板式精馏塔的设计

合集下载

10万吨年苯_甲苯分离板式精馏塔设计说明

10万吨年苯_甲苯分离板式精馏塔设计说明

10万吨年苯-甲苯分离板式精馏塔设计苯-甲苯分离板式精馏塔的设计1.概述.................................... 1 .......1.1设计题目....................................... 1.........1.2操作条件....................................... 1.........2.设计内容.................................. 1 .......2.1本设计任务为分离苯一甲苯混合物...................... 1 ...2.2精馏塔的物料衡算................................. 1 ......2.2.1原料液及塔顶、塔底的摩尔分率............................................................. 1••…2.2.2原料液及塔顶、塔底产品的平均摩尔质量 (2)2.2.3物料衡算.................................... 2.......2.3塔板数的确定..................................... 2.......2.3.1理论板层数N T的求取............................ 2......2.3.2实际板层数的求取 ............................. 3......2.4精馏塔的工艺条件及有关物性数据的计算.................. 3…2.4.1操作压力的计算..............................3......2.4.2操作温度计算................................ 3 ......2.4.3平均摩尔质量计算............................. 4 ......2.4.4平均密度计算................................ 4 ......2.4.4.1气相平均密度计算........................ 4……2.4.4.2液相平均密度计算......................... 4……245液体平均表面张力的计算........................... 5' 246液体平均粘度.................................... 5…2.5精馏塔的塔体工艺尺寸计算 (6)2.5.1塔径的计算 ................................. 6……2.5.2精馏塔有效高度的计算......................... ……2.6塔板主要工艺尺寸的计算.............................. …2.6.1溢流装置计算 ............................... 7••…2.6.1.1堰长lw................................. 7……261.2溢流堰高度hw................................ 7……261.3弓形降液管宽度W和截面积A f ..................... 8-2.6.1.4降液管底隙高度ho........................... 8……2.6.2塔板布置..................................... 8 .....2.6.2.1塔板的分块.............................. 8 ......2.622边缘区宽度确定............................. 8……2.6.2.3开孔区面积计算........................... 8……2.6.2.4筛孔计算及排列. .......................... 9……2.7塔板的流体力学验算................................. 9……2.7.1塔板压降..................................... 9 .....2.7.1.1干板阻力hc计算 ............................ 9……2.7.1.2气体通过液层的阻力h1计算.................... 9…2.7.1.3液体表面张力的阻力h计算 (10)2.7.2液面落差................................... 10 .....2.7.3液沫夹带................................... 10 .....2.7.4漏液...................................... 10 .......2.7.5液泛...................................... 11 .......2.8塔板负荷性能图................................... 11 .....2.8.1漏液线..................................... 11 .....2.8.2液沫夹带线................................... 12 ....2.8.3液相负荷下限线 .............................. 13……2.8.4液相负荷上限线 .............................. 13……2.8.5液泛线.................................... 13•…3.设计数据一览表 (15)4.总结...................................... 16••…5.参考文献及设计图............................ 16-苯-甲苯分离板式精馏塔的设计1.概述1.1设计题目试设计一座连续精馏塔用于分离苯-甲苯混合液,原料液中含苯20%(质量分数)。

板式精馏塔的设计

板式精馏塔的设计

密封件的设计需要考虑到密封性能、耐高温和耐腐蚀性等因素。在实际设计 中,一般选用机械密封或填料密封等形式,并需要对密封件的材料和制造工艺进 行严格筛选和考核。 4.3支架设计支架是板式精馏塔的支撑部件,主要作用是固 定板片和密封件等元件。支架的设计需要考虑到设备的强度、稳定性和操作方便 性等因素。
2.3数据采集为了进பைடு நூலகம்板式精馏塔的设计,需要采集物料的物性参数、操作 条件以及类似设备的运行数据等。
2.4设计参数计算根据采集的数据和流程规划,计算板式精馏塔的主要参数, 包括塔高、塔径、板数、间距、流体力学等。
2.5辅助设计进行辅助设计,包括塔内件的材料选择、制造工艺、结构设计 等,确保塔体和内部构件的稳定性和耐用性。
传感器设计需要考虑到测量的准确性、稳定性和可靠性等因素。在实际设计 中,一般选用电感式、电容式、光电式等传感器形式,并需要对传感器的位置和 数量进行合理布置和选择。 5.
感谢观看
2、基本设计流程板式精馏塔的设计流程包括以下几个方面:
2.1设计目标确定首先需要明确板式精馏塔的设计目标,包括分离的物料种 类、分离的纯度、处理能力、操作压力和温度等。
2.2流程规划根据设计目标,确定板式精馏塔的流程。流程规划包括物料的 预处理、进料方式、操作模式、加热和冷却方式以及塔内件的结构设计等。
板式精馏塔的设计
基本内容
板式精馏塔是一种广泛应用于化工、石油、食品和医药等行业的蒸馏设备。 它通过将液体混合物进行多次汽化和冷凝,从而将不同沸点的组分分离出来。本 次演示将详细介绍板式精馏塔的设计流程、塔体设计、传质元件设计、控制系统 设计以及数据分析与结果呈现。
1、引言板式精馏塔是一种高效的分离设备,通过多次汽化和冷凝将液体混 合物分离成不同沸点的组分。在化工、石油、食品和医药等行业,板式精馏塔被 广泛应用于原料的预处理、产品的提纯和分离以及废液的处理等。因此,板式精 馏塔的设计对于工业生产过程的经济性和效率具有重要意义。

