轧制理论基础..

合集下载

轧制理论)轧制原理PPT

轧制理论)轧制原理PPT
数值模拟软件
开发专门的数值模拟软件,如MSC.Marc、ABAQUS等,可实现轧制过程的可视化模拟, 提高模拟的准确性和效率。
模拟结果验证
通过与实际轧制实验数据的对比,验证计算机模拟结果的准确性和可靠性,为实际生产 提供指导。
人工智能技术在轧制理论中的应用
神经网络模型
应用神经网络模型对轧制过程进行建模和预测,可以实现轧制参数 的优化和自适应控制,提高产品质量和生产效率。
制压力和力矩。
05 轧制过程中的温度场和应力场分析
CHAPTER
温度场分析的基本原理和方法
热传导方程
描述物体内部温度分布随时间变 化的偏微分方程,是温度场分析 的基础。
初始条件和边界条

确定热传导方程的解,初始条件 为物体初始时刻的温度分布,边 界条件为物体表面与周围环境之 间的热交换情况。
有限差分法
02 轧制变形基本原理
CHAPTER
轧制变形的基本概念
轧制变形
指金属坯料在两个旋转轧辊的缝 隙中受到压缩,产生塑性变形, 获得所需断面形状和尺寸的加工
方法。
轧制产品
通过轧制变形得到的产品,如板材、 带材、线材、棒材等。
轧制方向
金属在轧辊作用下变形的方向,通 常与轧辊轴线平行。
轧制变形的力学基础
利用塑性变形区的滑移线 场,通过数学解析计算轧 制压力。
上限法
基于塑性变形理论的上限 定理,通过构建速度场计 算轧制压力的上限值。
轧制力矩的计算方法
能量法
根据轧制过程中的能量守恒原理,通过计算变形 功来计算轧制力矩。
解析法
基于弹性力学和塑性力学理论,通过数学解析计 算轧制力矩。
有限元法
利用有限元分析软件,对轧制过程进行数值模拟, 从而计算轧制力矩。

轧钢工艺基础理论培训讲义

轧钢工艺基础理论培训讲义

轧钢⼯艺基础理论培训讲义轧钢基础理论培训讲义第⼀章钢材品种及其⽣产系统⼀、钢材的压⼒加⼯⽅法1、压⼒加⼯⽅法:就是⽤不同的⼯具,对⾦属施加压⼒,使之产⽣塑性变形,制成⼀定形状产品的加⼯⽅法。

除轧制外还有锻造、冲压、挤压、冷拔、热扩、爆炸成型等。

2、轧钢:在旋转的轧辊间改变钢锭、钢坯形状的压⼒加⼯过程并希望得到需要的形状和改善钢的内部质量,提⾼钢的⼒学性能叫做轧钢。

⽬的:得到需要的形状(精确成形)、改善钢的内部质量,提⾼钢的⼒学性能。

3、热轧:⾦属在⾼于再结晶温度以上的轧制为热轧。

4、冷轧:⾦属在低于再结晶温度的轧制称为冷轧。

钢的再结晶温度⼀般在450~600℃⼆、轧钢成品的种类1、轧钢产品品种:是指轧制产品的钢种、形状、⽣产⽅法、⽤途和规格的总和。

轧制品种的多少是衡量轧钢⽣产技术⽔平的⼀个重要标志。

2、板管⽐:按照轧制产品的断⾯形状特征和⽤途,通常热轧钢材可以分为板材、管材和型材等种类。

在热轧钢材总量中板材和管材产量所占的百分⽐称为板管⽐。

⼯业发达国家的板管⽐以达到60%以上。

我国⽬前板管⽐已接近40%。

板管⽐的⼤⼩在⼀定程度上反映了⼀个国家的钢铁⼯业发展⽔平。

三、轧钢⽣产系统1、型钢⽣产系统:是单⼀化的轧钢⽣产系统。

基本轧机是⽅坯轧机、中⼩型轧机和各类成品型轧机。

2、钢板⽣产系统:是⽣产各类钢板、带钢的轧钢⽣产系统。

⼀般⽣产规模较⼤,年产量在300万t以上。

3、钢管⽣产系统:⽣产各类钢管的轧钢⽣产系统。

4、混合⽣产系统:⽣产型钢、板带钢和钢管或其中任何两类轧制产品的轧钢⽣产系统。

5、冶⾦⽣产过程的短流程冶⾦⽣产过程⼤体可以分为三个阶段。

第⼀阶段到20世纪40年代,⽣产⼯艺过程的基本模式是:炼焦——烧结——⾼炉冶炼——平炉冶炼——铸锭——初轧开坯——成品轧制;第⼆阶段到20世纪50年代,⽣产⼯艺过程的基本模式是:炼焦——烧结——⾼炉冶炼——转炉冶炼——连铸——各类成品轧机轧制;第三阶段到20世纪80年代,⽣产⼯艺过程的基本模式是:电炉(炉外精炼)——连铸——成品连轧。

第一节 轧钢基础知识

第一节 轧钢基础知识

第一节轧钢基础知识一、轧制原理1.冷轧塑性变形基本参数冷连轧的主要工艺参数为轧制力和前滑,由于冷轧过程中存在下述特殊现象而使轧制力及前滑的计算公式复杂化。

(1)轧制过程中材料加工硬化现象严重,如果确定各种材料退火状态下的变形阻力以及随累计加工率而硬化的增加率将是精确确定轧制力的一个重要课题。

(2)在一定的工艺润滑下如何确定轧辊与轧件在变形区接触面上的摩擦力(摩擦系数)将是精确确定轧制力和前滑的另一个重要课题。

(3)冷轧过程前后张力较大,有关张力对轧制力及前滑的影响应给予足够重视。

(4)冷轧时变形区单位压力极高,轧辊将产生明显的弹性压扁,轧辊压扁一方面增加了轧辊与轧件的接触面积,同时又将使接触弧加长,加剧了外摩擦对轧制力的影响,并通过改变中性角而影响到前滑。

