第二章曲柄连杆机构受力分析
2.曲柄连杆机构
切口间隙值一般为0.25mm0.8mm
气环断面形状
形状 矩形环 扭曲环 锥面环 梯形环 桶面环
特点 结构简单、制造方便、易于生产、应用面广 断面不对称,受力不平衡,使活塞环扭曲 减少环与气缸壁的接触面,提高表面接触压力,有利于磨合和密封。 加工困难,精度要求高 外圆为凸圆弧形
曲柄连杆机构受的力 主要有气压力 FP ,往 复 惯 性 力 Fj , 旋 转 离 心力Fc和摩擦力F。 FP F Fj
FC
1、 气压力:气压力的集中力FP分解为侧压力 FP1和FP2, FP1分解为FR和FS,FR使曲轴主轴颈处 受压,FS为周向产生转矩的力。
(1)作功行程:侧压力FP1向左, 活塞的左侧面压向气缸壁,左 侧磨损严重
一般式
龙门式
隧道式
油底壳安装平 面低于曲轴的 旋转中心
气缸体上曲 轴的主轴承 孔为整体式
性能与应用比较
名 称 一般式 性 能 应 用 492Q汽油机,90 系列柴油机。 机体高度小、重量轻、结 构紧凑,便于加工拆卸。 刚度和强度差。
龙门式
捷达轿车、富康 强度和刚度较好。工艺性 轿车、桑塔纳轿 差、结构笨重、加工困难。 车
6、活塞在工作时的保护措施
(1)在活塞裙部表面涂保护层,可改善铝合金活塞的磨合性; 主要有铅、锡、石墨、磷保护层等。 (2)在安装活塞销时,使活塞销偏置某一方向装,以减少换向 时的敲击声,且使裙部减小磨损; 有的汽油机上,活塞销孔中心线是偏离活塞中心线平面的, 向作功行程中受主侧压力的一方偏移了1~2mm。
(1)活塞顶部
结构简单、制造容 易、受热面积小、 应力分布较均匀, 多用在汽油机上。
汽车构造课件第二章曲柄连杆机构
曲柄连杆机构的优 化设计
提高发动机的输 出功率
降低发动机的燃 油消耗
提高发动机的可 靠性和耐用性
降低发动机的噪 声和振动
提高发动机的环 保性能
提高发动机的经 济性
优化曲柄连杆机构的设计参数,如曲柄半径、连杆长度等 采用先进的材料和制造工艺,提高曲柄连杆机构的强度和耐磨性 优化曲柄连杆机构的运动轨迹,提高发动机的输出功率和燃油经济性
汽车构造课件第二章 曲柄连杆机构
汇报人:PPT
目录
添加目录标题
曲柄连杆机构概述
曲柄连杆机构的运 动学分析
曲柄连杆机构的受 力分析
曲柄连杆机构的优 化设计
曲柄连杆机构的故 障诊断与维护
添加章节标题
曲柄连杆机构概述
连接发动机曲 轴和活塞,实
现动力传递
控制活塞往复 运动,实现发
动机做功
调节发动机转 速和扭矩,实 现发动机性能
06
曲柄连杆机构的受力平衡条件是保证发动机正常工作的重要因素 曲柄连杆机构的受力平衡条件主要包括曲柄、连杆、活塞等部件的受力平衡 曲柄连杆机构的受力平衡条件需要满足力矩平衡、力平衡和位移平衡等条件 曲柄连杆机构的受力平衡条件可以通过计算和实验方法进行验证和优化
静力分析:分析曲柄连杆机构在静止状态下的受力情况 动力分析:分析曲柄连杆机构在运动状态下的受力情况 应力分析:分析曲柄连杆机构在受力状态下的应力分布 疲劳分析:分析曲柄连杆机构在长期受力状态下的疲劳寿命 振动分析:分析曲柄连杆机构在振动状态下的受力情况 热力分析:分析曲柄连杆机构在受热状态下的受力情况
优化
保护发动机, 防止活塞撞击 缸壁,延长发
动机寿命
曲柄:连接活塞连杆,传递动力 连杆:连接活塞和曲柄,传递动力 活塞:在气缸内上下运动,压缩气体
内燃机设计课后复习题答案(袁兆成主编)u
内燃机设计课后复习题答案(袁兆成主编)u第⼆章:曲柄连杆机构受⼒分析2-1写出中⼼曲柄连杆机构活塞的运动规律表达式,并说出位移、速度和加速度的⽤途。
答:X = r[(1-cosα)+ λ/4(1-cos2α)] = XⅠ+XⅡ; V = rω(sinα+sin2α*λ/2) = vⅠ+vⅡ;a = rω2(cosα+λcos2α) = aⅠ+aⅡ; ⽤途:1)活塞位移⽤于P-φ⽰功图与P-V⽰功图的转换,⽓门⼲涉的校验及动⼒计算;2)活塞速度⽤于计算活塞平均速度Vm= =18 m/s,⽤于判断强化程度及计算功率,计算最⼤素的Vmax,评价汽缸的磨损;3)活塞加速度⽤于计算往复惯性⼒的⼤⼩和变化,进⾏平衡分析及动⼒计算。
2-2⽓压⼒P g和往复惯性⼒P j的对外表现是什么?有什么不同?答:⽓压⼒Fg的对外表现为输出转矩,⽽Fj的对外表现为有⾃由⼒产⽣使发动机产⽣的纵向振动。
不同:除了上述两点,还有Fjmax < FgmaxFj总是存在,但在⼀个周期其正负值相互抵消,做功为零;Fg是脉冲性,⼀个周期只有⼀个峰值。
2-3 解:连杆⼒:;侧向⼒:;曲柄切向⼒:;径向⼒:;证明:输出⼒矩:;翻倒⼒矩:==.所以翻倒⼒矩与输出⼒矩⼤⼩相等⽅向相反。
