角的比较和运算典型题

合集下载

新人教版初中数学七年级上学期《角》知识点讲解及例题解析

新人教版初中数学七年级上学期《角》知识点讲解及例题解析

《角》知识讲解及例题解析【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算.【要点梳理】要点一、角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图1 图2(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.要点三、角的比较与运算1.角的比较角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB =∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.2.角的和、差运算如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.3.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示.(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”.(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向.(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念1. 利用一副三角板上的角,能画出多少个小于180°的角,试一一画出来.【思路点拨】首先发现一副三角板上有30°,45°,60°,90°这样4个不相等的角,利用这些角进行一次和差,可得小于180°的所有角.【答案与解析】解:除了可以画30°,45°,60°,90°外,还可画15°,75°,105°,120°,135°,150°,165°的七个度数的角,画法如图所示.【总结升华】利用一副三角板共可以画出11个度数的角,分别是:30°,45°,60°,90°,15°,75°,105°,120°,135°,150°,165°.举一反三:【变式】下列说法中,正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形【答案】C.类型二、角度制的换算2. 计算下列各题:(1)152°49′12″+20.18°; (2)82°-36°42′15″;(3)35°36′47″×9; (4)41°37′÷3.【答案与解析】解:(1)解法一:∵ 20.18°=20°10′48″即:152°49′12″+20.18°=173°.解法二:∵ 152°49′12″=152.82°,∴ 152.82°+20.18°=173°.即:152°49′12″+20.18°=173°.(2)将82°化为81°59′60″,则∴ 82°-36°42′15″=45°17′45″.423″=7′3″, 324′+7′=5°31′,∴ 35°36′47″×9=320°31′3″.∴ 41°37′÷3=13°52′20″.【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后进行计算;在进行乘法运算时,往往先把度、分、秒分别乘以倍数,将结果满60″进1′,满60′进1°;对于除法运算则是从度开始除,将余数化为分和以前的分数相加再除,将余数再化成秒和以前的秒数相加再除,若除不尽往往四舍五入.举一反三:【变式】计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3; (4)88°14′48″÷4.【答案】(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=81°35′30″;(3)15°50′42″×3=47°32′6″;(4)88°14′48″÷4=22°3′42″.类型三、角的比较与运算3. 如图所示表示两块三角板.(1)用叠合法比较∠1,∠α,∠2的大小;(2)量出图中各角的度数,并把图中的6个角从小到大排列,然后用“<”或“=”连接.【答案与解析】解:(1)如图所示,把两块三角板叠在一起,可得∠1>∠α,用同样的方法,可得∠α<∠2.所以∠2=∠1>∠α.(2)用量角器量出图中各个角的度数,分别是∠1=∠2=45°,∠3=90°,∠α=30°,∠β=60°,∠γ=90°,把它们从小到大排列,有∠α<∠1=∠2<∠β<∠3=∠γ.【总结升华】比较角的大小有叠合法和度量法两种:①先将两个角的顶点与顶点重合,一条边与一条边重合再比较.②先量出每个角的度数,然后按它们的度数来比较.举一反三:【变式】如图,∠AOB的平分线OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线.某同学经过认真分析,得到一个关系式是∠MON=12(∠BON-∠AON),你认为这个同学得到的关系式正确吗?若正确,请把得到这个结论的过程写出来.【答案】解:正确,理由如下:∵∠AOB的平分线OM,∴∠AOM=∠MOB又∵∠MON=∠AOM-∠AON=∠MOB-∠AON=(∠BON-∠MON) -∠AON 即有∠MON=∠BON-∠MON -∠AON∴ 2∠MON=∠BON-∠AON∴∠MON=12(∠BON-∠AON)4. 如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数;(2)若∠AOB=α其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?【思路点拨】(1)要求∠MON,即求∠COM﹣∠CON,再根据角平分线的概念分别进行计算即可求得;(2)和(3)均根据(1)的计算方法进行推导即可.(4)根据(2)和(3)中的结论进行总结.【答案与解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM ﹣∠CON=45°. (4)从上面的结果中,发现:∠MON 的大小只和∠AOB 得大小有关,与∠A0C 的大小无关.【总结升华】能够结合图形表示角之间的和差关系,根据角平分线的概念运用几何式子表示角之间的倍分关系.举一反三:【变式】如图,已知O 是直线AC 上一点,OD 平分∠AOB ,OE 在∠BOC 内,且∠BOE =12∠EOC ,∠DOE =70°,求∠EOC 的度数.【答案】解:设∠EOC=x °,则∠BOE =12∠EOC =12x °,根据题意可得:1180127022x xx --+= ,解得: 80x = .∠EOC =2∠BOE =80°. 类型四、方位角5.已知小岛A 位于基地O 的东南方向,货船B 位于基地O 的北偏东50°方向,那么∠AOB 的度数等于 . 【答案】85°. 【解析】解:如图:∵∠2=50°,∴∠3=40°, ∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°, 故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A ,B 的方位,注意东南方向是45度是解答此题的关键. 类型五、钟表上有关夹角问题6. 在7时到7时10分之间的什么时刻,时针与分针成一条直线? 【答案与解析】解:设7时x 分钟,时针与分针成一条直线,由题意得:16302x x -=,5511x =. 答:7时5511分钟时针与分针成一条直线.【总结升华】时钟上的分针与时针绕着中心顺时针均匀转动,在不同时刻,两针之间形成一定的角度.如果把单位时间分针和时针转过的度数当作它们的速度则: ① 分针的速度为36060=6°/分;②时针的速度为3060°分=0.5°/分. 故分针速度是时针速度的12倍. 举一反三:【变式】某人下午6点多外出购物,表上的时针和分针的夹角恰为110°,下午7点前回家时,发现表上的时针和分针的夹角又是110°,试算出此人外出用了多长时间? 【答案】解:设此人外出用了x 分钟,则分针转了6x 度,时针转了0.5x 度.根据题意得:6x-0.5x =110×2,解之得x =40. 答:此人外出购物用了40分钟的时间.。

最新2024人教版七年级数学上册6.3.2 角的比较与运算--教案

最新2024人教版七年级数学上册6.3.2 角的比较与运算--教案

6.3 角6.3.2 角的比较与运算主要师生活动一、复习导入师生活动:教师引导学生回忆与梳理线段的知识点,然后告诉学生这节课我们学习角可以类比线段学习,比如上节课学习的定义,到表示方法,这节课也会学习大小比较和运算,同学们可以思考能否也通过叠合法和度量法比较大小,运算是否也是计算角的和差倍分的关系.二、探究新知知识点一:角的比较类比线段长短的比较,你认为该如何比较两个角的大小?师生活动:学生先自主思考并小组交流,再由小组代表发言,预测会有两种方法,度量法和叠合法.教师引导和规范学生操作步骤,得出结果如下:度量法:因为55°>40°,所以∠1>∠2.叠合法:想一想:你能用图形和几何语言说明两个角的大小关系吗(两个角分别记作∠AOB,∠A'O'B' )?师生活动:学生画出图形,并用符号表示,指出两个角的大小关系有且仅有三种情况.知识点二:角的运算探究1:如图,图中共有几个角?它们之间有什么关系?师生活动:预测学生能确定角的个数,明确角之间的和差关系如下:3个:∠AOB、∠AOC、∠BOC∠AOC =∠AOB +∠BOC∠AOB =∠AOC-∠BOC∠BOC =∠AOC -∠AOB教师关注学生是否能发现角的和差关系,教师可引导学生类比线段的和与差,发现角的和差关系.然后教师引导学生总结:共顶点的几个角,可进行加减.探究2 :如图,借助三角尺画出15°,75°的角.用一副三角尺,你还能画出哪些度数的角?试一试.师生活动:学生动手操作,小组合作探究,师生归纳,如下:用三角尺画特殊角,关键在于把它写成30°,45°,60°,90°角的和或差.凡是15的整数倍的角,都能用三角尺画出,而能用三角尺画出的,也只限于这样的角.例题精析:例1 如图,O是直线AB上一点,∠AOC = 53°17′,求∠BOC的度数.师生活动:学生独立思考,请学生代表发言,教师予以适当的评价并整理板书.解:由题意可知,∠AOB是平角,∠AOB =∠AOC +∠BOC所以∠BOC =∠AOB-∠AOC= 180° - 53°17′= 126°43′总结:∠同单位加减(度与度、分与分、秒与秒分别相加、减);∠度分秒是60进制(相加时逢60要进位,相减时要借1作60).师生活动:教师引导学生思考与总结解题思路与过程.知识点3:角平分线探究3:你能在∠AOC内找一条射线OB,使∠AOB =∠BOC吗?师生活动:教师提问,学生自主思考,教师巡堂指导,预测会有不同方法,教师可让这些学生代表分别展示,预测两种方法(如下):对折法:生巩固角的和与差概念外,也使学生对这些特殊角的大小有直观的认识,培养对角的大小的估计能力和动手操作能力,加深学生对角的认识.设计意图:通过题目锻炼学生运算能力,初步学习几何语言在解题中的运用,体会几何与代数之间的联系与不同,加深学生的数形结合思想.设计意图:从角的和差问题中,将射线OB的位置特殊化,并类比线段的中点,引出角的平分线的概念,不仅知识的产生、发展自然连续,也体现了由一般到特殊,由特殊到一般的研究方法,同时,也能建立知识间的联系,完善认知结构.度量法:教师追问:同学们知道图中三个角的数量关系吗?学生思考,学生代表回答,师生共同总结与填空.教师再以此引出角平分线的定义.定义总结:师生活动:教师讲解,再让学生朗读定义,加深印象.类比:仿照角平分线的结论,你能写出角的三等分线的结论吗?师生活动:学生独立思考,由学生代表发言,教师予以适当评价,帮助学生正确规范完成几何书写.例2 把一个周角7等分,每一份是多少度的角(精确到分)?师生活动:学生独立思考,由学生代表发言,教师与学生共同完成板书:解:360°÷7 = 51°+ 3°÷7= 51°+ 180′÷7≈51°26′答:每份是51°26′的角.教师引导学生总结:注意度、分、秒是60进制的,要把剩余的度数化成分.设计意图:进一步明晰角平分线的概念,为后续学习轴对称和研究有关图形的翻折问题打下基础.设计意图:通过类比让学生学会举一反三,体会几何知识的关联性,巩固几何语言的书写.设计意图:通过题目帮助学生巩固角平分线的知识与角的运算,提高学生的识图能力和运算能力.又通过思考题启发学生思考其他可能性,建立分类讨论思想,养成严谨思考的习惯.三、当堂练习例3 如图OC是∠AOB的平分线,OB是∠COD的三等平分线,∠BOD = 15°.则∠AOB等于( )A. 75B. 70C. 65D. 60师生活动:学生独立思考,学生代表发言,教师适时评价与引导.思考:除此题所给图片的情况,你还能想出其他情况与答案吗?师生活动:学生独立思考,学生代表上台展示,教师予以评价与指导,得出另一种结果,∠AOB = 15°.三、当堂练习1. 比较大小:60°25′60.25°(填“>”,“<”或“=”).2. 计算:(1) 180° - 98°24′30″(2) 62°24′17″×43. 如图,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOB = 50°,∠DOE = 30°,那么∠BOD是多少度?设计意图:通过练习巩固角的大小比较.设计意图:通过练习巩固角度的运算.设计意图:通过练习强化试图能力和运算能力.板书设计角的比较与运算一、角的概念二、角的表示三、角的度量和单位教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.数形结合,培养识图能力。