(5)轧件在出口处的弹性恢复,对于压下量不太大的道次将不容忽视,这亦将影响总的轧制力值。

所有这一切现象都将使冷连轧的轧制力和前滑公式复杂化。

1.1轧制变形区及其参数1.1.1基本参数变形区是轧件在轧制过程中直接与轧辊相接触而发生变形的那个区域,如图1-1所示。

其基本参数为:D为轧辊直径,mm;R为轧辊半径,mm;ho为轧制前轧件之高度(或称厚度),mm;h1为轧制后轧件之高度(或称厚度),mm;h m为轧件的平均高度,h m=2h1)(ho,mm;△h 为压下量(或称绝对压下量),△h=ho-h1,mm;bo为轧制前轧件的宽度,m;b1为轧制后轧件的宽度,m;△b=b1-bo为轧制前轧件之长度,m;L1为轧制后轧件之长度,m;a为咬入角(变形区所对应的轧辊中心角);cosa=1-△h/D;r为中性角;AB为咬入弧或1触弧;Lc为咬入角(接触弧)水平投影的长度,Lc=,㎜。

1.1.2 变形系数轧制时轧件塑性变形,使轧件尺寸在三个方向上都发生了变化,即:轧制之高度由ho减少到h1,比值h1/ho=η为轧件高度方向上的变形,η叫做压下系数。

图1-1 变形区基本参数轧件之宽度bo增加到b1,比值b1/bo=X为轧机宽度方向上的变形,X叫做宽度系数。

轧制理论

轧制理论
轧制理论
陈银莉 Yinli_chen@ 北京科技大学
1

金属的塑性成形方法:
轧制(Rolling)、锻造(Forging)、挤压 (Extrusion)、拉拔(Drawing)和深冲(Deep Drawing)

轧材:
将金属坯料(Billet, Bloom, Slab)通过两个转动的 轧辊(Roller),受连续轧制力而压伸为长形。 轧制法生产效率高,金属消耗少,加工容易,生产 成本低,适合大批量生产, 轧制是生产钢材最主要的方法,轧制钢材占全部钢 成品的98%以上。
轧件与轧辊接触面之间的几何区, 即从轧件入轧辊的垂直平面到轧件 出轧辊的垂直平面所围成的区域 ACBD 。
7 简单理想轧制过程示意图
简单轧制时变形区参数间的关系
1)咬入角
轧件被咬入轧辊时轧件和轧辊最先接触点和轧 辊中心的连线与两轧辊中心连线所构成的角度。
△h/2=D/2-D/2*cosα △h=D(1-cosα) △h≈Rα2
轧制目的:
形状(shape)
尺寸(size) 组织 (microstructure)
4
5
1.1.1 轧制变形区
轧制时轧件在轧辊作用下发生变形的部分。
弹性变形区 塑性变形区
弹性恢复区
6
简单理想轧制:
轧辊直径相同、转速相等、轧辊为 圆柱形刚体、轧件为均匀连续体,轧 制时变形均匀,轧件为平板。
几何变形区:
l / h <0.5~1.0时金属流动速度与应力分布
23

沿轧件宽度方向上的流动规律
纵向受摩擦阻力σ3 横向受摩擦阻力σ2 根据最小阻力定律可把轧制变形区分成4部分:
前后延伸区: 金属纵向流动增加延伸。 延伸区在两侧引起张应力σAB, 削弱延伸,使得宽展区收缩

板带轧制工艺及理论

板带轧制工艺及理论

第二章 板带轧制工艺及理论1.板带钢产品的技术要求包括哪些方面?对板带钢产品的基本要求包括化学成分、几何尺寸、板形、表面、性能等几个方面。

(1)钢板的化学成分要符合选定品种的钢的化学成分(通常是指熔炼成分),这是保证产品性能的基本条件。

(2)钢板的外形尺寸包括厚度、宽度、长度以及它们的公差应满足产品标准的要求。

(3)钢板常常作为包复材料和冲压等进一步深加工的原材料使用,使用上要求板形要平坦。

在钢板的技术条件中对钢板的不平度提出要求,以钢板自由放在平台上,不施加任何外力的情况下,钢板的浪形和瓢曲程度的大小来度量。

(4)使用钢板作原料生产的零部件,原钢板的表面一般是工作面或外表面。

技术条件中通常要求钢板和钢带表面不得有气泡、裂纹、结疤、拉裂和夹杂,钢板和钢带不得有分层;钢板表面上的局部缺陷应用修磨的方法清除,清除部位的钢板厚度不得小于钢板最小允许厚度。

(5)根据钢板用途的不同,对钢板和钢带的性能要求不同,对性能的要求包括四个方面:力学性能、工艺性能、物理性能、化学性能。

对力学性能的要求包括对强度、塑性、硬度、韧性的要求;工艺性能包括冷弯、焊接、深冲等性能;材料使用时对物理性能有要求时在技术条件中提出,如电机和变压器用钢对磁感强度、铁磁损失等物理性能提出要求;材料使用时对化学性能有要求时在技术条件中提出,如不锈钢板钢带对防腐、防锈、耐酸、耐热等化学性能提出要求。

