初二动态几何问题.

合集下载

与圆相关的动态几何问题

与圆相关的动态几何问题

与圆相关的动态几何问题
以下是几个与圆相关的动态几何问题:
1. 两个圆的交点:当两个圆相交时,它们会产生两个交点。


些交点可以在动态几何软件中随着圆的移动而变化。

2. 圆的切线:给定一个圆和一点,可以确定从该点到圆的切线。

这些切线可以通过移动点和圆来进行动态演示。

3. 圆的切线长度:给定一个圆和一点,可以计算从该点到圆的
切线的长度。

这个问题可以用来演示一些几何学中的定理,如切线
长定理。

4. 圆内接多边形:将一个多边形放置在内切圆内部,并使多边
形的每个顶点都在圆上。

这个问题涉及到内切圆的中心和半径,可
以通过动态几何演示进行展示。

5. 圆内接三角形:在内切圆上选择三个点,这些点构成一个内
接三角形。

可以展示内接圆如何与三角形有关,并给出内接圆的半
径和面积。

初二动态几何问题

初二动态几何问题

初二动态几何问题一、动态几何问题涉及的几种情况动态几何问题就其运动对象而言,有:1、点动(有单动点型、多动点型).2、线动(主要有线平移型、旋转型)。

线动实质就是点动,即点动带动线动,进而还会产生形动,因而线动型几何问题可以通过转化成点动型问题来求解.3、形动(就其运动形式而言,有平移、旋转、翻折、滚动)二、解决动态几何问题的基本思考策略与分析方法:动态型问题综合了代数、几何中较多的知识点,解答时要特别注意以下七点:1、把握运动变化的形式及过程;2、思考运动初始状态时几何元素的关系,以及可求出的几何量;3、动中取静:(最重要的一点)要善于在“动”中取“静”(让图形和各个几何量都“静”下来),抓住变化中的“不变量”和不变关系为“向导”,求出相关的常量或者以含有变量的代数式表示相关的几何量;4、找等量关系:利用面积关系、相似三角形的性质、勾股定理、特殊图形等的几何性质及相互关系,找出基本的等量关系式;5、列方程:将相关的常量和含有变量的代数式代入等量关系建立方程或函数模型;(某些几何元素的变化会带来其它几何量的变化,所以在求变量之间的关系时,通常建立函数模型或不等式模型求解。

在解决有关特殊点、特殊值、特殊位置关系问题时常结合图形建立方程模型求解)6、是否以及怎么分类讨论:将变化的几何元素按题目指定的运动路径运动一遍,从动态的角度去分析观察可能出现的情况,看图形的形状是否改变,或图形的有关几何量的计算方法是否改变,以明确是否需要根据运动过程中的特殊位置分类讨论解决,7、确定变化分界点:若需分类讨论,要以运动到达的特殊点为分界点,画出与之对应情况相吻合的图形,找到情况发生改变的时刻,确定变化的范围分类求解。

例:如图,有一边长为5cm 的正方形ABCD 和等腰三角形△RQR ,PQ=PR=5cm ,QR=8cm ,点B 、C 、Q 、R 在同一条直线ι上,当C 、Q 两点重合时开始,t 秒后正方形ABCD 与等腰△PQR 重合部分的面积为Scm 2..解答下列问题:(1)当t=3秒时,求S 的值;(2)当t=5秒时,求S 的值;(3)当5秒≤t ≤8秒时,求S 与t 的函数关系式,并求出S 的最大值.实验操作【要点导航】通过实验操作——观察猜想——科学论证,使我们体验和学到了发现、获得知识的过程和方法. 实验操作探索——理解题意、实验操作是基本保证,观察猜想、探索结论是关键,论证猜想的结论是落实.【典例精析】例1 取一张矩形纸片进行折叠,具体操作过程如下:第一步:先把矩形ABCD 对折,折痕为MN ,如图1;第二步:再把B 点叠在折痕线MN 上,折痕为AE ,点B 在MN 上的对应点为B ',得R t △AB 'E ,如图2;第三步:沿EB '线折叠得折痕EF ,使A 点落在EC 的延长线上,如图3.利用展开图4探究: (1)△AEF 是什么三角形?证明你的结论;(2)对于任一矩形,按照上述方法能否折出这种三角形?请说明你的理由.ιABQCRPD图1 图2图3 图4例2 已知:在△ABC 中,∠BAC =90°,M 为BC 中点.操作:将三角板的90°角的顶点与点M 重合,并绕着点M 旋转,角的两边分别与边AB 、AC 相交于点E 、F .(1)探究1:线段BE 、EF 、FC 是否能构成三角形?如果可以构成三角形,那么是什么形状的三角形?请证明你的猜想.(2)探究2:若改变为:“角的两边分别与边AB 、直线AC 相交于点E 、F .”其它条件都不变的情况下,那么结论是否还存在?请画出对应的图形并请证明你的猜想.【训练】1. ★★★如图,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G .(1)操作:由几个不同的位置,分别测量BF 、AG 、AE 的长,从中你能发现BF 、AG 、AE 的数量之间具有怎样的关系?并证明你所得到的结论;(2)连结DF ,如果正方形的边长为2,设AE=x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域;(3)如果正方形的边长为2,FG 的长为25,求点C 到直线DE 的距离.2. ★★★操作:将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q .探究:设A 、P 两点间的距离为x .(1)当点Q 在边CD 上时,线段PQ 与线段PB 之间有怎样的大小关系?试证明你观察得到结论;(2)当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数解析ABCMGF EDACBDACB供试验操作用式,并写出函数的定义域;(3)当点P 在线段AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q 的位置,并求出相应的x 的值;如果不可能,试说明理由.(图5、图6、图7的形状大小相同,图5供操作、实验用,图6和图7备用)3. ★★★在△ABC 中,AB =AC ,CG ⊥BA 交BA 的延长线于点G .一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 边在一条直线上,另一条直角边恰好经过点B .(1)在图1中请你通过观察、测量BF 与CG 的长度,猜想并写出BF 与CG 满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC 方向平移到图2所示的位置时,一条直角边仍与AC 边在同一直线上,另一条直角边交BC 边于点D ,过点D 作DE ⊥BA 于点E .此时请你通过观察、测量DE 、DF 与CG 的长度,猜想并写出DE +DF 与CG 之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC 方向继续平移到图3所示的位置(点F 在线段AC 上,且点F 与点C 不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)4. ★★如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. 实验与探究:(1)由图观察易知A (0,2)关于直线l 的对称点A '的坐标为(2,0),请在图中分别标明B (5,3) 、C (-2,5) 关于直线l 的对称点B '、C '的位置,并写出他们的坐标:DACB图5DACB图6DACB图7ABC E F G图2DABC DE FG图3ABCFG图1B ' 、C ' ;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分线l 的对称点P '的坐标为 (不必证明); 运用与拓广:(3)已知两点D (1,-3)、E (-1,-4),试在直线l 上确定一点Q ,使点Q 到D 、E 两点的距离之和最小,并求出Q 点坐标.探索性问题探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目.条件探索【要点导航】“探索”是人类认识客观世界过程中最生动、最活跃的思维活动,探索性问题存在于一切学科领域之中,数学中的“条件探索”题型,是指命题中缺少一定的题设,需经过推断、补充并加以证明的命题,因而必须利用题设大胆猜想、分析、比较、归纳、推理,由结论去探索未给予的条件。

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

点 的坐标
为 .……
一次函数的解读式
为 .
(3) 两点在直线 上, 的坐标分别是 .
, .
过点 作 ,垂足为点 .

又 , 点坐标为 .
3.(1)解方程 ,得 .
由m<n,知m=1,n=5.
∴A(1,0),B(0,5).………………………1分
∴ 解之,得
所求抛物线的解读式为 ……3分
(2)由 得 故C的坐标为(-5,0).………4分
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______
和位置关系为_____;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
4、(1)如图1所示,在四边形 中, = , 与 相交于点 , 分别是 的中点,联结 ,分别交 、 于点 ,试判断 的形状,并加以证明;
(2)如图2,在四边形 中,若 , 分别是 的中点,联结FE并延长,分别与 的延长线交于点 ,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
7.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.

