正确选择判定三角形的方法。

教学方法:采用“操作——实验”的教学方法,让学生有一个直观的感受教学用具:4.证明边相等或者角相等常常转化为证三角形全等。

五、课后作业[1]必做题:课本第78页练习第2、3题[2]选做题:1、已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:∠B=∠C2、如图,AB∥EF,AB=EF,BD=EC,那么①△ABC与△FED全等吗?为什么?②AC∥FD吗?为什么?CB EDFA3、思考:两边一角分别相等包括“两边夹角”和“两边及其中一边的对角”分别相等两种情况,前面已探索出“SAS”判定三角形全等的方法,那么由“SSA”的条件能判定两个三角形全等吗?学生课后自主完成巩固本节知识,查漏补缺。

板书三角形全等的判定——“边角边”判定定理 1、定理:在两个三角形中,如果有两边及他们的夹角对应相等,那么这两个三角形全等(简记为SAS)2、证明三角形全等的过程1)准备条件2)指明范围3)摆齐条件4)写出结论。

三角形全等的判定“边角边”判定定理教案

三角形全等的判定“边角边”判定定理教案

三角形全等的判定——“边角边”判定定理教案一、教学目标:1. 让学生理解并掌握三角形全等的概念。

2. 让学生了解并掌握“边角边”判定定理及其证明过程。

3. 培养学生运用“边角边”判定定理解决实际问题的能力。

二、教学内容:1. 三角形全等的定义。

2. “边角边”判定定理的表述。

3. “边角边”判定定理的证明过程。

4. 运用“边角边”判定定理解决实际问题。

三、教学重点与难点:1. 教学重点:“边角边”判定定理的表述及证明过程。

2. 教学难点:运用“边角边”判定定理解决实际问题。

四、教学方法:1. 采用讲授法,讲解三角形全等的定义及“边角边”判定定理。

2. 采用演示法,展示“边角边”判定定理的证明过程。

3. 采用练习法,让学生通过实际问题巩固“边角边”判定定理的应用。

五、教学过程:1. 导入:复习三角形全等的定义,引导学生思考如何判定两个三角形全等。

2. 新课讲解:讲解“边角边”判定定理的表述及证明过程。

3. 案例分析:分析几个实际问题,引导学生运用“边角边”判定定理解决问题。

4. 课堂练习:布置几道练习题,让学生独立完成,巩固“边角边”判定定理的应用。

5. 总结与拓展:总结本节课的主要内容,布置课后作业,鼓励学生深入研究三角形全等的判定方法。

六、课后作业:1. 复习三角形全等的定义及“边角边”判定定理。

2. 完成课后练习题,运用“边角边”判定定理解决实际问题。

3. 探索其他三角形全等的判定方法,了解其证明过程。

六、教学评价:1. 通过课堂讲解、练习和课后作业,评价学生对三角形全等概念和“边角边”判定定理的理解和掌握程度。

2. 观察学生在解决问题时的思路和方法,评估其运用“边角边”判定定理的能力。

3. 鼓励学生参与课堂讨论,评价其团队合作和沟通能力。

七、教学反思:1. 在教学过程中,关注学生的反应,根据实际情况调整教学内容和教学方法。

2. 针对学生的难点,进行重点讲解和辅导,帮助学生克服困难。

3. 定期检查学生的学习进度,及时发现和解决问题。

三角形全等的判定“边角边”(7种题型)-2023年新八年级数学常见题型(人教版)(解析版)

三角形全等的判定“边角边”(7种题型)-2023年新八年级数学常见题型(人教版)(解析版)