2.板带轧机的分类方法有几种?板带轧机的分类方法有按辊系分类、按轧辊驱动方式分类、按轧机组成分类、按轧机用途分类等多种分类方法。

(1)按辊系分类板带轧机按辊系分类是最常用、最基本的方式。

常用的轧机有二辊、三辊、四辊、六辊、八辊、十二辊、二十辊以及偏八辊、非对称式八辊、行星式轧机等,这些形式的轧机是由一对工作辊和多个支持辊构成。

(2)按轧辊驱动方式分类对称驱动方式:上、下工作辊,上、下中间辊,上、下支持辊;非对称驱动方式:一根工作辊,一根工作辊和一根支持辊;异步驱动:上、下辊异步传动,上、下工作辊异步传动。

轧制原理——精选推荐

轧制原理——精选推荐

轧制原理第1章轧制过程基本概念轧制:⾦属通过旋转的轧辊受到压缩,横断⾯积减⼩,长度增加的过程。

纵轧:⼆轧辊轴线平⾏,转向相反,轧件运动⽅向与轧辊轴线垂直。

斜轧:轧辊轴线不平⾏,即在空间交成⼀个⾓度,轧辊转向相同,轧件作螺旋运动。

横轧:轧辊轴线平⾏,但转向相同,轧件仅绕⾃⾝的轴线旋转,没有直线运动。

轧制过程:靠旋转的轧辊与轧件之间的摩擦⼒将轧件拖⼊辊缝之间,并使之受到压缩产⽣塑性变形,获得⼀定形状、尺⼨和性能产品的压⼒加⼯过程。

体积不变规律:在塑性加⼯变形过程中,如果忽略⾦属密度的变化,可以认为变形前后⾦属体积保持不变。

最⼩阻⼒定律:物体在塑性变形过程中,其质点总是向着阻⼒最⼩的⽅向流动。

简单轧制过程:轧制时上下辊径相同,转速相等,轧辊⽆切槽,均为传动辊,⽆外加张⼒或推⼒,轧辊为刚性的。

变形区概念:轧件承受轧辊作⽤,产⽣塑性变形的区域。

⼏何变形区:轧件直接承受轧辊作⽤,产⽣塑性变形的区域。

物理变形区:轧件间接承受轧辊作⽤,产⽣塑性变形的区域。

接触弧s (咬⼊弧):轧制时,轧件与轧辊相接触的圆弧(弧AB )咬⼊⾓α:接触弧所对应的圆⼼⾓。

变形区(接触弧)长度(l ):接触弧的⽔平投影长度。

咬⼊⾓α: △h = D (l-cos α)cos α=1- △h /D变形区长度l 简单轧制,即上下辊直径相等。

绝对变形量:轧前、轧后轧件尺⼨的绝对差值。

压下量△ h = H-h宽展量△b = b-B延伸量△l = l- L相对变形量:轧前、轧后轧件尺⼨的相对变化。

相对压下量ε=(△h/H )% e = ln h/H相对宽展量εb=(△b /B )% eb= ln b/B相对延伸量εl=(△l/L )% el= ln l/L 。

变形系数:轧前轧后轧件尺⼨的⽐值表⽰的变形。

压下系数:η=H/h宽展系数:β(ω)= b/B延伸系数: µ (λ)=l/L总延伸系数与总压下率(累积压下率)设轧件原始⾯积为F0 ,经过n 道次轧制后⾯积为Fn ,则轧制过程:靠旋转的轧辊与轧件之间的摩擦⼒将轧件拖⼊辊缝,并使之受到压缩产⽣塑性变形,获得⼀定形状、尺⼨和性能的压⼒加⼯过程。