丙烯—丙烷板式精馏塔设计

丙烯—丙烷板式精馏塔设计

过程工艺与设备课程设计丙烯——丙烷精馏塔设计课程名称:化工原理课程设计班级:姓名:学号:指导老师:完成时间:前言本设计说明书包括概述、流程简介、精馏塔、再沸器、辅助设备、管路设计和控制方案共7章;说明中对精馏塔的设计计算做了详细的阐述,对于再沸器、辅助设备和管路的设计也做了正确的说明;鉴于设计者经验有限,本设计中还存在许多错误,希望各位老师给予指正感谢老师的指导和参阅目录第一节:标题丙烯—丙烷板式精馏塔设计第二节:丙烯—丙烷板式精馏塔设计任务书第三节:精馏方案简介第四节:精馏工艺流程草图及说明第五节:精馏工艺计算及主体设备设计第六节:辅助设备的计算及选型第七节:设计结果一览表第八节:对本设计的评述第九节:工艺流程简图第十节:参考文献第一章任务书设计条件1、工艺条件:饱和液体进料进料丙烯含量%=摩尔百分数;x65F塔顶丙烯含量%≥x98D釜液丙烯含量%x2W总板效率为2、操作条件:塔顶操作压力表压加热剂及加热方法:加热剂——热水加热方法——间壁换热冷却剂:循环冷却水回流比系数:R/Rmin=3、塔板形式:浮阀4、处理量:F=50kml/h5、安装地点:烟台6、塔板设计位置:塔顶安装地点:烟台;处理量:64kmol/h产品质量:进料 65%塔顶产品 98%塔底产品 <2%1、工艺条件:丙烯—丙烷饱和液体进料进料丙烯含量 65% 摩尔百分数塔顶丙烯含量 98%釜液丙烯含量 <2%总板效率为2、操作条件:塔顶操作压力表压加热剂及加热方法:加热剂——热水加热方法——间壁换热冷却剂:循环冷却水回流比系数:3、塔板形式:浮阀4、处理量:F=64kml/h5、安装地点:烟台6、塔板设计位置:塔顶第二章精馏过程工艺及设备概述精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用,精馏过程在能量剂驱动下有时加质量剂,使气液两相多次直接接触和分离,利用液相混合物中各组分挥发度不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离,该过程是同时传热,传质的过程;为实现精馏过程,必须为该过程提供物流的贮存,输送,传热,分离,控制等的设备,仪表;1、精馏装置流程原料丙烯和丙烷的混合液体经进料管由精馏塔中的某一位置进料板处流入塔内,开始精馏操作;当釜中的料液建立起适当液位时,再沸器进行加热,使之部分汽化返回塔内;气相沿塔上升直至塔顶,由塔顶冷凝器将其进行全部或部分冷凝;将塔顶蒸汽凝液部分作为塔顶产品取出,称为馏出物;另一部分凝液作为回流返回塔顶;回流液从塔顶沿塔流下,在下降过程中与来自塔底的上升蒸汽多次逆向接触和分离;当流至塔底时,被再沸器加热部分汽化,其气相返回塔内作为气相回流,而其液相则作为塔底产品采出;2,、工艺流程1物料的储存和运输精馏过程必须在适当的位置设置一定数量不同容积的原料储罐,泵和各种换热器,以暂时储存,运输和预热或冷却所用原料,从而保证装置能连续稳定的运行;2必要的检测手段为了方便解决操作中的问题,需在流程中的适当位置设置必要的仪表,以及时获取压力,温度等各项参数;另外,常在特定地方设置人孔和手孔,以便定期的检测维修;3调节装置由于实际生产中各状态参数都不是定值,应在适当的位置放置一定数量的阀门进行调节,以保证达到生产要求,可设双调节,即自动和手动两种调节方式并存,且随时进行切换;3、设备简介及选用精馏塔选用浮筏塔,配以立式热虹吸式再沸器;1精馏塔精馏塔是一种圆形筒体,塔内装有多层塔板或填料,塔中部适宜位置没有进料板;本设计为浮筏塔,它已广泛的应用于精馏,吸收,解吸等过程;其主要特点是在塔板的开孔上装有可浮动的浮筏,可以根据气体或液体的大小上下浮动,自动调节;2再沸器再沸器的作用是将塔底液体部分汽化后送回精馏塔,使塔内汽液两相间接触传质得以进行;本设计采用立式热虹吸式再沸器,它是一垂直放置的管壳式换热器;液体在自下而上通过换热器管程时部分汽化,由在壳程内的载热体供热;第三章 精馏塔工艺设计第一节 设计条件1、 工艺条件:饱和液体进料,进料丙烯含量%65x F = 摩尔百分数;塔顶丙烯含量%98x D ≥ ,釜液丙烯含量%2x W ≤ ,总板效率为;2、操作条件:1塔顶操作压力表压加热剂及加热方法:加热剂——热水加热方法——间壁换热冷却剂:循环冷却水回流比系数:R/Rmin=3、塔板形式:浮阀4、处理量:F=50kml/h5、安装地点:烟台6、塔板设计位置:塔顶 第二节 精馏过程工艺计算1、全塔物料衡算q nDh +q nWh =q nFh q nDh x d +q nWh x w =q nFh x f解得: q nDh =h ; q nWh =h2、塔顶、塔底温度确定①、塔顶压力Pt=1620+=;假设塔顶温度Tto=316K 经泡点迭代计算得塔顶温度Tt=查P-T-K 图 得K A 、K B 因为Y A =结果小于10-3;所以假设正确,得出塔顶温度为;用同样的计算,可以求出其他塔板温度; α1=KA/KB=②、塔底温度设NT=120含塔釜则NP=NT-1/ =198按每块阻力降100液柱计算 pL=470kg/m3则P底=P顶+120×100×÷1000 =假设塔顶温度Tto=324K 经泡点迭代计算得塔顶温度T=查P-T-K图得KA 、KB因为XA=结果小于10-3;所以假设正确,得出塔顶温度为;用同样的计算,可以求出其他塔板温度;α2=KA/KB=所以相对挥发度α=α1+α2/2=3、回流比计算泡点进料:q=1q线:x=xf = 65%代入数据,解得 xe=;ye=;R===1 精馏塔的物料衡算;2 塔板数的确定:3 精馏塔的工艺条件及有关物件数据的计算;4 精馏塔的塔体工艺尺寸计算;5 塔板主要工艺尺寸的计算;6 塔板的流体力学验算:7 塔板负荷性能图;8 精馏塔接管尺寸计算;9 绘制生产工艺流程图;10 绘制精馏塔设计条件图;11 对设计过程的评述和有关问题的讨论;设计方案的确定及工艺流程的说明原料液由泵从原料储罐中引出,在预热器中预热至84℃后送入连续板式精馏塔筛板塔,塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却至25℃后送至产品槽;塔釜采用热虹吸立式再沸器提供气相流,塔釜残液送至废热锅炉;第四节:精馏工艺流程草图及说明一、流程方案的选择1.生产流程方案的确定:原料主要有三个组分:C2°、C3=、C3°,生产方案有两种:见下图A,B如任务书规定:C2° C3= C3° iC4° iC4=∑W% 100A为按挥发度递减顺序采出,图B为按挥发度递增顺序采出;在基本有机化工生产过程中,按挥发度递减的顺序依次采出馏分的流程较常见;因各组分采出之前只需一次汽化和冷凝,即可得到产品;而图B所示方法中,除最难挥发组分外;其它组分在采出前需经过多次汽化和冷凝才能得到产品,能量热量和冷量消耗大;并且,由于物料的内循环增多,使物料处理量加大,塔径也相应加大,再沸器、冷凝器的传热面积相应加大,设备投资费用大,公用工程消耗增多,故应选用图A所示的是生产方案;2.工艺流程分离法的选择:在工艺流程方面,主要有深冷分离和常温加压分离法;脱乙烷塔,丙烯精制塔采用常温加压分离法;因为C2,C3在常压下沸点较低呈气态采用加压精馏沸点可提高,这样就无须冷冻设备,可使用一般水为冷却介质,操作比较方便工艺简单,而且就精馏过程而言,获得高压比获得低温在设备和能量消耗方面更为经济一些,但高压会使釜温增加,引起重组分的聚合,使烃的相对挥发度降低,分离难度加大;可是深冷分离法需采用制冷剂来得到低温,采用闭式热泵流程,将精馏塔和制冷循环结合起来,工艺流程复杂;综合考滤故选用常温加压分离法流程;二、工艺特点:1、脱乙烷塔:根据原料组成及计算:精馏段只设四块浮伐塔板,塔顶采用分凝器、全回流操作2、丙烯精制塔:混合物借精馏法进行分离时它的难易程度取决于混合物的沸点差即取决于他们的相对挥发度丙烷-丙烯的沸点仅相差5—6℃所以他们的分离很困难,在实际分离中为了能够用冷却水来冷凝丙烯的蒸气经常把C3馏分加压到20大气压下操作,丙烷-丙烯相对挥发度几乎接近于1在这种情况下,至少需要120块塔板才能达到分离目的;建造这样多板数的塔, 高度在45米以上是很不容易的,因而通常多以两塔串连应用,以降低塔的高度;三、操作特点:1、压力:采用不凝气外排来调节塔内压力,在其他条件不变的情况下,不凝气排放量越大、塔压越低:不凝气排放量越小、塔压越高;正常情况下压力调节主要靠调节伐自动调节;2、塔低温度:恒压下,塔低温度是调节产品质量的主要手段,釜温是釜压和物料组成决定的,塔低温度主要靠重沸器加热汽来控制;当塔低温度低于规定值时,应加大蒸汽用量以提高釜液的汽化率塔低温度高于规定值时,操作亦反;四、改革措施:丙烯精制塔顶冷却器由四台串联改为两台并联,且每台冷却器设计时采用的材质较好,管束较多,传热效果好;五、设想:若本装置采用DCS控制操作系统,这样可以使操作者一目了然,可以达到集中管理,分散控制的目的;能够使信息反馈及时,使装置平稳操作,提高工作效率;为了降低能耗丙烯塔可以采用空冷 ;第五节:精馏工艺计算及主体设备设计精馏塔的工艺设计计算,包括塔高、塔径、塔板各部分尺寸的设计计算,塔板的布置,塔板流体力学性能的校核及绘出塔板的性能负荷图;1 物料衡算与操作线方程通过全塔物料衡算,可以求出精馏产品的流量、组成和进料流量、组成之间的关系;物料衡算主要解决以下问题:1根据设计任务所给定的处理原料量、原料浓度及分离要求塔顶、塔底产品的浓度计算出每小时塔顶、塔底的产量;2在加料热状态q和回流比R选定后,分别算出精馏段和提馏段的上升蒸汽量和下降液体量;3写出精馏段和提馏段的操作线方程,通过物料衡算可以确定精馏塔中各股物料的流量和组成情况,塔内各段的上升蒸汽量和下降液体量,为计算理论板数以及塔径和塔板结构参数提供依据;通常,原料量和产量都以kg/h或吨/年来表示,但在理想板计算时均须转换为kmol/h;在设计时,汽液流量又须用m3/s来表示;因此要注意不同的场合应使用不同的流量单位;2、塔物料衡算F=D+WFXf=DXD+WXw则代入数据为64=D+W6465%=D98%+W2%解得D=h,W=h塔内气、液相流量精馏段:L=RD,V=L+D提留段:L’=L+F,V’=V3.热量衡算再沸器热流量:qr=V’rv再沸器加热蒸汽质量流量:Gr=Qr/rR冷凝器热流量:Qc=Vrv冷凝器冷却剂的质量流量:Gc=Qc/Cvt1-t2塔板数的计算相对挥发度利用试差法求相对挥发度表压P=1620kpa,则塔顶绝压Ptop=+= LnPA’=同理得PB’==Y A=P-PB’/PA’-PB’=KA=PA’/P=XA=y A/KA==同理得y B=,KB=,XB=y B/KB=∑X=y A/KA+y B/KB=∑y-1==<,符合要求故塔顶温度Ttop=塔顶挥发度阿a AB=KA/KB==1.塔底挥发度a’AB由xn=yn/a-a-1yn得,xn=查资料得表如下:液相组分质量分数为WA=,WB=塔顶液相密度为m3气相密度为m3设理论塔板数位NT=150,设每块塔板上的压降为100mm液柱;经计算得latm=液柱塔底压力P=Ptop+NT100mm=设塔底温度为由lnPA’=A-B/T+C得, lnPA’=同理得PB’==所以XA=P-PB’/PA’-PB’=, y B=所以,塔底温度为a AB=KA/KB==2.计算回流比R由相平衡方程ye=a xe/1+a-1xe和q线方程q=1,计算得xe=时,ye=Rmin=XD-ye/ye-xe=则R=,Rmin=3.计算精馏段操作方程精馏段操作线方程yn+1=R/R+1xn+XD/R+1代入数据得该精馏操作方程为yn+1=+4.