八年级数学暑假专题 动态几何问题 人教实验版

八年级数学暑假专题 动态几何问题 人教实验版

八年级数学暑假专题 动态几何问题 人教实验版【本讲教育信息】一. 教学内容:几何图形中有关点、线段的运动问题.二. 知识要点: 1. 题型特点:动态几何问题就是研究在几何图形的运动中,伴随着一定的图形位置、数量关系的“变”与“不变”性,常常集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活、多变,动中有静,动静结合,能够在运动变化中发展空间想象能力,综合分析能力. 2. 解题方法:(1)掌握基本图形的性质和判定(平行四边形、特殊的平行四边形、等腰梯形等); (2)掌握点的运动方向、速度、路程、过程等;(3)能把点运动的路程(距离)转化为线段的表达式与图形的边长相结合.三. 考点分析:动态几何问题是近几年中考命题的热点,往往在中考中以压轴题的形式出现,难度大、分值高.【典型例题】例1. 如图所示,在矩形ABCD 中,AB =20cm ,BC =4cm ,点P 从点A 开始沿折线A -B -C -D 以4cm /s 的速度运动,点Q 从点C 开始沿CD 边以1cm /s 的速度移动.如果点P 、Q 分别从点A 、C 同时出发,当其中一点到达点D 时,另一点也随之停止运动,设运动时间为t (s ),t 为何值时,四边形APQD 为矩形?ABCDPQ分析:观察图形,要使四边形APQD 为矩形,只需AP =DQ 即可. 解:由已知有AP ∥DQ ,∠A =90°, 当PA =DQ 时,四边形APQD 是矩形, 依题意,则有4t =20-t ,所以t =4(s ), 即当t 为4s 时,四边形APQD 是矩形. 评析:这种用数形结合思想和代数方法综合起来解决几何问题的思想方法应引起同学们的重视.例2. 如图所示,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50cm ,AD =75cm ,BC =135cm .点P 从点B 出发沿折线段BA -AD -DC 以5cm /s 的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以3cm /s 的速度匀速运动.点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 的运动时间是ts (t >0).(1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长; (2)当点P 运动到AD 上时,t 为何值时能使PQ ∥DC .A BCDP Q分析:(1)根据点P 的运动速度及运动距离可求出t 的值;(2)要保证PQ ∥DC 需满足四边形PQCD 为平行四边形,即PD =CQ .解:(1)t =(50+75+50)÷5=35(s ),此时,点P 到达终点C ,且QC =35×3=105cm . 所以,BQ =BC -CQ =135-105=30cm . (2)如图所示,若PQ ∥DC ,又AD ∥BC ,ABCDPQ则四边形PQCD 为平行四边形,从而PD =CQ ,由CQ =3t ,BA +AP =5t ,得: (50+75)-5t =3t .解得,t =1258,所以,当t =1258(s )时有PQ ∥DC .评析:本题利用点动、线动综合考查特殊四边形的判定.例3. 如图所示,四边形ABCD 是直角梯形,∠B =90°,AB =8cm ,AD =24cm ,BC =26cm .点P 从点A 出发,以1cm /s 的速度向点D 运动;点Q 从点C 同时出发,以3cm /s 的速度向B 运动.其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,经过多少时间,四边形PQCD 成为平行四边形?成为等腰梯形?AB分析:①如图所示,当PD =CQ 时,四边形PQCD 成为平行四边形;②若四边形PQCD 成为等腰梯形,PD 和CQ 之间的关系式是PD +2(BC -AD )=CQ .ABCDPQ解:(1)因为PD ∥CQ ,则当PD =CQ 时四边形PQCD 为平行四边形. 设运动时间为t 秒,则24-t =3t . 解得,t =6.即当点P 、Q 运动到6秒时四边形PQCD 为平行四边形. (2)如图所示,设运动t 秒后四边形PQCD 为等腰梯形.ABCDPQ E F作PE ⊥BC 于E ,DF ⊥BC 于F ,则EF =PD =24-t ,QE =CF =BC -AD =2. 由CQ =QE +EF +FC 得3t =2+24-t +2. 解得,t =7.即当点P 、Q 运动到7秒时,四边形PQCD 为等腰梯形.例4. 如图所示,在矩形ABCD 中,AB =16cm ,AD =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以每秒3cm 的速度向B 移动,一直到达B 点停止,点Q 以每秒2cm 的速度向D 点移动.(1)P 、Q 两点出发后多少秒时四边形PBCQ 的面积为36cm 2;(2)是否存在某一时刻,使PBCQ 为正方形?若存在,求出该时刻,若不存在说明理由.AD分析:(1)利用梯形面积公式,12(PB +CQ )·BC =36.求出运动时间;(2)由CQ =PB 解得运动时间,然后判断PB =BC 是否成立.若PB =BC ,则矩形PBCQ 为正方形,而PB ≠BC 时,矩形PBCQ 不能成为正方形.解:(1)在梯形PBCQ 中,CQ =2t ,PB =16-3t ,BC =6由S 梯形PBCQ =12(CQ +PB )·BC =36得12(2t +16-3t )×6=36,得t =4. 即当点P 、Q 出发4秒后,四边形PBCQ 的面积为36cm 2. (2)因为CQ ∥PB 且∠C =∠B =90°, 所以当CQ =PB 时,四边形PBCQ 为矩形.即2t =16-3t ,得t =165.而t =165时,CQ =PB =325=6.4.因为BC =6,所以CQ =PB ≠BC . 所以矩形PBCQ 不能成为正方形.【方法总结】解决动态几何问题时,通常需要我们树立联系发展的动态观,用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程.一方面要注意将运动过程中的各个时刻的图形分类画图,由“动”变“静”;另一方面还要善于抓住在运动过程中某一特殊位置的等量关系和变量关系,并特别关注一些不变量和不变关系或特殊关系以及特定的限制条件.在求有关图形中变量之间的关系时,通常建立函数模型或不等式模型来求解;而求图形之间的特殊数量关系和一些特殊值时,通常建立方程模型求解.【模拟试题】(答题时间:45分钟)1. 如图所示,在直角梯形ABCD 中,∠ABC =90°,DC ∥AB ,BC =3,DC =4,AD =5,动点P 从B 点出发由B →C →D →A 沿边运动,则△ABP 的最大面积为( )ABC DPA. 10B. 12C. 14D. 162. 如图所示,已知矩形ABCD ,R 、P 分别是DC 、BC 上的点,E 、F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )ABCD E FPRA. 线段EF 的长逐渐增大B. 线段EF 的长逐渐减小C. 线段EF 的长不改变D. 线段EF 的长不能确定**3. 如图所示,在直角梯形ABCD 中,∠B =90°,DC ∥AB ,动点P 从B 点出发,由B -C -D -A 沿边运动,设点P 运动的路程为x ,△ABP 的面积为y ,如果关于x 的函数y 的图象如图所示,则△ABC 的面积为( )BPA. 10B. 16C. 18D. 32*4. 如图在等腰梯形ABCD 中,AB ∥DC ,AD =BC =5,DC =7,AB =13,点P 从点A 出发,以3个单位/秒的速度沿AD →DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/秒的速度沿BA 向终点A 运动,在运动期间,当四边形PQBC 为平行四边形时运动时间为( )A. 3sB. 4sC. 5sD. 6sABCD P Q5. 如图所示,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F .(1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.ABCDEFM NO*6. 如图所示,梯形ABCD 中,AD ∥BC ,∠B =90°,AB =14cm ,AD =18cm ,BC =21cm ,点P 从点A 开始沿AD 向点D 以1cm /s 的速度移动,点Q 从点C 开始沿CB 向点B 以2cm /s 的速度移动,如果P 、Q 两点分别从点A 、C 同时出发,设移动的时间为ts ,求t 为何值时,四边形PQCD 为等腰梯形?ABCDPQ**7. 在平面直角坐标系内,一动点P (x ,y )从点M (1,0)出发,沿由A (-1,1)、B (-1,-1)、C (1,-1)、D (1,1)四点组成的正方形边线(如图①所示,按一定方向运动,如图②所示的是P 点运动的路程s (个单位)与运动时间t (秒)之间的函数图象,如图③所示的是P 点的纵坐标y 与P 点运动路程s 之间的函数图象的一部分.(1)s 与t 之间的函数关系式是__________.(2)与图③相对应的P 点运动的路程是__________.(3)写出当3≤s ≤8时,y 与s 之间的函数关系式,并在图③中补全函数图象.①②③【试题答案】1. B2. C3. B4. A5. (1)∵EC 平分∠ACB ,∴∠OCE =∠BCE ,又∵MN ∥BC ,∴∠OEC =∠BCE ,∴∠OEC =∠OCE ,∴OE =OC .同理OF =OC ,∴EO =FO .(2)当O 为AC 的中点时,四边形AECF 是矩形.证明如下:∵EO =FO ,AO =CO ,∴四边形AECF 为平行四边形.又∵EC 、FC 分别为∠ACB 的内、外角平分线.∴∠ECF =90°,∴四边形AECF 是矩形.6. 解:作PE ⊥BC 于E ,DF ⊥BC 于F ,则QE =CF =BC -AD =21-18=3,PD =EF .因为CQ =QE +EF +CF .所以2t =18-t +6.解得t =8,即当t =8s 时,四边形PQCD 为等腰梯形.7. (1)s =12t ;(2)M →D →A →B →C →M ;(3)当3≤s ≤5时,即P 从A 到B 时,y =4-s .当5≤s <7时,即P 从B 到C 时,y =-1.当7≤s ≤8时,即P 从C 到M 时,y =s -8.。