冷轧基础理论知识

冷轧基础理论知识

冷轧基础理论知识一、概要冷轧基础理论知识是金属加工领域中的重要组成部分,涉及到金属材料的塑性变形、力学性能和加工技术等方面。

本文旨在介绍冷轧技术的原理、发展历程以及应用领域,概述冷轧过程中的基础理论和关键工艺参数,包括材料选择、设备配置、工艺流程、冷却方式等。

通过学习本文,读者可以了解冷轧技术的核心知识体系,掌握冷轧过程中的基本理论和实际操作技巧,为后续的深入研究和实践打下坚实基础。

本文还将探讨冷轧技术的未来发展趋势,展望其在金属材料加工领域的应用前景。

1. 简述冷轧技术的定义与发展历程。

冷轧技术是一种利用金属板材在常温下的可塑性,通过一系列辊轮对其施加压力进行加工的方法。

其基本过程是在常温下将金属材料进行连续轧制,改变其形状和尺寸,获得所需的厚度、宽度和平整度的金属板材。

与传统的热轧工艺相比,冷轧技术以其优良的加工精度和良好的材料性能得到了广泛的应用。

发展历程上,冷轧技术起始于工业革命时期的欧洲,随着钢铁工业的迅猛发展而逐渐成熟。

早期的冷轧技术主要运用于有色金属的轧制,随着技术的进步,逐渐扩展到黑色金属的轧制领域。

随着材料科学和工艺技术的不断进步,冷轧技术也在不断地发展。

从简单的单机轧制到现代化的连续自动化生产线,从传统的模拟控制到数字化和智能化控制,冷轧技术已经成为现代制造业不可或缺的重要工艺手段。

其发展历程不仅体现了技术的进步,也反映了人类对材料性能的不断追求和探索。

2. 阐述冷轧技术在工业领域中的重要性。

冷轧技术在工业领域中的重要性不言而喻。

随着现代工业的发展,对于材料性能的要求越来越高,而冷轧技术作为一种先进的金属加工技术,能够满足这种高性能的需求。

冷轧过程通过控制金属的塑性变形和再结晶行为,可以显著提高金属的强度和硬度,同时保持良好的韧性和表面质量。

这使得冷轧材料在汽车、航空、建筑、电子等多个行业中得到广泛应用。

在汽车行业,冷轧技术用于生产高质量的钢板和带材,用于制造车身、发动机等关键部件。

轧制理论)轧制原理

轧制理论)轧制原理

轧制理论的发展趋势与未来展望
1 2
智能化发展
随着人工智能和大数据技术的应用,轧制理论的 智能化发展成为趋势,实现轧制过程的自动化和 智能化控制。
新材料和新工艺研究
未来轧制理论将继续在新材料、新工艺的研究方 面发挥重要作用,推动行业的创新发展。
3
绿色可持续发展
轧制理论将注重绿色可持续发展,致力于降低能 耗和减少环境污染,实现行业的可持续发展。
轧制理论)轧制原理
目录
量 • 轧制过程的模拟与优化 • 轧制理论的应用与发展
01
轧制原理概述
轧制的基本概念
轧制是一种金属加工工艺,通过两个 旋转的轧辊将金属坯料压缩,使其发 生塑性变形,从而获得所需形状和性 能的金属制品。
轧制过程中,金属坯料通过轧辊的摩 擦力作用被牵引,经过连续的塑性变 形,形成一定规格和形状的成品或半 成品。
智能算法进行故障诊断和预警,提高轧制过程的稳定性和可靠性。
05
轧制理论的应用与发展
轧制理论在钢铁工业中的应用
轧制工艺优化
轧制理论为钢铁工业提供了优化轧制工艺的方法,提高了产品质 量和生产效率。
新材料研发
轧制理论在新材料研发中发挥了重要作用,推动了钢铁材料的不 断升级和革新。
节能减排
轧制理论的应用有助于钢铁工业实现节能减排,降低生产过程中 的能耗和污染物排放。
利用测厚系统实时监测板材厚度, 反馈调整轧制参数,以实现厚度 控制的自动化和精细化。
04
轧制过程的模拟与优化
轧制过程的数值模拟技术
有限元法
01
通过将轧制过程划分为一系列小的单元,利用数学方程描述每
个单元的行为,从而模拟整个轧制过程。
有限差分法

必学-金属材料热处理轧制原理基本理论知识

必学-金属材料热处理轧制原理基本理论知识

必学-金属材料热处理轧制原理基本理论知识金属材料及热处理、金属塑性变形与轧制原理基本理论知识金属材料及热处理部分一、金属材料的种类材料是人类用来制造各种有用物件的物质。

工程材料是指具有一定性能,在特定条件下能够承担某种功能、被用来制取零件和元件的材料。

工程材料的种类繁多,分类方法也不同,但均可分为金属材料和非金属材料两大类。

金属材料通常分为黑色金属和有色金属两大类,黑色金属包括钢、铸铁、锰、铬及其合金,有色金属材料是除黑色金属之外的所有金属及其合金。

在铸铁中,由于采用不同的处理方式可使石墨呈现不同的形式。

根据石墨形态的差别,将铸铁分为下列几种:普通灰铸铁(石墨呈片状)、蠕墨铸铁(石墨呈蠕虫状)、可锻铸铁(石墨呈团絮状)、球墨铸铁(石墨呈球状)。

二、金属的结构1,金属的晶体结构金属和合金在固态下通常都是晶体。

内部原子或离子在三维空间呈周期性有规则的重复排列的固体称为晶质体(晶质)。

习惯上,将具有几何多面体外形的晶质称为晶体,相应地,将不具有几何多面体外形的晶质称为晶粒。

由一个核心(晶核)生长而成的晶体称为单晶体,在单晶体的不同方向上测量其性能时,表现出或大或小的差异,这就是晶体的各向异性。

金属材料通常由许多不同位向的小晶粒所组成,称为多晶体;多晶体中各晶粒的各向异性互相抵消,故一般不显示各向异性,所以在工业用的金属材料中,通常见不到各向异性特征,称之为伪各向同性。

工业上使用的金属元素中,除了少数具有复杂的晶体结构外,绝大多数都具有比较简单的晶体结构,其中最典型、最常见的金属晶体结构有三种类型,即体心立方结构,面心立方结构和密排六方结构。

2,金属的同素异构转变大部分金属只有一种晶体结构,但也有少数金属如Fe、Mn、Ti、Co等具有两种或几种不同的晶体结构,即具有多晶型。

当外部条件(如温度和压力)改变时,金属可能由一种晶体结构转变成另一种晶体结构。

这种固态金属在不同温度下具有不同晶格的现象称为多晶型性或同素异晶性。

轧制理论-绪论0

轧制理论-绪论0

本课程的任务(三)
学习塑性加工过程中摩擦与润滑的基本知识,
掌握摩擦基本的特点与规律;摩擦对塑性加工过程
的影响与作用;塑性加工工艺润滑的基本理论,为 合理选择润滑剂及润滑工艺奠定物理化学基础。
本课程的任务(四)
熟悉轧制过程中各种变化现象的变化规律;掌
握力能参数工程计算法应用;为后续课程的学习打
下基础(《轧制工艺、轧制过程自动控制、轧制设 备》;《板型理论与厚控、孔型设计》;《毕业设
学习方法及参考书目
1)课前预习,带着问题听课; 2)结合实习、加强理解和掌握。 3)课后及时复习,做到融会贯通。
王廷溥,齐克敏.金属塑性加工学——轧制理论与工艺. 冶金工业出版社 赵志业,金属塑性变形与轧制理论,北京:冶金工业 出版社,1980 陆济民,轧制原理,北京:冶金工业出版社,1997 黄守汉,塑性变形与轧制原理,北京:冶金工业出版 社,1989
弹性、塑性变形的力学特征
可逆性:弹性变形—可逆;塑性变形—不可逆 -关系:弹性变形—线性;塑性变形—非线性 与加载路径的关系:弹性—无关;塑性—有关 对组织和性能的影响:弹性变形—无影响; 塑性变形—影响大(加工硬化、晶 粒细化、位错密度增加、形成织构等) 变形机理:弹性变形—原子间距的变化; 塑性变形—位错运动为主 弹塑性共存:整体变形中包含弹性变形和塑性变形;塑性变 形的发生必先经历弹性变形;在材料加工过程中,工件的塑 性变形与工模具的弹性变形共存。