2-4 解:1,假设每⼀缸转矩都⼀样,是均匀的,仅仅是⼯作时刻即相位不同。
如果第⼀缸的转矩为,则第⼆缸的转矩为,;第⼀主轴颈所受转矩;第⼆主轴颈所受转矩;第三主轴颈所受转矩;第四主轴颈所受转矩;2,2.5 当连杆轴颈和连杆轴承承受负荷是,坐标系应该固定在哪个零件上?2.6 轴颈负荷与轴承负荷有什么关系?互为反作⽤⼒关系2.7 什么叫做⾃由⼒?答2.8提⾼转矩均匀性的措施?答 1,增加⽓缸数2,点⽕要均匀3,按质量公差带分组4,增加飞轮惯量2.93. 为什么说连杆轴颈负荷⼤于主轴颈负荷?答主轴径主要承受往复惯性⼒和⽓压⼒,曲轴⼀般动平衡,旋转惯性⼒较⼩,主轴径较短弯曲应⼒也较⼩,连杆轴径要承受连杆传来的往复惯性⼒和⽓压⼒,还要承受连杆及曲柄销的旋转惯性⼒。
第二章 曲柄连杆机构
6)桶间梯形环:现代高速柴油机广泛使用。 7)开槽环:开槽内储存对润滑油有较强吸附能力 的多孔性氧化铁。有利于润滑、磨合和密封。 8)顶岸环:有利于密封,有利于降低HC排放。
(二)油环 1、作用 1)刮掉缸壁上多余的机油,并且均匀分布缸壁 上的机油。 2)辅助密封。 2、分类(图2-33) 1)普通油环(整体式油环) 2)组合式钢片油环
一、机体
1、工作条件和材料 1)气缸工作条件: 气缸受到高温、高压的冲击;受到腐蚀; 活塞在气缸里作高速运动而受到磨损等。 2)要求:足够的强度、刚度,耐磨损、腐蚀, 结构紧凑,质量轻。 3)材料:高强度灰铸铁 或铝合金。 但是为了降低成本,通常是机体用灰铸铁, 气缸孔用优质合金铸铁,而采用气缸套。
( 3 )活塞销座 A、作用:支承活塞销,将活塞顶部气体作用 力经过活塞销传给连杆。 B、活塞销偏移布置(图2-25) 目的:为了减少活塞在上下往复运动时敲击 气缸的噪音与磨损。 (4)裙部的表面处理 汽油机:常用镀锡方法 柴油机:一般是磷化,还有的用涂石墨。
6、活塞在气缸内的安装注意事项 1)按照活塞顶部的指定标记安装(注意喷 油方向、气门方向) 2)同台发动机的活塞质量差不能超过10g, 并与相同尺寸公差的缸盖配合。 3)开纵向槽的活塞面尽量安装在不受侧压 力(主、次推力面)的一面,以免活塞 在运动时划伤气缸壁。
三、活塞销 (一)作用 1、连接活塞与连杆小头。 2、将活塞承受的气体力传给连杆。 (二)材料 多用低碳钢和低碳合金钢。 同时要求其芯部具有一定的韧性。为了减轻质量, 常将其做成空心圆柱形。 (三)内孔形状 1)圆柱形(加工容易,但质量较大) 2)组合形(介于前后两者之间) 3)两段截锥形(质量较小,但加工较难)
第二章 曲柄连杆机构
作用:将燃料燃烧的热能转换为机械能,将活塞 的往复运动转变为曲轴的旋转运动,并将能量 传输出去。 本章主要内容: 1、 曲柄连杆机构的受力及运动分析 2、 机体组 3、 活塞连杆组 4、 曲轴飞轮组
第二章曲柄连杆机构动力学分析
x (L R) (L cos R cos)
R(1 cos) L(1 1 2 sin 2 )
(精确式)
x
R(1 cos)
R
4
(1
c os2 )
xI
xII
(近似式)
近似式与精确式相比误差很小,如当λ=1/3.5时,曲柄转角为 90度时误差为最大,在0.003R左右,此精度在工程上已足够。
mCA
mC
L lA L
mCB
mC
L lB L
mC
lA L
对于有的高速发动机还须满足一个条件:
③ 两个换算质量对连杆质心的转动惯量之和等于原来连杆的转动惯
量,即
mCA
l
2 A
mCB
l
2 B
IC
式中IC为原连杆的转动惯量。但采用二质量替代系统时,在连杆 摆动角加速度下的惯性力矩要偏大 ΔMC=[(mCAlA2+mCBlB2)-IC]ε 为此,可用三质量替代系统:
a
R
2
cos
cos
c os2 c os3
R 2 cos cos2 sin
连杆摆角: arcsinsin
连杆摆动角速度:L
cos
1 2 sin 2
1/ 2
连杆摆动角加速度: L
2
(1 2
2 2 ) sin
1 2 sin
2 (1 sin 2 )
2 3/ 2
单缸切力曲线及六缸合成图 各轴颈输出扭矩
各轴颈输出扭矩如图
M TII M T (1) M TIII M TII M T (2)
M TIV M TIII M T (3) M TV M TIV M T (4)
《内燃机设计》第二版课后习题答案(袁兆成主编)
《内燃机设计》第二版课后习题答案(袁兆成主编)第一章:内燃机设计总论1-1根据公式 τ2785.0ZD v p P m me e = ,可以知道,当设计的活塞平均速度V m 增加时,可以增加有效功率,请叙述活塞平均速度增加带来的副作用有哪些?具体原因是什么? 答:①摩擦损失增加,机械效率ηm 下降,活塞组的热负荷增加,机油温度升高,机油承 载能力下降,发动机寿命降低。
②惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。
③进排气流速增加,导致进气阻力增加、充气效率ηv 下降。
1-2汽油机的主要优点是什么?柴油机主要优点是什么? 答:柴油机优点: 1)燃料经济性好。
2)因为没有点火系统,所以工作可靠性和耐久性好。
3)可以通过增压、扩缸来增加功率。
4)防火安全性好,因为柴油挥发性差。
5)CO 和HC 的排放比汽油机少。
汽油机优点:1)空气利用率高,转速高,因而升功率高。
2)因为没有柴油机喷油系统的精密偶件,所以制造成本低。
3)低温启动性好、加速性好,噪声低。
4)由于升功率高,最高燃烧压力低,所以结构轻巧,比质量小。
5)不冒黑烟,颗粒排放少。
1-3假如柴油机与汽油机的排量一样,都是非增压或者都是增压机型,哪一个升功率高?为什么?答:汽油机的升功率高,在相同进气方式的条件下, ①由PL=Pme*n/30τ可知,汽油机与柴油机的平均有效压力相差不多。
但是由于柴油机后燃较多,在缸径相同情况下,转速明显低于汽油机,因此柴油机的升功率小。
②柴油机的过量空气系数都大于1,进入气缸的空气不能全部与柴油混合,空气利用率低,在转速相同、缸径相同情况下,单位容积发出的功率小于汽油机,因此柴油机的升功率低,汽油机的升功率高。
1-4柴油机与汽油机的汽缸直径、行程都一样,假设D=90mm 、S=90mm ,是否都可以达到相同的最大设计转速(如n=6000r/min )?为什么?答:对于汽油机能达到,但是柴油机不能。
曲柄连杆机构受力分析
.
25
扭矩不均匀度μ 扭矩不均匀度用来评价发动机曲轴输出扭矩变 化的均匀程度。通常按发动机的最大功率工况计算。
∑Mmax-∑Mmin μ= ————————
∑Mm ∑Mmax、∑Mmin 、∑Mm 为输出扭矩的最大、最小和 平均值。
根椐各种曲轴转角时的每个主轴颈上的累计扭
矩值,即可确定受力情况最为严重的曲柄及其所位
于的曲轴转角。
.
23
3.发动机指示功率和平均指示压力
.
24
计算精度的判断:
根据发动机曲轴的输出扭矩曲线得到的平均扭 矩∑Mm应于公式∑Mm=9549.3Pi/n得到的平均扭矩 值之误差不得大于±2%。Ni为工作过程计算得到的 指.
11
.
12
第二节 曲柄连杆机构上的作用力 一、气体压力
.
13
二、惯性力
.
14
1.往复惯性力
2.旋转惯性力
.
15
.
16
.
17
三、作用在曲柄连杆机构上的力
.
18
.
19
.
20
四、发动机的扭矩 1.单缸扭矩
发动机的翻倒力矩M’
.
21
2.多缸机扭矩、各主轴颈和曲柄销扭矩
知道了单缸扭短在一个循环的变化规律,考虑 各缸的着火间隔角将各缸扭矩作移相叠加就得多缸 扭矩。
.
22
多缸发动机曲轴的输出扭矩。
多缸发动机各个缸的工作情况稍有不同,但可
近似地用其中一个气缸的扭矩曲线来求多发动机的 合成扭矩曲线。
先在一个循环周期内绘制第一缸的扭矩曲线, 再按发火相位差绘制第2、3、......缸的扭 矩曲线,并放在第一缸的扭矩曲线与之相应的曲轴 转角的位置,然后求出同一曲轴转角的各个气缸的 扭矩曲线纵坐标的代数和,即得到多缸发动机的合 成扭矩。
第2章曲柄连杆机构
2.3机体组
2.3.1汽缸体
1.汽缸体的结构形式 水冷发动机的汽缸体和曲轴箱通常铸成一体,可称为汽缸体
一曲轴箱,也可简称为汽缸体。汽缸体上半部有一个或若十个为 活塞在其中运动导向的圆柱形空腔,称为汽缸;下半部为支承曲轴 的曲轴箱,其内腔为曲轴运动的空间。作为发动机各个机构和系 统的装配基体,汽缸体本身应具有足够的刚度和强度。其具体结 构形式分为三种,如图2-4所示。
汽缸套有干式和湿式两种,如图2-10所示。
上一页 下一页 返回
2.3机体组
2.3.2汽缸盖与汽缸衬垫
1.汽缸盖 汽缸盖的主要功用是密封汽缸上部,并与活塞顶部和汽缸一
起形成燃烧室。同时,汽缸盖也为其他零部件提供安装位置。汽 缸盖的燃烧室一侧直接受到高温、高压燃气的作用。在承受热负 荷时,由于形状复杂,冷却不均匀,各部分温差大,特别是在进、 排气门口之间以及进、排气门口与汽油机的火花塞之间(或进、排 气门)与柴油机的喷油器之间的所谓“鼻梁区”,热应力很高,是 容易出现裂纹损坏的部位;而汽缸盖在机械负荷和热负荷作用下产 生的变形会导致进、排气门密封被破坏和汽缸盖密封(气封、水封、 油封)被破坏,影响发动机的动力性、经济性和工作可靠性。因此, 要求汽缸盖应具有足够的强度和刚度。
下一页 返回
2.5曲轴飞轮组