初中数学动态几何问题探讨

初中数学动态几何问题探讨

一、课题内容:初中动态几何问题研讨二、问题梳理1、动态几何问题是初中数学中教与学的一个重点和难点,也是中考命题中经常考查的内容。

动态几何一般是指在一个几何图形的背景下,由点、线等简单图形通过在运动过程中构成新的几何图形,由此而产生的问题。

2、动态几何问题一般包括题型:点动、线动、图形动等类型,其核心是函数知识,不仅包括空间观念、应用意识、推理能力等内容,而且体现了运动观点、方程思想、数形结合思想、划归思想和分类思想等数学思想,同时还包含解方程、相似三角形、三角函数和整式运算等知识,故要求具有较强的分析、推理、计算综合解决问题的能力。

3、动态几何问题最突出的特点就是图形是运动的、变化的,解决动态问题时:首先需要把动态问题静态化,化为几个静态的过程,“以静制动”,抓住变化中的“不变量”,以不变应万变;其次,考虑问题要全面化,经常会遇到分两种或多种情况来解决的问题,对比较常见的分情况考虑的问题要熟悉,例:说到等腰三角形的角要考虑是顶角还是底角,说到等腰三角形的边要考虑是底边还是腰;其三,将几何图形简单化,学会利用几何图形来分散难点、降低难度,并从特殊位置点着手确定自变量取值范围;第四,动态试题作为选拔性试题难度较大,但入口容易。

三、实现目标1、让学生具有能分析动态问题的思路,不再对几何动态问题感到陌生,增强学生解题的自信心2、让学生理解并掌握数形结合的解题思想与解题技巧3、培养学生具备全面分析问题的能力,掌握知识的连贯性和多面性四、教学重难点1、重点:用浅显易懂的语言教会学生分析动态几何问题2、难点:培养学生将动态问题转化为静态问题的思维模式五、典型例题透析例1、如图,在梯形ABCD中,AD∥BC,E是BC的中点,PB的长为x 。

(1)当x的值为______时,以点P、A、D、E为顶点的四边形为直角梯形;(2)当x的值为_____时,以点P、A、D、E为顶点的四边形为平行四边形;(3)点P在BC边上运动的过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由【分析】 (1)注意P 点的位置,如图1,过点A 作AP1⊥BC交BC于点P1过点D作DP2⊥BC交BC于点P2,满足条件的点应有两个(2)注意P点的位置,如图2,过点A作AP 3∥DE,交BC于点P3,过点D作DP∥AE交BC于点P 4满足条件的点应有两个(3)由(2)可知,当BP=11时,以点P 、A 、D 、E为顶点的四边形是平行四边形,通过计算可知,此时DP=5=AD,所以四边形AEPD是菱形【解】(略)注:【方法与规律】1、在探讨图形的形状时,一定要抓住图形的已有特征,添加不足的部分,如(1)中的四边形APED 已经是梯形,要成为直角梯形,只需添加腰垂直于底边即可,(2)中四边形APED 已有AD ∥PE ,要成为平行四边形,只需添加另一组对边平行或AD=PE 即可; 2、对存在性的探讨,注意其特殊性,同时注意各小题之间是独立的关系,还是从属的关系,如(3)中四边形APED 要成为菱形,它必须是平行四边形,故只需讨论(2)中的两种特殊情况即可;3、应注意点的运动方向和位置,以防漏解。

初中数学动态几何问题常用解题方法探究

初中数学动态几何问题常用解题方法探究
详细描述
在解决动态几何问题时,将复杂图形分解为基本图形,例如 三角形、正方形等,以便更好地分析图形特征和规律。
构造辅助线
总结词
通过添加辅助线,为解决问题提供新的视角和思路。
详细描述
根据题目的条件和要求,添加适当的辅助线,例如平行线、垂线等,以揭示隐 藏在图形中的重要信息和解题思路。
构造方程
总结词
将几何问题转化为方程问题,利用数学方程来寻找等量关系。
详细描述
根据题目条件和要求,构造适当的方程,例如三角形面积公式、勾股定理等,以建立未知量和已知量之间的数学 关系。
03 函数思想在动态几何问题 中的应用
利用函数解析式描述动态变化
定义变量
根据题意,定义变量表示 图形的位置或大小,如角 度、长度等。
案例三:利用分类讨论思想解决动态几何问题
总结词
分类讨论思想是一种通过将问题分解为若干个子问题, 分别解决每个子问题,从而找到问题的解决方案的方法 。
详细描述
分类讨论思想在动态几何问题中的应用通常是通过将问 题分解为不同的类型,分别讨论每个类型的情况,从而 找到问题的解决方案。例如,在解决某些动态几何问题 时,可以通过分类讨论不同情况下的解决方案,从而找 到问题的最佳解决方案。
案例四:利用数学模型解决动态几何问题
总结词
数学模型是一种通过建立数学方程或不等式来描述实 际问题的方法,常用于解决动态几何问题。
详细描述
数学模型在动态几何问题中的应用通常是通过建立数 学方程或不等式来描述实际问题的各种变量之间的关 系,从而解决问题。例如,在解决某些动态几何问题 时,可以通过建立数学方程或不等式来描述图形中的 变量之间的关系,从而找到问题的解决方案。
利用图像性质

初中数学动态几何问题的教学难点及措施研究

初中数学动态几何问题的教学难点及措施研究

初中数学动态几何问题的教学难点及措施研究1. 引言1.1 背景介绍初中数学动态几何问题是数学教学中的一个重要内容,涉及到学生在空间和时间上的思维能力和几何图形变化的认识。

在教学实践中,往往存在着一些难点和问题,如学生对动态几何问题的理解不深,解题方法不够灵活等。

深入研究动态几何问题的教学难点及措施,对于提高学生的数学学习效果具有重要的意义。

背景介绍是这一研究的起点,主要介绍了动态几何问题在初中数学教学中的地位和作用。

通过对动态几何问题的特点和特性进行分析,我们可以更好地把握教学中的重点和难点,从而为教师们提供更好的指导和支持。

了解动态几何问题的教学困难和挑战,有助于我们找到更有效的教学方法和策略,提高学生的数学学习兴趣和能力。

本文将围绕着初中数学动态几何问题的教学难点及措施展开研究,旨在为教师们在教学实践中提供一些启示和借鉴。

1.2 研究意义数统计等。

【研究意义】动态几何在初中数学教学中起着重要的作用,能够帮助学生更好地理解几何概念,并培养他们的空间想象能力和逻辑推理能力。

动态几何问题的教学难点也是不可避免的,如何有效地解决这些难点,提高教学效果,是本文研究的重点。

通过对初中数学动态几何问题的教学特点、难点分析和教学措施建议的研究,可以为教师提供更好的教学指导,帮助学生更好地掌握动态几何知识。

本文还将通过案例分析和评估方法的探讨,进一步完善教学策略,提高教学效果。

通过对初中数学动态几何问题的深入研究,不仅可以促进教学改革和教学方法的创新,还可以为学生的数学学习提供更有效的帮助,提高他们的数学素养和解决问题的能力。

【2000字】2. 正文2.1 初中数学动态几何问题的特点1. 动态性:动态几何问题是指在平面内或立体空间内,一些几何对象在运动中的性质和规律。

这种问题要求学生能够通过观察几何图形在运动过程中的变化,把握图形的运动规律,从而解决问题。

2. 几何性:动态几何问题强调几何图形的性质和变化,要求学生善于观察、分析和推理,从几何图形的角度解决问题,培养学生的几何思维能力。

专题10 几何动态探究问题

专题10  几何动态探究问题

专题九:几何动态探究问题动态型问题是探究几何图形在运动变化过程中与图形相关的某些量(线段的长、图形的周长于面积等)。

此类问题常与平移变换、轴对称变换、旋转变换相结合。

解决此类问题要“变动为静,以静制动”,善于从特殊位置到一般位置状态的分析,结合几何变换的性质特点,准确把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,建立相关的方程或函数数学模型。