计算塔板数经过模拟计算得所需理论板数为NT=95理论进料板位置Nf=44已知总办效率为ET=进料板位置Nf/=73所以实际塔板数为Np=NT-1/ET=95-1/=155实际塔板数和初设塔板数150比较接近,故所设值比较合理;5.塔径计算两相流动参数=Ls/Vs√p1/pv=设间距Ht=,查图知C20=气体负荷因子C=C20ó/20{方}=液泛气速Uf=C√p L-pv/pv=su/Uf=,则u=s则流道截面积A=Vs/u= m2孔隙率Ad/At=,A/At=1-Ad/At=则At==塔径D=√4At/=查表知D=,Ht=,与设的吻合,则合理;6.塔高计算实际板数为155,塔有效高度Z=155=釜液流出量W=h=h=s则釜液高度△ Z=4W/DD =143块塔板,共设8个人孔,每个人孔处板间距增大200mm 进料板板间距增大100mm裙坐取3m塔顶与釜液上方气液分离高度取塔顶与釜液上方气液分离空间高度均取总塔高Z=+++8+2=7.溢流装置设计计算弓形降液管所占面积Ad=At-A=Lw/D=,降液管宽度Bd=D1-√1- Lw/d Lw/d/2=取底隙h=确定堰长Lw=D==堰上液头高How=Lh/Lw2/3=>6mm满足E取1的条件取Hw=,清夜层高度Hl由选取的堰高Hw确定Hl=Hw+How=+=液流强度Lh/lw==<100降液管底隙液体流速u=Ls/lwhb=s<s,符合要求8.塔板流动性能的校核所得泛点率低于,故不会产生过量的液沫夹带计算干板阻力由以上3个阻力之和求塔板阻力=12.塔板负荷性能图1.过量液沫夹带线2.液相下限线How=Lh/lw2/3=取E=1,lw=,Lh==h此为液相下限线3.严重漏液线3.液相上限线4、精馏塔主体设备设计计算、再沸器精馏塔底的再沸器可分为:釜式再沸器、热虹吸式再沸器及强制循环再沸器;1釜式式再沸器如图6-2a和b所示;a是卧式再沸器,壳方为釜液沸腾,管内可以加热蒸汽;塔底液体进入底液池中,再进入再沸器的管际空间被加热而部分汽化;蒸汽引到塔底最下一块塔板的下面,部分液体则通过再沸器内的垂直挡板,作为塔底产物被引出;液体的采出口与垂直塔板之间的空间至少停留8~10分钟,以分离液体中的气泡;为减少雾沫夹带,再沸器上方应有一分离空间,对于小设备,管束上方至少有300mm高的分离空间,对于大设备,取再沸器壳径为管束直径的~倍;b是夹套式再沸器,液面上方必须留有蒸发空间,一般液面维持在容积的70%左右;夹套式再沸器,常用于传热面较小或间歇精馏中;2热虹吸式再沸器如图6-2c、D、e所示;它是依靠釜内部分汽化所产生的汽、液混合物其密度小于塔底液体密度,由密度差产生静压差使液体自动从塔底流入再沸器,因此该种再沸器又称自然循环再沸器;这种型式再沸器汽化率不大于40%,否则传热不良;3强制循环再沸器如图6-2中f所示;对于高粘度液体和热敏性气体,宜用泵强制循环式再沸器,因流速大、停留时间短,便于控制和调节液体循环量;原料预热器和产品冷却器的型式不象塔顶冷凝器和塔底再沸器的制约条件那样多,可按传热原理计算;图6-2 再沸器的型式、管路尺寸的确定、管路阻力计算及泵的选择接管直径各接管直径由流体速度及其流量,按连续性方程决定,即:d= 6-7式中:V S——流体体积流量,m3/ s;u——流体流速,m/ s;d——管子直径,m;1塔顶蒸气出口管径D V蒸气出口管中的允许气速U V应不产生过大的压降,其值可参照表6-1;表6-1 蒸气出口管中允许气速参照表2回流液管径D R冷凝器安装在塔顶时,冷凝液靠重力回流,一般流速为~s,速度太大,则冷凝器的高度也相应增加;用泵回流时,速度可取~s;3进料管径d F料液由高位槽进塔时,料液流速取~s;由泵输送时,流速取为~m/s;4釜液排除管径d W釜液流出的速度一般取~s;5饱和水蒸气管饱和水蒸气压力在295kPa表压以下时,蒸气在管中流速取为20~40m/s;表压在785 kPa以下时,流速取为40~60m/s;表压在2950 kPa以上时,流速取为80m/s;加热蒸气鼓泡管加热蒸气鼓泡管又叫蒸气喷出器若精馏塔采用直接蒸气加热时,在塔釜中要装开孔的蒸气鼓泡管;使加热蒸气能均匀分布与釜液中;其结构为一环式蒸气管,管子上适当的开一些小孔;当小孔直径小时,汽泡分布的更均匀;但太小不仅增加阻力损失,而且容易堵塞;其孔直径一般为5~10mm ,孔距为孔径的5~10倍;小孔总面积为鼓泡管横截面积的~倍,管内蒸气速度为20~25m /s;加热蒸气管距釜中液面的高度至少在以上,以保证蒸气与溶液有足够的接触时间;离心泵的选择离心泵的选择,一般可按下列的方法与步骤进行:1确定输送系统的流量与压头 液体的输送量一般为生产任务所规定,如果流量在一定范围内波动,选泵时应按最大流量考虑;根据输送系统管路的安排,用柏努利方程计算在最大流量下管路所需的压头;2选择泵的类型与型号 首先应根据输送液体的性质和操作条件确定泵的类型,然后按已确定的流量Q e 和压头H e 从泵的样本或产品目录中选出合适的型号;显然,选出的泵所提供的流量和压头不见得与管路要求的流量Q e 和压头H e 完全相符,且考虑到操作条件的变化和备有一定的裕量,所选泵的流量和压头可稍大一点,但在该条件下对应泵的效率应比较高,即点Q e 、H e 坐标位置应靠在泵的高效率范围所对应的H-Q 曲线下方;另外,泵的型号选出后,应列出该泵的各种性能参数;3核算泵的轴功率 若输送液体的密度大于水的密度时,可按,102QH N kW ρη=核算泵的轴功率;第六节:辅助设备的计算及选型精馏装置的主要附属设备包括蒸气冷凝器、产品冷凝器、塔底再沸器、原料预热器、直接蒸汽鼓管、物料输送管及泵等;前四种设备本质上属换热器,并多采用列管式换热器,管线和泵属输送装置;下面简要介绍;回流冷凝器按冷凝器与塔的位置,可分为:整体式、自流式和强制循环式;1整体式如图6-1a和b所示;将冷凝器与精馏塔作成一体;这种布局的优点是上升蒸汽压降较小,蒸汽分布均匀,缺点是塔顶结构复杂,不便维修,当需用阀门、流量计来调节时,需较大位差,须增大塔顶板与冷凝器间距离,导致塔体过高;该型式常用于减压精馏或传热面较小场合;图6-1 冷凝器的型式2自流式如图6-1c 所示;将冷凝器装在塔顶附近的台架上,靠改变台架的高度来获得回流和采出所需的位差;3强制循环式如图6-1D 、e 所示;当冷凝器换热面过大时,装在塔顶附近对造价和维修都是不利的,故将冷凝器装在离塔顶较远的低处,用泵向塔提供回流液;需指出的是,在一般情况下,冷凝器采用卧式,因为卧式的冷凝液膜较薄,故对流传热系数较大,且卧式便于安装和维修;管壳式换热器的设计与选型管壳式换热器的设计与选型的核心是计算换热器的传热面积,进而确定换热器的其它尺寸或选择换热器的型号;.1流体流动阻力压强降的计算1管程流动阻力管程阻力可按一般摩擦阻力公式求得;对于多程换热器,其阻力ΣΔp i 等于各程直管阻力、回弯阻力及进、出口阻力之和;一般情况下进、出口阻力可忽略不计,故管程总阻力的计算式为12()i t s p p p p F N N ∑∆=∆+∆ 6-1 式中 ΔP 1、ΔP 2——分别为直管及回弯管中因摩擦阻力引起的压强降,P a ;F t ——结垢校正因数,对Φ25mm ×的管子取;对Φ19mm ×2mm 的管子取;N P ——管程数;N s ——串联的壳程数;上式中直管压强降ΔP 1可按第一章中介绍的公式计算;回弯管的压强降ΔP 2由下面的经验公式估算,即 2232u p ρ⎛⎫∆= ⎪⎝⎭6-22壳程流动阻力壳程流动阻力的计算公式很多,在此介绍埃索法计算壳程压强降ΔP 0的公式,即012S p p p N ∑∆=∆+∆’’S ()F 6-3式中 ΔP 1’——流体横过管束的压强降,Pa ;ΔP 2’——流体通过折流板缺口的压强降,Pa ;F S ——壳程压强降的结垢校正因数;液体可取,气体可取;2'0102'02(1)22(3.5)2c B B u p Ff n N u h p N D ρρ∆=+∆=- 6-4 式中 F ——管子排列方法对压强降的校正因数,对正三角形排列F =,对转角三角形为,正方形为;f0——壳程流体的摩擦系数;N c——横过管束中心线的管子数;N c值可由下式估算:管子按正三角形排列:n=c管子按正方形排列:n=c式中 n——换热器总管数;N B——折流挡板数;h——折流挡板间距;u0——按壳程流通截面积A0计算的流速,m/s,而A0=hD-n c d0;2管壳式换热器的选型和设计计算步骤1计算并初选设备规格a.确定流体在换热器中的流动途径b.根据传热任务计算热负荷Q;c.确定流体在换热器两端的温度,选择列管换热器的形式;计算定性温度,并确定在定性温度下的流体物性;d.计算平均温度差,并根据温度差校正系数不应小于的原则,决定壳程数;e.依据总传热系数的经验值范围,或按生产实际情况,选择总传热系数K值;f.由总传热速率方程Q = KSΔt m,初步计算出传热面积S,并确定换热器的基本尺寸如D、L、n及管子在管板上的排列等,或按系列标准选择设备规格;2计算管程、壳程压强降根据初定的设备规格,计算管程、壳程流体的流速和压强降;检查计算结果是否合理或满足工艺要求;若压降不符合要求,要调整流速,在确定管程数或折流板间距,或选择另一规格的换热器,重新计算压强降直至满足要求为止;3核算总传热系数计算管程、壳程对流传热系数,确定污垢热阻R si和R so,在计算总传热系数K’,比较K 的初设值和计算值,若K’ /K=~,则初选的换热器合适;否则需另设K值,重复以上计算步骤;第七节:设计结果一览表1、操作条件及物性系数操作压力:塔顶塔底 MPa操作温度:塔顶塔底2、塔板主要工艺尺寸水力学核算第八节:对本设计的评述作为本学期难得的一次大型作业报告,我个人而言,收获良多,首先是看到了自己的不足,例如一些以前学习过的内容能够得到复习,毕竟差不多一年过去了,CAD课程内容所教授的内容,许多都已经不记得了,通过这次大型课题报告,让我们重新学习和掌握CAD课程;而且由于类似这种大型作业报告,需要考虑多方面的问题,必须多方面考虑周全,所以这次作业,也让我在做事方面想得更加周全,面面俱到,这对于我们这些学生而言,是非常难得的;本人参照了指导老师给我们的指导资料,并参考了其他学长的个人设计格式,查阅了较多的关于本专业的相关资料文献,花费了不少的时间勉强完成了这个设计方案,但由于个人专业知识缺乏和时间上比较仓促,所以未能完成得很好;通过这次课程设计使我充分理解到化工原理课程的重要性和实用性,更特别是对精馏原理及其操作各方面的了解和设计,对实际单元操作设计中所涉及的个方面要注意问题都有所了解;通过这次对精馏塔的设计,不仅让我将所学的知识应用到实际中,而且对知识也是一种巩固和提升充实;在老师和同学的帮助下,及时的按要求完成了设计任务,通过这次课程设计,使我获得了很多重要的知识,同时也提高了自己的实际动手和知识的灵活运用能力;至此,对于里面一些不当的操作及数据,我总结出了以下原因:1、物料平衡的影响和制约根据精馏塔的总物料衡算可知,不能任意增减,否则进、出塔的两个组分的量不平衡,必然导致塔内组成变化,操作波动,使操作不能达到预期的分离要求;2、塔顶回流的影响回流比是影响精馏塔分离效果的主要因素,生产中经常用回流比来调节、控制产品的质量;3、进料热状况的影响当进料状况xF和q发生变化时,应适当改变进料位置,并及时调节回流比R;一般精馏塔常设几个进料位置,以适应生产中进料状况,保证在精馏塔的适宜位置进料;如进料状况改变而进料位置不变,必然引起馏出液和釜残液组成的变化;4、塔釜温度的影响釜温是由釜压和物料组成决定的;精馏过程中,只有保持规定的釜温,才能确保产品。