按照曲轴的主轴颈数,可以把曲轴分为全支承曲轴和非全支 承曲轴两种。在相邻的两个曲拐之间,都设置一个主轴颈的曲轴, 称为全支承曲轴;否则称为非全支承曲轴。
因此,直列发动机的全支承曲轴,其主轴颈的总数(包括曲轴 前端和后端的主轴颈)比汽缸数多一个;V形发动机的全支承曲轴, 其主轴颈的总数比汽缸数的一半多一个。全支承曲轴的优点是可 以提高曲轴的刚度和恋曲强度,并目可减轻主轴承的载荷。其缺 点是曲轴的加工表面增多,主轴承增多,使机体加长。这两种形 式的曲轴均可用于汽油机,但柴油机多采用全支承曲轴,这是因 为其载荷较大的缘故。
02曲柄连杆机构的运动和受力分析(2)
Fr
Fc'*
与单曲拐转矩 M大t小相等,方向相反
F g
+
Fj
Fl*
曲柄连杆机构中的力和力矩
—单元曲柄连杆机构对机体的作用力(4)
单缸机机体,受
曲柄连杆机构作用力 缸内气体作用力 发动机支撑反力
多缸机
每缸曲柄连杆机构作用 力、缸内气体作用力, 发动机支撑力
Fg Fc
Fr
ω Fc'*
设无平衡重时主轴颈载荷加平衡重后载荷平衡重引起的对主轴颈作用力则四冲程六缸机第二主轴颈zp2121z122zfff??121z?f122z?fzp2f曲柄连杆机构中的力和力矩轴颈和轴承载荷的极坐标图4四冲程六缸机第二主轴颈
汽车发动机设计
(2)
赵雨东
清华大学汽车工程系
Mercedes-Benz SLR Mclaren
,加平衡重后
载荷 F (1,2) Z(ϕ )(2)
,平衡重
引起的对主轴颈作用
力FZp(2) ,则
F = F + F (1,2) Z(ϕ )(2)
(1,2) Z(ϕ )(1)
Zp(2)
四冲程六缸机第二主轴颈
四冲程六缸机第二主轴颈
曲柄连杆机构中的力和力矩
—轴颈和轴承载荷的极坐标图(5)
主轴承载荷
F (i) Qy
cosψ i ]lb(i)
/ lc(i)
F (i+1) Zbx
=
−[(
F (i+1) Qx
+
F (i+1) rq
)
cosψ
i +1
−
F (i+1) Qy
sinψ
]l (i+1)
曲柄连杆机构受力分析
(1)沿气缸轴线作直线往复运动
(2)均匀转动的曲拐 (3)平面运动的连杆组
5
2. 连杆的质量换算
二质量系统
三质量系统
6
二质量系统
m1 ml (l l ) / l
m2 ml l / l
等效原则:
•质量相等 •质心重合 •转动惯量相等
7
3.往复质量和往复惯性力
(1)往复运动质量
mj mp m1
第二节 曲柄连杆机构受力分析
一、气体作用力
二、惯性力
三、零件的受力分析
1一、气体作Βιβλιοθήκη 力1、气体作用力pg
Fg
D
4
2
( pg p )
'
p′
2
一、气体作用力
2、缸内压力
3
二、惯性力
曲柄连杆机构的运动及质量换算 往复惯性力 旋转惯性力
4
1.曲柄连杆机构的运动
曲柄连杆机构的所有运动零件可分为三组:
10
2、连杆小头受力分析
FC Ftg
F F1 cos
侧推力:
F1
F cos
连杆力:
11
3、曲柄销受力分析
切向力 :
F F1' sin( ) F sin( ) cos
F1
F cos
法向力:
Fn F1' cos( ) F cos( ) cos
12
4、发动机的转矩
Fr sin( ) T F r cos
13
5、倾覆力矩
Tk Fc h T
r sin( ) sin h
2-1 曲柄连杆机构的运动与受力
2、曲柄连杆机构的主要受力: 气体力、惯性力(往复惯性力及旋转惯性力)
一、气体力
指气缸内的气体作用在活塞顶部的力Fg 。 Fg Ap ( p1 p2 )
AP ——活塞顶截面积 AP=D2 / 4 p1 ——气缸中的气体压力(由实测示功图确定) p2 ——曲轴箱中的气体压力 D ——气缸直径
mr ——作旋转运动的集中质量
方向:沿曲柄方向向外 大小:常数
惯性力示意图
三、运动机件受力分析
气体力 往复惯性力 F F g Fj
气体力与惯性力的合成
受力分析结论
引起内燃机不平衡的因素有: 1。倾倒力矩M’ 2。往复惯性力Fj 3。旋转惯性力
二、惯性力
1、往复惯性力 Fj ——作往复运动的集中质量 r——曲柄半径
——曲轴旋转角速度
——连杆比, =r / l
Flc —连m杆r长r 2
方向:沿气缸中心线方向
大小:周期性变化
2、旋转惯性力(离心力) Fc mr r 2
第二章 曲柄连杆机构
概述 组成:主要零件可以分为三组:活塞组、连杆组和曲轴飞轮组。
第二章 曲柄连杆机构
概述 功用:是实现工作循环,完成能量转换的传动机构;
将热能转变为机械功; 用来传递力和改变运动方式;
工作条件:要承受高温、高压、高速和化学腐蚀作用 工作条件相当恶劣。