1.平移型动态探究问题例1.如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.针对训练1. 如图1,在平面直角坐标系中,四边形OABC 各顶点的坐标分别为O (0,0),A (3,33),B (9,53),C (14,0).动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线OA -AB -BC 运动,在OA ,AB ,BC 上运动的速度分别为3,3,52(单位长度/秒).当P ,Q 中的一点到达C 点时,两点同时停止运动.(1)求AB 所在直线的函数表达式.(2)如图2,当点Q 在AB 上运动时,求△CPQ 的面积S 关于t 的函数表达式及S 的最大值.(3)在P ,Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值.图1 图22.轴对称型动态探究问题例2.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(﹣3,0).动点M,N 同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动的时间记为t秒.连接MN.(1)求直线BC的解析式;(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式.针对训练2.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE 交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB1的值;(3)如果题设中“BE=2CE”改为“=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).3.旋转型动态探究问题例3.如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.(1)问题发现:①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.针对训练3.如图,△ABC和△CEF中,∠BAC=∠CEF=90°,AB=AC,EC=EF,点E 在AC边上.(1)如图1,连接BE,若AE=3,BE=,求FC的长度;(2)如图2,将△CEF绕点C逆时针旋转,旋转角为α(0°<α<180°),旋转过程中,直线EF分别与直线AC,BC交于点M,N,当△CMN是等腰三角形时,求旋转角α的度数;(3)如图3,将△CEF绕点C顺时针旋转,使得点B,E,F在同一条直线上,点P为BF 的中点,连接AE,猜想AE,CF和BP之间的数量关系并说明理由.4.动态点的运动轨迹探究问题例4.(2019•兰州)二次函数y=ax2+bx+2的图象交x轴于点(﹣1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M 作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标;(4)当t=时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.针对训练4.如图,已知点A坐标为(﹣1,0),点B坐标为(3,0),顶点为D的抛物线y =ax2+bx+经过点A、点B,交y轴于点C.若点P是x轴的正半轴上一个动点,将△OCP 沿边CP翻折,得到△ECP,(1)求抛物线的解析式和顶点D的坐标;(2)当点E落在抛物线的对称轴上时,求此时点P的坐标;(3)连接DE,则DE的最小值是;(4)若点P是线段OB上一动点,并由点O向点B运动,则点E的运动路径长.。

初中几何动点最值问题难题集锦

初中几何动点最值问题难题集锦

初中几何动点最值问题难题集锦初中几何动点最值问题是初中数学中的一道难题类型。

动点最值问题考察动点在几何形状内运动时,某一量的最大值或最小值的求解方法。

下面是一些初中几何动点最值问题的难题集锦。

1.【问题描述】在一个矩形ABCD中,点P动态地沿着矩形的边移动,求线段AP的最长长度。

【解答】假设矩形ABCD的边长为a和b(a<b),点P动态地沿着矩形的边移动。

我们可以观察到,当点P处于矩形的顶点A或D时,线段AP的长度为a;当点P处于矩形的顶点B或C时,线段AP的长度为b。

因此,线段AP的最长长度为b。

2.【问题描述】在一个圆形O内,点P动态地沿着圆的周长移动,求线段OP的最长长度。

【解答】设圆的半径为r,点P动态地沿着圆的周长移动。

根据三角形的性质,可以知道线段OP的长度最长时,点P应该位于圆的周长上的与点O相对的点,即直径上的点。

因此,线段OP的最长长度为2r。

3.【问题描述】在一个正方形ABCD内,点P动态地沿着正方形的边移动,求线段BP的最长长度。

【解答】设正方形ABCD的边长为a,点P动态地沿着正方形的边移动。

由于线段BP的长度等于点P距离B点的距离,所以线段BP的最长长度为正方形的对角线长度,即√2a。

4.【问题描述】在一个等腰直角三角形ABC中,点P动态地沿着三角形的边移动,求线段AP的最长长度。

【解答】设等腰直角三角形ABC的等腰边长为a,点P动态地沿着三角形的边移动。

可以观察到,当点P处于顶点B或C 时,线段AP的长度为a;当点P处于顶点A时,线段AP的长度为0。

因此,线段AP的最长长度为a。

5.【问题描述】在一个梯形ABCD中,点P动态地沿着梯形的边移动,求线段CP的最长长度。

【解答】设梯形ABCD的上底长为a,下底长为b(a>b),点P动态地沿着梯形的边移动。

可以观察到,当点P处于梯形的底端点C或顶端点D时,线段CP的长度为0;当点P处于梯形的上底端点A时,线段CP的长度为ab。

干货初中数学:动态几何题

干货初中数学:动态几何题

干货初中数学:动态几何题笑笑老师动点型1、单动点型例1、如图1,在矩形ABCD中,AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PF⊥AC,E,F分别是垂足,求PE+PF的长。

分析与略解:P是AD边上任意一点,不妨考虑特殊点的情况,即在“动”中求“静”。

当P点在D(或A)处时,过D作DG⊥AC,垂足为G,则PE=0,PF=DG,故PE+PF=DG,在Rt△ADC中,由面积公式有:,再有“静”寻求“动”的一般规律,得到PE+PF=DG=。

图12、双动点型例2、如图2,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D点停止;点Q从D点出发,沿D→C→B→A路线运动,到A停止。

若点P、Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度为每秒dcm。

图3是点P出发x秒后△APD的面积与x(秒)的函数关系图象,图4是点Q出发x秒后△AQD的面积与x(秒)的函数关系图象。

图2图3图4(1)参照图3,求a、b及图3中c的值。

(2)求d的值。

(3)设点P离开点A的路程为,点Q到点A还需走的路程为,请分别写出动点P、Q改变速度后,、与出发后的运动时间x(秒)的函数关系式。

并求出P、Q相遇时x的值。

(4)当点Q出发________秒时,点P、点Q在运动路线上相距的路程为25cm。

分析与略解:解决此类问题的关键是应注意图形位置变化及动点运动的时间和速度,用分类讨论的思想来求解。

(1)观察图3,所以(秒),(厘米/秒),(秒)。

(2)依题意,解得(厘米/秒)(3)依题意,所以(秒)(4)1和19。

动线型1、线平移型例3、如图5,边长为2的正方形ABCD中,顶点A的坐标是(0,2),一次函数y=x+t的图象L随t的不同取值变化时,位于L的右下方由L和正方形的边围成的图形面积为S(阴影部分)。

(1)当t取何值时,S=3?(2)在平面直角坐标系下,画出S与t的函数图象。

动态几何之定值(恒等)问题

动态几何之定值(恒等)问题

动态几何之定值(恒等)问题动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。

原创模拟预测题1.如图,在Rt△ABC和Rt△DEF中,∠ACB=∠DEF=900,∠A=∠F=450,DF=4,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB。

求证:点E到AC的距离为常数2。

【答案】解:如图,过点E作EH⊥AC于点H,则EH即为点E到AC的距离。

∵在Rt△DEF中,∠DEF=900,∠F=450,DF=4,∴DE222==∵DE∥AB,∴∠EDH=∠A=450。

∴22EH22==。

∴点E到AC的距离为常数2。

【考点】平移问题,作辅助线,等腰直角三角形的性质,平行的性质。

原创模拟预测题2.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.如图,当点D在边CB的延长线上时,证明AC=CD﹣CF。

【答案】解:∵∠BAC=∠DAF=60°,∴∠DAB=∠CAF。

∵在△BAD和△CAF中,AB=AC,∠DAB=∠CAF,AD=AF,∴△BAD≌△CAF(SAS)。

∴CF=BD。

∴CD﹣CF=CD﹣BD=BC=AC。

∴AC=CD﹣CF。

【考点】单动点问题,菱形的性质,等边三角形的性质,全等三角形的判定和性质,等量代换。

【解析】根据SAS证△BAD≌△CAF,推出CF=BD即可。

原创模拟预测题3.已知,点A、B、C在⊙O上,OC⊥AB,∠AOC=40°,点D ⊙O上的动点(与点B、C不重合)是则∠BDC的度数是。

【答案】20°或160°。

【考点】圆周角定理,垂径定理,圆内接四边形的性质,分类思想的应用。

原创模拟预测题5. 如图,已知菱形ABCD 中,∠ABC=60°,点P 是对称线AC 上的一点,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件∠EPF=60°。