三角形全等的判定“边角边”(7种题型)【知识梳理】全等三角形判定——“边角边”1. 全等三角形判定——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【考点剖析】题型一:用“边角边”直接证明三角形全等例1.已知:如图,点C 为AB 中点,CD=BE ,CD ∥BE.求证:△ACD ≌△CBE.【解析】证明:∵CD ∥BE ,∴∠ACD=∠B..∵点C 为AB 中点,∴AC=CB.又∵CD=BE ,∴△ACD ≌△CBE (SAS )【变式1】如图,AC DF =,12∠=∠,如果根据“SAS ”判定ABC DEF △≌△,那么需要补充的条件是( )A .A D ∠=∠B .AB DE =C .B E ∠=∠D .BF CE =【答案】D 【详解】解:需要补充的条件是BF=CE ,∴BF+FC=CE+CF ,即BC=EF ,在△ABC 和△DEF 中,12AC DF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ).故选:D .【变式1】如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,BE =CF ,∠B =∠DEF .求证:△ABC ≌△DEF .【解答】证明:∵BE =CF ,∴BE+CE =CF+EC .∴BC =EF .在△ABC 和△DEF 中,{AB =DE∠B =∠DEF BC =EF,∴△ABC≌△DEF(SAS).【变式3】如图,CA=CD,∠BCE=∠ACD,BC=EC.求证:△ABC≌△DEC.【解答】证明:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,在△ABC和△DEC中,{AC=DC∠ACB=∠DCE BC=EC,∴△ABC≌△DEC(SAS).【变式4】如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.【解答】解:∵AC⊥BD,EF⊥BD,∴∠ACB=∠EFD=90°,∵BF=CD,∴BF+CF=CD+CF,即BC=DF,在△ABC和△EDF中,{BC=DF∠ACB=∠EFD AC=EF,∴△ABC≌△EDF(SAS).【变式5】如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.【答案】(1)证明见解析;(2)75.【详解】(1)∵AB=AC ,∴∠B=∠ACF ,在△ABE 和△ACF 中,AB AC B ACFBE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE=30°,∴∠CAF=∠BAE=30°,∵AD=AC ,∴∠ADC=∠ACD ,∴∠ADC=280013︒−︒=75°,故答案为75. 【变式6】(2023春·江苏·七年级统考期末)如图,在ABC 和ADE V 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒,连接BD CE 、.(1)求证:ABD ACE ≌△△. (2)图中BD 和CE 有怎样的关系?试证明你的结论.【详解】(1)解:90BAC DAE ∠=∠=︒∴BAC CAD DAE CAD ∠+∠=∠+∠∴BAD EAC ∠=∠AB AC =,AD AE =∴ABD ACE ≌△△. (2)解:如图,设BD 和CE 交点为FABD ACE ≌△△∴ACE ABD ∠=∠90BAC ∠=︒∴90ABD DBC ACB ∠+∠+∠=︒∴90ACE DBC ACB ∠+∠+∠=︒即90ECB DBC ∠+∠=︒∴()18090BFC ECB DBC ∠=︒−∠+∠=︒∴BD CE ⊥.题型二:用“边角边”间接证明三角形全等例2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【变式1】如图所示,点O 为AC 的中点,也是BD 的中点,那么AB 与CD 的关系是________.【答案】平行且相等【详解】解:∵点O 为AC 的中点,也是BD 的中点,∴AO=OC ,BO=OD ,又∵∠AOB=∠DOC ,∴△AOB ≌△COD (SAS )∴AB=CD ,∠A=∠C ,∴AB//CD,即AB 与CD 的关系是平行且相等,故答案为:平行且相等.【变式2】如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB//CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CDB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式3】如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE .求证:AF=CE .【分析】由SAS 证明△ADF ≌△CBE ,即可得出AF =CE .【详解】证明:∵四边形ABCD 是矩形,∴∠D =∠B =90°,AD =BC ,在△ADF 和△CBE 中,AD BC D B DF BE ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CBE (SAS ),∴AF =CE .【变式4】已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.【详解】解:(1)在△ADB 和△AEC 中,12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEC (SAS ),∴BD=CE ;(2)∵12∠=∠,∴BAN CAM ∠=∠,∵△ADB ≌△AEC ,∴B C ∠=∠,∴180180B BAN C CAM ︒−∠−∠=︒−∠−∠,即M N ∠=∠.【变式5】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD题型三:边角边与倍长中线例3、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【答案与解析】 证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >2AD .14.如图所示,AD 是△ABC 中BC 边上的中线,若AB =2,AC =6,则AD 的取值范围是__________AD DE ADB EDC BD CD ⎧⎪∠∠⎨⎪⎩===.【答案】2<AD <4【分析】此题要倍长中线,再连接,构造全等三角形.根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:延长AD 到E ,使AD =DE ,连接BE ,∵AD 是△ABC 的中线,∴BD =CD ,在△ADC 与△EDB 中,BD CD ADC BDE AD DE =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS ),∴EB =AC ,根据三角形的三边关系定理:6-2<6+2,∴2<AD <4,故AD 的取值范围为2<AD <4.【点睛】本题主要考查对全等三角形的性质和判定,三角形的三边关系定理等知识点的理解和掌握,能推出6-2<AE <6+2是解此题的关键.题型四:边角边与截长补短例4、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【答案与解析】 证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,∴△ABD ≌△AED (SAS ). ∴AB =AE ,∠B=∠AED .又∵∠B =2∠C =∠AED =∠C +∠EAC .∴∠C =∠EAC .∴AE =EC .∴AB =AE =EC =CD —DE =CD —BD .