§ 2-1 曲柄连杆机构的运动与受力
第二章-曲柄连杆机构
(轴向定位)
套与冷却水直接接触,薄厚(5-9mm),缸套下端带 橡胶封水圈,气缸套外圆上大,下小(因为气缸套下
气缸套
端带1-3道橡胶封水圈),且上端与气缸体内孔配合
紧,下端配合松,以方便推入气缸体内孔。
水套
(径向定位)
湿式缸套压配在气缸体内孔时,上部凸肩顶 面高出气缸体顶面0.05-0.15 mm,这样紧固缸盖 时,可将缸垫压得更紧,以密封燃气。
机的气缸体象风冷发动机的气缸体一样,将气缸体与上曲轴箱(其内腔为曲
轴运动的空间)分开铸造,而把油底壳称之为下曲轴箱。气缸体内孔一般镶
2入((、1(气 一 三、气2缸 ) )材缸级套 作 材料工加, 用 料作工((其和:表精12内工1))2面度、、表艺气气制)内外面:缸缸造孔部形套体工:((成::艺(12(气优灰))12( (缸质)铸各散)12工合铁机热活) )形作金或构塞精 珩成表铸铝和运镗 磨气面铁合系动(缸。或金统导网工合的向纹作金装状容钢配)积基2磨(体、1损二、避))改时免要善间拉求漏磨短缸:气合(1234:条金、、、、功件属耐度耐耐足率,熔高和高磨腐够下磨着温强压损蚀的降合、度刚
维修成本增加。(现代发动机大部分采用)
c、组合气缸盖:如两缸一盖,便于系列化。 (2)按所用燃料分
a、汽油机:(1)气缸盖中心加工有装火花塞的孔
(2)进、排气道一般铸在气缸盖的一侧(进气管布置在排
气管的上部,利用废气加热进气管壁面油膜,促进雾
化),但现代汽油机采用半球形燃烧室时则进、排气道铸
在气缸盖的两侧
湿式缸套优点是:气缸套冷却好;制造成本
气缸体 橡胶封水圈
(径向定位)
低;气缸体铸造工艺性好;缸心距短,曲轴不易弯
曲。 湿式缸套缺点是:气缸体刚性差,容易变形,
第2章受力分析
第二章 柴油机的受力分析 第一节 曲柄连杆机构的受力
第二节 运动惯性力对柴油机工作的影响
第一节 曲柄连杆机构的受力
一、概述 柴油机工作时,作用在曲柄连杆机构上的力有下列几种: ⑴作用在气缸和活塞上的气体力; ⑵运动件的惯性力; ⑶运动件的重力; ⑷负载的反作用扭矩; ⑸机构的支承反力; ⑹热应力。 运动件的重力,在高、中速柴油机中由于其数值较小, 一般不予考虑;柴油机负载的反作用扭矩,与曲轴的输出 扭矩相平衡;热应力与结构、受热及冷却等因素有关,情 况较复杂,不予考虑。
二、气体力
是指气缸内工质的作用力,沿着气缸轴线作用到活塞顶 面和气缸盖底面,同时又径向作用到气缸内圆面。
作用在活塞上的气体推力为:
Pg=(p-p0)×(π/4)×D· D/1000 p——气缸内的气体压力 KPa p0——作用于活塞背部的曲轴箱内气压,一般近似取 98KPa。 (N)
气体力是机构运动的原动力,它与柴油机的工作过程及负 荷大小有关,与柴油机的转速无直接关系,循环变化,最 大值Pz在上止点附近。
返回
‹#› 6
活塞销
活塞 气缸
机体
连杆
曲柄销
主轴承
返回
‹#› 7
(三)离心运动惯性力
旋转质量mr=曲柄质量+连杆大头附近的质量 Pr=-mr· r·ω·ω 曲轴匀速,Pr不变,方向瞬变,主轴颈中心指向曲 柄销中心;在活塞上、下止点时,Pr与气缸中心线 重合。
返回
‹#› 9
四、气体力与往复运动惯性力的合力 都沿气缸中心线方向,都作用在活塞组上,可合成分析 效果。 ∑P=Pg+Pj
传到主轴承,主轴颈载荷,产生垂向及横向振动。
在进气初期和排气后期,∑P朝上止点方向,其它时期∑P 朝下止点方向。 合力朝下时的载荷值大,作用时间长,最大值在燃烧上 止点后爆发压力点处。 ⑴法向力Pra使曲柄销弯曲,曲柄臂有撑开趋向,引起 曲轴弯曲振动;
第二章_曲柄连杆机构受力分析(冲突_WIN-20160317ZJK_2013-05-1322-46-38)
19
3、旋转惯性力
旋转惯性力:
Fr mr r 2
单位活塞面积旋转惯性力:
fr mrr 2 /(D2 / 4)
2019/11/25
内燃机设计
20
三、单缸转矩
• 可以将 Fg和 Fj 合成为F ,单缸转矩可计算为:
T Ftr Fr sin( ) / cos
2019/11/25
第二章 曲柄连杆机构受力分析
• 第一节 曲柄连杆机构运动学 • 第二节 曲柄连杆机构受力分析 • 第三节 内燃机的转矩波动与飞轮设计
2019/11/25
内燃机设计
1
第一节 曲柄连杆机构运动学
2019/11/25
内燃机设计
2
曲柄连杆机构运动学
2019/11/25
内燃机设计
3
曲柄连杆机构运动学
– 内燃机曲柄连杆机构的分类和特性参数
e
l
r e
(1)中心曲柄连杆机构 (2)偏心曲柄连杆机构
(3)关节曲柄连杆机构