中考数学《二次函数-动态几何问题》专项练习及答案

中考数学《二次函数-动态几何问题》专项练习及答案

中考数学《二次函数-动态几何问题》专项练习及答案一、单选题1.如图1,在△ABC中,△B=90°,△C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P恰好为AC的中点时,PQ的长为()A.2B.4C.2 √3D.4 √32.如图,在四边形DEFG中,△E=△F=90°,△DGF=45°,DE=1,FG=3,Rt△ABC的直角顶点C与点G重合,另一个顶点B(在点C左侧)在射线FG上,且BC=1,AC=2,将△ABC沿GF方向平移,点C与点F重合时停止.设CG的长为x,△ABC在平移过程中与四边形DEFG重叠部分的面积为y,则下列图象能正确反映y与x函数关系的是()A.B.C.D.3.点C是线段AB上的一点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是()A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三等分点时,S最小D.当C是AB的三等分点时,S最大4.下列函数属于二次函数的是()A.y=5x+3B.y=1x2C.y=2x2+x+1D.y=√x2+15.在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣26.如图,直线l1:y=−x+4与x轴和y轴分别相交于A、B两点,平行于直线l1的直线l2从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴和y轴分别相交于C、D两点,运动时间为t秒(0≤t≤4).以CD为斜边作等腰直角ΔCDE(E、O两点分别在CD两侧),若ΔCDE和ΔOAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.7.如图,菱形ABCD的边长为2,△A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH△BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.8.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣29.如图,AC=BC,点D是以线段AB为弦的圆弧的中点,AB=4,点E是线段CD上任意一点,点F 是线段AB上的动点,设AF=x,AE2﹣FE2=y,则能表示y与x的函数关系的图象是()A.B.C.D.10.如图,在△ABC中,△ACB=90°,AC=4,BC=2.P是AB边上一动点,PD△AC于点D,点E 在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小11.将抛物线y=-2x2先向左平移1个单位,再向上平移3个单位,两次平移后得到的抛物线的解析式为()A.y=-2(x+1)2+3 B.y=-2(x+1)2-3C.y=-2(x-1)2+3 D.y=-2(x-1)2-312.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且△APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C.D.二、填空题13.如图,在Rt△ABC中,△C=90°,BC=4,BA=5,点D在边AC上的一动点,过点D作DE△AB 交边BC于点E,过点B作BF△BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE 和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE和矩形HEBF的面积和最小时,则EF 的长度为.14.已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点。

中考数学动态几何问题(经典)

中考数学动态几何问题(经典)

一(中考数学专题3) 动态几何问题【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).D NCM B A(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【例3】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =42,3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【例4】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.A DM Q60【例5】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,.(1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)图3图2图1FEABCDABCDEFGGFED CBA【例6】已知正方形ABCD 的边长为6cm ,点E 是射线BC 上的一个动点,连接AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B′ 处.(1)当CE BE =1 时,CF=______cm ,(2)当CE BE=2 时,求sin ∠DAB ′ 的值; (3)当CEBE= x 时(点C 与点E 不重合),请写出△ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式,(只要写出结论,不要解题过程).【总结】 通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。

八年级数学 动态几何探究题综合训练大全

八年级数学 动态几何探究题综合训练大全

八年级数学 动态几何探究题综合训练大全1.如图1,在正方形ABCD 中,点E ,F 分别是边BC ,AB 上的点,且CE=BF .连接DE ,过点E 作EG ⊥DE ,使EG=DE ,连接FG ,FC .(1)请判断:FG 与CE 的数量关系是________,位置关系是________;(2)如图2,若点E ,F 分别是边CB ,BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E ,F 分别是边BC ,AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.2.如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F .(1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.3.在平面直角坐标系中,O 为原点,点A (4,0),点B (0,3),把△ABO 绕点B 逆时针旋转,得△A′BO′,点A ,O 旋转后的对应点为A′,O′,记旋转角为α.(1)如图①,若α=90°,求AA′的长;(2)如图②,若α=120°,求点O′的坐标;(3)在(Ⅱ)的条件下,边OA 上 的一点P 旋转后 的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)A B C E F M N O (第19题图)B C4.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE ⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,求证:AF+BF=2OE;(2)当正方形ABCD绕点A顺时针旋转至图2时.线段AF,BF与OE具有什么数量关系?并说明理由.(3)当运动到图3的位置时,线段AF、BF、OE之间又有怎样的数量关系?请直接写出你的猜想.5.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)求证:BD=CF(2)将△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF还成立吗?若成立,请证明,若不成立,请说明理由;(3)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.猜想BD、CF有怎样的位置关系,并证明你的猜想。

初中动态几何问题

初中动态几何问题

题的一种构造方法,同时也展示了一种数学的创造过程,反
映了几何本身的实质。 动态几何问题,是以几何知识和具体的几何图形为背景,
渗透运动变化的观点,通过点、线、形的运动,图形的平移、
翻折、旋转等把图形的有关性质和图形之间的数量关系位置 关系看作是在变化的、相互依存的状态之中,要求对运动变 化过程伴随的数量关系的图形的位置关系等进行探究。对学 生分析问题的能力,对图形的想象能力,动态思维
的认识过程,以及人们对几何的研究过程何应用过程,都是不
断发展、不断进步、不断深入的,也就是说它不是一成不变的, 而是动态变化的,不断完善的。 “几何就是在不断变化的几何图形中,研究不变的、特殊 的、为我们所用的几何规律”。
只是人们早期的研究和原来教材中出现的以及用来考
察学生的几何问题较多的是相对静态的几何问题,并延续
辅助,使学生对动态变化有一定的感性认识,之后应让学生 通过画图、操作等形成动态联想,敏锐地抓住其中等量或变 量关系,从“静”中能看到“动”,又能从“动”中看到 “静”,抓住其中的特性,找到问题的突破口。 5、在课堂教学中,从课本知识(习题)出发,编制和设计一
些学生较能接受和容易联想到的动态型几何问题,立足平时,
年 占分比例
2003 2004 2005 2006 2007
—— 16.7% 15% 13.3% 10%
10% 10% 10% 10% ——
【05河北】如图,在直角梯形ABCD中,AD∥BC,∠C=90°, BC=16,DC=12,AD=21。动点P从点D出发,沿射线DA的方 向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段 CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D, C同时出发,当点Q运动到点B时,点P随之停止运动。设运动 的时间为t(秒)。 (1)设△BPQ的面积为S,求S与t之间的函数关系式; (2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰 三角形? (3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP 的正切值; (4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值; 若不存在,请说明理由。 A P D

动态几何问题的解题分析

动态几何问题的解题分析

动态几何问题的解题分析一、动点问题:(1)单点运动;(2)双点运动例1如图,在Rt ABC==AB AC,.若动点D从点B出发,∠=°,86△中,90A沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE BC∥交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,BDE△的面积S有最大值,最大值为多少?分析:此题为一个点动的问题,比较简单,利用相似或三角函数即可求解,解决此问题的关键是要分清点动、线动、三角形面积变化问题,最后转化到二次函数求最值。

例2如图,在直角坐标系中,O是原点,A、B、C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动。

⑴求出直线OC的解析式及经过O、A、C三点的抛物线的解析式。

⑵试在⑴中的抛物线上找一点D,使得以O、A、D为顶点的三角形与△AOC全等,请直接写出点D的坐标。

⑶设从出发起,运动了t秒。

如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围。

⑷设从出发起,运动了t秒。

当P、Q两点运动的路程之和恰好等于梯形OABC 的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分,如有可能,请求出t的值;如不可能,请说明理由。

分析:此题为两个动点,构造三角形全等及面积问题,有一定的难度,要求学生先定位置,然后找等量关系进行求解。

二、动线问题例3已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在ABC△的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M N、分别作AB边的垂线,与ABC△的其它边交于P Q、两点,线段MN运动的时间为t秒.(1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.分析:(1)线段MN的运动路径是什么?(2)线段MN在运动的过程中,PM、QN的位置关系是否改变?四边形MNQP的面积如何求?(3)线段MN在运动的过程中,PM、QN的长的求法是否有变化?例4如图直线l的解析式为y=-x+4, 它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;当2<t≤4时,试探究S2 与t之间的函数关系;CPQBA M N在直线m 的运动过程中,当t 为何值时,S 2 为△OAB 的面积的165?分析:注意重叠部分图形形状的变化,此题中形状变了,解析式也随之改变。

专题44 动态几何之定值(恒等)问题(压轴题)

专题44 动态几何之定值(恒等)问题(压轴题)