【变式】已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =(AB +AD ), 求证:∠B +∠D =180°.【答案】证明:在线段AE 上,截取EF =EB ,连接FC ,BD DE ADB=ADE AD AD ⎧⎪⎨⎪⎩=∠∠=12A EDC B∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =(AB +AD ),∴2AE = AB +AD∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型五:边边角不能判定两个三角形全等例5.如图,已知AC =BD ,添加下列一个条件后,仍无法判定△ABC ≌△BAD 的是()A .∠ABC =∠BADB .∠C =∠D =90° C .∠CAB =∠DBA D .CB =DA【答案】A CEB CEFEC =EC EB EF=⎧⎪∠=∠⎨⎪⎩12(AF ADFAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)【分析】根据全等三角形的判定方法即可一一判断;【详解】在△ABC 与△BAD 中,AC =BD ,AB =BA ,A 、SSA 无法判断三角形全等,故本选项符合题意;B 、根据HL 即可判断三角形全等,故本选项不符合题意;C 、根据SAS 即可判断三角形全等,故本选项不符合题意;D 、根据SSS 即可判断三角形全等,故本选项不符合题意;故选:A . 题型六:尺规作图——利用边角边做三角形例6.(2023春·广东揭阳·七年级统考期末)已知:线段a ,c ,α∠.求作:ABC .使BC a =,AB c =,ABC α∠=∠.(要求:尺规作图,不写作法,保留作图痕迹)【详解】解:如图所示:【变式1】(2023春·陕西宝鸡·七年级校考阶段练习)尺规作图:已知:线段m ,n ,∠β.求作:ABC ,使AB m =,BC n =,ABC β∠=∠(保留作图痕迹,不写作法).【详解】解:如图所示:ABC ∴即为所作.题型七:边边边与边角边综合 八年级假期作业)如图,在ABC 中,(1)图中有___________对全等三角形;(2)请选一对加以证明.【详解】(1)图中有3对全等三角形:ABD ACD ≌△△,ABE ACE ≌△△,BDE CDE ≌V V . 故答案为3;(2)∵D 是BC 的中点,∴BD CD =.在ABD △和ACD 中,AB AC BD CDAD AD =⎧⎪=⎨⎪=⎩, ∴()SSS ABD ACD ≌V V ;∴BAE CAE ∠=∠.在ABE 和ACE △中,AB AC BAE CAEAE AE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABE ACE △△≌; ∴BE CE =.在BDE △和CDE 中,BE CE BD CDDE DE =⎧⎪=⎨⎪=⎩, ∴()SSS BDE CDE ≌V V . 【过关检测】一、单选题A .SSSB .SASC .ASAD .AAS【答案】B 【分析】由题意可知根据“边角边”可证OAB OCD VV ≌即可选择.【详解】解:∵在OAB 和OCD 中,OC OA COD AOB OD OB =⎧⎪∠=∠⎨⎪=⎩, ∴()OAB OCD SAS ≌△△.故判定这两个三角形全等的依据是“SAS ”.故选B .【点睛】本题考查三角形全等的判定.熟练掌握判定三角形全等的条件是解题关键. 2.(2023春·江西景德镇·七年级统考期末)如图,AB AC =,点D 、E 分别在AC 和AB 边上,且AD AE =,则可得到ABD ACE △△≌,判定依据是( )A .ASAB .AASC .SASD .SSS【答案】C 【分析】根据SAS 证明ABD ACE △△≌,即可求解. 【详解】解:在ABD △与ACE △中,AB AC BAD CAEAD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD ACE △△≌()SAS ,故选:C . 【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·四川成都·七年级统考期末)如图,在ABF △和DCE △中,点E 、F 在BC 上,AF DE =,AFB DEC ∠=∠,添加下列一个条件后能用“SAS ”判定ABF DCE ≌△△的是( )A .BE CF =B .BC ∠=∠ C .AD ∠=∠ D .AB DC =【答案】A 【分析】先根据BE CF =得到BF CE =,再根据全等三角形的判定定理进行分析即可.【详解】解:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,A 选项,因为BE CF =,AFB DEC ∠=∠,BF CE =,满足“SAS ”判定ABF DCE ≌△△,符合题意; B 选项,因为B C ∠=∠,AFB DEC ∠=∠,BF CE =,是用“AAS ”判定ABF DCE ≌△△,不符合题意; C 选项,因为A D ∠=∠,AF DE =,AFB DEC ∠=∠,是用“ASA ”判定ABF DCE ≌△△,不符合题意; D 选项,因为AB DC =,AF DE =,AFB DEC ∠=∠,不能判定ABF DCE ≌△△,不符合题意; 故选:A .【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键.4.(2023春·四川达州·七年级统考期末)如图,在2×3的正方形方格中,每个正方形方格的边长都为1,则1∠和2∠的关系是( )A .221∠=∠B .2190∠−∠=︒C .1290∠+∠=︒D .12180∠+∠=︒【答案】C 【分析】先证明ABC CDE △△≌,再利用全等三角形的性质和等量代换求解即可. 【详解】解:如图,在ABC 和CDE 中,2901AC CE ACB CED BC DE ==⎧⎪∠=∠=︒⎨⎪==⎩,∴ABC CDE △△≌()SAS ,∴1DCE ∠=∠, ∵290DCE ∠+∠=︒,∴1290∠+∠=︒,故选:C .【点睛】本题考查了全等三角形的判定与性质,利用网格证明三角形全等是解题的关键.A .20cmB .45cmC .25cmD .65cm【答案】D 【分析】根据题意可得:OF OG =,OC OD =,利用已知条件判断出OFC OGD ≌,得到CF DG =,即可求出答案.【详解】解:如图:∵O 是FG 和CD 的中点,∴OF OG =,OC OD =,在OFC △和OGD 中,OF OG FOC GODOC OD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS OFC OGD ≌,∴CF DG =,又20cm DG =,∴20cm CF DG ==,∴小明离地面的高度=支点到地面的高度452065cm CF +=+=,故D 正确.故选:D .【点睛】本题主要考查了三角形全等知识的应用,用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,最后进行求解,是一种十分重要的方法. 七年级统考期末)如图,已知在ABC 和BAD 中,直接判定ABC BAD ≌的依据是( A .SSSB .AASC .ASAD .SAS【答案】D 【分析】找出两个三角形中已知相等的对应边和对应角,然后根据判定方法即可判断.【详解】解:在ABC 和ABD △中,BC AD ABC BAD AB BA =⎧⎪∠=∠⎨⎪=⎩, ∴()ABC BAD SAS ≌.故选:D .【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 7.