2019/11/25
内燃机设计
5
2、特性参数
• 曲柄半径:r • 连杆长度:l
• 曲柄连杆比: r / l
• 偏心距:e
• 偏心率: e / r
l
r
2019/11/25
内燃机设计
6
二、中心曲柄连杆机构运动学
E
2 1
(T
T
m)d
I0 2
(2 maxFra bibliotek
2 m
in
)
式中,E称为盈亏功。令:E E
E 1.2 105 Pe / n ,为一个工作循环的有效功。
汽车构造(上册)——第2章曲柄连杆机构
• (2)装配: • 1)销与销座孔在冷态时为过渡配合,采用分组选配
法。
• 2) 热装合:将活塞放入热水或热油中加热后,迅 速将销装入。
2.半浮式
❖ (1)定义:销与销座孔和连杆小头两处,一处固定,一 处浮动。(一般固定连杆小头)
❖ (2)装配:加热连杆小头后,将销装入,冷态时为过盈 配合。
❖ 3.组成:
❖
由钢背和减磨层组成。钢背由1mm~3mm的低碳
钢制成。减磨层为0.3mm~0.7mm的减磨合金,层质较
软能保护轴颈。
• 1)铝锑镁合金和低锡铝合金: • 械性能好,负载能力强,但其减磨性能差。 • 主要用于柴油机。
• 2)高锡铝合金:
•
具有较好的机械性能和减磨性能,广泛应用于
柴油机和汽油机。
• (2) V型式:它缩短了发动机的长度和 高度,多用于八缸以上的发动机。
• (3)对置式:是V型的特殊形式。
3、曲轴箱的型式
• (1) 平分式
• 定义:主轴承座孔中心线位于曲轴 箱分开面上。
• 特点:刚度小,前后端呈半圆形, 与油底壳接合面的密封较困难。
• 应用:中小型发动机。
• (2) 龙门式 • 定义:主轴承座孔中心线高于曲轴箱分开面。 • 特点:刚度较大,油底壳前后端为一平面,密封简单可靠
P1
F Pj
第二密封面
• (3)气环的第二次密封:窜入背隙和侧隙的气体,使 环对缸壁和环槽进一步压紧,加强了第一、二密封面 的密封。
5.气环的断面形状
• (1) 矩形环:结构简单 ,与缸壁接触面积大,散热 好,但易泵油。
• (2) 锥形环
•
1)特点:与缸壁线接触,有利于密封和磨合。下行有刮 油作用,上行有布油作用,并可形成楔形油膜。 • 2) 安装注意: • 锥角朝下(在环端有向上或TOP等标记); • 锥形环传热性差,常装到第二、三道环槽上。
第二章曲柄连杆机构机械原理
发动机 构造与
原理
第二章 曲柄连杆机构 气环的泵油作用演示
发动机 构造与
原理
第二章 曲柄连杆机构
活塞环泵油作用的危害及措施
危害: ➢ 增加了润滑油的消耗; ➢ 火花塞沾油不跳火; ➢ 燃烧室积碳增多,燃烧性能变坏; ➢ 环槽内形成积碳,挤压活塞环而失去密封性; ➢ 加剧了气缸的磨损。
1、机体组 2、活塞连杆组 3、曲轴飞轮组
发动机 构造与
原理
第二章 曲柄连杆机构
§2.2曲柄连杆机构的受力及运动分析
一、运动分析 活塞组、连杆小头:上下往复运动; 连杆大头、杆身、连杆盖:主要做左右摆动,同时伴有上下
往复运动; 曲轴、飞轮:主要做旋转运动。 以上各零部件均是做变速运动、周期性的。
发动机 构造与
(2) 活塞自上而下膨胀量由大而小。因温度上高下低, 壁上厚下薄;
(3) 裙部周向近似椭圆形变化,长轴沿销座孔轴线方 向。因销座处金属量多而膨胀量大,以及侧压力作用 的结果。
发动机 构造与
原理
第二章 曲柄连杆机构 防止变形的措施
(1) 活塞纵断面制成上小下大的截锥形。
(2) 活塞横断面制成椭圆形,长轴垂直于销座孔轴线 方向,即侧压力方向。
其型式有 全裙式:裙部为一薄壁圆筒。 拖板式:将非承压面的裙部全部去掉。
发动机 构造与
原理
第二章 曲柄连杆机构
活塞裙部变形
发动机 构造与
原理
活塞的第变二形章及采取曲的柄相连应杆措机施构
变形原因:热膨胀、侧压力和气体压力。
变形规律:
第二章曲柄连杆机构
(二)往复惯性力和离心惯性力
曲柄连杆机构运动速度的大小方向不断变化,产生惯性力,分为: (1)往复惯性力:大小:Pj=m×a;方向:与a 相反
上止点 0
a Pj Vmax
下止点 0 a Pj
上止点 0
a Pj
Vmax
下止点 0
a Pj
(二)离心惯性力
定义:曲柄、连杆轴颈、连杆大头等围绕曲轴轴线作圆周运动的力
采取措施。
刚度、强度——采用不同的曲轴箱型式。 冷却——水套或散热器
耐磨损、耐高温、耐腐蚀——材料,气缸体采用优质灰铸体,为提高气 缸的耐磨性、加入少量合金元素:铬、磷
二、油底壳(曲轴箱) 功用:储存和冷却机油并封闭曲轴箱。 构造特点:1、设放油塞;2、设挡油板;3、薄钢板冲压而成,4、软木衬垫 。
(4)间隙
活塞安装时 留有端隙、 侧隙、背隙