材料利用率高
金属塑性成形主要靠金属的体积转移来获得一定的形状 和尺寸,无切削,只有少量的工艺废料,因此材料利用率高, 一般可达75%~85%,最高可达98%以上。

尺寸精度高
精密锻造、精密挤压、精密冲裁零件,可以达到不需机 械加工就可以使用的程度。

轧制理论

轧制理论

咬入之后,在金属逐渐充填变形区的过程中,径向力的合力作用点相应地
向轧件出口平面方向移动,而使合力作用方向逐渐向出口倾斜。因此而使得Tx逐 步增加,Nx相应减少。这样一来,摩擦力的水平分力就有了剩余,其值为Tx-Nx。 由于剩余摩擦力的出现,而使得轧件一旦被咬入,就能更顺利地使轧件充满变形
由置于出口和入口两侧的测厚仪,测出带钢厚度,反馈到高速的计算机系统,再去控制 一个“电--液压”系统来实现对带钢厚度的控制。
测厚仪简图
3.2.AGC系统控制方法
➢前 馈:把前面的测厚仪测得厚度与目标厚度相比。 ➢后 馈:把后面的测厚仪测得厚度与目标厚度相比,只有1pass时使用 。 ➢质量流:轧机出入口的秒流量相等的原理控制,左右测厚仪同时使用
轧辊把轧件拉入旋转方向相反的两个轧辊辊缝 之中叫轧件的咬入。轧辊能够顺利地将轧件咬入是 轧制的必要条件。 轧件与轧辊接触时,轧辊对轧件的作用力和摩擦 力如图所示。N和T分解成的水平分力为:
不能咬入 临界状态 可以咬入 设摩擦角为β,则摩擦系数:
图3 轧辊对轧件的作用力和摩擦力
可以推出:
3.2.轧制过程建立
延伸率是带钢长度变化率,其表示式为: 在忽略宽展时,延伸率μ与压下率ε有如下关系:
2.SPM的目的
➢消除退火带钢的屈服平台,改善力学性能,保证产品的成形加工性; ➢修正板形,改善平直度; ➢根据用户的使用要求,加工光面或麻面板,并改善表面质量。
中性面:在整个变形区中,存在一个前后滑的过渡面。轧件在该面上运动的速度与 该处轧辊线速度的水平分速度相等,这个平面就叫中性面。由出口平面到中性面称 前滑区,由入口平面到中性面称后滑区。
5.2前滑的计算式
如图,在中性面轧件运动的速度与轧辊水平分速度相等,即 中性面与出口截面的秒体积相等,并忽略宽展时,可得 上式,经整理得到 :

轧制理论知识点

轧制理论知识点

金属压力加工:即金属塑性加工,对具有塑性的金属施加外力作用使其产生塑性变形,而不破坏其完整性,改变金属的形状、尺寸和性能获得所要求的产品的一种加工方法按温度特征分类 1.热加工:在充分再结晶温度以上的温度范围内所完成的加工过程,T=∽熔。

2.冷加工:在不产生回复和再结晶温度以下进行的加工T=熔以下。

3.温加工:介于冷热加工之间的温度进行的加工.按受力和变形方式分类:由压力的作用使金属产生变形的方式有锻造、轧制和挤压轧制轧制:金属坯料通过旋转的轧辊缝隙进行塑性变形。

轧制分成纵轧(金属在相互平行且旋转方向相反的轧辊缝隙间进行塑性变形)横轧和斜轧。

内力:物体受外力作用产生变形时,内部各部分因相对位置改变而引起的相互作用力。

分析内力用切面法。

应力(全应力):单位面积上的内力全应力可分解成两个分量,正应力σ和剪应力τ主变形和主变形图示:绝对主变形:压下量 Dh=H-h 宽展量 Db=b-B 延伸量Dl=l-L 相对主变形:相对压下量e1=(l-L)/L*100% 相对宽展量e2=(b-B)/B*100% 相对延伸量e3=(H-h)/H*100% 延伸系数m=l/L 压下系数h=H/h 宽展系数w=b/B ①物体变形后其三个真实相对主变形之代数和等于零;②当三个主变形同时存在时,则其中之一在数值上等于另外两个主变形之和,且符号相反。

③当一个主变形为0时,其余两个主变形数值相等符号相反金属塑性变形时的体积不变条件:金属塑性变形时,金属体积改变都很小,其变形前的体积V1和变形后的体积V2相等.这种关系称之为体积不变条件,用数学式表示为V1=V2 最小阻力定律认为:如果变形物体内各质点有向各个方向流动的可能,则变形物体内每个质点将沿力最小方向移动。

影响金属塑性流动和变形的因素:摩擦的影响变形区的几何因素的影响工具的形状和坯料形状的影响外端的影响变形温度的影响金属性质不均的影响基本应力:由外力作用所引起的应力叫做基本应力。

冷轧轧制理论

冷轧轧制理论

轧制一、轧制过程及基本原理简单理想轧制过程中,两个同直径、同转速的轧辊均被驱动。

轧件仅靠轧辊作用力(无外力)均匀运动完成轧制。

以动画为例,说明轧制的概念。

延伸的轧制又称压延,是金属坯料通过转动轧辊间的缝隙承受压缩变形,在长度方面发生延伸的过程。

可得到板带材、管材、线材各种型材等(摄像:轧制螺纹),又可改善金材内部质量,提高其力学性能。

(一)压下量(△h ),压下率ε,延伸系数λ,宽展△b,压下量△h压下量(轧制前后轧件厚度差)△h = h o-h,压下率εε=(△h/h0)×100%延伸系数λ= L1/L0宽展△b:轧制前后锭料宽度的变化△b=b1-b0以上属于轧制件的塑性变形条件。