(2023春·上海浦东新·七年级校考阶段练习)如图,AD 平分BAC ∠,AB AC =,连接BD 、CD ,并延长交AC 、AB 于F 、E 点,则图中全等的三角形有( )对.A .3对B .4对C .5对D .6对【答案】B 【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,仔细寻找.【详解】解:AD 平分BAC ∠,BAD CAD ∴∠=∠,在ABD 与ACD 中,AB AC BAD CADAD AD ⎧⎪∠∠⎨⎪⎩===,()SAS ABD ACD ∴≌,BD CD ∴=,B C ∠=∠,ADB ADC ∠=∠,又EDB FDC ∠=∠,ADE ADF ∴∠=∠,AED AFD ∴≌,BDE CDF ≌,ABF ACE ≌.AED AFD ∴≌,ABD ACD ≌,BDE CDF ≌,ABF ACE ≌,共4对.故选:B .【点睛】本题考查三角形全等的判定方法和全等三角形的性质.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(2023春·河北保定·七年级校考阶段练习)如图,在AOB 和COD △中,OA OB =,OC OD =,AOB COD ∠=∠,AC ,BD 交于点M ,关于结论Ⅰ,Ⅱ,下列判断正确的是( )结论Ⅰ:AC BD =;结论Ⅱ:CMD COD ∠>∠A .Ⅰ对,Ⅱ错B .Ⅰ错,Ⅱ对C .Ⅰ,Ⅱ都对D .Ⅰ,Ⅱ都错【答案】A 【分析】根据已知条件可知三角形的全等,根据全等三角形的性质可知边相等,再根据三角形的内角和即可求出角的大小.【详解】AOB COD ∠=∠,AOB AOD COD AOD ∴∠+∠=∠+∠,AOC BOD ∴∠=∠,∴在AOC 和BOD 中,∴OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩,()AOC BOD SAS ∴≌, AC BD ∴=,故Ⅰ正确;AOC BOD ≌,OCA BDO ∴∠=∠,MDC MDO ODC ∴∠=∠+∠,OCD OCA MCD ∴∠=∠+∠,180()COD OCD ODC ∠=︒−∠+∠,180()CMD MDC MCD ∠=︒−∠+∠,180()CMD MDO ODC MCD ∴∠=︒−∠+∠+∠,180()COD OCA MCD ODC ∠=︒−∠+∠+∠,CMD COD ∴∠=∠,故Ⅱ错误;故选:A .【点睛】本题考查了全等三角形的性质,熟记对应性质和判定定理是解题的关键. 9.(2023春·江苏·七年级统考期末)如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AD AB >,下列结论正确的是( )A .AD AB CD BC −=−B .AD AB CD BC −>− C .AD AB CD BC −<−D .AD AB −与CD BC −的大小关系无法确定【答案】B 【分析】在AD 上截取AE AB =,BAC EAC ≌,由DE CD CE >−即可求解.【详解】解:如图,在AD 上截取AE AB =,AC 平分BAD ∠,BAC EAC ∴∠=∠,在BAC 和EAC 中AB AE BAC EACAC AC =⎧⎪∠=∠⎨⎪=⎩,∴BAC EAC ≌(SAS ),BC EC ∴=,在CDE 中:DE CD CE >−,AD AB AD AE CD BC −=−>−.故选:B .【点睛】本题考查了三角形中三边的关系,三角形全等的判定及性质,掌握性质,并根据题意作出辅助线是解题的关键. 10.(2022秋·云南昭通·八年级统考期末)如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且CE BF ,连接BF CE ,,下列说法: ①DE DF =;②ABD 和ACD 面积相等;③CE BF =;④BDF CDE ≌;⑤CEF F ∠∠=. 其中正确的有( )【答案】B 【分析】根据三角形中线的定义可得BD CD =,然后利用“边角边”证明BDF 和CDE 全等,根据全等三角形对应边相等可得CE BF =,全等三角形对应角相等可得F CED ∠∠=,再根据内错角相等,两直线平行可得BF CE ,最后根据等底等高的三角形的面积相等判断出②正确.【详解】解:∵AD 是ABC 的中线,∴BD CD =,在BDF 和CDE 中,BD CD BDF CDEDF DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDF CDE ≌,故④正确∴CE BF F CED ∠∠==,,故①正确,∵CEF CED ∠∠=,∴CEF F ∠∠=,故⑤正确,∴BF CE ,故③正确,∵BD CD =,点A 到BD CD 、的距离相等,∴ABD 和ACD 面积相等,故②正确,综上所述,正确的有5个,故选:B .【点睛】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法并准确识图是解题的关键.二、填空题【答案】120°【分析】先证明,DAG BAC ≌得到GDA CBA ∠=∠,再利用60BAD ∠=︒以及三角形的内角和定理、邻补角的性质可得答案.【详解】解:60,DAE GAC ∠=∠=︒,DAG BAC ∴∠=∠,,AD AB AC AG ==在DAG 与BAC 中,,AD AB DAG BACAG AC =⎧⎪∠=∠⎨⎪=⎩,DAG BAC ∴≌,GDA CBA ∴∠=∠,BEO AED ∠=∠,BOE BAD ∴∠=∠60,BAD ∴∠=︒60,BOE ∴∠=︒120.DOC ∴∠=︒故答案为:120.︒【点睛】本题考查的是三角形全等的判定与性质,等边三角形的判定与性质,邻补角的性质,三角形的内角和定理,掌握以上知识是解题的关键. 七年级统考期末)如图,在锐角ABC 中,24ABC S = 【分析】先根据三角形全等的判定定理与性质可得ME MN =,再根据两点之间线段最短可得BM MN +的最小值为BE ,然后根据垂线段最短可得当BE AC ⊥时,BE 取得最小值,最后利用三角形的面积公式即可得.【详解】如图,在AC 上取一点E ,使AE AN =,连接ME ,AD 是BAC ∠的平分线,EAM NAM ∴∠=∠,在AEM △和ANM 中,AE AN EAM NAMAM AM =⎧⎪∠=∠⎨⎪=⎩,()SAS AEM ANM ∴≌, ME MN ∴=,BM MN BM ME ∴+=+,由两点之间线段最短得:当点,,B M E 共线时,BM ME +取最小值,最小值为BE ,又由垂线段最短得:当BE AC ⊥时,BE 取得最小值,248,ABC S AC ==,1182422AC BE BE ∴⋅=⨯⋅=,解得6BE =,即BM MN +的最小值为6,故答案为:6.【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质、两点之间线段最短、垂线段最短等知识点,正确找出BM MN +取得最小值时BE 的位置是解题关键. 13.(2023春·广东云浮·八年级校考期中)如图,小明与小红玩跷跷板游戏,已知跷跷板的支点O (即跷跷板的中点)至地面的距离是48cm ,当小红从水平位置CD 下降28cm 时,这时小明离地面的高度是___________cm .【答案】76【分析】根据题意可得:OF OG =,OC OD =,利用已知条件判断出OFC OGD ≌V V ,得到CF DG =,即可【详解】解:如图:∵O 是FG 和CD 的中点,∴OF OG =,OC OD =,在OFC △和OGD 中,OF OG FOC GODOC OD =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)OFC OGD ≌V V ,∴CF DG =,又28cm DG =,∴28cm CF DG ==,∴小明离地面的高度=支点到地面的高度482876cm CF +=+=,故答案为:76.【点睛】本题主要考查了三角形全等知识的应用,用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,最后进行求解,是一种十分重要的方法. 