板式精馏塔设计PPT课件

板式精馏塔设计PPT课件

要求: hOW6mm
bc
(4) 塔板及其布置 ① 受液区和降液区 一般两区面积相等。
bs
r
lW
x
② 入口安定区和出口安定区
bsbs50 10m0m
bd
③ 边缘区:bc 50mm
29
④ 有效传质区:
bc
单流型弓形降液管塔板:
A a2(xr2x2r2si 1 nr x)
bs
r
x
lW
双流型弓形降液管塔板:
8
二元连续板式精馏塔的工艺计算
物料衡算 实际塔板数的确定 塔高和塔径的计算 塔板结构参数的确定 塔板流动性能校核
9
一、物料衡算
全塔物料衡算 间接加热时:
F=D+W FxF= DxD+WxW 可以解出F,W。
10
二 实际塔板数的确定
1.确定理论板数 可以采用图解法或逐板计算法.
平衡数据 回流比 精馏段操作线 加料线 提馏段操作线
14物性参数的查找计算塔径由精馏塔内各段物料的摩尔流率或说体积流率决定的其影响因素有f进料流率r回流比及q涉及单位换算15轻组分1x轻组分1x重组分2进料板的平均分子量进料板对应的组成x进料板对应的组成由逐板计算得到n值各人不同ynm轻组分1y轻组分1x重组分16轻组分1y轻组分1x重组分4精馏段提馏段的平均分子量精馏段平均分子量mlm1液相平均密度查物性数据
主要设备的工艺设计计算
板式塔的结构
辅助设备的选型
主要设备的工艺条件图
设计说明书的编写
3
设计方案的确定
(一)装置流 程的确定
要求在设计说明 书上画出流程 简图。
4
塔顶冷凝装置根据生产情况以决定采用 分凝器或全凝器。一般,塔顶分凝器对 上升蒸汽虽有一定增浓作用,但在石油 等工业中获取液相产品时往往采用全凝 器,以便于准确地控制回流比。若后继 装置使用气态物料,则宜用分凝器。

精馏塔(板式)设计

精馏塔(板式)设计

精馏塔板的设计还需要考虑到不同物 质的沸点、蒸汽压等物性参数,以及 操作条件下的温度、压力等参数,以 确保分离过程的顺利进行。
精馏塔板的设计需要考虑到液体的流 动特性、蒸汽的流动特性以及它们之 间的相对流动方向,以达到最佳的分 离效果。
设计流程
选择合适的塔板类型
根据设计目标和工艺要求,选 择适合的塔板类型,如泡罩塔 板、浮阀塔板、筛孔塔板等。
详细描述
石油精馏塔设计需要考虑多方面的因素,如原料性质、产品 要求、操作条件等。在设计过程中,需要选择合适的塔板类 型和数量,确定适宜的工艺流程和操作参数,以满足生产需 求。
案例二:酒精精馏塔设计
总结词
酒精精馏塔设计是一种常见的精馏塔设计案例,主要应用于酿酒和生物燃料领域 。
详细描述
酒精精馏塔设计需要考虑酒精的提取和纯化过程。在设计过程中,需要选择适合 的塔板和填料,确定适宜的操作压力和温度,以保证酒精的纯度和回收率。
设计的重要性
01
02
03
提高分离效率
精馏塔板设计的核心目标 是提高分离效率,使产品 达到更高的纯度或回收率。
降低能耗
精馏塔板设计的另一个重 要目标是降低能耗,通过 优化设计,降低操作过程 中的热能消耗。
提高生产能力
良好的精馏塔板设计可以 提高生产能力,从而提高 设备的产能和经济效益。
02 精馏塔(板式)的工艺设计
塔板热力学计算
传热系数
根据物料特性和工艺要求,计算并选 择合适的传热系数,以提高热力学效 率。
温度分布
通过计算温度分布,可以了解物料在 塔板上的温度变化情况,从而优化操 作条件和塔板结构。
03 精馏塔(板式)的设备设计
塔体设计
塔体直径

精馏塔(板式)设计

精馏塔(板式)设计

PA α= ∗ PB
(三)塔板数的确定 1、作出x-y相图 、作出 相图 2、最小回流比及操作回流比 、 3、理论板数及加料位置 、 ①求精馏塔的汽、液相负荷 求精馏塔的汽、

R = 1.5 Rmin
L′ = L + qF = RD + qF
V ′ = V + (q − 1) F = ( R + 1) D + (q − 1) F
化工原理课程设计
(6)冷凝器的选择 ) 塔顶产品(全凝器)和塔釜产品(冷却器) 塔顶产品(全凝器)和塔釜产品(冷却器) (7)加料方式的选择 ) 高位槽或泵 (8)工艺流程 ) 3、正戊烷和正己烷的性质、用途等 、正戊烷和正己烷的性质、
化工原理课程设计
二.工艺计算
主要内容是( 主要内容是(1)物料衡算 (2)确定回流比 (3)确定理论板数和实 际板数 (4)塔的气液负荷计算 (5)热量衡算 塔设备的生产能力一般以千克/小时或吨/年表示, 塔设备的生产能力一般以千克/小时或吨/年表示,但在理论板 计算时均须转换成kmol/h,在塔板设计时 在塔板设计时, 计算时均须转换成kmol/h,在塔板设计时,气液流量又须用体积 流量m /s表示 因此要注意不同的场合应使用不同的流量单位。 表示。 流量 m3/s 表示 。 因此要注意不同的场合应使用不同的流量单位 。 (一)全塔物料衡算 1、原料液及塔顶、塔底产品的摩尔分数 、原料液及塔顶、
化工原理课程设计
②求精馏段、提馏段的操作线方程 求精馏段、
R xD y= x+ R +1 R +1
③作图求出理论板数 ④逐板计算求理论板数
WxW L + qF y′ = x′ − L + qF − W L + qF − W

塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)

(一)设计方案的确定本设计任务为乙醇-水混合物。

设计条件为塔顶常压操作,对于二元混合物的分离,应采用连续精馏流程。

酒精精馏与化工精馏过程不同点就在于它不仅是一个将酒精浓缩的过程,而且还担负着把粗酒精中50多种挥发性杂质除去的任务,所以浓缩酒精和除去杂质的过程在酒精工业中称为精馏。

物料中的杂质基本上是在发酵过程中生成的,只是很少数的杂质是在蒸煮和蒸馏过程中生成的。

本次设计的精馏塔用板式塔,内部装有塔板、降液管、各种物料的进出口及附属结构(如全凝器等)。

此外,在塔板上有时还焊有保温材料的支撑圈,为了方便检修,在塔顶还装有可转动的吊柱。

塔板是板式塔的主要构件,本设计所用的塔板为筛板塔板。

筛板塔的突出优点是结构简单造价低,合理的设计和适当的操作能使筛板塔满足要求的操作弹性,而且效率高,并且采用筛板可解决堵塞问题,还能适当控制漏液。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。

塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属不易分离物系,最小回流比较小,采用其1.5倍。

设计中采用图解法求理论塔板数,在溢流装置选择方面选择单溢流弓形降液管。

塔釜采用间接蒸汽加热,塔顶产品经冷却后送至储罐。

(二)精馏塔的物料衡算1.原料液及塔顶、塔底产品的摩尔分率乙醇的摩尔质量 M 乙醇=46kg/kmol纯水的摩尔质量 M 水 =18kg/kmolx F =18/65.046/35.046/35.0+=0.174x D =18/1.046/9.046/9.0+=0.779x W =46/995.018/005.018/005.0+=0.0022.原料液及塔顶、塔底产品的平均摩尔质量M F =0.174×46+18×(1-0.174)= 22.872 kg/kmol M D =0.779×46+18×(1-0.779)= 39.812 kg/kmol M W =0.002×46+18×(1-0.002)= 18.056 kg/kmol3.物料衡算 D=30024812.3948000000⨯⨯=167.454 kmol/hF=D+WF ·x F =D ·x D +W ·x W解得 F=756.464 kmol/h W=589.01 kmol/h{(三)塔板数的确定1.回流比的选择由任务书提供的乙醇-水物系的气液平衡数据绘出x-y 图;由于设计中选用泡点式进料,q=1,故在图中对角线上自点a(x D,x D)作垂线,与Y轴截距oa=x D/(R min+1)=0.415 即最小回流比R min=x D/oa-1=0.877取比例系数为1.5,故操作回流比R为R=1.5×0.877=1.3162.精馏塔的气液相负荷的计算L=RD=1.316×167.454=220.369 kmol/hV=L+D=(R+1)D=2.316×167.454=387.823 kmol/h L ’=L+qF=220.369+756.464=976.833 kmol/h V ’=V+(q-1)F=V=387.823 kmol/h3.操作线方程精馏段操作线方程为 y=1+R R x+11+R x D =1316.1316.1+x+11.3161+×0.779即:y=0.568x+0.336提馏段操作线方程为y=F q D R qF RD )1()1(--++x-F q D R DF )1()1(--+-x W=1.316*167.454+1*756.464(1.316+1)*167.454x-756.464167.454(1.3161)*167.454-+×0.002 即:y=2.519x-0.0034.采用图解法求理论塔板数总理论塔板层数 N T=13进料板位置 N F=第10层5.全塔效率的计算查上图可知,t D=78.43 o C t W=99.53 o Ct平均= t D t W=88.35 o C塔顶P乙醇=101.749 KPa P水=44.607 KPaα顶=2.281塔底P乙醇=222.502 KPa P水=99.754 KPaα底=2.231α平均=α顶α底=2.256平均温度下μA=0.38 mPa·sμB=0.323 mPa·sμL=x AμA+(1-x A)μB=0.079×0.38+(1-0.079)×0.323=0.327 mPa·s 查蒸馏塔全塔效率图,横坐标为α平均μL=0.738可查得E T=52%6.实际板层数求取精馏段实际板层数N精=9/0.52=17.31≈18提馏段实际板层数N提=4/0.52= 7.69≈8(四)精馏塔的工艺条件及有关物性数据的计算1.操作压力计算塔顶操作压力P D=101.3 KPa单板压降△P=0.7 kPa进料板压力P F=0.7×18+101.3=113.9 kPa塔底操作压力P W=101.3+0.7×26=119.5 kPa精馏段平均压力P m=(101.3+113.9)/2=107.6 kPa 压力P m=(113.9+119.5)/2=116.7 kPa2.操作温度计算计算全塔效率时已知塔顶温度t D=78.43 o C进料板温度 t F=83.75 o C塔底温度t W=99.53 o C精馏段平均温度t m=(t D+t F)/2=(78.43+83.75)/2=81.09 o C提馏段平均温度t m=(t W+t F)/2=(99.53+83.75)/2=91.64 o C3.平均摩尔质量计算塔顶平均摩尔质量计算由x D=y1=0.779 查上图可得x1=0.741M VDm=0.779×46+(1-0.779)×18=39.812 g/molM LDm=0.741×46+(1-0.741)×18=38.748 g/mol进料板平均摩尔质量计算 t f=83.74 o C由y F=0.518 查上图可得x F=0.183M VFm =0.518×46+(1-0.518)×18=32.504 g/mol M LFm =0.183×46+(1-0.183)×18=23.124 g/mol 精馏平均摩尔质量M Vm =( M VDm + M VFm )/2=36.158 g/molM Lm =( M LDm + M LFm )/2=30.936 g/mol4.平均密度计算气相平均密度计算由理想气体状态方程计算,即ρVm =RT PMv =)15.27309.81(314.8158.366.107+⨯⨯=1.321 kg/m 3 液相平均密度计算液相平均密度依1/ρLm =∑αi /ρi 计算 塔顶液相平均密度计算t D =78.43 o C 时 ρ乙醇=740 kg/m 3 ρ水=972.742 kg/m 3ρLDm =)742.972/1.0740/9.0(1+=758.14 kg/m 3进料板液相平均密度计算t F =83.75 o C 时 ρ乙醇=735 kg/m 3 ρ水=969.363 kg/m 3ρLFm =)363.969/636.0735/364.0(1+=868.554 kg/m 3塔底液相平均密度计算t W =99.53 o C 时 ρ乙醇=720 kg/m 3 ρ水=958.724 kg/m 3ρLWm =)724.958/995.0720/005.0(1 =957.137 kg/m 3精馏段液相平均密度计算ρLm =(ρLFm +ρLDm )/2=(758.14+868.554)/2=813.347 kg/m 3提馏段液相平均密度计算ρLm =(ρLFm +ρLWm )/2=(957.137+868.554)/2=912.846 kg/m 35.液体平均表面张力计算液体平均表面张力依σLm =∑x i σi 计算 塔顶液相平均表面张力计算t D =78.43时 σ乙醇=62.866 mN/m σ水=17.8 mN/m σLDm =0.779×17.8+0.221×62.886=84.446 mN/m 进料板液相平均表面张力计算t F =83.75时 σ乙醇=61.889 mN/m σ水=17.3 mN/m σLFm =0.183×17.3+0.817×61.889=53.729 mN/m 塔底液相平均表面张力计算t W =99.53时 σ乙醇=58.947 mN/m σ水=15.9 mN/m σLWm =0.005×15.9+0.995×58.947=58.732 mN/m 精馏段液相平均表面张力计算σLm =(84.446+53.729)/2=69.088 mN/m 提馏段液相平均表面张力计算σLm =(58.732+53.729)/2=56.231 mN/m6.液体平均粘度计算液体平均粘度依lgμLm=∑x i lgμi计算塔顶液相平均粘度计算t D=78.43o C时μ乙醇=0.364mPa·s μ水=0.455 mPa·s lgμLDm=0.779lg(0.455)+0.221lg(0.364)=-0.363μLDm =0.436 mPa·s进料液相平均粘度计算t F=83.75 o C时μ乙醇=0.341mPa·s μ水=0.415 mPa·s lgμLFm=0.183lg(0.415)+0.817lg(0.341)=-0.452μLFm=0.353 mPa·s塔底液相平均粘度计算t W=99.53 o C时μ乙醇=0.285mPa·s μ水=0.335 mPa·s lgμLWm=0.002lg(0.335)+0.998lg(0.285)=-0.544μLWm=0.285 mPa·s精馏段液相平均粘度计算μLm=(0.436+0.353)/2=0.395 mPa·s提馏段液相平均粘度计算μLm=(0.285+0.353)/2=0.319 mPa·s(五)精馏塔的塔体工艺尺寸计算1.塔径的计算精馏段的气液相体积流率为V S =ρ3600VM =2.949 m 3/sL S =ρ3600LM =0.0023 m 3/s查史密斯关联图,横坐标为Vh Lh (v l ρρ)21=949.20023.0(321.1347.813) 1/2=0.0196取板间距H T =0.45m ,板上液层高度h L =0.06m , 则H T -h L =0.39m 查图可得C 20=0.08 由C=C 20(20Lσ)0.2=0.08(69.088/20)0.2=0.103u max =C (ρL -ρV )/ ρV =2.554 m/s 取安全系数为0.7,则空塔气速为 u=0.7u max =1.788 m/s D=4V s /πu=788.1/14.3/949.2*4=1.39 m 按标准塔径元整后 D=1.4 m塔截面积A T =(π/4)×1.42=1.539 ㎡实际空塔气速为 u=2.717/1.539=1.765 m/s2.精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =7.65 m 提馏段有效高度为Z 提=(N 提-1)H T =3.15 m 在进料板上方开一人孔,其高度为 1m 故精馏塔的有效高度为Z=Z 精+Z 提+1=7.65+3.15+1=11.8 m(六)塔板主要工艺尺寸的计算1.溢流装置计算因塔径D=1.4 m ,可选用单溢流弓形降液管 堰长l W =0.7×1.4=0.98 m 2.溢流强度i 的校核i=L h /l W =0.0023×3600/0.98=8.449≤100~130m 3/h ·m 故堰长符合标准 3.溢流堰高度h W平直堰堰上液层高度h ow =100084.2E (L h /l W )2/3由于L h 不大,通过液流收缩系数计算图可知E 近似可取E=1h ow =100084.2×1×(L h /l W )2/3=0.0119 mh W =h L -h ow =0.06-0.0119=0.0481 m 4.降液管尺寸计算查弓形降液管参数图,横坐标l W /D=0.7 可查得A f /A T =0.093 W d /D=0.151 故 A f =0.093A T =0.143 ㎡ W d =0.151W d =0.211 ㎡留管时间θ=3600A T H T /L H =27.64 s >5 s 符合设计要求 5.降液管底隙高度h oh O =L h /3600l W u 0’=0.0023/0.98×0.08=0.03 m h W -h O =0.0481-0.03=0.0181 m >0.006 m6.塔板布置塔板的分块 D=1400 mm >800 mm ,故塔板采用分块式。