《4.3.2 角的比较与运算》同步练习 2021-2022学年人教版七年级数学上册

《4.3.2 角的比较与运算》同步练习 2021-2022学年人教版七年级数学上册

4.3.2 角的比较与运算一.填空题1.如图,∠AOB∠AOC,∠AOB∠BOC(填>,=,<);用量角器度量∠BOC =,∠AOC=,∠AOC∠BOC.2.如图,∠AOC=+=﹣;∠BOC=﹣=﹣.3.如图,O是直线AB上一点,∠BOD=90°,∠COE=90°,那么下列各式中错误的是()A.∠AOC=∠DOE B.∠COD=∠BOE C.∠AOD=∠BOD D.∠BOE=∠AOC 4.将一副常规三角板拼成如图所示的图形,则∠ABC=度.5.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=度.6.OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB=2∠BOC,求∠AOC的度数.7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较8.如图,∠AOB=∠AOC,∠BOC=110°,∠AOB=.9.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOD+∠COB的度数为度.10.如图所示,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在C'、D'的位置上,EC'交AD于点G,已知∠FEC=48°,那么∠BEG=.11.钟面上8:30这一时刻,钟面上时针与分针所形成的角度是.12.已知∠AOB=120°,∠BOC=30°,则∠AOC=.13.用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点,30°角的相邻直角边与45°角的相邻斜边重合,用铅笔沿AB,ED画线,移开三角板,延长DE 与AB交于点A,∠DAB=.二.选择题14.下列说法正确的是()A.不大于90的角是锐角B.一个钝角减去比它小的钝角,差是锐角C.钝角与锐角的差小于直角D.两个锐角的和是钝角15.下列说法错误的是()A.角的大小与角的边画出部分的长短没有关系B.角的大小与它们的度数大小是一致的C.角的和差倍分的度数等于它们的度数的和差倍分D.若∠A+∠B>∠C,那么∠A一定大于∠C16.用一副三角板不能画出()A.75°角B.135°角C.160°角D.105°角17.如果∠1﹣∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是()A.∠3>∠4B.∠3=∠4C.∠3<∠4D.不确定18.在∠AOB的内部任取一点C,作射线OC,那么有()A.∠AOC=∠BOC B.∠AOC>∠BOC C.∠BOC>∠AOB D.∠AOB>∠AOC三.解答题19.如图,把∠AOB绕着O点按逆时针方向旋转一个角度,得∠A′OB′,指出图中所有相等的角,并简要说明理由.20.如图:∠AOB是哪几个角的和?∠DOC是哪几个角的和?若∠AOB=∠COD,则还有哪两个角相等?21.下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.解:根据题意可画出图∵∠AOC=∠BOA﹣∠BOC=70°﹣15°=55°∴∠AOC=55°若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.22.已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是;(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.①如果∠COD的一边与∠AOB的一边垂直,则n=.②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON 的度数.参考答案与试题解析1.如图,∠AOB>∠AOC,∠AOB>∠BOC(填>,=,<);用量角器度量∠BOC =30°,∠AOC=25°,∠AOC>∠BOC.【分析】根据图形,射线OC在∠AOB的内部,即可判断角之间的大小关系.【解答】解:由图知,射线OC在∠AOB的内部,所以∠AOB>∠AOC,∠AOB>∠BOC,用量角器量得∠BOC=25°,∠AOC=30°,故∠AOC>∠BOC.故答案为:>,>,25°,30°,>.2.如图,∠AOC=∠AOB+∠BOC=∠AOD﹣∠COD;∠BOC=∠BOD ﹣∠COD=∠AOC﹣∠AOB.【分析】根据图形即可求出∠AOC及∠BOC的不同表示形式.【解答】解:根据图形,∴∠AOC=∠AOB+∠BOC=∠AOD﹣∠COD;∠BOC=∠BOD﹣∠COD=∠AOC﹣∠AOB.故答案为:∠AOB+∠BOC,∠AOD﹣∠COD,∠BOD﹣∠COD,∠AOC﹣∠AOB.3.如图,O是直线AB上一点,∠BOD=90°,∠COE=90°,那么下列各式中错误的是()A.∠AOC=∠DOE B.∠COD=∠BOE C.∠AOD=∠BOD D.∠BOE=∠AOC 【分析】由∠BOD=90°,∠COE=90°,得∠AOD=∠BOD=90°.根据同角的余角相等,得∠COD=∠BOE,∠AOC=∠DOE.那么,∠AOC+∠BOE=90°.进而推断出A、B、C不合题意,D符合题意.【解答】解:A:∵∠BOD=90°,∴∠AOD=180°﹣∠BOD=90°.∴∠AOC+∠COD=90°.又∵∠COE=∠COD+∠DOE=90°,∴∠AOC=∠DOE.故A不合题意.B:∵∠COE=∠COD+∠DOE=90°,∠BOD=∠BOE+∠DOE=90°,∴∠COD=∠BOE.故B不符合题意.C:∵BOD=90°,∴∠AOD=180°﹣∠BOD=90°.∴∠AOD=∠BOD.故C不符合题意.D:由B知:∠BOE=∠COD.∵∠AOD=∠AOC+∠DOC=∠AOC+∠BOE=90°.∴∠BOE与∠AOC不一定相等.故选:D.4.将一副常规三角板拼成如图所示的图形,则∠ABC=135度.【分析】根据图形得出∠ABD和∠CBD的度数,即可求出∠ABC的度数.【解答】解:∵∠ABD=90°,∠DBC=45°,∴∠ABC=∠ABD+∠BCD=90°+45°=135°.故答案为:135.5.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=180度.【分析】先利用∠AOD+∠COD=90°,∠COD+∠BOC=90°,可得∠AOD+∠COD+∠COD+∠BOC=180°,而∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,于是有∠AOB+∠COD=180°.【解答】解:如右图所示,∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°.故答案是180.6.OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB=2∠BOC,求∠AOC的度数.【分析】利用角的和差关系计算,注意此题要分两种情况.【解答】解:①如图1所示,OC在∠AOB内部,∵∠AOB=90°,∠AOB=2∠BOC,∴∠BOC=×90°=45°,∴∠AOC=∠AOB﹣∠BOC=90°﹣45°=45°;②如图2所示,OC在∠AOB外部,∵∠AOB=90°,∠AOB=2∠BOC,∴∠BOC=×90°=45°,又∵∠AOC=∠AOB+∠BOC,∴∠AOC=90°+45°=135°.7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较【分析】根据∠AOB=∠COD,再在等式的两边同时减去∠BOD,即可得出答案.【解答】解:∵∠AOB=∠COD,∴∠AOB﹣∠BOD=∠COD﹣∠BOD,∴∠1=∠2;故选:B.8.如图,∠AOB=∠AOC,∠BOC=110°,∠AOB=125°.【分析】本题是角的计算问题,根据周角是360°即可求出∠AOB的度数.【解答】解:设∠AOB=∠AOC=x,则2x+110°=360°,解得x=125°,∴∠AOB=125°,故答案为125°.9.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOD+∠COB的度数为180度.【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【解答】解:∠AOD+∠COB=∠AOD+∠AOC+∠AOD+∠BOD=∠COD+∠AOB=90°+90°=180°.故答案是:180.10.如图所示,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在C'、D'的位置上,EC'交AD于点G,已知∠FEC=48°,那么∠BEG=84°.【分析】由折叠的性质可得∠FEG=∠FEC=48°,再由点E在BC上,可求得∠BEG 的度数.