14.(2023春·广东佛山·七年级校考期中)在测量一个小口圆形容器的壁厚(厚度均匀)时,小明用“X 型转动钳”按如图方法进行测量,其中OA OD =,OB OC =,测得3cm AB =,5cm EF =,圆形容器的壁厚是______cm .【分析】由题证明AOB DOC ≌,由全等三角形的性质可得,AB CD =,即可解决问题.【详解】在AOB 和DOC △中,OA OD AOB DOCBO OC =⎧⎪∠=∠⎨⎪=⎩,(SAS)AOB DOC ∴≌,3cm AB CD ∴==,cm 5EF =Q ,∴圆柱形容器的壁厚是1(53)1(cm)2⨯−=,故答案为:1.【点睛】本题考查了全等三角形的应用,解题的关键是利用全等三角形的性质解决实际问题.【答案】25米/25m【分析】根据SAS 可证明ACB DCE ≌△△,再根据全等三角形的性质可得AB DE =,进而得到答案. 【详解】解:∵点C 是AD 的中点,也是BE 的中点,∴AC DC =,BC EC =,∵在ACB △和DCE △中,AC DC ACB DCEBC EC =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ACB DCE ≌,∵25DE =米,∴25AB =米,故答案为:25米.【点睛】此题考查了全等三角形的应用,关键掌握全等三角形的判定定理和性质定理. 16.(2022秋·陕西宝鸡·八年级统考期末)如图,E 是ABC ∆外一点,D 是AE 上一点,AC BC BE ==,DA DB =,EBD CBD ∠=∠,70C ∠=︒,则BED ∠的度数为___________.【答案】35︒/35度【分析】连接DC ,则DC 垂直平分AB ,可得35ADC DCB ∠=∠=︒,再证明BED BCD ∆≅∆,即可得到35BED DCB ∠=∠=︒.【详解】连接DC ,DA DB =,CA CB =,DC ∴是AB 的垂直平分线,1352DCB ACB ∴∠=∠=︒,在BED 和BCD △中BD BD EBD CBDBE BC =⎧⎪∠=∠⎨⎪=⎩(SAS)BED BCD ∴≌,35BED DCB ∴∠=∠=︒,故答案为:35︒.【点睛】本题主要考查等腰三角形的性质,由条件得到DC 是AB 的垂直平分线再想到证明BED BCD △≌△是解题的关键. 17.(2023·全国·八年级假期作业)如图,AB 与CD 相交于点O ,且O 是AB CD ,的中点,则AOC 与BOD 全等的理由是________.【答案】SAS /边角边【分析】根据全等三角形的判定定理求解即可.【详解】解:∵O 是AB CD ,的中点,∴,,OA OB OC OD ==在AOC 和DOB 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩ ∴()SAS AOC DOB ≌, 故答案为:SAS .【点睛】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.18.(2022秋·山东聊城·八年级统考期末)如图,在ABC ∆中,已知 AB AC =,BD CF = ,BE CD =.若40A ∠=︒,则EDF ∠的度数为__________.【答案】70°【分析】(1)证△BED ≌△CDF ;(2)利用AB=AC 得到∠B 与∠C(3)利用整体法求得∠EDF【详解】∵AB=AC ,∴∠B=∠C∵BD=CF ,BE=CD∴△BED ≌△CDF ,∴∠FDC=∠BED∵∠A=40°∴∠B=∠C=70°∴在△BED 中,∠BED+∠BDE=110°∴∠EDB+∠FDC=110°∴∠EDF=70°【点睛】求角度,常见的方法有:(1)方程思想;(2)整体思想;(3)转化思想本题就是利用全等,结合整体思想求解的角度三、解答题 19.(2023秋·广东广州·八年级统考期末)已知:如图,12BC DC =∠=∠,,求证:ABC ≌ADC △.【答案】见解析【分析】先证明ACB ACD ∠=∠,再结合AC AC =,BC DC =,即可得到结论.【详解】.证明:12∠=∠,ACB ACD ∴∠=∠,AC AC BC DC ==,,ABC ∴≌ADC △.【点睛】本题考查的是全等三角形的判定,掌握“利用SAS 证明两个三角形全等”是解本题的关键. 20.(2021秋·广东广州·八年级广州市第八十九中学校考期中)如图,点E 、F 在BC 上,BF EC =,AB DC =,B C ∠=∠.求证:A D ∠=∠.【答案】证明见解析【分析】证明()SAS ABF DCE ≌△△,然后根据全等三角形的性质即可得出结论.【详解】证明:在ABF △和DCE △中,AB DC B CBF CE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABF DCE ≌△△, ∵A D ∠=∠.【点睛】本题考查全等三角形的判定和性质.掌握全等三角形的判定是解题的关键.21.(2023春·陕西西安·七年级校考阶段练习)已知:如右图ABCD ,AB CD =.求证:ADC CBA ≌.【答案】见解析【分析】由AB CD ,得ACD CAB ∠=∠,再利用SAS 即可证得结论.【详解】证明:∵ABCD ,∴ACD CAB ∠=∠,在ADC △与CBA △中:AB CD ACD CAB AC CA =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ADC CBA ≌.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL . 22.(2023春·陕西咸阳·七年级统考期末)如图,点D 在线段BE 上,AB CD ,AB DE =,BD CD =.ABD △和EDC △全等吗?为什么?【答案】ADB ECD △≌△,理由见解析【分析】先根据平行线的性质得到ABD EDC =∠∠,再利用SAS 证明ADB ECD △≌△即可得到结论.【详解】解:ADB ECD △≌△,理由如下:∵AB CD ,∴ABD EDC =∠∠,∵AB ED =,BD DC =,∴()SAS ADB ECD △≌△.【点睛】本题主要考查了全等三角形的判定,平行线的性质,熟知边角边证明三角形全等是解题的关键.(1)求证:AEC DFB △△≌; (2)若6AEC S ∆=,求三角形BEC 的面积.【答案】(1)见解析(2)92BEC S =△【分析】(1)根据AE DF ∥得A D ∠=∠,根据AB CD =得AB BC CD BC +=+,即AC DB =,根据ASA 即可证明AEC DFB △△≌; (2)在AEC △中,以AC 为底作EH 为高,则12AEC S EH AC ∆=⋅,12BCE S EH BC ∆=⋅,根据13AB CD BC ==得43AC BC =,6AEC S ∆=,即可得.【详解】(1)证明:∵AE DF ∥,A D ∴∠=∠, ∵AB CD =,AB BC CD BC ∴+=+AC DB ∴=,在AEC △和DFB △中,AE DF A DAC DB =⎧⎪∠=∠⎨⎪=⎩,SAS AEC DFB ∴≌()△△;(2)解:如图所示,在AEC △中,以AC 为底作EH 为高,12AEC S EH AC ∆∴=⋅,12BCE S EH BC ∆=⋅,∵13AB CD BC ==,43AC BC ∴=,6AEC S ∆=, ΔΔ3 4.54BEC AEC S S ∴==.【点睛】本题考查了三角形的判定与性质,三角形的面积,解题的关键是理解题意,掌握这些知识点. 24.(2023春·福建福州·七年级福州华伦中学校考期末)已知:如图,点,F C 在线段BE 上,AB DE =,B E ∠=∠,BF EC =.求证:A D ∠=∠.【答案】见解析【分析】先根据线段的和差得出BC EF =,进而证明ABC DEF ≌△△,根据全等三角形的性质即可得证. 