化工原理课程设计精馏板式塔的设计

化工原理课程设计精馏板式塔的设计
④ 降液管的宽度Wd和截面积Af: 可根据堰长lw与塔径D的比值,由图中查取Wd/D和Af/AT的值,。求得的降液 管的宽度和截面积,应按照下式进行验算液体在降液管内的停留时间,并
确保停留时间大于或等于3~5s,这样使得溢流中的泡沫有足够的时间在降
液管中分离。
(27)
⑤ 降液管底隙高度hb:
(28)
• 采用合适的回流比; • 蒸馏系统的合理设置,如采用中间再沸器和中间 冷凝器的流程,可以提高精馏塔的热力学效率。
3.板式精馏塔的工艺计算
釜。 (1) (2)
得出:
3.1物料衡算及操作线方程
• 常规塔:一处进料和塔顶、塔底各有一个产品,塔釜间接蒸汽加热的精馏
(3)
(4)
式中:F、D、W——分别为原料液、馏出液和釜残液流量,kmol/h;
2.2进料状态的选择
• • • • • • •
进料状态以进料热状态参数q表示,有五种进料状态; q>1.0时,为低于泡点温度的冷液进料; q=1.0时,为泡点下饱和液体; q=0时,为露点下的饱和蒸气; 1>q>0时,为介于泡点和露点间的气液混合物; q<0时,为高于露点的过热蒸气进料。 为使塔的操作稳定,免受季节气温影响,精、提馏段采 用相同塔径以便于制造,则采用饱和液体(泡点)进料, 但需增设原料预热器。
• 4、塔的负荷性能图(放在说明书的流体力学验算后、用 标准坐标纸绘制)
2.设计方案的确定
2.1操作压力
精馏操作可以在常压、减压和加压下进行。
除热敏性物料外,凡通过常压精馏即可实现分离要 求,并能用江河水或循环水将馏出物冷凝下来的 系统,都采用常压精馏;
对热敏性物料或混合物沸点过高的系统,宜采用减 压精馏; 常压下成气态的物料必须采用加压精馏。

直接蒸汽加热板式精馏塔设计

直接蒸汽加热板式精馏塔设计

双组分溶液直接蒸汽加热板式精馏塔设计设计任务:规定F 、xF 、xD 、xW ,设计出能完成分离任务的板式精馏塔 1. 回流比● 最小回流比设夹紧点在精馏段,其坐标为(xe,ye)则min D ee ex y R y x -=-(1)设夹紧点在提馏段,其坐标为(xe,ye)min min 0(1)(1)e e Wy R D qF LV R D q F x x -+==+--- (2) 所需基础数据:气液相平衡数据 丙酮-水xi = [0 0.01 0.02 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.0]; % 液相丙酮平衡浓度yi = [0 0.253 0.425 0.624 0.755 0.793 0.815 0.830 0.839 0.849 0.859 0.874 0.898 0.935 0.963 1.0]; % 汽相丙酮平衡浓度ti=[ 100 92.7 86.5 75.8 66.5 63.4 62.1 61.0 60.4 60.0 59.7 59.0 58.2 57.5 57.0 56.13 ];%平衡温度 甲醇-水xi = [0 0.02 0.04 0.06 0.08 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.0]; % 液相甲醇平衡浓度yi = [0 0.134 0.234 0.304 0.365 0.418 0.517 0.579 0.665 0.729 0.779 0.825 0.870 0.915 0.958 0.979 1.00]; % 汽相甲醇平衡浓度ti=[ 100 96.4 93.5 91.2 89.3 87.7 84.4 81.7 78.0 75.3 73.1 71.2 69.3 67.6 66.0 65.0 64.5 ];%平衡温度来源:王志魁.化工原理(第三版),北京:化学工业出版社,2004 ● 确定操作回流比min(1.1~2.0)R R =用Matlab 或Excel 工具求出N 与R 间的关系以确定适宜的回流比。

乙醇-正丙醇连续筛板式精馏塔的设计方案

乙醇-正丙醇连续筛板式精馏塔的设计方案

乙醇-正丙醇连续筛板式精馏塔的设计方案乙醇-正丙醇连续筛板式精馏塔的设计方案流程的设计及说明1 设计思路蒸馏方式的确定蒸馏装置包括精馏塔,原料预热器,精馏釜(再沸器),冷凝器,釜液冷却器和产品冷却等设备,蒸馏过程按操作方式不同可分为连续蒸馏和间歇蒸馏两种流程,连续蒸馏具有生产能力大,产品质量稳定等优点,工业生产中以连续精馏为主,间歇蒸馏具有操作灵活,适应性强等优点,适合小规模,多品种或多组分物系的初步分离。

本次设计采用连续筛板精馏塔,常压精馏。

2 装置流程的确定 (1)物料的储存和输送在流程中设置原料罐,产品罐及离心泵。

原料可泵直接送入塔内,使程序连续稳定的进行。

(2)参数的检测和调控流量,压力和温度是生产中的重要参数,必须在流程中的适当位置装设仪表,以测量这些参数。

同时,在生产过程中,物料的状态。

加热剂和冷却剂的状态都不可能避免的会有一些波动,因此必须在流程中设置一定的阀门。

(3)冷凝装置的确定本设计采用塔顶全凝器,以便于准确地对控制回流比。

(4)热能的利用精馏过程是组分多次部分汽化和多次部分冷凝的过程,耗能较多,因此选择适宜的回流比使过程处于最佳条件下进行,可使能耗至最低。

3 操作条件的确定 (1) 操作压力的选取本次设计采用常压操作。

除热敏性物料外,凡通过常压精馏不难实现分离要求,并能利用江河水或循环水将镏出物冷凝下来的系统。

(2)加料状态的选择本设计选择q=1时进料,原因是使塔的操作稳定,精,提镏段利用相同塔径,便于制造。

(3) 加料方式蒸馏大多采用间接蒸汽加热,设置再沸器。

(4)回流比的选择一般经验值为min )0.21.1(R R -=。

本设计采用min 5.1R R =,初步设定后经过流体力学验算,负荷条件,故选择合理。

塔顶冷凝器的冷凝方式与冷却介质的选择塔顶冷凝温度不要求低于30℃,工业上多用水冷 (5)板式塔类型的选择本次设计采用连续筛板式精馏塔 4 设计方案的确定(1)满足工艺和操作要求(2)满足经济上的要求,安全生产,保护环境。

苯-氯苯板式精馏塔工艺设计

苯-氯苯板式精馏塔工艺设计

化工原理设计任务书一、题目:苯-氯苯板式精馏塔设计二、设计任务及操作条件设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯20000+1000n 吨(n代表学号后两位),塔顶馏出液中含氯苯不得高于:2%(单号)、3%(双号)(以上均为质量分率)。

1、塔顶压力:4kpa(表压)2、原料液中含氯苯(质量分率):40%(单号)、45%(双号)3、进料热状况:泡点4、回流比:自选5、塔底加热蒸汽压力:0.5MPa6、单板压降:≤0.7kpa7、全塔效率:ET=58%8、厂址:家乡地区三、塔板类型:自定(一般选筛板或浮阀塔板(F1型))四、基础数据ip(mmHg)纯组分在任何温度下的密度可由下式计算苯t A187.1912-=ρ氯苯t B111.11127-=ρ式中的t为温度,℃。

σ双组分混合液体的表面张力m可按下式计算:AB B A B A m x x σσσσσ+=(B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热常压沸点下的汽化潜热为35.3×103kJ/kmol 。

纯组分的汽化潜热与温度的关系可用下式表示:38.01212⎪⎪⎭⎫ ⎝⎛--=t t t t r r c c (氯苯的临界温度:C ︒=2.359c t )5.其他物性数据可查化工原理附录及其他文献。

目录第1章前言 (1)第2章产品与设计方案简介 (2)2.1 产品性质、质量指标 (2)2.2 设计方案简介 (3)2.3 工艺流程及说明 (3)第3章工艺计算及主体设备设计 (4)3.1 全塔的物料衡算 (4)3.1.1 料液及塔顶底产品含苯的摩尔分率 (4)3.1.2 平均摩尔质量 (4)3.1.3 料液及塔顶底产品的摩尔流率 (4)3.1.4 确定操作的回流比R (5)3.1.5 精馏塔的气液相负荷 (5)3.1.6 操作线方程 (6)3.2 塔板数的确定 (6)3.2.1 理论塔板层数N的确定 (6)T3.2.2 实际塔板数 (7)3.3 精馏塔的工艺条件及有关物性数据的计算 (7)3.3.1 操作压力的计算 (7)3.3.2 操作温度的计算 (7)3.3.3 平均摩尔质量计算 (7)3.3.4 平均密度计算 (8)3.3.5 液相平均表面张力 (9)3.3.6 液相平均粘度计算 (9)第4章精馏塔的塔体工艺尺寸计算 (10)4.1 塔径的计算 (10)4.2 精馏塔有效高度的计算 (11)第5章塔板工艺结构尺寸的设计与计算 (12)5.1 溢流装置 (12)5.2 塔板布置 (12)5.3 开孔数n和开孔率φ (13)第6章塔板上的流体力学验算 (13)6.1 气体通过筛板压降p h和p pΔ的验算 (13)6.2 雾沫夹带量v e的验算 (14)6.3 漏液的验算 (14)第7章塔板负荷性能图 (15)7.1 漏液线(气相负荷下限线) (15)7.2 雾沫夹带线 (16)7.3 液相负荷下限线 (16)7.4 液相负荷上限线 (16)7.5 液泛线 (17)第8章板式塔结构与附属设备 (19)8.1 塔高 (19)8.1.1 塔顶空间 (19)8.1.2 塔底空间 (19)8.1.3 人孔数目 (19)8.2 接管尺寸计算 (19)8.2.1 塔顶蒸汽出口管径 (19)8.2.2 回流液管径 (20)8.2.3 加料管径 (20)8.2.4 料液排出管径 (20)8.2.5 饱和蒸汽管径 (20)8.3 附属设备设计 (21)8.3.1 塔顶冷凝器 (21)8.3.2 塔底再沸器 (21)8.3.3 进料预热器 (21)8.3.4 泵型号设计 (22)第9章筛板塔设计计算结果 (23)第10章主要符号说明 (24)第11章结果与结论 (24)11.1 结果: (24)11.2 结论: (25)第12章收获与致谢 (25)第1章前言课程设计是化工原理最后一个全面总结性教学环节,是进一步巩固、深化和具体基本技能的重要课程,是培养学生综合运用所学知识与理论去独立完成某一化工生产设计任务的一次全面训练。