Δ1—端隙(开口间隙) Δ2—侧隙(边隙) Δ3—背隙
(1)气环 作用:保证气缸与活塞间得密封性, 防止漏气,并把活塞顶部吸收得大 部分热量传给气缸壁,再由冷却水 将其带走。
气环
切口
(二)气环
气环漏气通道: a. 环面与气缸壁间;b. 环与 环槽侧面间 c. 开口端隙处。
(三)缸套得密封
涨封式: 1.密封槽开在缸套上 压封式: 2.密封槽开在缸体上
优缺点:
1. 平分式:便于机械加工,制造方便,但刚度小,多用于中小型发动机 2. 龙门式:结构刚度较大,但工艺性较差。多用中型发动机 3. 隧道式:结构刚度最大、主轴承同轴度易保证,多用于机械负荷大的大
型发动机
为满足气缸工作条件、要求,可以从结构、加工精度、材料等方面
环与环槽得侧面密封压紧力由气体 压力P1、活塞环惯性力Pj、和摩擦力F 三个沿气缸轴线方向力决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)关节曲柄连杆机构
2020/3/17
内燃机设计
5
2、特性参数
• 曲柄半径:r • 连杆长度:l
• 曲柄连杆比: r / l
• 偏心距:e
• 偏心率: e / r
l
r
2020/3/17
内燃机设计
6
二、中心曲柄连杆机构运动学
• 在中心曲柄连杆机构中,活塞作直线往复 运动,连杆作平面运动,曲柄作旋转运动, 且假定其作等速转动。
2020/3/17
内燃机设计
30
3、往复惯性力
Fj mja mjr2 (cos cos2)
• 单位活塞投影面积的往复惯性力:
f j Fj /(D2 / 4) f0(cos cos2)
f0 mjr2 /(D2 / 4)
往复惯性力在曲柄连杆机构中的传递情况与 气体作用力很相似,但它不能在内燃机内部 自行抵消,所以会引起支反力:
* /(r ) sin ( / 2) sin 2 (1 2 sin2 )1/2 a* a /(r 2 ) cos [cos 2 (1 2 sin2 ) (2 / 4) sin2 2 ](1 2 sin2 )3/2
T 0,1 0
T 1,2 T1()
T 2,3 T 1,2 T1( 240 0 ) T 3,4 T 2,3 T1( 480 0 ) T 4,5 T 3,4 T1( 120 0 ) T 5,6 T 4,5 T1( 600 0 ) T 6,7 T 5,6 T1( 360 0 )
2 cos2 (sin )2}[1 2 (sin )2 ]3/2
2020/3/17
内燃机设计
12
偏心曲柄连杆机构运动特点
• 活塞从上止点到下止点曲柄转过的角度大于 180度;
• 活塞从下止点到上止点曲柄转过的角度小于 180度;
• 活塞行程大于2倍曲柄半径; • 偏心量不大时,可用中心曲柄连杆机构运动
2020/3/17
内燃机设计
31
往复惯性力引起的支反力
R j Fj / 2 Tkj / b
F
P Fj
2020/3/17
Rj
内燃机设计
Fr Rj
32
三、单缸转矩
• 可以将 Fg和 Fj 合成为F ,单缸转矩可计算为:
T Ftr Fr sin( ) / cos
2020/3/17
x* [(1 1 / )2 ]2 1/2 cos [1 2 (sin )2 ]1/2 /
* sin cos (sin )[1 2 (sin )2 ]1/2
a* cos {(cos 2 sin )[1 2 (sin )2 ]
2020/3/17
内燃机设计
36
各连杆轴颈所受转矩
• 根据转矩向后传递的原 则,某连杆轴颈所受的 转矩应该是前一个主轴 颈上的累积转矩与作用 在本曲柄销上的切向力 所引起单缸转矩的一半 (因为切向力由本拐两 端的主轴承各承担一半, 只有前端支反力对本拐 曲柄销有转矩作用。
Tqi
T i1,i
内燃机设计
20
曲柄连杆机构受力
P
F
Fj
Fr
2020/3/17
内燃机设计
21
曲柄连杆机构受力分析
2020/3/17
内燃机设计
22
曲柄连杆机构受力分析
2020/3/17
内燃机设计
23
一、气体作用力
• 作用在活塞顶上的气体力就是内燃机的示功 图,示功图可通过工作过程模拟计算(对新 设计内燃机)或试验方法(对现有内燃机) 确定。
• γ:V型夹角;
• γf:关节夹角;
• 其他同中心曲 柄连杆机构, 副连杆相应参 数带有下标f。
H
γ
γf
φ
H
φf
2020/3/17
内燃机设计
16
主副连杆运动曲线
2020/3/17
内燃机设计
17
活塞运动规律分析与用途
• 1、简谐运动规律:活塞运动可以用简谐函 数表达,可表示为一阶分量和二阶分量;一 阶分量与曲轴同步,二阶分量比曲轴速度快 一倍。