【详解】证明:∵BF EC =,∴BF FC FC CE +=+,即BC EF =,在,ABC DEF 中,AB DE B EBC EF =⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≌△△, ∴A D ∠=∠.【点睛】本题考查了全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.25.(2023·全国·八年级假期作业)如图,在△ABC 中,已知AB AC =,2BAC DAE ∠=∠,且DAE FAE ∆≅∆.求证:ABD ACF ∆≅∆.【答案】见解析【分析】先根据全等三角形的性质以及已知2BAC DAE ∠=∠得出BAD CAF ∠=∠,再利用SAS 即可证出ABD ACF ∆≅∆.【详解】证明:∵DAE FAE ∆≅∆,∴,AD AF DAE FAE =∠=∠.∵2BAC DAE ∠=∠,∴BAD EAC DAE FAE ∠+∠=∠=∠,∵FAC EAC FAE ∠+∠=∠∴BAD CAF ∠=∠.在ABD ∆和ACF ∆中,AB AC BAD CAFAD AF =⎧⎪∠=∠⎨⎪=⎩∴ABD ACF ∆≅∆.【点睛】本题考查了全等三角形的判定和性质,灵活运用这些性质解决问题是本题的关键. 八年级假期作业)如图,在ABC 和V(1)求证:ABD ACE △△≌(2)若35BDA ∠=︒,则【答案】(1)见解析(2)70【分析】(1)根据等式的性质,可得=BAD CAE ∠∠,根据SAS 可得两个三角形全等;(2)根据全等三角形的性质,可得对应角相等,根据等腰三角形的性质,可得ADC AEC ∠∠=,根据等量代换,可得证明结论.【详解】(1)证明:=BAC DAE ∠∠,BAC DAC DAE DAC ∴∠−∠=∠−∠,即=BAD CAE ∠∠.在ABD △和ACE △中,AB AC BAD EACAD AE =⎧⎪∠=∠⎨⎪=⎩,SAS ABD ACE ∴≌();(2)证明:ABD ACE ≌△△, ADB AEC ∴∠=∠,AD AE =ADC AEC ∴∠=∠35BDA ADC ∴∠=∠=︒∴223570BDC BDA ∠∠==⨯︒=︒.故答案为:70.【点睛】本题考查了全等三角形的判定与性质,利用SAS 证明三角形全等,利用全等三角形的性质,证明对应角相等,再利用等量代换得出证明结论. 27.(2023春·全国·七年级专题练习)如图,已知点B ,E ,C ,F 在一条直线上,AB DE =,BF CE =,B E ∠=∠.求证:ABC DEF ≌△△【答案】见解析【分析】用边角边定理进行证明即可.【详解】解:∵BF CE =∴BF FC CE FC +=+即:BC EF =在ABC 和DEF 中AB DE B EBC EF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABC DEF ≌. 【点睛】本题考查边角边定理证明三角形全等,根据题意找到相应的条件是解题关键. 求证:DE BF =.证明:AD BC (已知)∴∠_______=∠_______(两直线平行,内错角相等)AF CE =∴ADE CBF ∴≌( 【答案】A ;C ;AF EF CE EF −=−;AD BC =;A C ∠=∠;AE CF =;SAS ;全等三角形对应边相等.【分析】根据平行线的性质得到∠A =∠C ,根据等式的性质得到AE CF =,然后证明ADE CBF V V ≌即可得到结论.【详解】证明:AD BC (已知)∴∠A =∠C (两直线平行,内错角相等)AF CE =(已知)∴AF EF CE EF −=−(等式的基本性质)即AE CF =在ADE V 和CBF V 中AD BC A CAE CF =⎧⎪∠=∠⎨⎪=⎩,ADE CBF ∴≌(SAS )DE BF ∴=(全等三角形对应边相等)故答案为:A ;C ;AF EF CE EF −=−;AD BC =;A C ∠=∠;AE CF =;SAS ;全等三角形对应边相等.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定定理是解题的关键.【答案】见解析【分析】根据BE CF =可得BC EF =,根据AC DF ∥可得ACB DFE ∠=∠,即可根据SAS 进行求证.【详解】证明:∵BE CF =,∴BE CE CF CE −=−,即BC EF =,∵AC DF ∥,∴ACB DFE ∠=∠,在ABC 和DEF 中,AC DF ACB DFEBC EF =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DEF △△≌. 【点睛】本题主要考查了全等三角形的判定,解题的关键是根据题目所给条件,得出相应的边和角度相等,熟练掌握三角形全等的判定定理. 求证:(1)AE CF =;(2)AE CF ∥;(3)∠=∠AFE CEF .【答案】(1)见解析(2)见解析(3)见解析【分析】(1)根据“边角边”证明ABE CDF △≌△,即可证得结论;(2)根据全等三角形的性质可得AEB CFD ∠=∠,进而可得结论;(3)由全等三角形的性质可得AE CF =,根据“边角边”证明AEF CFE △≌△,即可证得结论.【详解】(1)证明:在ABE 和CDF 中,∵AB CD =, B D ∠=∠,BE DF =,∴ABE CDF△≌△()SAS ,∴AE CF =; (2)证明:∵ABE CDF △≌△,∴AEB CFD ∠=∠,∴AE CF ∥;(3)证明:∵ABE CDF △≌△,∴AE CF =,又∵AEB CFD ∠=∠,EF FE =,∴AEF CFE △≌△,∴∠=∠AFE CEF .【点睛】本题考查了全等三角形的判定和性质以及平行线的判定,熟练掌握全等三角形的判定和性质是解题的关键. 求作:ABC ,使 【答案】见解析【分析】先作CAB α∠=∠,再在角的两边上分别截取AC b =,AB c =,从而可得答案.【详解】解:ABC 即为所求.【点睛】本题考查的是作三角形,掌握作一个角等于已知角是解本题的关键. 32.(2023·全国·八年级假期作业)“倍长中线法”是解决几何问题的重要方法.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,具体做法是:如图,AD 是ABC 的中线,延长AD 到E ,使DE AD =,连接BE ,构造出BED 和CAD .求证:BED CAD △≌△.【答案】见解析【分析】由AD 是ABC 的中线,可得DE AD =,再由EDB ADC ∠=∠,DB DC =,即可证明BED CAD △≌△.【详解】证明:如图所示:,AD 是ABC 的中线,DB DC ∴=,在BED 和CAD 中,ED AD EDB ADCDB DC =⎧⎪∠=∠⎨⎪=⎩,(SAS)BED CAD ∴≌.【点睛】本题主要考查了三角形全等的判定,倍长中线,熟练掌握三角形全等的判定,添加适当的辅助线是解题的关键. 33.(2023春·全国·七年级期末)如图,在ABC 中,D 是BC 延长线上一点,满足CD BA =,过点C 作CE AB ∥,且CE BC =,连接DE 并延长,分别交AC ,AB 于点F ,G .(1)求证:ABC DCE ≅;(2)若12BD =,2AB CE =,求BC 的长度.【答案】(1)见解析(2)4【分析】(1)根据SAS 证明≌ABC DCE 即可;(2)根据全等三角形的性质解答即可.【详解】(1)∵CE AB ∥,∴B ECD ∠=∠,在ABC 与DCE △中,AB CD B ECDBC CE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DCE ≌;(2)∵≌ABC DCE ,∴,AB CD BC CE ==,∵2AB CE =,∴2CD BC =,∵12BD =,∴312BD CD BC BC =+==∴4BC =.【点睛】此题考查全等三角形的判定和性质,关键是掌握全等三角形的判定和性质.。