《中考压轴题》专题42:动态几何之定值(恒等)问题一、解答题1.阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用)(1)【理解与应用】如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB 于点F,则PE+PF的值为.(2)【类比与推理】如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA交BD于点F,求PE+PF的值;(3)【拓展与延伸】如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.2.已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,54),直线y=kx+2与y 轴相交于点P ,与二次函数图象交于不同的两点A (x 1,y 1),B (x 2,y 2).(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x 取值范围在﹣1<x <3时,请写出其函数值y 的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y 轴上,必存在定点G ,使△ABG 的内切圆的圆心落在y 轴上,并求△GAB 面积的最小值.(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:设一元二次方程ax 2+bx+c=0的两根为x 1,x 2,则:1212bc x x x x a a+=⋅=能灵活运用这种关系,有时可以使解题更为简单.例:不解方程,求方程x 2﹣3x=15两根的和与积.解:原方程变为:x 2﹣3x ﹣15=0∵一元二次方程的根与系数有关系:1212b c x x x x a a +=⋅=∴原方程两根之和=331--=,两根之积=15151-=-.3.给定直线l :y=kx ,抛物线C :y=ax 2+bx+1.(1)当b=1时,l 与C 相交于A ,B 两点,其中A 为C 的顶点,B 与A 关于原点对称,求a 的值;(2)若把直线l 向上平移k 2+1个单位长度得到直线r ,则无论非零实数k 取何值,直线r 与抛物线C 都只有一个交点.①求此抛物线的解析式;②若P 是此抛物线上任一点,过P 作PQ ∥y 轴且与直线y=2交于Q 点,O 为原点.求证:OP=PQ.4.如图,在平面直角坐标系xOy 中,一次函数5y x m 4=+的图象与x 轴交于A (﹣1,0),与y 轴交于点C .以直线x=2为对称轴的抛物线C 1:y=ax 2+bx+c (a≠0)经过A 、C 两点,并与x 轴正半轴交于点B .(1)求m 的值及抛物线C 1:y=ax 2+bx+c (a≠0)的函数表达式.(2)设点D (0,2512),若F 是抛物线C 1:y=ax 2+bx+c (a≠0)对称轴上使得△ADF 的周长取得最小值的点,过F 任意作一条与y 轴不平行的直线交抛物线C 1于M 1(x 1,y 1),M 2(x 2,y 2)两点,试探究1211M F M F +是否为定值?请说明理由.(3)将抛物线C 1作适当平移,得到抛物线C 2:()221y x h 4=--,h >1.若当1<x≤m 时,y 2≥﹣x 恒成立,求m的最大值.5.如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为(﹣4,4).点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向点O 运动;点Q 从点O 同时出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点Q 也停止运动.连接BP ,过P 点作BP 的垂线,与过点Q 平行于y 轴的直线l 相交于点D .BD 与y 轴交于点E ,连接PE .设点P 运动的时间为t (s ).(1)∠PBD 的度数为,点D 的坐标为(用t 表示);(2)当t 为何值时,△PBE 为等腰三角形?(3)探索△POE 周长是否随时间t 的变化而变化?若变化,说明理由;若不变,试求这个定值.6.如图,已知直线AB :y kx 2k 4=++与抛物线21y x 2=交于A 、B 两点,(1)直线AB 总经过一个定点C ,请直接写出点C 坐标;(2)当1k 2=-时,在直线AB 下方的抛物线上求点P ,使△ABP 的面积等于5;(3)若在抛物线上存在定点D 使∠ADB =90°,求点D 到直线AB 的最大距离.7.如图,在矩形ABCD 中,把点D 沿AE 对折,使点D 落在OC 上的F 点,已知AO=8.AD=10.(1)求F 点的坐标;(2)如果一条不与抛物线对称轴平行的直线与该抛物线仅有一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过点O ,F ,且直线y=6x ﹣36是该抛物线的切线,求抛物线的解析式;(3)直线()35y k x 34=--与(2)中的抛物线交于P 、Q 两点,点B 的坐标为(3,354-),求证:11PB QB +为定值.(参考公式:在平面直角坐标系中,若M (x 1,y 1),N (x 2,y 2),则M ,N 两点间的距离为|MN|=.8.数学活动﹣求重叠部分的面积(1)问题情境:如图①,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点P 与等边△ABC 的内心O 重合,已知OA=2,则图中重叠部分△PAB 的面积为.(2)探究1:在(1)的条件下,将纸片绕P 点旋转至如图②所示位置,纸片两边分别与AC ,AB 交于点E ,F ,图②中重叠部分的面积与图①重叠部分的面积是否相等?如果相等,请给予证明;如果不相等,请说明理由.(3)探究2:如图③,若∠CAB=α(0°<α<90°),AD 为∠CAB 的角平分线,点P 在射线AD 上,且AP=2,以P 为顶点的等腰三角形纸片(纸片足够大)与∠CAB 的两边AC ,AB 分别交于点E 、F ,∠EPF=180°﹣α,求重叠部分的面积.(用α或2的三角函数值表示)9.如图,在平面直角坐标系中,O 为坐标原点,抛物线过2y ax bx c(a 0)=++≠过O 、B 、C 三点,B 、C 坐标分别为(10,0)和(185,245-),以OB 为直径的⊙A 经过C 点,直线l 垂直于x 轴于点B.(1)求直线BC 的解析;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O ,B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想m n ⋅的值,并证明你的结论;(4)点P 从O 出发,以每秒1个单位速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t(0<t )秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.10.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.(4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.11.如图,二次函数22y a x 2()mx 3m =--(其中a ,m 是常数,且a>0,m>0)的图象与x 轴分别交于点A ,B (点A 位于点B 的左侧),与y 轴交于点C(0,-3),点D 在二次函数的图象上,CD ∥AB ,连接AD .过点A 作射线AE 交二次函数的图象于点E ,AB 平分∠DAE .(1)用含m 的代数式表示a ;(2))求证:AD AE为定值;(3)设该二次函数图象的顶点为F .探索:在x 轴的负半轴上是否存在点G ,连接CF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.12.如图,已知抛物线y=ax 2+bx+c (a >0,c <0)交x 轴于点A ,B ,交y 轴于点C ,设过点A ,B ,C 三点的圆与y 轴的另一个交点为D .(1)如图1,已知点A ,B ,C 的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D 的坐标;②若点M 为抛物线上的一动点,且位于第四象限,求△BDM 面积的最大值;(2)如图2,若a=1,求证:无论b ,c 取何值,点D 均为定点,求出该定点坐标.13.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连接AP,OP,OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰巧是CD边的中点,求∠OAB的度数;(3)如图2,在(1)条件下,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A 不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M,N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求线段EF的长度.14.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.15.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.16.如图,在平面坐标系中,直线y=﹣x+2与x 轴,y 轴分别交于点A ,点B ,动点P (a ,b )在第一象限内,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点P (a ,b )运动时,矩形PMON 的面积为定值2.(1)求∠OAB 的度数;(2)求证:△AOF ∽△BEO ;(3)当点E ,F 都在线段AB 上时,由三条线段AE ,EF ,BF 组成一个三角形,记此三角形的外接圆面积为S 1,△OEF 的面积为S 2.试探究:S 1+S 2是否存在最小值?若存在,请求出该最小值;若不存在,请说明理由.17.如图1,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF=900,且EF 交正方形外角的平分线CF 于点F .(1)图1中若点E 是边BC 的中点,我们可以构造两个三角形全等来证明AE=EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E 在线段BC 上滑动(不与点B ,C 重合).①AE=EF 是否总成立?请给出证明;②在如图2的直角坐标系中,当点E 滑动到某处时,点F 恰好落在抛物线2y x x 1=-++上,求此时点F 的坐标.18.如图,已知正方形ABCD 的边长为4,对称中心为点P ,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC 成轴对称,设它们的面积和为S 1.(1)求证:∠APE=∠CFP ;(2)设四边形CMPF 的面积为S 2,CF=x ,12S y S .①求y 关于x 的函数解析式和自变量x 的取值范围,并求出y 的最大值;②当图中两块阴影部分图形关于点P 成中心对称时,求y的值.19.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(0,4),点B 的坐标为(4,0),点C 的坐标为(﹣4,0),点P 在射线AB 上运动,连结CP 与y 轴交于点D ,连结BD .过P ,D ,B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于点F ,连结EF ,BF.(1)求直线AB 的函数解析式;(2)当点P 在线段AB (不包括A ,B 两点)上时.①求证:∠BDE=∠ADP ;②设DE=x ,DF=y .请求出y 关于x 的函数解析式;(3)请你探究:点P 在运动过程中,是否存在以B ,D ,F 为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P 的坐标:如果不存在,请说明理由.20.已知,如图(a),抛物线2y ax bx c =++经过点A(x 1,0),B(x 2,0),C(0,-2),其顶点为D.以AB 为直径的⊙M 交y 轴于点E 、F ,过点E 作⊙M 的切线交x 轴于点N 。

动态几何(八年级)

动态几何(八年级)

动态几何---- 全等与三角形1、 已知⊿AB C 为等腰直角三角形,E 是AC 边上的一点,AE =nCE ;D 在射线BD 上,∠ADC =135° ⑴如图①当n =22时,∠BDC = °;CDAD = ⑵如图② 求证 :BD =CD+2AD ⑶当n = 时 CDAD=2622、如图⊿AB C 中∠BA C =90°, ACAB=n ,AD 是高,BE 是角平分线,AD 交BE 于G,GF ∥BC 交AC 于F⑴如图①当∠AB C =60°时AGCF= ;AE:EF:CF = ⑵如图②当n =552时,求证 :AE =2EF ⑶如图③,当n = 时DF ∥BE3、如图⊿AB C 为等边三角形,D 、E 分别是AB 、 AC 的中点,M 为BC 边的任一点,CMBM=n ⊿DMH 为等边三角形,DH 交AC 于F, ⑴如图①当M 与C 重合时,HF DF = CFHE= ;CB图①CB图②图①B图②C图③⑵如图②当n =2时,求证:① HE ∥AD , ② AF =3EF;⑶如图③ HM 交AC 于G,当n = 时,G 为HM 的中点。