(二)轧制过程中金属流动轧件从轧辊入口至出口,厚度逐渐减少,金属在变形区内流动速度逐渐增加。

但入口处的流动速度小于轧辊表面园周速度,出口处则相反。

从入口至出口处的变形区依次分为后滑区,中性面,前滑区,并由变形区力平衡和几何条件分析导出轧制过程变形与几何条件的内在联系。

(如图)γ:中性角α:咬入角β:摩擦角(三)咬入条件初始稳定后或N x轧件上水平外力T x摩擦力水平分力轧件与轧辊接触后,轧辊能把轧件拉入轧缝完成轧制的必要条件,取决于加在轧件上水平外力Nx 与摩擦力水平分力Tx,满足,或者,,(咬入角小于等于摩擦角)。

随后稳定轧制,两者接触面积增加,咬入条件变为:。

当摩擦角一定时,增加辊直径,利用冲击力可改善咬入条件;轧机确定后可把轧件加工成锥形以减少咬入角或降低咬入轧制速度增加摩擦角。

(四)轧制压力P及轧制力矩M1、轧制压力 P(如图)1)定义:轧制时轧辊施加于轧件,使之变形的力或轧件施加于轧辊总压力的垂直分量P。

2)表示:①工程上:平均单位压力F:实际接触面积②计算:可用理论,总结实测值,实测法三种。

2、轧制力矩M——确定轧制的主电机和轧辊传动机构负荷的重要参数。

(如图)1)定义:轧制压力P与其作用点到轧制中心线距离a的乘积2)计算:单辊:M=ψ:力臂系数双辊:二、轧制方法与工艺制度(如图)(一)按轧制温度分1、热轧:常温下不易塑变的金属,要在1100~1250o C下进行,表面粗糙,尺寸波动大。

轧制原理

轧制原理
3、前滑和后滑
前滑:在轧制过程中,轧件出口速度 Vh 大于轧辊在该处的速度 V,既 Vh>V
的现象称为前滑现象。公式为: S hBiblioteka =V h−V
V
×100%
后滑:轧件进入轧辊的速度 VH 小于轧辊在该处的线速度 V 的水平分量 Vcosα
的现象称为后滑现象。公式为: S H
=
V
cosα

V H
V cosα
×100%
2
3.1 前滑值的确定 (1)实验法:事先轧辊表面上刻出距离为 LH 的两个小坑,轧制后轧件的表面
上出现距离为 Lh 的两个凸包,则按下公式求前滑值:
S h
=
Vt h

Vt
Vt
=
L h

L
L H
H
(2)计算法: 式中 γ—中性角
S = γ2R/h
h—轧件出口厚度
R—轧辊半径
3.2 影响前滑的因素
2、实现轧制过程的条件
2.1 咬入条件
咬入:依靠回转的轧辊与轧件之间的摩擦力,轧辊将轧件拖入轧辊之间的现
象称为咬入。
用力将轧件移至轧辊前,使轧件与轧辊在 A、B 两点切实接触,如图 2.1 所
示。此时,轧辊对轧件的作用力为径向力 N 及切向力 T。
1
在 A 点,将 N 分解为水平分量 Nx 与垂直分量 Ny,T 分解成水平分量 Tx
与垂直分量 Ty。Ny、Ty 方向相同,使金属产生压缩变形。而 Nx、Tx 方向相反,
Tx 力求将轧件拖入轧辊之间,而 Nx 则力求将轧件推出轧辊。所以:
Nx>Tx,则轧辊不可能将轧件咬入,
轧制过程不能实现;
Nx=Tx,则处于平衡状态;

轧制加工基础知识

轧制加工基础知识

实际与理论的不同 并不否定简单轧制情况的理论学习意义 非简单轧制情况: 张力轧制、变速轧制、异步轧制、孔型轧制 简单轧制的非理想情况: 变形沿轧件断面高度和宽度不是完全均匀的 金属质点沿轧件断面高度和宽度运动速度不是均匀的 是加速过程而非匀速过程 轧制压力和摩擦力沿接触弧长度上分布不是均匀的 摩擦-粘着状态不是确定的 轧机轧辊不是刚性的

2
T P tan

2 T P
tan f
tan

2


2
可见:按照金属进入轧辊的程度,咬入条件向有利 的一方面转化,亦即最初咬入时,所需的摩擦条件 最高。随轧件逐渐进入轧辊,越易咬入。
3 中性面—相对运动(水平)、绝对运动
中性面对应的圆心角叫中性角,常用γ表示。 金属质点相对轧辊向入口流动形成后滑。 金属质点相对轧辊向出口流动形成前滑。 向两侧流动形成宽展。 前滑和后滑是相对轧辊的。 但绝对速度是向前的。
v h v v H
轧件出口速度大于轧辊圆周速度
vh v
轧件入口速度小于轧辊入口处 水平分速度
v H v co s
中性面处轧件水平速度等 于此处轧辊水平速度
v v co s
问答: 1 在中性面处,哪两个速度相等? 思考: 根据上边的初步分析,已经揭示了轧制过程的内在矛盾:如要加大压下量以 提高轧机生产能力,根据咬入条件则应增加摩擦,但由于金属质点与轧辊表面有 相对滑动,摩擦增加导致轧辊磨损,是轧件表面质量变坏,而且增加了力、能消 耗。为了解决这一矛盾,在开坯轧机,咬入条件成为主要矛盾时,甚至在轧辊上 人为刻痕,以增加摩擦改善咬入条件来提高压下量。而当冷轧薄板时,表面质量 成为组要矛盾时,则采用润滑剂来降低摩擦,改善表面质量,同时降低力、能消 耗。 从公式Δh=D(1-cosα)和咬入条件α≤β可知,在相同摩擦条件下,增加辊径可 以提高压下量,同时可以提高轧辊强度,这是有利的一面。但是随着辊径增加, 接触弧长度增加,因而使应力状态增强,引起轧制力急剧增加。这是不利的一面。 当轧薄板道次压下量不大而工具强度和刚度成为主要矛盾时,不得不采用小直径 轧辊的轧机来生产,这时要采用支撑辊,因而引起了轧机辊系结构的复杂化。 下节课讲各类型的轧机。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
bB 100 % b lL 100 % l
H
bB b 100 % 100 % B B
b ln B l ln L
相对延伸量
lL l 100 % 100 % L L
变形系数的表示法
轧制时表示各向变形系数的关系式
1