精馏塔设计

精馏塔设计

精馏塔设计精馏塔(板式)设计是一项非常重要的工程任务,因为它直接关系到化工过程中的分离效率和产品质量。

本文将围绕精馏塔(板式)设计的主要步骤和关键考虑因素展开讨论。

精馏塔(板式)设计的主要步骤如下:1.确定分离的混合物组成和物理性质:在进行精馏塔(板式)设计之前,需要明确分离的混合物的组成和物理性质,如蒸汽压、沸点、相对挥发性等。

这些参数将对塔的设计和操作条件产生重要影响。

2.确定塔的分离目标:清楚定义需要分离的组分和目标纯度,这将有助于确定塔的塔径和高度。

3.确定塔的类型和板式布局:根据分离目标和物理性质,选择适合的塔类型和板式布局。

常见的板式布局包括泡沫塞板和穿孔板。

4.计算塔的塔径和高度:通过对物理性质和操作条件的分析,利用热力学和质量传递原理计算塔的塔径和高度。

常用的计算方法包括卡塔拉计算法、梅奇尔方法、图纸或直接计算。

5.确定板间液体分布器和气体分配器:在塔设计中,还需要确定合适的板间液体分布器和气体分配器,以确保在塔中均匀分布液体和气体。

6.确定冷凝器和回流比:根据分离目标和热力学原理,确定适当的冷凝器和回流比,以实现所需的分离效率和产品纯度。

7.进行塔内液体和气体流动分析:通过数值模拟或试验等方法,对塔内的液体和气体流动进行分析,验证塔设计的合理性和预测分离效率。

8.进行塔的材料选择和结构设计:根据操作条件和介质性质,选择适当的材料和进行塔的结构设计,确保塔的安全性和可靠性。

除了上述的主要步骤,精馏塔(板式)设计还需考虑以下关键因素:1.精馏塔的操作压力和温度范围:根据操作条件和介质性质,确定精馏塔的操作压力和温度范围,以确保塔的设计符合安全和性能要求。

2.塔板的厚度和间距:根据塔板上的液体负载和气体流速,确定适当的塔板厚度和间距,以保证液体和气体的均匀分布和有效传递。

3.塔板的亲水性和抗腐蚀性:选择适当的塔板亲水性和抗腐蚀性,以防止结垢和腐蚀问题,提高塔的运行寿命。

4.塔内塔外压力平衡:通过良好的塔内气体和液体分布设计,以确保塔内外的压力平衡,避免塔塌陷和泄漏等安全问题。

筛板式精馏塔设计_化工原理课程设计

筛板式精馏塔设计_化工原理课程设计

中州大学化工原理课程设计设计题目:筛板式精馏塔设计学院:化工食物学院班级: 11级精化普招1班姓名:赵地学号: 0134小组成员:杨霞 0133王海静 0131穆文华 0132肖振然 0135指导教师:孙浩然2021年6月15日目录概述(前言)一、工艺计算二、塔高及塔径计算三、溢流装置设计四、塔板布置五、塔板校核六、塔板负荷性能图七、塔结构图八、计算结果列表参考文献跋文(小结)设计任务书体系:苯-甲苯学号:31-35年处置量:12万吨动工天数:300天塔顶组成质量比:塔底组成质量比:进料组成质量比:进料状况:泡点进料操作压力:常压概述一、筛板精馏塔的结构特点:筛板塔是扎板塔的一种,内装假设干层水平塔板,板上有许多小孔,形状如筛;并装有溢流管或没有溢流管。

塔内气体在压差作用下由下而上,液体在自身重力作用下由上而下整体呈逆流流动。

筛板精馏塔的结构特点有:1.结构简单,易于加工,造价为泡罩塔的60%左右,为浮阀塔的80%左右。

2.在相同条件下,生产能力比泡罩塔大20%~40%。

3.塔板效率较高,比泡罩塔高15%左右,但低于浮阀塔。

4.气体压力较小,每板压力比泡罩塔约低30%左右。

二、操作要点:操作时,液体由塔顶进入,经溢流管(一部份经筛孔)逐板下降,并在板上积存液层。

气体(或蒸气)由塔底进入,经筛孔上升穿过液层,鼓泡而出,因此两相能够充分接触.三、应用中的优缺点:优势:气液接触部件是引导气流进入液层,并保证气液充分,均匀而良好的接触,形成大量的又是不断更新的气液传质界面,而且要使气液间最后能够较易分离。

通过筛孔的局部阻力和板上液层的重力使气体由下而上维持必然的压差以克服板间流动阻力。

缺点:1.小孔筛板以堵塞,不适宜处置脏的、黏性大的和带固体粒子的料液。

2.操作弹性较小(约2~3)。

四、精馏装置流程图1-原料液贮槽;2-加料泵;3-原料预热器;4-精馏塔;5-冷凝器;6-冷凝液贮槽;7-冷却器;8-观测罩;9-馏出液贮槽;10-残液贮槽;11-再沸器操作流程如下:如下图,用泵2将原料液从贮槽1送至原料预热器3中,加热至必然温度后进入精馏塔4的中部。

「设计一座苯-氯苯连续板式精馏塔」

「设计一座苯-氯苯连续板式精馏塔」

苯-氯苯板式精馏塔的工艺设计苯-氯苯分离过程板式精馏塔设计任务一.设计题目设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯50000t,塔顶馏出液中含氯苯不高于2%。

原料液中含氯苯为38%(以上均为质量%)。

二.操作条件1.塔顶压强4kPa(表压);2.进料热状况,自选;3.回流比,自选;4.塔底加热蒸汽压力0.5MPa(表压);5.单板压降不大于0.7kPa;三.塔板类型筛板或浮阀塔板(F1型)。

四.工作日每年300天,每天24小时连续运行。

五.厂址厂址为天津地区。

六.设计内容ﻩ1.精馏塔的物料衡算;2.塔板数的确定;3.精馏塔的工艺条件及有关物性数据的计算;4.精馏塔的塔体工艺尺寸计算;5.塔板主要工艺尺寸的计算;6.塔板的流体力学验算;7.塔板负荷性能图;8.精馏塔接管尺寸计算;9.绘制生产工艺流程图;10.绘制精馏塔设计条件图;11.绘制塔板施工图(可根据实际情况选作);12.对设计过程的评述和有关问题的讨论。

七.设计基础数据苯-氯苯纯组分的饱和蒸气压数据其他物性数据可查有关手册。

设计方案一.设计方案的思考通体由不锈钢制造,塔节规格Φ25~100mm、高度0.5~1.5m,每段塔节可设置1~2个进料口/测温口,亦可结合客户具体要求进行设计制造各种非标产品。

整个精馏塔包括:塔釜、塔节、进料罐、进料预热器、塔釜液储罐、塔顶冷凝器、回流比控制器、产品储罐等。

塔压降由变送器测量,塔釜上升蒸汽量可通过采用釜液温度或灵敏板进行控制,塔压可采用稳压阀控制,并可装载自动安全阀。

为使塔身保持绝热操作,采用现代化仪表控制温度条件,并可在室温~300℃范围内任意设定。

同时,为了满足用户的科研需要,每一段塔节内的温度、塔釜液相温度、塔顶气相温度、进料温度、回流温度、塔顶压力、塔釜压力、塔釜液位、进料量等参数均可以数字显示。

二.设计方案的特点浮阀塔应用广泛,对液体负荷变化敏感,不适宜处理易聚合或者含有固体悬浮物的物料浮阀塔涉及液体均布问题在气液接触需冷却时会使结构复杂板式塔的设计资料更易得到,而且更可靠。

化工原理课程设计—板式精馏塔的设计

化工原理课程设计—板式精馏塔的设计

板式精馏塔的设计1.1 概述塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。

根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。

板式塔内设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。

填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。

工业上对塔设备的主要要求是:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。

此外,还要求不易堵塞、耐腐蚀等。

板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。

工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。

(一)泡罩塔泡罩塔是最早使用的板式塔,是Celler于1813年提出的,其主要构件是泡罩、升气管及降液管。

泡罩的种类很多,国内应用较多的是圆形泡罩。

泡罩塔的主要优点是:因升气管高出液层,不易发生漏液现象,操作弹性较大,液气比范围大,适用多种介质,操作稳定可靠,塔板不易堵塞,适于处理各种物料;但其结构复杂,造价高、安装维修不便,板上液层厚,气体流径曲折,塔板压降大,因雾沫夹带现象较严重,限制了起诉的提高。

现虽已为其他新型塔板代替,但鉴于其某些优点,仍有沿用。

(a b)图1 泡罩塔(二)浮阀塔浮阀塔广泛用于精馏、吸收和解吸等过程。

其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平地进入塔板上液层进行两相接触。

浮阀可根据气体流量的大小而上下浮动,自行调节。

浮阀有盘式、条式等多种,国内多用盘式浮阀,此型又分为F-1型(V-1型)、V-4型、十字架型、和A型,其中F-1型浮阀结构较简单、节省材料,制造方便,性能良好,故在化工及炼油生产中普遍应用,已列入部颁标准(JB-1118-81)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理课程设计–––––板式精馏塔的设计姓名单素民班级 1114071学号 *********指导老师刘丽华河南城建学院序言化工原理课程设计是综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。