4、如图,Rt ⊿ABC 中,∠ABC =90°,BC =2AB, BD ⊥AC 于D, E 是BC 的中点,AE ⊥EG 于E ,EG 交AC 于G . ⑴找出图中与EG 相等的线段并证明⑵探索DG,CG,DF 之间的数量关系,并证明结论5、如图,在Rt ⊿ABC 中,∠ACB =90°,BC =CA,P 为AB 的中点, ⑴求证 PA = PC ; ⑵ D 为BC 边上的任意一点(不与B, C 重合),连接AD 交边PC 于点G ,过C 点作CE ⊥AD 于E 点,交AB 于点F , 连接PE,试证明 EF+EG =2PE; ⑶如果AD 平分∠BAC,AC =2+2, 请直接写出FG =6、已知如图,在Rt ⊿ABC 中,∠ACB =90°,BC =CA,P 是AB 上一动点连接CP 以CP 为直角边作等腰直角三角形CPD,PC=PD, 连接BD ⑴求证:BD ⊥BC⑵连接AD E 为AD 的中点,连接PE ,求证:2PE=BD ⑶若BD=1 AP=2 则BC=C H(M) 图①CM 图② CM 图③EACCAB。

八年级下数学动点题

八年级下数学动点题

几何中动态问题专题训练第一部分第二部分1、如图,已知△ABC是边长为6cm的等边三角形动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?2、在等腰梯形ABCD中,AD//BC, AB=DC=5,AD=6,BC=12. 动点P从D点出发沿DC以每秒一个单位的速度向终点C运动,动点Q从点C出发沿CB以每秒2个单位的速度向B点运动。

两点同时出发,当P 点达到C点时,Q点随之停止运动。

(1)求梯形的面积。

(2)当PQ//AB时,P点离开D点的时间等于几秒?(3)当P、Q、C三点构成直角三角形时,P点离开D点多少时间?3、如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB·AF=CB·CD(2)已知AB=15cm,BC=9cm,P是射线DE上的动点.设DP=xcm(x>0),四边形BCDP的面积为ycm2.①求y关于x的函数关系式;②当x为何值时,△PBC的周长最小,并求出此时y的值.DPA EFCB 4、如图10,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)CGAE=;(2).MNCNDNAN•=•C B E 1.已知:如图,△ABC 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ),解答下列问题:(1)当t 为何值时,△PBQ 是直角三角形?(2)设四边形APQC 的面积为y (cm 2),求y 与t 的关系式;是否存在某一时刻t ,使四边形APQC 的面积是△ABC 面积的三分之二?如果存在,求出相应的t 值;不存在,说明理由;2.梯形ABCD 中,AD∥BC,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从点A 开始,沿AD 边,以1厘米/秒的速度向点D 运动;动点Q 从点C 开始,沿CB 边,以3厘米/秒的速度向B 点运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二动态几何问题一、动态几何问题涉及的几种情况动态几何问题就其运动对象而言,有:1、点动(有单动点型、多动点型).2、线动(主要有线平移型、旋转型)。

线动实质就是点动,即点动带动线动,进而还会产生形动,因而线动型几何问题可以通过转化成点动型问题来求解.3、形动(就其运动形式而言,有平移、旋转、翻折、滚动)二、解决动态几何问题的基本思考策略与分析方法:动态型问题综合了代数、几何中较多的知识点,解答时要特别注意以下七点:1、把握运动变化的形式及过程;2、思考运动初始状态时几何元素的关系,以及可求出的几何量;3、动中取静:(最重要的一点)要善于在“动”中取“静”(让图形和各个几何量都“静”下来),抓住变化中的“不变量”和不变关系为“向导”,求出相关的常量或者以含有变量的代数式表示相关的几何量;4、找等量关系:利用面积关系、相似三角形的性质、勾股定理、特殊图形等的几何性质及相互关系,找出基本的等量关系式;5、列方程:将相关的常量和含有变量的代数式代入等量关系建立方程或函数模型;(某些几何元素的变化会带来其它几何量的变化,所以在求变量之间的关系时,通常建立函数模型或不等式模型求解。

在解决有关特殊点、特殊值、特殊位置关系问题时常结合图形建立方程模型求解)6、是否以及怎么分类讨论:将变化的几何元素按题目指定的运动路径运动一遍,从动态的角度去分析观察可能出现的情况,看图形的形状是否改变,或图形的有关几何量的计算方法是否改变,以明确是否需要根据运动过程中的特殊位置分类讨论解决,7、确定变化分界点:若需分类讨论,要以运动到达的特殊点为分界点,画出与之对应情况相吻合的图形,找到情况发生改变的时刻,确定变化的范围分类求解。

例:如图,有一边长为5cm 的正方形ABCD 和等腰三角形△RQR ,PQ=PR=5cm ,QR=8cm ,点B 、C 、Q 、R 在同一条直线ι上,当C 、Q 两点重合时开始,t 秒后正方形ABCD 与等腰△PQR 重合部分的面积为Scm 2..解答下列问题:(1)当t=3秒时,求S 的值;(2)当t=5秒时,求S 的值;(3)当5秒≤t ≤8秒时,求S 与t 的函数关系式,并求出S 的最大值.实验操作【要点导航】通过实验操作——观察猜想——科学论证,使我们体验和学到了发现、获得知识的过程和方法. 实验操作探索——理解题意、实验操作是基本保证,观察猜想、探索结论是关键,论证猜想的结论是落实.【典例精析】例1 取一张矩形纸片进行折叠,具体操作过程如下:第一步:先把矩形ABCD 对折,折痕为MN ,如图1;第二步:再把B 点叠在折痕线MN 上,折痕为AE ,点B 在MN 上的对应点为B ',得R t △AB 'E ,如图2;第三步:沿EB '线折叠得折痕EF ,使A 点落在EC 的延长线上,如图3.利用展开图4探究: (1)△AEF 是什么三角形?证明你的结论;(2)对于任一矩形,按照上述方法能否折出这种三角形?请说明你的理由.ιABQCRPD图1 图2图3 图4例2 已知:在△ABC 中,∠BAC =90°,M 为BC 中点.操作:将三角板的90°角的顶点与点M 重合,并绕着点M 旋转,角的两边分别与边AB 、AC 相交于点E 、F .(1)探究1:线段BE 、EF 、FC 是否能构成三角形?如果可以构成三角形,那么是什么形状的三角形?请证明你的猜想.(2)探究2:若改变为:“角的两边分别与边AB 、直线AC 相交于点E 、F .”其它条件都不变的情况下,那么结论是否还存在?请画出对应的图形并请证明你的猜想.【训练】1. ★★★如图,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G .(1)操作:由几个不同的位置,分别测量BF 、AG 、AE 的长,从中你能发现BF 、AG 、AE 的数量之间具有怎样的关系?并证明你所得到的结论;(2)连结DF ,如果正方形的边长为2,设AE=x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域;(3)如果正方形的边长为2,FG 的长为25,求点C 到直线DE 的距离.2. ★★★操作:将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q .探究:设A 、P 两点间的距离为x .(1)当点Q 在边CD 上时,线段PQ 与线段PB 之间有怎样的大小关系?试证明你观察得到结论;(2)当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数解析ABCMGF EDACBDACB供试验操作用式,并写出函数的定义域;(3)当点P 在线段AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q 的位置,并求出相应的x 的值;如果不可能,试说明理由.(图5、图6、图7的形状大小相同,图5供操作、实验用,图6和图7备用)3. ★★★在△ABC 中,AB =AC ,CG ⊥BA 交BA 的延长线于点G .一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 边在一条直线上,另一条直角边恰好经过点B .(1)在图1中请你通过观察、测量BF 与CG 的长度,猜想并写出BF 与CG 满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC 方向平移到图2所示的位置时,一条直角边仍与AC 边在同一直线上,另一条直角边交BC 边于点D ,过点D 作DE ⊥BA 于点E .此时请你通过观察、测量DE 、DF 与CG 的长度,猜想并写出DE +DF 与CG 之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC 方向继续平移到图3所示的位置(点F 在线段AC 上,且点F 与点C 不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)4. ★★如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. 实验与探究:(1)由图观察易知A (0,2)关于直线l 的对称点A '的坐标为(2,0),请在图中分别标明B (5,3) 、C (-2,5) 关于直线l 的对称点B '、C '的位置,并写出他们的坐标:DACB图5DACB图6DACB图7ABC E F G图2DABC DE FG图3ABCFG图1B ' 、C ' ;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分线l 的对称点P '的坐标为 (不必证明); 运用与拓广:(3)已知两点D (1,-3)、E (-1,-4),试在直线l 上确定一点Q ,使点Q 到D 、E 两点的距离之和最小,并求出Q 点坐标.探索性问题探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目.条件探索【要点导航】“探索”是人类认识客观世界过程中最生动、最活跃的思维活动,探索性问题存在于一切学科领域之中,数学中的“条件探索”题型,是指命题中缺少一定的题设,需经过推断、补充并加以证明的命题,因而必须利用题设大胆猜想、分析、比较、归纳、推理,由结论去探索未给予的条件。