【解答】解:∵长方形纸片ABCD沿EF折叠,∠FEC=48°,∴∠FEG=∠FEC=48°,∵点E在BC上,∴∠BEG=180°﹣∠FEC﹣∠FEG=180°﹣48°﹣48°=84°.故答案为:84°.11.钟面上8:30这一时刻,钟面上时针与分针所形成的角度是75°.【分析】根据钟面上圆心角的大小关系进行计算即可.【解答】解:钟面上每相邻两个数字之间所对应的圆心角为360°÷12=30°,即∠DOC=∠COB=30°,而钟面上8:30时,时针指向“8与9中间”,因此∠AOB=×30°=15°,所以钟面上8:30这一时刻,钟面上时针与分针所形成的角∠AOD=30°×2+15°=75°,故答案为:75°.12.已知∠AOB=120°,∠BOC=30°,则∠AOC=90°或150°.【分析】由于点C的位置不确定,所有此题要分类讨论,利用角之间相加减求出∠AOC 的大小.【解答】解:①当点C在射线OB左侧时,∠AOC1=∠AOB﹣∠BOC1=120°﹣30°=90°,②当点C在射线OB右侧时,∠AOC2=∠AOB+∠BOC2=120°+30°=150°.故答案为90°或150°.13.用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点重合,30°角的相邻直角边与45°角的相邻斜边重合,用铅笔沿AB,ED画线,移开三角板,延长DE 与AB交于点A,∠DAB=15°.【分析】根据角的和差计算即可.【解答】解:用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点重合,∴∠DAB=∠CAB﹣∠CAD=45°﹣30°=15°.故答案为:重合,15°.14.下列说法正确的是()A.不大于90的角是锐角B.一个钝角减去比它小的钝角,差是锐角C.钝角与锐角的差小于直角D.两个锐角的和是钝角【分析】不大于90°的角还有直角,故A错误,135°的钝角﹣1°的锐角差还是钝角,故C错误,两个较小的锐角和可能还是锐角也可能是直角,故D错误,因为两个钝角都大于90°且小于180°,故B正确.【解答】解:∵不大于90°的角还有直角,故A错误,举例:135°的钝角﹣1°的锐角差还是钝角,故C错误,∵两个较小的锐角和可能还是锐角也可能是直角,故D错误,∵两个钝角都大于90°且小于180°,故B正确,故选:B.15.下列说法错误的是()A.角的大小与角的边画出部分的长短没有关系B.角的大小与它们的度数大小是一致的C.角的和差倍分的度数等于它们的度数的和差倍分D.若∠A+∠B>∠C,那么∠A一定大于∠C【分析】根据角的大小与角的开口大小有关,与角的边的长短无关,角的大小是通过角的度数来体现的,然后对各选项分析判断后利用排除法求解.【解答】解:A、角的大小与角的边画出部分的长短没有关系,因为角的大小只与角的开口有关,故本选项正确;B、角的大小与它们的度数大小是一致的,正确;C、角的和差倍分的度数等于它们的度数的和差倍分,正确;D、∠A+∠B>∠C,∠A与∠C的大小关系无法确定,故本选项错误.故选:D.16.用一副三角板不能画出()A.75°角B.135°角C.160°角D.105°角【分析】用三角板画出角,无非是用角度加减法.根据选项一一分析,排除错误答案.【解答】A选项:75°的角,45°+30°=75°;B选项:135°的角,45°+90°=135°;C选项:160°的角,无法用三角板中角的度数拼出;D选项:105°的角,45°+60°=105°.故选:C.17.如果∠1﹣∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是()A.∠3>∠4B.∠3=∠4C.∠3<∠4D.不确定【分析】由∠1﹣∠2=∠3,可把∠1等效替换为∠2与∠3的和,进而求解.【解答】解:∵∠1﹣∠2=∠3,∴∠1=∠2+∠3,又∠4+∠2=∠1,即∠4+∠2=∠2+∠3,∴∠4=∠3故选:B.18.在∠AOB的内部任取一点C,作射线OC,那么有()A.∠AOC=∠BOC B.∠AOC>∠BOC C.∠BOC>∠AOB D.∠AOB>∠AOC 【分析】根据题意画出图,观察图即可得答案.【解答】解:如图:∵C点是∠AOB内部任一点,∴∠AOC与∠BOC的大小无法确定,由图可知∠AOB必大于∠AOC,故选:D.19.如图,把∠AOB绕着O点按逆时针方向旋转一个角度,得∠A′OB′,指出图中所有相等的角,并简要说明理由.【分析】可根据旋转前后,图形的大小形状不变,旋转角相等的性质,寻找相等角.【解答】解:①∠AOB=∠A′OB′.因∠A′OB′是由∠AOB旋转得到的.②∠AOA′=∠BOB′.∵∠AOB=∠A′OB′,∴∠AOB﹣∠A′OB=∠A′OB′﹣∠A′OB,∴∠AOA′=∠BOB′.20.如图:∠AOB是哪几个角的和?∠DOC是哪几个角的和?若∠AOB=∠COD,则还有哪两个角相等?【分析】本题是角的计算问题,利用角的加法定义即可.【解答】解:由图可知,∠AOB=∠AOD+∠DOB,∠DOC=∠DOB+∠BOC,∵∠AOB=∠COD,∠AOD=∠AOB﹣∠BOD,∠COB=∠COD﹣∠BOD,∴∠AOD=∠COB.21.下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.解:根据题意可画出图∵∠AOC=∠BOA﹣∠BOC=70°﹣15°=55°∴∠AOC=55°若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.【分析】在同一平面内,若∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB的外部.【解答】解:如图,当OC在∠AOB的内部时,∠AOC=∠BOA﹣∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.22.已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是60°;(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.①如果∠COD的一边与∠AOB的一边垂直,则n=60、90、150.②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON的度数.【分析】(1)根据∠AOB=∠AOD+∠BOD=90°,而∠AOD=∠COD=30°,代入即可求出结论;(2)①在旋转的过程中,能够发现∠COD的一边与∠AOB的一边垂直共有三种情况,分别求出每种情况下旋转的度数即可;②根据角与角之间的关系,将直接求∠MON得度数转换成求∠AOM,∠DON的度数,再依照角的关系即可求得结论.【解答】解:(1)∠BOD=∠AOB﹣∠AOD=∠AOB﹣∠COD=90°﹣30°=60°.故答案为:60°.(2)①∵0<n<180,∴分三种情况.a:点D在射线0B上,∠AOC=∠AOB﹣∠COD=90°﹣30°=60°;b:点C在射线OB上,∠AOC=∠AOB=90°;c:点D在AO的延长线上,∠AOC=180°﹣∠COD=180°﹣30°=150°.综上得n为60、90、150.故答案为:60、90、150.②∵∠AOC=n°,OM平分∠AOC,∴∠AOM=n°,∠AOD=∠AOC+∠COD=n°+30°,∠BOD=∠AOD﹣∠AOB=n°+30°﹣90°=n°﹣60°,∵ON平分∠BOD,∴∠DON=∠BOD=×(n°﹣60°)=n°﹣30°,∠MON=∠AOD﹣∠AOM﹣∠DON=n°+30°﹣n°﹣(n°﹣30°)=60°。

角的比较和运算

角的比较和运算
7.5角的大小比较
实例操作:请同学们拿出你的一副三 角板,你能说出这几个角的大小吗?怎么 比较的?
Q
B
A
讨论后归纳
P C
O
方法一:叠合法
把一个角放到另一个角上,使它们的顶点重
合,其中的一边也重合,并使两个角的另一
边都在这一条边的同侧
Q
此时:AB边落在QPO 的内部,
B
表明: BAC 小于 QPO
平分ABD ,求 ABP 的度数
C
D
P
B
A
• 观察下图中的∠AOC,∠COB和∠AOB ,如何表 示它们的关系。
∠AOC+∠COB=∠AOB
∠AOB-∠AOC=∠COB
∠AOB-∠COB=∠AOC
学生活动:观察一副三角板的角度特征, 讨论回答用三角板可以组合画出多少个不 同角度的角。
150、300、450、 600、750、900、 1050、1200、 1350、1500、 1750、1800……
角的分类
直角:等于90度的角
90
锐角:小于直角的角
0 90
钝角:大于直角而小于平角的角
90 180
根据图解下列问题
(1)比较AOB,AOC,AOD,AOE
的大小; (2)找出图中的直角,锐角和钝角。
AB
O
C
D
E
角的平分线
作∠AOB,然后沿O点折叠,使边OB与OA重合, 看折痕OC与∠AOB有什么关系?(几何画板页2 演示)
(75º) (15º) 75º=30º+45º 15º=45º-30º
小结
; ;
老头一心想让她定定性子,或许,情关是让人成熟最快の一个方法.操心完别人の事,谢妙妙开始跟他算起自己の帐