通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。

精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。

精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。

根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。

本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。

目录一、化工原理课程设计任书 (3)二、设计计算 (3)1.设计方案的确定 (3)2.精馏塔的物料衡算 (3)3.塔板数的确定 (4)4.精馏塔的工艺条件及有关物性数据的计算 (8)5.精馏塔的塔体工艺尺寸计算 (10)6.塔板主要工艺尺寸的计算 (11)7.筛板的流体力学验算 (13)8.塔板负荷性能图 (15)9.接管尺寸确定 (30)二、个人总结 (32)三、参考书目 (33)(一)化工原理课程设计任务书板式精馏塔设计任务书一、设计题目:设计分离苯―甲苯连续精馏筛板塔二、设计任务及操作条件1、设计任务:物料处理量: 7万吨/年进料组成: 37%苯,苯-甲苯常温混合溶液(质量分率,下同)分离要求:塔顶产品组成苯≥95%塔底产品组成苯≤6%2、操作条件平均操作压力: 101.3 kPa平均操作温度:94℃回流比:自选单板压降: <=0.9 kPa工时:年开工时数7200小时化工原理课程设计三、设计方法和步骤:1、设计方案简介根据设计任务书所提供的条件和要求,通过对现有资料的分析对比,选定适宜的流程方案和设备类型,初步确定工艺流程。

对选定的工艺流程,主要设备的形式进行简要的论述。

2、主要设备工艺尺寸设计计算(1)收集基础数据(2)工艺流程的选择(3)做全塔的物料衡算(4)确定操作条件(5)确定回流比(6)理论板数与实际板数(7)确定冷凝器与再沸器的热负荷(8)初估冷凝器与再沸器的传热面积(9)塔径计算及板间距确定(10)堰及降液管的设计(11)塔板布置及筛板塔的主要结构参数(12)塔的水力学计算(13)塔板的负荷性能图(14)塔盘结构(15)塔高(16)精馏塔接管尺寸计算3、典型辅助设备选型与计算(略)包括典型辅助设备(换热器及流体输送机械)的主要工艺尺寸计算和设备型号规格的选定。

4、设计结果汇总5、工艺流程图及精馏塔工艺条件图6、设计评述四、参考资料《化工原理课程设计》天津大学化工原理教研室,柴诚敬刘国维李阿娜编;《化工原理》(第三版)化学工业出版社,谭天恩窦梅周明华等编;《化工容器及设备简明设计手册》化学工业出版社,贺匡国编;《化学工程手册》上卷化学工业出版社,化工部第六设计院编;《常用化工单元设备的设计》华东理工出版社。

二、设计计算1.设计方案的选定及基础数据的搜集本设计任务为分离苯一甲苯混合物。

由于对物料没有特殊的要求,可以在常压下操作。

对于二元混合物的分离,应采用连续精馏流程。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。

塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。

塔底设置再沸器采用间接蒸汽加热,塔底产品经冷却后送至储罐。

其中由于蒸馏过程的原理是多次进行部分汽化和冷凝,热效率比较低,但塔顶冷凝器放出的热量很多,但其能量品位较低,不能直接用于塔釜的热源,在本次设计中设计把其热量作为低温热源产生低压蒸汽作为原料预热器的热源之一,充分利用了能量。

塔板的类型为筛板塔精馏,筛板塔塔板上开有许多均布的筛孔,孔径一般为3~8mm,筛孔在塔板上作正三角形排列。

筛板塔也是传质过程常用的塔设备,它的主要优点有:(1) 结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右。

(2) 处理能力大,比同塔径的泡罩塔可增加10~15%。

(3) 塔板效率高,比泡罩塔高15%左右。

(4) 压降较低,每板压力比泡罩塔约低30%左右。

筛板塔的缺点是:(1) 塔板安装的水平度要求较高,否则气液接触不匀。

(2) 操作弹性较小(约2~3)。

(3) 小孔筛板容易堵塞。

下图是板式塔的简略图表1 苯和甲苯的物理性质项目 分子式分子量M 沸点(℃) 临界温度t C(℃) 临界压强P C (kPa ) 苯A 甲苯BC 6H 6C 6H 5—CH 3 78.11 92.1380.1 110.6288.5 318.576833.4 4107.7表2 苯和甲苯的饱和蒸汽压温度C 080.1 85 90 95 100 105 110.6 0A P ,kPa 0B P ,kPa101.33 40.0116.9 46.0135.5 54.0155.7 63.3179.2 74.3204.2 86.0240.0表3 常温下苯—甲苯气液平衡数据([2]:8P 例1—1附表2)温度C 080.1 85 90 95 100 105 110.6 液相中苯的摩尔分率 汽相中苯的摩尔分率1.0001.000 0.7800.900 0.5810.777 0.4120.630 0.258 0.4560.130 0.262 0 0表4 纯组分的表面张力([1]:378P 附录图7)温度 80 90 100 110 120 苯,mN/m21.22018.817.516.2甲苯,Mn/m 21.7 20.6 19.5 18.417.3 表5 组分的液相密度([1]:382P 附录图8) 温度(℃) 80 90 100 110 120 苯,kg/3m 甲苯,kg/3m 814 809 805801 791791778 780763 768 表6 液体粘度µL ([1]:365P )温度(℃) 80 90 100 110 120 苯(mP a .s )甲苯(mP a .s ) 0.3080.3110.279 0.2860.255 0.2640.233 0.2540.215 0.228表7常压下苯——甲苯的气液平衡数据2 精馏塔的物料衡算(1) 原料液及塔顶、塔底产品的摩尔分率 苯的摩尔质量 甲苯的摩尔质量0.37/78.110.4090.37/78.110.63/92.13F x ==+ 0.9778.110.9570.9578.110.0592.13D x ==+0.0678.110.0070.0678.110.9492.13W x ==+(2)原料液及塔顶、塔底产品的平均摩尔质量0.40978.110.59192.1386.39F M kg kmol =⨯+⨯= 0.95778.110.04392.1378.71D M kg kmol =⨯+⨯= 0.07078.110.93092.1391.96W M kg kmol =⨯+⨯=(3)物料衡算原料处理量70000000121.5486.39*7200F kmol h ==总物料衡算 121.54=D +W苯物料衡算 121.54×0.409=0.957D +0.070 W 联立解得 D =42.99 kmol /h W=69.55 kmol /h式中 F------原料液流量 D------塔顶产品量 W------塔底产品量3 塔板数的确定(1)理论板层数N T 的求取苯一甲苯属理想物系,可采用图解法求理论板层数。

①由手册查得苯一甲苯物系的气液平衡数据,绘出x ~y 图,见下图②求最小回流比及操作回流比。

采用作图法求最小回流比。

在上图中对角线上,自点e (0.409,0.409)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为q y =0.567 , q x =0.346故最小回流比为min 0.9570.5671.460.5670.346q q D qx y R y x --===--取操作回流比为min 2 2.92R R == ③求精馏塔的气、液相负荷2.9242.99125.53L R D =⨯=⨯=kmol h(1) 3.9242.99168.52V R D kmol h =+=⨯='(1)(1)(2.921)42.99168.52/V R D q F kmol h =+--=+⨯= (泡点进料:q=1) ' 2.9242.991121.53238.06/L RD qF kmol h =+=⨯+⨯=④求操作线方程 精馏段操作线方程为10.7490.244211D n n n x Ry x x R R +=+=+++ 提馏段操作线方程为 '1'' 1.4120.092m m w m L Wy x x x V V+=-=-(2)逐板法求理论板又根据min (1)1[]11d D F fx x R x x α-=-α-- 可解得 α=2.475 相平衡方程 2.4751(1)1 1.475x xy x xαα==+-+1D y x = = 0.957 1111111(1) 2.475(1)y y x y y y y ==+α-+-=0.901211110.7450.24420.915d x Ry x R R x =+++=+= 22220.813(1)y x y y ==+2.475- 320.7450.24420.850y x =+= 3333(1)y x y y ==+2.475-0.696430.7450.24420.763y x =+= 44440.565(1)y x y y ==+2.475-540.7450.24420.665y x =+= 55550.420(1)y x y y ==+2.475-650.7450.24420.557y x =+= 66660.337(1)y x y y ==+2.475-因为6x <f x 精馏段理论板 n=5'160.337x x == ''211.4120.0290.447y x =-=222''2''0.246(1)y x y y ==+2.475- ''321.4120.0290.318y x =-= 333''3''0.159(1)y x y y ==+2.475- ''431.43340.0330.195y x =-= 444''4''0.089(1)y x y y ==+2.475- ''541.4120.0290.097y x =-= 555''5''0.042(1)y x y y ==+2.475-<w x 所以提留段理论板 n=4全塔效率的计算(查表得各组分黏度1μ=0.269,2μ=0.277)12(1)0.4090.269(10.409)0.2770.274m F F x x μμμ=+-=⨯+-⨯=0.170.616lg T m E μ=-=0.170.616lg0.27452%-≈捷算法求理论板数min 11/ln {ln[()()]}19.89818.8981W D m D Wx x N x x α-=-=-=-由公式 0.5458270.5914220.002743/Y X X=-+min 2.92 1.460.3741 3.92R R X R --===+代入 Y=0.488 由min0.3165,102N N N N -==+min,1111/ln {ln[()()]}1 4.92551D FD Fx x N x x α-=-=≈-0.97410.241.14ln[()()]1 4.44510.9740.24-=-=≈-精馏段实际板层数5/0.52=9.6≈10, 提馏段实际板层数4/0.52=7.69≈8进料板在第11块板4 精馏塔的工艺条件及有关物性数据的计算(1)操作压力计算 塔顶操作压力D P = 93.2 kPa塔底操作压力w P =109.4 kPa 每层塔板压降 △P =0.9 kPa进料板压力F P =93.2+0.9×10=102.2kPa精馏段平均压力 P m =(93.2+102.2)/2=97.7 kPa 提馏段平均压力P m =(109.4+102.2)/2 =105.8 kPa (2)操作温度计算依据操作压力,由泡点方程通过试差法计算出泡点温度,其中苯、甲苯的饱和蒸气压由安托尼方程计算,计算过程略。

相关文档
最新文档