由于题型新颖、综合性强、结构独特,此类问题的一般解题思路并无固定模式或套路,因而具体操作时要更注重数学思想方法的综合应用.【典例精析】例1 如图,在线段AE 的同侧作正方形ABCD 和正方形BEFG (BE AB <),连结EG 并延长交DC 于点M ,过M 作MN AB ⊥,垂足为N ,MN 交BD 于点P .设正方形ABCD 的边长为1.(1)证明△CMG ≌△NBP ;123456-1-2-3-4-5-6-1-2-3-4-5-61234567O xylABA'D'E 'C(?22??)(2)设BE =x ,四边形MGBN 的面积为y ,求y 关于x 的函数解析式,并写出定义域. (3)如果按照题设方法作出的四边形BGMP 是菱形,求BE 的长. (4)联结PG ,若BPG ∆能否成为直角三角形?如果能,求BE 的长; 如果不能,请说明理由.(5)联结AC 、AF 、CF ,求证△ACF 的面积为定值.〖思路分析〗1.第(3)小题把四边形BGMP 是菱形作为条件探索BE 的长.2.BPG ∆中∠PBG 始终是45°,而∠BPG 和∠PGB 有可能为90°,要分情况讨论. 3.第(5)小题即可用割补法求也可用利用AC ∥BF 将△ACF 的面积转化为△ABC 的面积.例2 在等边△ABC 的两边AB 、AC 所在直线上分别有两点M 、N .D 为△ABC 外一点,且∠MDN =60°,∠BDC =120°,BD =DC . 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及△AMN 的周长Q 与等边△ABC 的周长L 的关系.(1)如图1所示,当点M 、N 在边AB 、AC 上,且DM =DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时=LQ;(不必证明) (2)如图2所示,点M 、N 在边AB 、AC 上,且当DM ≠DN 时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;(3) 如图3所示,当M 、N 分别在边AB 、CA 的延长线上时,若AN =2,则Q = (用含有L 的式子表示).【训练】1. ★★★如图1所示,直线AB 交x 轴于点A (A ,0),交y 轴于点B (0,B ),且A 、A NB EFGCM DPAB CDMN图1ABCD M N图2AB CD MN 图3B 满足2b (4)0a a ++-=.(1)如图1,若C 的坐标为(-1,0),且AH ⊥BC 于点H ,AH 交OB 于点P ,试求点P 的坐标;(2)如图2,连接OH ,求证:∠OHP =45°;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连接MD ,过D 作DN ⊥DM 交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子S △BDM -S △ADN 的值是否发生改变,如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.2. ★★★已知BD 、CE 分别是ABC △的AC 边、AB 边上的高,M 是BC 边的中点,分别联结MD 、ME 、DE .(1)当︒<∠90BAC 时,垂足D 、E 分别落在边AC 、AB 上,如图1.求证:EM DM =. (2) 当︒>∠90BAC 时,垂足D 、E 分别落在边AC 、AB 所在的直线上,如图2,问(1)中的结论是否依然成立?无需说明理由,直接写出答案即可;若︒=∠135BAC ,试判断DEM △的形状,简写解答过程.(3)设BAC ∠的度数为x ,DME ∠的度数为y ,求y 与x 之间的函数关系式.ABOy xN MD图3A BCHPOyx图 2xyOPH CBA图1AB C(备用图)ABC DM E图2ABCDME图13. ★★★如图1,已知∠ABC =90°,△ABE 是等边三角形,点P 为射线BC 上任意一点(点P 与点B 不重合),连结AP ,将线段AP 绕点A 逆时针旋转60°得到线段AQ ,连结QE 并延长交射线BC 于点F .(1)如图2,当BP =BA 时,∠EBF = °,猜想∠QFC = °;(2)如图1,当点P 为射线BC 上任意一点时,猜想∠QFC 的度数,并加以证明; (3)已知线段AB =32,设BP =x ,点Q 到射线BC 的距离为y ,求y 关于x 的函数关系式.结论探索 【要点导航】探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目.探索型问题具有较强的综合性,因而解决此类问题用到了所学过的整个初中数学知识.经常用到的知识是:一元一次方程、平面直角坐标系、正、反比例和一次函数的求法(图象及其性质)、直角三角形的性质、四边形(特殊)的性质、等.其中用几何图形的某些特殊性质:勾股定理、相似三角形对应线段成比例等来构造方程是解决问题的主要手段和途径.因此复习中既要重视基础知识的复习,又要加强变式训练和数学思想方法的研究,切实提高分析问题、解决问题的能力.【典例精析】例1 如图1,在△ABC 中,∠ACB = 90°,AC = BC ,AB = 8,图1ACBEQF P 图2ABE Q PF C CCD ⊥AB ,垂足为点D .M 为边AB 上任意一点,点N 在射线CB 上(点N 与点C 不重合),且MC = MN ,NE ⊥AB ,垂足为点E .当点M 在边AB 上移动时,试探索线段ME 的长是否会改变?说明你的理由. 〖思路分析〗射线CB 包括线段CB 和线段CB 的延长线两部分,点N 在射线CB 上运动时,可证明△CMD 和△MEN 全等,所以线段ME 的长始终和线段CD 相等,所以不会改变长度.例2 如图,已知在正方形ABCD 中,AB = 2,P 是边BC 上的任意一点,E 是边BC 延长线上一点,联结AP .过点P 作PF ⊥AP ,与∠DCE 的平分线CF 相交于点F .联结AF ,与边CD 相交于点G ,联结PG . (1)求证:AP = FP ;(2)探索线段BP 、DG 、PG 之间的数量关系,并给出证明过程; (3)当BP 取何值时,PG // CF .〖思路分析〗1.过点F 作FH ⊥BC ,结合所给条件无法证明△ABP 和△PHF 全等.在边AB 上截取线段AH ,使AH = PC ,便可证明△AHP ≌△PCF .2.由第(1)小题的结论得△APF 是等腰直角三角形,所以∠P AF =45°,将△ADG 绕点A 顺时针旋转90°后,BP 与DG 联结成一条线段,通过全等三角形可证BP 与DG 的和等于PG .3.当PG // CF 时,△PCG 是等腰直角三角形,由第(2)小题结论得PG =DG +BP ,在R t △PCG 中,由勾股定理可求得BP 的长.【训练】第 天 ,年 月 日1. ★★已知:在△ABC 中,AB =AC ,点P 在直线BC 上,PD ⊥AB 于点D ,PE ⊥AC 于点E ,BH 是△ABC 的高.(1)当点P 在边BC 上时,求证:PD +PE =BH(2)当点P 在边BC 的延长线上时,试探索PD 、PE 和BH 之间的数量关系.BACD EPFGCFPMDBADM A BCPFEABE PDMC2. ★★★已知等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别为H 1,H 2,H 3,△ABC 的高为H .“若点P 在一边BC 上如图(1),此时H 3=0可得结论:H 1+H 2+H 3=H .”请直接应用上述信息解决下列问题:当点P 在△ABC 内如图(2),以及点P 在△ABC 外如图(3)这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,H 1,H 2,H 3与H 之间又有怎样的关系,请写出你的猜想,不需要证明.3. ★★★已知在正△ABC 中,AB =4,点M 是射线AB 上的任意一点(点M 与点A 、B 不重合),点N 在边BC 的延长线上,且AM = CN .联结MN ,交直线AC 于点D .设AM = x ,CD = y .(1)如图,当点M 在边AB 上时,求y 关于x 的函数解析式,并写出自变量x 的取值范围.(2)当点M 在边AB 上,且四边形BCDM 的面积等于△DCN 面积的4倍时,求x 的值.(3)过点M 作ME ⊥AC ,垂足为点E .当点M 在射线AB 上移动时,线段DE 的长是否会改变?请证明你的结论.4. ★★★在R t △ABC 中,∠C =900,∠A =300,AB =4,将一个300角的顶点P 放在AB 边上滑动,保持300角的一边平行于BC ,且交边AC 于点E ,300角的另一边交射线..BC 于点D ,联结ED .(1)如图1,当四边形PBDE 为等腰梯形时,求AP 的长;(2)四边形PBDE 有可能为平行四边形吗?若可能,求出PBDE 为平行四边形时AP 的长;若不可能,说明理由;(3)若D 在BC 边上(不与B 、C 重合),试写出线段AP 取值范围。

相关文档
最新文档