边角边的判定方法

边角边的判定方法

边角边的判定方法
边角边是指图形中的尖角和平角,其判定方法如下:
1. 尖角:指两条直线相交,夹角小于90度的角。

可以通过计算两条相交直线的斜率来确定是否为尖角。

如果两条相交线的斜率都为正数或负数,则角为尖角;如果一条斜率为正,另一条斜率为负,则角为凸角。

2. 平角:指两条直线相交,夹角为90度的角。

可以通过计算两条相交线的斜率来确定是否为平角。

如果两条相交线的斜率之积为-1,则角为平角。

判断边角边类型的方法还有以下几种:
3. 凸角:指两个方向不同的射线所围成的角。

可以通过观察图
形来判断是否存在凸角。

4. 内角:指多边形内部两条线段的夹角。

可以通过求解多边形
内部所有角度之和再与180度比较来判断是否为内角。

5. 外角:指多边形外部一条线段与多边形某一边的延长线所围
成的角。

可以通过内角的概念,即外角等于相对的内角之和来判断是否为外角。

总之,边角边的类型判断方法根据具体图形的情况而异,需要根据实际情况进行分析和判断。

边角边的判定方法

边角边的判定方法

边角边的判定方法引言在几何学中,边角边是指一个多边形的两条边和夹角的组合。

在解决几何问题时,我们常常需要判断一个图形是否为边角边,以便进行后续推导和计算。

本文将介绍边角边的判定方法,并给出详细的步骤和示例。

边角边的定义在一个多边形中,如果两条边与它们夹角之间的第三条边相等或成比例,那么这两条边与夹角就构成了一个边角边。

判定方法要判断一个图形是否为边角边,可以根据以下步骤进行:1.观察图形:首先要仔细观察给定的图形,并标记出所需判断的两条边和夹角。

确保没有遗漏或错误地标记了其他部分。

2.测量长度:使用测量工具(如尺子)测量所需判断的两条边和夾角之间的第三条邊。

确保测量结果准确无误。

3.判断相等性:比較这三个长度是否相等。

如果它们完全相等,则说明图形是一个完全相等于一般多邊形或正方型的边角边。

如果它们成比例,则说明图形是一个成比例的边角边。

4.判断比例:如果三个长度不完全相等但成比例,可以通过计算它们的比值来判断。

将第一条边与第三条边的长度相除,再将第二条边与第三条边的长度相除,得到两个比值。

如果这两个比值相等,则说明图形是一个成比例的边角边。

5.举例验证:为了进一步验证判断结果,可以选择一些已知为边角边的图形进行对比。

将所测量的长度与这些已知图形进行对比,如果它们吻合,则说明判断正确。

示例以下是一个示例问题及解答过程:给定一个多邊形 ABCD,其中 AB = BC = 5cm,∠ABC = 60°。

请判断这个多邊形是否为一个边角边。

解答过程:1.观察图形:观察多邊形 ABCD,并标记出所需判断的两条邊 AB 和 BC,以及夾角∠ABC。

2.测量长度:使用尺子测量 AB、BC 和 AC 的长度分别为 5cm、5cm 和7.07cm(约)。

3.判断相等性:由于 AB = BC = 5cm,并且∠ABC 是直角(90°),所以这个多邊形是一个正方形,也是一个边角边。

4.判断比例:由于AC ≠ AB 和AC ≠ BC,我们需要计算比值。

《“边角边”判定三角形全等》教学设计

《“边角边”判定三角形全等》教学设计

12.2 三角形全等的判定(二)图甲与图丙全等,依据就是“SAS”,而图乙中30°的角不是已知两边的夹角,所以不与另外两个三角形全等.通过练习学会简单运用三角形全等判定(二)活动二:实践探究交流新知活动二、探索“SSA”能否识别两三角形全等(角不夹在两边的中间,形成两边一对角)试一试:练习册24页完成课本39页思考结论:两边及其一边所对的角相等,两个三角形不一定全等.“边边角”不能判定两个三角形全等。