角的比较与运算2-时钟问题

角的比较与运算2-时钟问题

解决时钟问题需要理解时钟的基 本工作原理,以及角度的概念和
计算方法。
背景知识
时钟的基本工作原理
时钟的时针、分针和秒针通过 不同的转速和移动方式,来表
示时间。
角度的概念
角度是描述两条射线或线段之 间夹角的大小的度量,通常用 度数或弧度来表示。
角度的计算方法
角度可以通过三角函数、勾股 定理等数学工具进行计算。
时钟问题的常见类型
包括给定时间计算角度、给定角 度计算时间、以及通过时针、分
针和秒针的位置确定时间等。
02
时钟问题的基本概念
时钟的构造与工作原理
时钟主要由时针、分针和秒针组成,用于表示时间。 时钟的工作原理基于地球的自转,一天为24小时,一小时为60分钟,一分钟为60秒。
时针、分针和秒针按照各自的速度围绕钟面旋转,以表示时间。
弧度制
以半径长度为单位的角, 角度等于弧长除以半径。
度分秒制
将1度分为60分,每分为 60秒,用度、分、秒表示 角度大小。
角的比较方法
直接比较
利用三角形比较
通过观察或使用量角器测量,比较两 个角的大小。
通过构建三角形,利用三角形的基本 性质比较角的大小。
利用三角函数比较
利用三角函数关系,通过计算比较两 个角的大小。
判断夹角关系
根据计算出的夹角,判断时针和 分针的夹角关系,如锐角、直角、 钝角等。
时钟问题的思考与拓展
01
时钟问题与现实生活
时钟问题与现实生活密切相关,通过解决时钟问题,可以加深对时间概
念的理解,提高对时间的规划和管理能力。
02 03
时钟问题的变种
除了基本的时钟问题,还有许多变种问题,如涉及秒针的时钟问题、多 个时钟的时间比较等。这些变种问题可以进一步拓展思维,提高解决问 题的能力。

七年级数学上册角的比较与运算课时练习题

七年级数学上册角的比较与运算课时练习题

七年级数学上册角的比较与运算课时练习题一、选择题(每题3分)1.如图,O是直线AB上的一点,过点O任意作射线OC, OD平分ZAOC, OE 平分ZBOC,则ZDOEOA.一定是钝角B. 一定是锐角C. 一定是直角D.都有可能【答案】C【解析】试题分析:直接利用角平分线的性质得出ZAOD=ZDOC, ZBOE=ZCOE,进而得出答案.解:TOD 平分ZAOC, OE 平分ZBOC,Λ ZAOD=ZDOC, ZBOE=ZCOE,ΛZD0E=× 180° =90° ,故选:C.考点:角平分线的定义.2.两个锐角的和不可能是()A.锐角B.直角C.钝角D.平角【答案】D【解析】试题分析:因为等于0。

小于90°的角是锐角,所以两个锐角的和不可能是180°,所以D正确,故选:D.考点:锐角3.己知ZAOB=50o , ZCOB=30°,则ZAoC 等于()A. 80oB. 20oC. 80o或20°D.无法确定【答案】C【解析】试题分析:本题需要分两种情况进行讨论:当射线OC在ZAoB 内部时,则ZAoC=50° -30° =20°;当射线OC在ZAOB外部时,则ZAOC=50° +30°=80° .考点:角度的计算4.如图,将一副三角板的直角顶点重合放置于处(两块三角板可以在同一平面内自由转动),则下列结论一定成立的是()A.ZBAE>ZDACB.ZBAE-ZDAC=45°C.ZBAE+ZDAC=180oD.ZBAD≠ZEAC【答案】C.【解析】试题解析:因为是直角三角板,所以ZBAC=ZDAE=90° ,所以ZBAD+ ZDAC+ ZCAE+ ZDAC=ISO o ,即ZBAE+ZDAC二180° .故选C.考点:角的计算.5.如图,己知ZAOB= α , ZBOC= β , OM 平分ZAOC, ON 平分ZBOC,则ZMoN的度数是()A. βB. ( a - β )C. aD. a - β【答案】C.试题分析:,平分,,平分,,故选C.考点:1、角平分线的定义;2、角的计算.6.己知,ZAOC=90°,且ZAOB: ZAOC=2: 3,则ZBOC 的度数为()A. 30oB. 150oC. 30°或150°D. 90°【答案】C.【解析】试题分析:当在内部时,当在外部时,故选C.考点:角的计算.7.用一副三角板可以画出一些指定的角,下列各角中,不能用一副三角板画出的是()A、15o B. 75o C. 85o D. 105°【答案】C【解析】试题分析:一副三角板中的度数有:90°、60°、45°、30° ; 用三角板画出角,无非是用角度加减法,根据选项一一分析,排除错误答案.解:A、15。

角的比较与运算-角的比较

角的比较与运算-角的比较
观察另一条边的位置关系,判断两个 角的大小。
03
角的性质与定理
角的性质
角的大小与边的长短 无关,只与两条边叉 开的大小有关。
角可以参与运算,如 角的和、差、倍、分 等。
角的大小可以度量, 可以比较。
角平分线的性质
角平分线将一个角平分为两个 相等的角。
角平分线上的点到这个角的两 边的距离相等。
在角的内部到角的两边距离相 等的点在这个角的平分线上。
一个角的互补角。
互余角
两个角的度数之和等于 180度,其中一个角是 另一个角的互余角。
02
角的比较方法
重合法比较
两个角的顶点和两条边分别重合,则 这两个角相等。
通过观察或测量验证两个角是否重合 。
量角器测量法
使用量角器分别测量两个角的度数。 比较两个角的度数,确定它们的大小关系。
叠合法比较
把两个角叠合在一起,使它们的顶点 和一条边重合。
在摄影中,摄影师需要掌握角度的知识,通过调整相机的角度和位置,拍摄出更具 艺术感和视觉冲击力的照片。
在体育比赛中,角度的比较和运算也经常被用到。例如,在足球比赛中,球员需要 根据球的位置和对方的防守角度,选择合适的进攻路线和射门角度。
THANKS
感谢观看
角的减法运算
同向角的减法
同向角相减时,被减数减 去减数,差取正值。
异向角的减法
异向角相减时,被减数加 上减数,差取负值。
带正负号的角相减
同向角相减时,被减数减 去减数,差取正值;异向 角相减时,被减数加上减 数,差取负值。
角的乘法与除法运算
角的乘法
特殊角的乘法与除法
角度乘以一个正数时,角度的大小不 变,方向也不变;角度乘以一个负数 时,角度的大小不变,方向相反。

2024-2025学年数学人教版七年级上册 第六章 第10课时 角的比较与运算(2)

2024-2025学年数学人教版七年级上册 第六章 第10课时 角的比较与运算(2)

所以∠BOE=∠DOE=75°,∠BOD=
2∠DOE=150°.
因为∠AOB+∠BOD=180°,
所以∠AOB=180°-∠BOD=30°.
第3题图
因为 OC 平分∠AOB,所以∠BOC=12 ∠AOB=15°.
所以∠COE=∠BOE+∠BOC=75°+15°=90°.
领跑作业本 ·数学(七年级上册RJ)
返回目录
与角的平分线有关的运算
例2 如图,∠AOB=168°,OC平分∠AOB.求∠AOC,∠BOC的
度数. 解:因为OC平分∠AOB,∠AOB=168°, 所以∠AOC=∠BOC=12 ∠AOB=21 ×
168°=84°.
例2题图
领跑作业本 ·数学(七年级上册RJ)
第10课时 角的比较与运算(2)
第1题图
领跑作业本 ·数学(七年级上册RJ)
第10课时 角的比较与运算(2)
返回目录
2.如图,BD平分∠ABC,∠ABE∶∠CBE=2∶3,∠ABC=100°, 求∠DBE的度数.
解:因为BD平分∠ABC,∠ABE∶∠CBE=2∶3,
∠ABC=100°,
所以∠ABD=12 ∠ABC=50°,∠ABE=
第5题图
所以∠DOE=180°-∠COD=180°-60°=120°.
领跑作业本 ·数学(七年级上册RJ)
第10课时 角的比较与运算(2)
返回目录
(2)试猜想∠AOC和∠DOE的数量关系,并说明理由.
解:(2)∠DOE=2∠AOC.理由如下:
因为∠AOB=90°,
所以∠BOC=90°-∠AOC. 因为OB平分∠COD, 所 以 ∠COD = 2∠BOC = 2×(90° - ∠AOC)=180°-2∠AOC. 因为∠COD+∠DOE=180°,

4.3.2角的比较与运算 课件人教版七年级数学上册

4.3.2角的比较与运算 课件人教版七年级数学上册

典型例题 例2 把一个周角7等分,每一份是多少度的角(精确到分)?
解:360º÷7=51º+3º÷7 =51º+180′÷7 ≈ 51º26′.
答:每份约是51º26′.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
练习1 按图填空: (1)∠AOB+∠BOC=_∠__A__O_C____; (2)∠AOC+∠COD=_∠__A_O__D____; (3)∠BOD-∠COD=_∠__B_O__C____; (4)∠AOD-__∠__B_O_D____=∠AOB.
探究 怎么用符号语言表示角平分线呢?
C
O
B
A
∵OB平分∠AOC,
∴∠AOB =∠BOC = 1 ∠AOC
2
(或者∠AOC =2 ∠AOB = 2∠COB ).
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究 类似角平分线,如图射线OB、OC是∠AOD的三等分线.
D
α α α
O
C B
A
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
练习2 如图,OP是∠AOB的平分线,则下列说法错误的是( C )
A.∠AOB=2∠AOP
C.∠AOB= 1 ∠BOP 2
B.∠AOP= 1 ∠AOB 2
D.∠AOP=∠BOP
创设情境
探究新知


应用新知


巩固新知
与 运

课堂小结
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题 例1 如图,O是直线AB上一点,∠AOC=53º17′,求∠BOC的度数.