• ①所有当量质量之和等于连杆组总质量ml。 • ②所有当量质量构成的系统的公共质心与连杆组
的质心重合,并按此质心的运动规律运动。
• ③所有当量质量相对通过连杆组质心的轴线的转 动惯量之和,等于连杆组对同一轴线的转动惯量。
2020/3/17
内燃机设计
28
连杆质量换算
• 往往用小头、大头和质心处的三个质量m1、 m2、m3来代替连杆组。实际高速机计算表明, m3与m1、m2相比很小,所以一般简化为两 质量系统。由前两个条件得:
• 1、活塞运动规律
• 设x为活塞位移(上止点位置为起点),v 为活塞速度,a为活塞加速度,为曲柄转角, β为连杆摆角。则
x r l r cos l cos
sin sin
2020/3/17
内燃机设计
7
活塞运动规律
• 整理以上两式后得 x r[(1 1/ ) cos (1 2 sin2 )1/2 / ]
本章主要内容
曲柄连杆机构运动学
曲柄连杆机构受力分析
内燃机的转矩波动与飞轮设计
2020/3/17
内燃机设计
1
曲柄连杆机构运动学
2020/3/17
内燃机设计
2
曲柄连杆机构运动学
2020/3/17
内燃机设计
3
曲柄连杆机构运动学
– 内燃机曲柄连杆机构的分类和特性参数
• 1、内燃机曲柄连杆机构分类
x * 为0.2%
* 为0.5%
a * 为1%
2020/3/17
内燃机设计
9
λ≤1/4时活塞运动曲线
2020/3/17
内燃机设计
10
λ>1/4时活塞运动曲线
2020/3/17
内燃机设计
11
三、偏心曲柄连杆机构运动学
• 一般来说,当偏心率ε>0.1时,其运动情况与 中心机构差别较大,需专门处理。其运动学 特征表现为S>2r,且上、下止点的曲柄转角 位置不在特殊位置(0或180度曲轴转角)。 其无量纲运动公式为:
• (1)中心曲柄连杆机构
• (2)偏心曲柄连杆机构。目的在于减小 膨胀行程活塞对气缸的作用力,或在于减 轻上止点附近活塞对气缸的拍击。
• (3)关节曲柄连杆机构。用于少数双列 式V型及全部三列W型、四列X型和多列 星型内燃机中
2020/3/17
内燃机设计
4
各种曲柄连杆机构
e
l
r e
(1)中心曲柄连杆机构 (2)偏心曲柄连杆机构
• 则这时其它缸的转矩为:
T 2 T1( 240 0 ) T 3 T1( 480 0 )
T 4 T1( 120 0 ) T 5 T1( 600 0 ) T 6 T1( 360 0 )
2020/3/17
内燃机设计
35
各主轴颈所受转矩
• 求某一主轴颈的转 矩,只要把从第一 拐起到该主轴颈前 一拐的各单缸转矩 叠加起来即可。即 遵循各缸转矩向后 传递的原则。
内燃机设计
33
四、多缸机转矩
• 以六缸四冲程发动机(1-5-3-6-2-4-1)为例
1 --- 5 --- 3 --- 6 --- 2 --- 4 --- 1
120
240
360 480
600
720
1,6
2020/3/17
5,2
内燃机设计
3,4
34
四、多缸机转矩
第一缸转矩为: T1 Ftr Fr sin( ) / cos T1()
m1=ml(l-l’)/l; m2=mll’/l • 所以,曲柄连杆机构的往复质量为
•
m j m p m1
• 旋转质量为
m2
m1
l’
mr mc m2
l
2020/3/17
内燃机设计
29
2、旋转惯性力
旋转惯性力:
Fr mr r 2
单位活塞面积旋转惯性力:
fr mrr 2 /(D2 / 4)
2020/3/17
内燃机设计
19
曲柄连杆机构受力分析
• 作用在内燃机曲柄连杆机构中的力有缸内气 体作用力、运动质量惯性力、摩擦力、支承 反力和有效负荷等。一般受力分析时忽略摩 擦力使受力分析偏于安全。所以,在内燃机 曲柄连杆机构中,气体作用力、惯性力与支 承反力、有效负荷相平衡。
2020/3/17
• 2、活塞运动规律的用途: • (1)活塞位移用于示功图(p-φ与p-v)的
转换、气门干涉的校验及动力计算;
• (2)活塞速度用于评价气缸的磨损程度; • (3)活塞加速度用于计算往复惯性力。
2020/3/17
内燃机设计
18
本讲主要内容
曲柄连杆机构运动学
曲柄连杆机构受力分析
内燃机的转矩波动与飞轮设计
38
1、曲柄销负荷图
• 作用在曲柄销上的载荷 Fcp,除了法向力 Fn 和切向力 Ft 外,还有连杆大头的旋转质量 m2产生的离心力 F(rl 常矢量)。
Fcp Frl Fn Ft Fn
Frl
Ft
Fcp
2020/3/17
内燃机设计
39
1、曲柄销负荷图
作用在曲柄销上的载 荷 Fcp,除了法向力 Fn 和 切向力 Ft 外,还有连杆 大头的旋转质量m2产生 的离心力 F(rl 常矢量)。