1
.
ln 1/η +lnω +lnμ =0
3)鼓形宽展
• 轧件侧面变成鼓形而造成的展宽量,用ΔB3表示, 此时轧件的最大宽度为 B3 =B2+ΔB3=B1+ΔB1+ΔB2 +ΔB3
轧件的总展宽量为: ΔB=ΔB1 +ΔB2 +ΔB 3
• 上述宽展的组成及其相互的关系,由下图清楚地 表示出来。
宽展的组成及其相互的关系
4 轧制过程中的纵变形—前滑和后滑
2)提高β的方法
• (1) 改善轧辊或轧件表面状态,以使β升高 • 初轧粗轧在轧辊刻槽焊点滚花等目的均使f升, β升. • 精轧通过立轧高压水去除氧化皮等办法改善轧 件表面状态,使f升, β升. • (2) 合理调节轧制速度 • 利用稳定轧制条件下的剩余摩擦力,采用低速 咬入,高速轧制.
作业
• 已知 某1150轧机钢锭尺寸 880*880/635*635*1400 热轧,该条件下允 许咬入角28°问: • 1)从理论讲,改钢锭如何轧制可使轧件轧一 道次厚度最小,轧后厚度为多大 • 2)求该轧制条件下的最大咬入角和接触弧长.
物理概念
• 根据物理概念: • 摩擦系数可用摩擦角表示,即摩擦角的正 切就是摩擦系数f。 • tgβ=f • 则 tgβ≥tgα • β≥α!!! • 轧制过程中的咬入条件为摩擦角大于咬入 角, Β=α为临界条件。
咬入的几何意义
α
β
β
α =β :临界 态
α
β
α
β >α 咬入
β <α 不能咬入
当合力R方向沿轧制方向倾斜,实现自然咬入;反之不能咬 入.
4.1轧制时的前滑与后滑
• 前滑与后滑概念的引出及定义 • 1)前滑与后滑概念的引出
金属流动分界线
说明轧件的延伸是被压下金属向轧辊入口和出 口两方向流动的结果
• (1)后滑:轧件进入轧辊的速度υH小于轧辊 在该点处线速度 υ 的水平分量 υcosα,这种现 象叫做后滑。 • (2)前滑:轧件的出口速度 υ 大于轧辊在该 处的线速度υh,这种现象叫做前滑。 • 2)前滑值的定义公式
1)滑动宽展
• 滑动宽展变形金属在轧辊的接触面上,由于产 生相对滑动使轧件宽度增加的量以ΔB1 表示, 展宽后此部分的宽度为 : • B1 =BH+ΔB1
2)翻平宽展
• 由于接触磨擦阻力,轧件侧面的金属在变形过 程中翻转到接触表面,使轧件的宽度增加,增 加的量以 ΔB 2表示,展宽的后轧件的宽度为 • B 2= B 1+ΔB2=BH+ΔB1 +ΔB2
• 轧制过程是否能建立,决定于轧件能否被旋转 的轧辊咬入。因此,研究分析轧辊咬入轧件的 条件,具有非常重要的实际意义。
• 1.2.1 咬入条件
• 1) 咬入:依靠回转的轧辊与轧件之间 的摩擦力,轧辊将轧件拖入轧辊之间 的现象。
2) 咬入条件的确定(分析金属刚被咬入时的受力)
α
p
α
α
轧辊受力分析
轧件受力分析
l 式中 μ = —延伸系数 L b .宽展系数 B H 压下系数 h
5)变形区参数
α
B C
D
Δ b/2
Δ h/2
A
• (1)咬入角:α 是 指轧件开始轧入轧辊 时,轧件和轧辊最先 接触的点和轧辊中 心连线与轧辊中心 线所构成的圆心角。
咬入角α与轧辊直径 D和压下量Δh 之间的关系
• 轧制时存在前滑和后滑现象,这种现象使轧件的出辊 速度与轧辊的圆周速度不相一致。 • 这个速度差在轧制过程中并非始终保持不变的,它受 许多因素的影响而变化。 • 连轧机上轧制和周期断面钢材的轧制等都要求确切知 道轧件进出轧辊的实际速度。 那么,轧件的速度与轧辊周速之间存在什么关系呢? 这就是本节要讨论的问题。