2022-2023学年人教版七年级数学上册《4-3-2角的比较与运算》题型分类练习题(附答案)

2022-2023学年人教版七年级数学上册《4-3-2角的比较与运算》题型分类练习题(附答案)

2022-2023学年人教版七年级数学上册《4.3.2角的比较与运算》题型分类练习题(附答案)一.角平分线的定义1.如图,两个直角∠AOB,∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD;②∠AOC+∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB的平分线是同一条射线.其中正确的个数有()A.1个B.2个C.3个D.4个2.如图,OE为∠AOD的平分线,∠COD=∠EOC,∠COD=15°,求:①∠EOC的大小;②∠AOD的大小.3.如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.4.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=50°,∠DOE=30°,那么∠BOD是多少度?(2)若∠AOE=160°,∠AOB=50°,那么∠COD是多少度?5.已知:如图,OC是∠AOB的角平分线,∠AOD=2∠BOD,∠COD=18°.请你求出∠BOD的度数.6.如图,O为直线AB上一点,∠AOC=58°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明:OE是否平分∠BOC.二.角的计算7.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105°D.120°8.如图,已知∠AOB:∠BOC=2:3,∠AOC=75°,那么∠AOB=()A.20°B.30°C.35°D.45°9.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为.10.如图,射线OB和OD分别为∠AOC和∠COE的角平分线,∠AOB=45°,∠DOE=20°,则∠AOE=()A.110°B.120°C.130°D.140°11.如图所示,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式是()A.2α﹣βB.α﹣βC.α+βD.以上都不正确12.如图所示,将一张长方形纸片斜折过去,使顶点A落在A′处,BC为折痕,然后再把BE折过去,使之与BA′重合,折痕为BD,若∠ABC=58°,则求∠E′BD的度数()A.29°B.32°C.58°D.64°13.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°14.如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为.15.如图,将一张纸折叠,若∠1=65°,则∠2的度数为.16.如图,OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD,∠MON =80°.(1)若∠BOC=40°,求∠AOD的度数;(2)若∠AOD=x°,求∠BOC的度数(用含x的代数式表示).17.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC 的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?18.如图,点O是直线AB上一点,OD平分∠BOC,∠COE=90°.(1)若∠AOC=48°,求∠DOE的度数.(2)若∠AOC=α,则∠DOE=(用含α的代数式表示).19.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.20.如图,已知同一平面内∠AOB=90°,∠AOC=60°,(1)填空∠BOC=;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60°改成∠AOC=2α(α<45°),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.三.角的大小比较21.比较:28°15′28.15°(填“>”、“<”或“=”).22.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个参考答案一.角平分线的定义1.解:①∵∠AOB=∠COD=90°,∴∠AOC=90°﹣∠BOC,∠BOD=90°﹣∠BOC,∴∠AOC=∠BOD,∴①正确;②∵只有当OC,OB分别为∠AOB和∠COD的平分线时,∠AOC+∠BOD=90°,∴②错误;③∵∠AOB=∠COD=90°,OC平分∠AOB,∴∠AOC=∠COB=45°,则∠BOD=90°﹣45°=45°∴OB平分∠COD,∴③正确;④∵∠AOB=∠COD=90°,∠AOC=∠BOD(已证);∴∠AOD的平分线与∠COB的平分线是同一条射线,∴④正确;故选:C.2.解:①由∠COD=∠EOC,得∠EOC=4∠COD=4×15°=60°;②由角的和差,得∠EOD=∠EOC﹣∠COD=60°﹣15°=45°.由角平分线的性质,得∠AOD=2∠EOD=2×45°=90°.3.解:设∠1=x,则∠2=3∠1=3x,(1分)∵∠COE=∠1+∠3=70°∴∠3=(70﹣x)(2分)∵OC平分∠AOD,∴∠4=∠3=(70﹣x)(3分)∵∠1+∠2+∠3+∠4=180°∴x+3x+(70﹣x)+(70﹣x)=180°(4分)解得:x=20(5分)∴∠2=3x=60°(6分)答:∠2的度数为60°.(7分)4.解:(1)OB是∠AOC的平分线,∴∠BOC=∠AOB=50°;∵OD是∠COE的平分线,∴∠COD=∠DOE=30°,∴∠BOD=∠BOC+∠COD=50°+30°=80°;(2)OB是∠AOC的平分线,∴∠AOC=2∠AOB=100°,∴∠COE=∠AOE﹣∠AOC=160°﹣100°=60°,∵OD是∠COE的平分线,∴∠COD=∠COE=30°.5.解:∵OC是∠AOB的角平分线∴∠BOC=∠AOB,∵∠AOD=2∠BOD,∴∠AOB=3∠BOD,即∠BOD=∠AOB;∴∠COD=∠AOB﹣∠AOB=∠AOB,∴∠BOD=2∠COD,∵∠COD=18°,∴∠BOD=36°.6.解:(1)∵∠AOC=58°,OD平分∠AOC,∴∠AOD=29°,∴∠BOD=180°﹣29°=151°;(2)OE是∠BOC的平分线.理由如下:∵∠AOC=58°,∴∠BOC=122°.∵OD平分∠AOC,∴∠DOC=×58°=29°.∵∠DOE=90°,∴∠COE=90°﹣29°=61°,∴∠COE=∠BOC,即OE是∠BOC的平分线.二.角的计算7.解:∠ABC=30°+90°=120°.故选:D.8.解:∵∠AOB:∠BOC=2:3,∠AOC=75°,∴∠AOB=∠AOC=×75°=30°,故选:B.9.解:∵∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,∴设∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,∴∠COD=0.5x=20°,∴x=40°,∴∠AOB的度数为:3×40°=120°.故答案为:120°.10.解:∵OB是∠AOC的角平分线,∠AOB=45°,∴∠COB=∠AOB=45°∵OD是∠COE的角平分线,∠DOE=20°,∴∠DOC=∠DOE=20°,∴∠AOE=∠AOB+∠COB+∠DOC+∠DOE=45°×2+20°×2=130°.故选:C.11.解:∵∠MON=α,∠BOC=β∴∠MON﹣∠BOC=∠CON+∠BOM=α﹣β又∵OM平分∠AOB,ON平分∠COD∴∠CON=∠DON,∠AOM=∠BOM由题意得∠AOD=∠MON+∠DON+∠AOM=∠MON+∠CON+∠BOM=α+(α﹣β)=2α﹣β.故选:A.12.解:∵根据折叠得出∠ABC=∠A′BC,∠EBD=∠E′BD,又∵∠ABC+∠A′BC+∠EBD+∠E′BD=180°,∴∠ABC+∠E′BD=90°,∵∠ABC=58°,∴∠E′BD=32°.故选:B.13.解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE为∠BOC的平分线,∴∠COE=∠BOC=18°,∴∠DOE=∠COD﹣∠COE=90°﹣18°=72°,故选:D.14.解:∵∠BOD=90°﹣∠AOB=90°﹣30°=60°∠EOC=90°﹣∠EOF=90°﹣40°=50°又∵∠1=∠BOD+∠EOC﹣∠BOE∴∠1=60°+50°﹣90°=20°故答案是:20°.15.解:∵将一张纸条折叠,∠1=65°,∴∠1+∠2=180°﹣∠1即65°+∠2=180°﹣65°,得∠2=50°.故答案为:50°.16.解:(1)∵∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∴∠BOM+∠CON=80°﹣40°=40°,∵OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM,∠DON=∠CON,∴∠AOM+∠DON=40°,∴∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°;(2)∵∠AOD=x°,∠MON=80°,∴∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∵∠BOM+∠CON=∠AOM+∠DON=(x﹣80)°,∴∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°.17.解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.18.解:(1)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=48°,∴∠BOC=132°,∵OD平分∠BOC,∴∠COD=∠BOC=66°,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣66°=24°;(2)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=α,∴∠BOC=180°﹣α,∵OD平分∠BOC,∴∠COD=∠BOC=(180°﹣α)=90°﹣α,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣(90°﹣α)=α.故答案为:α.19.解:(1)∵∠ECB=90°,∠DCE=35°∴∠DCB=90°﹣35°=55°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=145°.(2)∵∠ACB=140°,∠ACD=90°∴∠DCB=140°﹣90°=50°∵∠ECB=90°∴∠DCE=90°﹣50°=40°.(3)猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°.20.解:(1)∵∠AOB=90°,∠AOC=60°,∴∠BOC=∠AOB+∠AOC=90°+60°=150°,故答案为:150°;(2)∵OD平分∠BOC,OE平分∠AOC,∴∠COD=∠BOC=75°,∠COE=∠AOC=30°,∴∠DOE的度数为:∠COD﹣∠COE=45°;故答案为:45;(3)∵∠AOB=90°,∠AOC=2α,∴∠BOC=90°+2α,∵OD、OE平分∠BOC,∠AOC,∴∠DOC=∠BOC=45°+α,∠COE=∠AOC=α,∴∠DOE=∠DOC﹣∠COE=45°.三.角的大小比较21.解:∵28°15′=28°+(15÷60)°=28.25°,∴28°15′>28.15°.故答案为:>.22.解:(1)连接两点之间的线段的长度叫两点间的距离,错误;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点确定一条直线,错误;(3)当C在线段AB上,且AB=2CB时,点C是AB的中点,当C不在线段AB上时,则不是中点,故命题错误;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B,正确;故选:A.。