活动三:开放训练体现应用【应用举例】例1 如图所示,在△ABC中,AB=AC,AD平分∠BAC.求证:△ABD≌△ACD.例2如图,有一池塘,要测池塘两侧A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?变式如图,CA=CD,∠1=∠2,BC=EC.求证:AB=DE.培养学生的识图能力,并规范证明过程的书写.学会分析推理和规范书写.强化学生对“边角边”判定方法的理解.活动三:开放训练体现应用【拓展提升】如图,已知AB⊥BD,ED⊥CD,且AB=CD,BC=DE,AC是否垂直于CE?为什么?引伸:若将△CDE沿CB方向平移,且其余条件不变,则结论AC1⊥C2E还成立吗?请说明理由.在拓展思维的同时也培养了学生综合运用知识的能力,实现了方法上的迁移.一些基本图形经过几何变换得来的.体会变化中不变的量,提供分析的思路和方法,突出了“训练为主线,思维为主攻”的原则.活动四:课堂总结(1)本节课学习了哪些主要内容?(2)我们是怎么探究出“SAS”判定方法的?用“SAS”判定三角形全等应注意什么问题?(3)到现在为止,你学到了几种证明两个三角形全等的方法?系统归纳本节知识点,提高归纳问题的能力.作业板书设计框架图式总结,更容易形成知识网络.教学反思教师通过教学反思,更进一步提升教学能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探究1:已知两边及其夹角对应相等的 两个三角形是否全等? 一定全等 做一做:
(1)画一个两条边分别为5㎝,7㎝,它们所 夹的角为40°的三角形; (2)大家所画的三角形全等吗?
练一 练二 例题 拓展 小结
(3)改变条件中的角度和边长,所画的三角 形全等吗?
开放 补充
结论:
有两边和它们的夹角对应相等的两个三角形 全等,简写成“边角边”或“SAS”.
练一
练二
例题 拓展 小结 开放 补充
AB=DE ∠A=∠D
△ABC ≌ △DEF (SAS)
AC=DF
探究2:已知两边和一边的对角对应相等的 两个三角形全等吗?
做一做: (1)画一个两条边分别为5㎝,7㎝,长度为 5㎝的边所对的角为40°的三角形; (2)比较所画的三角形全等吗?
练一
练二 例题 拓展 小结 开放 补充
温 故 知 新
探索三角形全等条件的思路及验证方法
两个三角形具备的条件 是否一定全等
一个条件
有一边对应相等 有一角对应相等
不一定 不一定 不一定 不一定 不一定
有两边对应相等 二个条件
有两角对应相等
有一边一角对应相等 有三角对应相等 不一定 全等 SSS 三个条件 有三边对应相等 有两角及一边对应相等 全等 ASA,AAS 有两边及一角对应相等 ?
SAS 练二 例题 拓展 小结 开放 补充
多角度思考!
(1)如图,CB=DA,要使△ABC≌△BAD,还需要 添加的一个条件是 ∠CAB=∠DBA 或 AC=DB
C O
SAS 练二 例题 拓展 小结 练一 补充
.
D
A
B
(2)已知CO=DO,要使△ABC≌△BAD,还需要 添加的一个条件是 AO=BO或∠C=∠D 或 ∠CAO=∠DBO .
DH = DH
拓展
小结 开放 补充
△EDH ≌ △FDH(SAS)
EH=FH.
温故知新:
A 2 B 4 M 3 C
找出下图中的全等三角形
D 2 E O 3 P 4 2 Q 30 G 5 135 F H 7 R 5 135 7 S
K
60 2 L
T
N
△ABC≌△PQO
△DEF≌△LNM
探究2:已知两边和一边的对角对应相等的 两个三角形全等吗? 不一定全等.
7 5
练一
练二 例题 拓展 小结 开放 补充
5
40
练习一:如图,O 是 AB 、CD 的中点,
△AOC与△BOD 全等吗?说说你的理由.
C
图中的对顶角是 已知条件
O D B
A
SAS
练二 例题
AO = BO
拓展
小结 开放 补充
如图,(1)AE=CF,AD//BC,AD=CB,则 △ADF≌△CBE。将(1)中的△CBE沿CA边 方向平行移动,可形成(2)(3)(4)的图 形,若上述条件不变,结论△ADF≌△CBE仍 然成立吗?请分别说明理由。
A D A E E F B (1) C B (2) C B (3) C(F) B D A(E) D E C A F (4)
SAS 练二 例题 拓展 练一 开放 补充(2)书写说理过程要规范,来自条理地表达说 理过程.作业
1、教材P141 习题5.9 1、2、3 2、如图,把两根钢条AB、CD的中点连在 一起,可以做成一个测量工件内槽宽的工 具(卡钳)。只要量得AC的长度,就可知 工件的内径BD是否符合标准。你明白其中 的道理吗?
例题:小明做了一个如图所示的风筝,其中
∠EDH =∠FDH,ED =FD.将上述条件标注在 图中,小明不用测量就能知道 EH =FH,你能 说出其中的道理吗?
图中的公共边 是已知条件
D E F
SAS
练二
练一
拓展
小结 开放 补充
H
拓展题:如图,AC = AD,∠CAB =∠DAB,
△ACB与△ADB全等吗?说说你的理由.
SAS 练一 练二
F
D
例题
拓展 开放 补充
例题:小明做了一个如图所示的风筝,其中
∠EDH =∠FDH,ED =FD.将上述条件标注在 图中,小明不用测量就能知道 EH =FH,你能 说出其中的道理吗?
图中的公共边 是已知条件
解: 在△EDH 和 △FDH 中
ED = FD
SAS
练二
练一
∠EDH =∠FDH
C
A
E
B
1.若E是线段AB上的点, 连接EC,ED,你还能得到 哪些三角形全等? 2.若点E在线段AB的延长 线上呢? △ACB ≌ △ADB(SAS)
SAS 练二 例题 练一 小结 开放 补充
D
AC = AD ∠CAB=∠DAB AB = AB
小 结
1、本节课你学会了哪种判定三角形全等 的方法?
∠AOC=∠BOD
CO= DO
△AOC ≌ △BOD(SAS)
练习二: 如图,PM=PE,PN=PQ,
△PMQ与△PEN全等吗?请说明理由.
P
P N Q
E
P
N F M
Q
M
E 图中的公共角是 已知条件
SAS 练一
例题
拓展
PM = PE
小结
开放 补充
∠ P =∠ P
PQ = PN
△PMQ ≌ △PEN(SAS)
温故知新:
A 2 B 4 M 3 C
找出下图中的全等三角形
D 2 E O 3 P 4 2 Q 30 G 5 135 F H 7 R 5 135 7 S
K
60 2 L
T
N
△ABC≌△PQO
△DEF≌△LNM
2、到目前为止,你有哪些三角形全等的 判定方法? (1) 全等三角形的定义
SAS 练二 例题 拓展 练一 开放 补充
判 定 方 法
(2) SSS (3) ASA
(4) AAS
(5) SAS
小 结
3、运用三角形全等的判定方法时注意:
(1)将题目所给的条件标注在图形上,图形 中的公共边、公共角、对顶角作为已知条件 直接使用;
相关文档
最新文档