确定金属在孔型内轧制时的展宽是十分复杂的,尽管做过大 量的研究工作,但在限制或强迫宽展孔型内金属流动的规律 还不十分清楚。
3、宽展的组成
• 轧辊与轧件接触摩擦 • 变形区几何形状和尺寸的不同 • 使沿接触表面上金属质点的流动轨迹与接 触面附近的区域和远离的区域是不同的。 • 组成: 滑动宽展ΔB1 翻平宽展ΔB2 鼓形宽展ΔB3
α
ψ
α
1.2.3 咬入阶段与稳定轧制阶段的咬入条件比较
• 极限咬入条件 α= β
• 极限稳定咬入条件αy = βy kx
• 令K= αy / α= kx βy / β
• αy =α kx βy / β
• 上式说明 αy 与α差别取决于kx 及βy / β
1.2.4改善咬入的途径
• 1)重要性 • 改善咬入条件是顺利操作增加压下提高生产效率的有效措施. • 2)具体办法
2)轧制过程中基本现象和建立轧制过程的条件
• 在生产实践中遇到不同的轧辊组合方式,但实际上金属 承受压下而产生塑性变形是在一对工作轧辊中进行的。 • 除了一些特殊辊系结构(如行星轧机,Y型轧机)外, 均在一对轧辊间轧制的简单情况。 • 一般都以二辊作为研究轧制过程的开端。
送 料 辊 支 承 辊 工 作 辊 平 整 辊
由咬入条件 α≤β可知: • 凡是使α降低及β增加的因素,均有利于咬入 • (1) 降低α h
arcCos1 D h一定D增加降, D一定h降降.
•实际生产中以带有楔形端咬入后利用稳定轧制阶段剩余摩擦力,实现咬入. •利用外推力将轧件强制推入轧辊中,外力作用使轧件前端被压扁,相当于楔形外 端降低压下量,有利于咬入.

1.3 轧制过程中横变形---宽展 • 1.3.1宽展及其分类 1、宽展与研究宽展的意义 1)宽展:在轧制过程中,当轧件受到压下后, 金属除按最小阻力法则沿纵向延伸外,在 横向也产生变形,称之为横变形。轧制前、 后轧件沿横向尺寸的绝对差值,称为绝对 宽展简称为宽展.
2)研究宽展的意义
• (1)拟订轧制工艺时需要确定轧件宽展. • (2) 孔型轧制中,必须正确地确定宽展的大小,否则不 是孔型充不满,就是过充满. • 由于问题本身的复杂性,到目前为止,还没有一个能 适应多种情况下准确地计算宽展的理论公式。所以在 生产实际中习惯于使用一些经验公式和数据,来适应 各自的具体情况。
• 纵轧:金属在两个旋转方向相反的轧辊之间通过,并 在其间产生塑性变形的过程。 • 横轧 :轧件变形后运动方向与轧辊轴线方向一致 • 斜轧:轧件作螺旋运动,轧件与轧辊轴线非特角
其他分类
根据金属状态分: 热轧、冷轧。 根据外部介质分类: 空气,真空, 惰性气体 轧机工作制度: 可逆 连轧 等
1.2.2 稳定轧制条件
• 在轧件被咬入后,轧辊给轧件压力P合力作用点与摩擦 力T已不作用于开始接触点处,而是向变形区出口方向 移动.
α ψ δ
开始咬入阶段
合力作用点中心角 轧件前端与轧辊轴心连 线夹角
轧件充填辊缝的 过程
稳定轧制阶段
K
x


y


合力作用点系数
y
稳定轧制条件下咬入角 (虚拟的可能值 )
受力分析
α
p
α
α
轧辊受力分析
轧件受力分析
轧件受垂直合力: (使轧件受压变形 )
F
y
T sin p cos (T Pf )
水平合力:
F T cos p sin 当 F 0轧件才可能被咬入 , 完成轧制 .
x x
结论
T sin tg P cos f tg (咬入条件) 说明咬入角的正切等于 轧件与轧辊之间的摩擦 系数
第二章 轧制理论基础
• • • • • • •
1 轧制变形基本概念 2 实现轧制过程的条件 3 轧制过程中的横变形宽展 4 轧制过程中的纵变形――前滑与后滑 5 轧制压力及力矩 6 连轧 7 斜轧
1轧制变形区的概念及轧制变形基本理论
• 1.1轧制过程及分类: • 1) 轧制过程 : 轧件由摩擦力拉进旋转轧辊之间, 受到压缩进行塑性变形的过程,通过轧制使金 属具有一定尺寸、形状和性能。 • 2) 分类 轧制方式按轧件运动分:有纵轧、横轧、斜轧。
箱形孔型轧制自由宽展
2)限制宽展
• 轧制中,被压下的金属与孔型两侧壁接触,孔型的 侧壁限制着金属沿横向自由流动,金属被迫取得孔 型侧边轮廓的形状。 • 此时,轧件得到的宽展不是自由的,除受摩擦力外, 还受到孔型的限制。 • 此外,在斜配孔型内轧制时,宽展可能为负值。 •
3)强迫宽展
• 被压下的金属受轧辊孔型凸峰的切展而强制金属沿横向流动, 使轧件的宽度增加,这种变形叫做强迫度展。 • 在立轧孔内轧制钢轨时是强制宽展的最好例子,如下图所示。 轧制宽扁钢时采用的'切展'孔型也是说明强制宽展的实例。
后滑值
• 如果将前滑式中的分子和分母各乘以轧 制时间 t ,则得
3)前滑值的实验测定 • 如果事先在轧辊 表面上刻出距离 为LH 的两个小坑 则轧制后测量 Lh 即可用实验方 法计算出轧制时 的前滑值。
4.2 前后滑与有关工艺参数的关系
• 1)体积不变定律 • 按秒流量体积相等的条件
l BH BHL bhl L bh
h H h 2 R(1 COS ) D(1 COS )
式中 R ---- 轧辊半径。
α
B C
D
Δ b/2
Δ h/2
A
(2)接触弧长与变形区长
• 根据几何关系,接触弧长s为: s=Rα • 接触弧之水平投影叫做变形区长度 • 变形区长度的确定(接触弧长与轧制条件有关, 可分为三种情况)
相关文档
最新文档