《角的比较与运算》习题

《角的比较与运算》习题

角的比较与运算
一、选择题
1.下列语句中,正确的是().
A.比直角大的角钝角; B.比平角小的角是钝角
C.钝角的平分线把钝角分为两个锐角; D.钝角与锐角的差是锐角2.两个锐角的和().
A.必定是锐角; B.必定是钝角;
C.必定是直角; D.可能是锐角,可能是直角,也可能是钝角3.两个角的和与这两个角的差互补,则这两个角().
A.一个是锐角,一个是钝角; B.都是钝角;
C.都是直角; D.必有一个是直角
4.下列说法错误的是().
A.两个互余的角都是锐角; B.一个角的补角大于这个角本身;
C.互为补角的两个角不可能都是锐角;
D.互为补角的两个角不可能都是钝角
二、解答题
5.所示,直线AB上一点O,任意画射线OC,已知OD、OE分别是∠AOC、•∠BOC 的角平分线,求∠DOE的度数.
6.如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD.
- 8 -。

角的比较与运算例题解析

角的比较与运算例题解析

角的比较与运算例题解析1. 引言1.1角的概念与基本属性【角的概念与基本属性】角是平面几何中的重要概念之一,它由两条射线以一个公共端点组成。

在初中数学学习中,我们常常需要比较和运算不同角的大小和性质。

下面我们来详细介绍角的比较与运算的例题解析。

一、角的比较:角的比较是通过比较两个角的大小来确定它们的关系。

通常,我们可以通过以下几种方式进行角的比较:1.估算比较法:对于一些特殊的角,我们可以通过估算它们的大小来比较它们的大小关系。

例如,右角(90度)一定大于锐角,而钝角(大于90度)则一定大于直角。

2.角度运算法:通过将角度转换成度数,我们可以使用数值的大小来比较两个角的关系。

需要注意的是,角度越大,角就越大。

但是当角度相等时,我们无法进一步确定两个角的大小关系。

3.度数与弧度的比较法:角度与弧度是表示角度大小的两种常见方式。

弧度是一个无量纲的物理量,是弧长与半径的比值。

通过将角度转换为弧度,我们可以利用弧度的大小进行角的比较。

二、角的运算:角的运算主要是指角的加法和减法运算。

在角的运算中,我们需要使用以下几个重要的基本概念和公式:1.对内角和对外角:对于一个多边形,每一个内角和对应的外角之和等于180度。

根据这个性质,我们可以利用对内角和对外角之间的关系进行角的运算。

2.余角和补角:余角是指两个角之和等于90度的角,而补角是指两个角之和等于180度的角。

通过这两个概念,我们可以进行角的加法和减法运算。

3.角平分线:角平分线是指从角的顶点出发,将角分成两个相等的角的线。

在角的运算中,我们常常使用角平分线来帮助解题。

通过学习角的比较与运算,我们可以更好地理解角的概念与基本属性,从而应用到更复杂的几何问题中去。

熟练掌握角的比较与运算的方法和技巧,对于解决几何问题具有重要的帮助作用。

以上内容是关于“角的概念与基本属性”中角的比较与运算的例题解析。

通过丰富的例题解析,我们希望能够帮助大家更好地掌握角的比较与运算的方法和技巧。

七年级数学上册几角的比较与运算练习题

七年级数学上册几角的比较与运算练习题

七年级数学上册几角的比较与运算练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.用度、分、秒表示91.34︒为( )A .9120'24''︒B .9134'︒C .9120'4''︒D .913'4''︒2.如图,下列各式中错误的是( )A .∠AOC =∠1+∠2B .∠AOC =∠AOD -∠3 C .∠1+∠2=∠3 D .∠AOD -∠1-∠3=∠23.如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒4.若110AOC ∠=︒,OB 在AOC ∠内部,OM 、ON 分别平分AOC ∠和AOB ∠,若23MON ∠=︒,则AOB ∠度数为( ).A .43.5︒B .46︒C .64︒D .87︒5.如图,D 、E 分别为ABC 的边AB 、AC 的中点,连接DE ,过点B 作BF 平分ABC ∠,交DE 于点F ,若4EF =,7AD =,则BC 的长为( )A .22B .20C .18D .166.如图,O 是直线AD 上一点,射线,OC OE 分别平分,AOB BOD ∠∠,则COE ∠的大小为( )A .120°B .60°C .90°D .150°7.如图,在22⨯的正方格中,连接AB 、AC 、AD ,则图中1∠、2∠、3∠的和( ).A .必为锐角B .必为直角C .必为钝角D .可能是锐角、直角或钝角 8.已知∠A =20°18′,∠B =20°15′30″,∠C =20.25°,则度数最大的是( )A .∠AB .∠BC .∠CD .无法确定9.下列说法正确的个数是( )(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB ,则点C 是AB 的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A >∠C >∠B .A .1个B .2个C .3个D .4个10.已知2,AOB BOC ∠=∠若30,BOC ∠=则AOC ∠等于( )A .90B .120或60C .30D .30或9011.把一副三角板ABC 与BDE 按如图所示的方式拼接在一起,其中A 、D 、B 三点在同一条直线上,BM 为∠ABC 的角平分线,BN 为∠CBE 的角平分线.下列结论∠∠MBN =45o ,∠∠BNE =∠BMC ,∠∠EBN =65o ,∠2∠NBD =∠CBM ,其中结论正确的个数是( )A .1个B .2个C .3个D .4个12.如图,已知BM 平分∠ABC ,且BM //AD ,若∠ABC =70°,则∠A 的度数是()A .30°B .35°C .40°D .70°二、填空题13.3242'︒=______°.14.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”)15.如图,OC 是AOB ∠的平分线,13BOD COD ∠=∠,15BOD ∠=︒,则COD ∠=_____,BOC ∠=______,AOB ∠=______.16.如图,正方形ABCD 的对角线相交于点O ,正三角形OEF 绕点O 旋转.在旋转过程中,当AE =BF 时,∠AOE 的大小是__________.三、解答题17.如图,O 是直线AB 上一点,OC 是AOB ∠的平分线,3128COD '∠=︒,求AOD ∠的度数.18.如图,直线,EF CD 相交于点,,O OA OB OC ⊥平分AOF ∠.(1)若40AOE ∠=︒,求∠BOD 的度数;(2)若30BOE ∠=︒,求∠DOE 的度数.19.如图1,四边形ABCD 中,点E 在边AB 上,∠BCE 与∠BEC 互余,过点E 作EF CD ,交AD 于点F .(1)若EF ∠CE ,求证:∠AEF =∠BCE ;(2)如图2,EG 平分∠BEC 交DC 延长线于点G ,∠BCD +∠ECD =180°.点H 在FD 上,连接EH ,CH ,∠AHE +∠BCH =90°.当∠D +∠AEF =2∠G 时,判断线段CH 与CE 的大小关系,并说明理由.20.已知OC 是AOB ∠内部的一条射线,M ,N 分别为OA ,OC 上的点,线段OM ,ON 同时分别以30/s ︒,10/s ︒的速度绕点O 逆时针转动,设转动时间为s t .(1)如图(1),若120AOB ∠=︒,OM ,ON 逆时针转动到OM ',ON '处.∠若OM ,ON 的转动时间t 为2,则BON COM ''∠+∠=________;∠若OM '平分AOC ∠,ON '平分BOC ∠,求M ON ''∠的值.(2)如图(2),若4AOB BOC ∠=∠,当OM ,ON 分别在AOC ∠,BOC ∠内部转动时,请猜想COM ∠与BON ∠的数量关系,并说明理由.参考答案:1.A【分析】根据度分秒的进率''"160,160︒==把度可化为分和秒的形式即得.【详解】由度分秒的进率可得''"'"91.34910.346091200.460912024︒=︒+⨯=︒+⨯=︒故选:A.【点睛】考查了度分秒的进率关系式,注意相邻两个单位的进率是60,熟记进率关系式是解题的关键. 2.C【分析】结合图形根据角的和差关系逐项作出判断即可求解.【详解】解:A. ∠AOC =∠1+∠2,判断正确,不合题意;B. ∠AOC =∠AOD -∠3,判断正确,不合题意;C. ∠1+∠2=∠AOC ,∠AOC 与∠3不一定相等,判断错误,符合题意;D. ∠AOD -∠1-∠3=∠2判断正确,不合题意.故选:C .【点睛】本题考查了根据图形确定角的和差关系,理解题意并结合图形作出判断是解题关键.3.B【分析】由平行线的性质和角平分线的定义,求出60BOD D ∠=∠=︒,20DOF ∠=︒,然后即可求出∠BOF 的度数.【详解】解:∠//CD AB ,60D ∠=︒∠60BOD D ∠=∠=︒,18060120AOD ∠=︒-︒=︒,∠OE 平分∠AOD , ∠1120602DOE ∠=⨯︒=︒, ∠806020DOF EOF DOE ∠=∠-∠=︒-︒=︒;∠602040BOF BOD DOF ∠=∠-∠=︒-︒=︒;故选:B .【点睛】本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数.4.C【分析】首先根据AOC ∠的度数和OM 平分AOC ∠求出AOM ∠的度数,然后可求出AON ∠的度数,最后根据ON 平分AOB ∠即可求出AOB ∠的度数.【详解】如图所示,∠110AOC ∠=︒,OM 平分AOC ∠, ∠1552AOM AOC ∠=∠=︒,∠=552332AON AOM MON ∠∠-∠=︒-︒=︒,∠ON 平分AOB ∠,∠264AOB AON ∠=∠=︒.故选:C .【点睛】此题考查了角平分线的概念和求角度问题,解题的关键是根据角平分线的概念求出AOM ∠的度数.5.A【分析】根据角平分线,平行线和等腰三角形的性质可求出线段DE 的长度,进一步根据中位线的性质即可求出BC 的长.【详解】解:D ,E 为AB ,AC 中点,AD =7, //DE BC ∴,且12DE BC =,AD =BD=7 DFB FBC ∴∠=∠, 又BF 平分ABC ∠,DBF FBC ∴∠=∠,即DFB DBF ∠=∠,7DF BD ∴==,则7411DE DF FE =+=+=,222BC DE ∴==.故选:A .【点睛】此题考查了角平分线,平行线,等腰三角形,三角形中位线的性质,熟练运用角平分线,平行线,等腰三角形,三角形中位线的性质是解题的关键.6.C【分析】根据平角的概念结合角平分线的定义列式求解.【详解】解:∠O 是直线AD 上一点∠180AOD ∠=︒∠射线,OC OE 分别平分,AOB BOD ∠∠ ∠12COB AOB ∠=∠,12EOB BOD ∠=∠ ∠1111=()902222COE COB EOB AOB BOD AOB BOD AOD ∠∠+∠=∠+∠=∠+∠=∠=︒ 故选:C .【点睛】本题考查平角及角平分线的概念,正确理解相关概念列出角的和差关系是解题关键.7.C【分析】标注字母如图所示,正方格,将正方格沿AC 对折,可得∠1=∠HDA ,可求∠3+∠1=90°,可得1∠+2∠+3∠>90°即可.【详解】解:标注字母如图所示,∠正方格,将正方格沿AC 对折,∠∠1=∠HDA ,∠∠3+∠1=∠3+∠HDA =90°,∠1∠+2∠+3∠>90°∠图中1∠、2∠、3∠的和是钝角.故选择C .【点睛】本题考查网格中的角度问题,掌握正方形网格的边有平行,将角转化∠1=∠HDA ,求出∠3+∠1=90°是解题关键.8.A【分析】将∠A 、∠B 、∠C 统一单位后比较即可.【详解】∠∠A =20°18′,∠B =20°15′30″,∠∠A >∠B ,∠∠C =20.25°=20°15′,∠∠A >∠C ,则度数最大的是∠A .故选A .【点睛】本题考查了度、分、秒的转化计算,解决这类题目的基本思路是把各个角的度数统一单位后再比较大小.9.A【分析】根据两点之间的距离的定义,线段的中点的定义以及角的比较即可作出判断.【详解】(1)连接两点之间的线段的长度叫两点间的距离,错误;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点确定一条直线,错误;(3)当C 在线段AB 上,且AB=2CB 时,点C 是AB 的中点,当C 不在线段AB 上时,则不是中点,故命题错误;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A >∠C >∠B ,正确;所以有1个正确.故选A .【点睛】考查了两点之间的距离、线段中点的定义、以及角的大小的比较,正确理解定义是关键. 10.D【分析】可分两种情况讨论:当射线OB 在AOC ∠中时,当射线OC 在AOB ∠中时,分别求出结果即可.【详解】解:如图1,当射线OB 在AOC ∠中时,2AOB BOC ,30BOC ∠=︒,60AOB ∴∠=︒,90AOC AOB BOC ∴∠=∠+∠=︒,如图2,当射线OC 在AOB ∠中时,2AOB BOC ,30BOC ∠=︒,60AOB ∴∠=︒,30AOC AOB BOC .故选:D .【点睛】本题是角的加减运算,能分两种情况讨论是解题的关键.11.C【分析】根据三角板中角的度数及角平分线的概念逐个进行分析判断.【详解】解:由题意可得:90EBD ∠=︒,60ABC ∠=︒,∠150EBC EBD ABC ∠=∠+∠=︒,∠BM 为∠ABC 的角平分线,BN 为∠CBE 的角平分线, ∠1302CBM ABC ∠=∠=︒,1752NBC EBN EBC ∠=∠=∠=︒,故∠错误; ∠∠MBN =NBC CBM ∠-∠=45o ,故∠正确;∠BNE =180°-E EBN ∠-∠=60°,∠BMC =90°-CBM ∠=60°,∠∠BNE =∠BMC ,故∠正确;9015NBD EBN ∠=︒-∠=︒,∠2∠NBD =∠CBM ,故∠正确;正确的是∠∠∠,共3个,故选:C .【点睛】本题主要考查了角平分线的定义,利用角平分线的定义计算角的度数是解答此题的关键. 12.B【分析】先根据角平分线的性质,求出∠ABC 的度数,再由平行线的性质得到∠A 的度数.【详解】解:∠BM 平分∠ABC ,∠∠MBA =12∠ABC =35°.∠BM ∠AD ,∠∠A =∠MBA =35°.故选:B .【点睛】本题考查的是角平分线的性质,平行线的性质,掌握以上知识是解题的关键.13.32.7 【分析】根据42324232+()60'︒=︒︒解答. 【详解】解:42324232+()32+0.732.760'︒=︒︒=︒︒=︒ 故答案为:32.7.【点睛】本题考查角、度的换算,是基础考点,掌握相关知识是解题关键.14.>【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,AFG 是等腰直角三角形,∠45FAG BAC ∠=∠=︒,∠BAC DAE ∠>∠.故答案为.>另:此题也可直接测量得到结果.【点睛】本题考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.15. 45︒ 30 60︒【分析】根据13BOD COD ∠=∠,15BOD ∠=︒可求出COD ∠的度数,COD BOD ∠-∠即可求BOC ∠的度数,然后根据OC 是AOB ∠的平分线即可求出AOB ∠的度数.【详解】∠13BOD COD ∠=∠,15BOD ∠=︒, ∠345COD BOD ∠=∠=︒;∠451530BOC COD BOD ∠=∠-∠=︒-︒=︒;∠OC 是AOB ∠的平分线,∠260AOB BOC ∠=∠=︒.故答案为:45︒;30;60︒.【点睛】此题考查了角平分线的概念,角度之间的数量关系,解题的关键是熟练掌握角平分线的概念,角度之间的数量关系.16.15°或165°【详解】分情况讨论:(1)如图(1),连接AE 、BF .∠四边形ABCD 为正方形,∠OA =OB ,∠AOB =90°. ∠∠OEF 为等边三角形,∠OE =OF ,∠EOF =60°.∠在∠OAE 和∠OBF 中,,{,,OA OB OE OF AE BF ===∠∠OAE∠∠OBF (SSS ), ∠1(9060)152AOE BOF ∠=∠=⨯︒-︒=︒. (2)如图(2),连接AE 、BF .∠在∠AOE 和∠BOF 中,,{,,OA OB OE OF AE BF ===∠∠AOE∠∠BOF (SSS ),∠∠AOE =∠BOF ,∠∠DOF =∠COE , ∠1(9060)152COE ∠=⨯︒-︒=︒,∠∠AOE =180°-15°=165°. 综上,∠AOE 的大小为15°或165°.17.5832'︒.【分析】首先根据O 是直线AB 上一点,OC 是AOB ∠的平分线,求出AOC ∠的度数是90°;然后根据AOD AOC COD ∠=∠-∠即可求出AOD ∠的度数.【详解】解:∠O 是直线AB 上一点,OC 是AOB ∠的平分线,∠180290AOC ∠=÷=,∠3128COD '∠=,∠9031285832AOD AOC COD ''∠=∠-∠=-=.【点睛】此题主要考查了角平分线的定义和角度的计算,要熟练掌握,解答此题的关键是清楚角平分线的定义.18.(1)20°;(2)60°【分析】(1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;(2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC =60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.【详解】解:(1)∠∠AOE=40°,∠∠AOF=180°-∠AOE=140°,∠OC平分∠AOF,∠∠AOC=1∠AOF=70°,2∠OA∠OB,∠∠AOB=90°,∠∠BOD=180°-∠AOB-∠AOC=20°;(2)∠∠BOE=30°,OA∠OB,∠∠AOE=60°,∠∠AOF=180°-∠AOE=120°,∠OC 平分∠AOF ,∠∠AOC =12∠AOF =60°,∠∠COE =∠AOE +∠AOC =60°+60°=120°,∠∠DOE =180°-∠COE =60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.19.(1)见解析(2)∠D =∠BCG ,理由见解析【分析】(1)根据EF CE ⊥得出90FEC ∠=︒,进而根据已知得出90BCE BEC ∠+∠=︒,从而求解;(2)先证明ECD BCG ∠=∠,然后设ECD BCG x ∠=∠=,表示出1802BCE x ∠=︒-,290BEC x ∠=-︒,进而表示出180180FEC ECD x ∠=︒-∠=︒-,18090AEF FEC BEC x ∠=︒-∠-∠=︒-,求出135FEG ∠=︒,45G ∠=︒,进而求出D x ∠=,得出D BCG ∠=∠. (1)证明:∠EF ∠CE ,∠∠FEC =90°,∠∠AEF +∠BEC =90°.∠∠BCE 与∠BEC 互余,∠∠BCE +∠BEC =90°,∠∠AEF =∠BCE ;(2)解:∠∠BCD +∠ECD =180°,∠BCD +∠BEG =180°,∠∠ECD =∠BCG .设∠ECD =∠BCG =x ,∠∠BCE =180°﹣2x ,∠BEC =2x ﹣90°.∠EG 平分∠BEC ,∠∠BEG =∠GEC =x ﹣45°.∠EF CD ,∠∠FEC =180°﹣∠ECD =180°﹣x ,∠∠AEF =180°﹣∠FEC ﹣∠BEC =90°﹣x ,∠FEG =∠FEC +∠GEC =180°﹣x +x ﹣45°=135°,∠∠G =180°﹣CFEG =45°.∠∠D +∠AEF =2∠G ,∠∠D =2∠G ﹣∠AEF =90°﹣(90°﹣x )=x ,∠∠D =∠BCG .【点睛】本题考查了多边形的内角和外角以及平行线的性质,解题的关键是熟练运用平行线的性质. 20.(1)∠40゜;∠60゜;(2)3COM BON ∠=∠,理由见解析.【分析】(1)∠先求出∠AOM′、CON′,再表示出∠BON′、∠COM′,然后相加并根据∠AOB=120°计算即可得解;∠先由角平分线求出∠AOM′=∠COM′=12∠AOC ,∠BON′=∠CON′=12∠BOC ,再求出∠COM′+∠CON′=12∠AOB=12×120°=60°,即∠M′ON′=60°; (2)设旋转时间为t ,表示出∠CON 、∠AOM ,然后列方程求解得到∠BON 、∠COM 的关系,再整理即可得解.【详解】(1)∠线段OM 、ON 分别以30°/s 、10°/s 的速度绕点O 逆时针旋转2s ,∠∠AOM′=2×30°=60°,∠CON′=2×10°=20°,∠∠BON′=∠BOC -20°,∠COM′=∠AOC -60°,∠∠BON′+∠COM′=∠BOC -20°+∠AOC -60°=∠AOB -80°,∠∠AOB=120°,∠∠BON′+∠COM′=120°-80°=40°;故答案为:40°;∠∠OM′平分∠AOC ,ON′平分∠BOC , ∠∠AOM′=∠COM′=12∠AOC ,∠BON′=∠CON′=12∠BOC , ∠∠COM′+∠CON′=12∠AOC+12∠BOC=12∠AOB=12×120°=60°, 即∠MON=60°;(2)∠COM=3∠BON ,理由如下:设∠BOC=x ,则∠AOB=4x ,∠AOC=3x ,∠旋转t 秒后,∠AOM=30t ,∠CON=10t ,∠∠COM=3x-30t=3(x-10t),∠NOB=x-10t,∠∠COM=3∠BON.【点睛】本题考查了角的计算,读懂题目信息,准确识图并表示出相关的角度,然后列出方程是解题的关键.。

角的比较与运算PPT市公开课一等奖省优质课获奖课件

角的比较与运算PPT市公开课一等奖省优质课获奖课件
第8页
14.计算: (1)69°25′36″+41°42′34″=__________1_1_1_°_8;′10 (2)63°37′-31°45′22″=_________3_1_°5_1_′_3;8″ (3)23°34′15″×3=_______7_0_°_4_2_′4_5_″_; (4)58°34′16″÷4=_______1_4_°_3_8_′3_4_″_.
A.0 个 B.1 个 C.2 个 D.3 个
第6页
9.如图,假如∠AOB=∠COD,那么( B ) A.∠1>∠2 B.∠1=∠2 C.∠1<∠2 D.∠1与∠2大小不能确定 10.如图,OC是∠AOB平分线,OD是∠AOC平分线,且∠COD= 25°,则∠AOB等于( )D A.20° B.50° C.75° D.100°
第12页
18.如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分 ∠BOC.
(1)求∠MON度数; (2)若∠AOB=α,其它条件不变,求∠MON度数; (3)若∠BOC=β(β为锐角),其它条件不变,求∠MON度数; (4)从上面结果中能看出什么规律?
解:(1)45°
α (2)2
第2页
知识点2:角运算 3.在15°,65°,75°,135°角中,能用一副三角尺画出来有( ) AC.1个 B.2个 C.3个 D.4个 4.如图,已知∠AOB=∠COD=90°,∠BOC=40°,则∠AOD等于 () A.D120° B.100° C.130° D.140°
第3页
5.(习题6变式)按图填空: (1)∠AOC=∠AOB+∠____B_O_C____; (2)∠BOD=∠COD+∠____B_O_C____; (3)∠AOC=∠AOD-∠___C__O_D____; (4)∠BOC=∠___A_O__D___-∠___A_O__B___-∠___C_O__D__; (5)∠BOC=∠AOC+∠BOD-∠___A__O_D____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角的比较和运算典型题
例1 如图:∠AOB是哪两个角的和?∠DOC是哪两个角的和?若∠AOB=∠COD,则还有哪两个角相等?
(独立完成,个别回答,教师点评)
例2 如图: AOB是一条直线,∠AOC=900,∠DOE=900,
写出∠AOD、∠COD、∠AOC、∠AOB、∠BOD中某些角
之间的两个等量关系。

(小组讨论,代表发言,学生点评)
例 3 已知:一条射线OA,若从点O再引两条射线OB、OC,使∠AOB=600,∠BOC=200,求∠AOC的度数?
如图所示,如果∠AOB=∠BOC,则∠AOC= ∠AOB +∠BOC=2∠AOB =2∠BOC,即∠AOB=∠BOC=1/2∠AOC
如这种从一个角的顶点出发,把这个角分成相等的两角的射线,叫做这个角的平分线,类似地还有角的三等分线等。

例4 如图:已知O为直线AB上一点,∠AOC的平分线OM,∠BOC的平分线为ON,求∠MON的度数?
例5 如图所示,OM为∠AOB的平分线,射线OC在∠BOM 内,ON为∠BOC的平分线,已知∠AOC=800,求∠MON?
练习:1、如图所示:(1)∠COD= - ,或 - 。

(2)如果∠AOB=∠COD,则∠AOC与∠BOD的大小关系如何?
2、如图所示:∠1:∠2:∠3:∠4=1:2:3:4,求∠1、∠2、∠
3、∠4的度数?
3、已知一条直线OA,若从点O再引两条射线OB和OC,使角AOB为60度,角BOC为20度,求角AOC的度数。

4、如图,已知:∠BOC=2∠AOB,OD平分∠AOC,∠BOD=140求:∠AOB的度数。

5.如图,OB是∠AOC的平分线,OD是∠COE的平分线。

(1)若∠AOC=800 ,求∠BOC的度数;
(2)若∠AOC=800 ,∠COE=500,求∠BOD的度数。

E D C B
O A
(3).若∠AOB=390,∠BOC=210,则∠AOC的度数是多少?为什么?
提高训练
一、填空:
1.如图1,∠AOB______∠AOC,∠AOB_______∠BOC(填>,=,<);
O
C
(1)
A
B
O
D C
(2)
A
B
O
D
C
(3)
A
B
2.如图2,∠AOC=______+______=______-______;∠BOC=______-______= _____-________.
3.OC是∠AOB内部的一条射线,若∠AOC=
1
2
________,则OC平分∠AOB;若OC 是∠AOB 的角平分线,则_________=2∠AOC.
二、选择:
4.下列说法错误的是( )
A.角的大小与角的边画出部分的长短没有关系;
B.角的大小与它们的度数大小是一致的;
C.角的和差倍分的度数等于它们的度数的和差倍分;
D.若∠A+∠B>∠C,那么∠A一定大于∠C。

5.用一副三角板不能画出( )
A.75°角
B.135°角
C.160°角
D.105°角
6.如图3,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )
A.∠AOD>∠BOC
B.∠AOD<∠BOC;
C.∠AOD=∠BOC
D.无法确定
7.如果∠1-∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是( )
A.∠3>∠4
B.∠3=∠4;
C.∠3<∠4
D.不确定
O D C A E
B 8.O
C 是从∠AOB 的顶点O 引出的一条射线,若∠AOB=90°,∠AOB= 2∠BOC, 求∠AOC 的度数.
9.如图,把∠AOB 绕着O 点按逆时针方向旋转一个角度, 得∠A ′OB ′,指出图中所有相等的角,并简要说明理由.
A
B
B '
A '
10.如图,BD 平分∠ABC,BE 分∠ABC 分2:5两部分,∠DBE=21°,求∠ABC 的度数.
D C
A
E B
13.如图,∠AOB 是平角,OD 、OC 、OE 是三条射线,OD 是∠AOC 的平分线, 请你补充一
个条件,使∠DOE=90°,并说明你的理由.。

相关文档
最新文档