信号与线性系统分析_(第四版)习题答案

合集下载

信号与线性系统分析-(吴大正-第四版)第三章习题答案

信号与线性系统分析-(吴大正-第四版)第三章习题答案

第三章习题3.1、试求序列k01(k)=2f ⎧⎪⎛⎫⎨ ⎪⎪⎝⎭⎩, 的差分(k)f ∆、(k)f ∇和i=-(i)kf ∞∑。

3.6、求下列差分方程所描述的LTI 离散系统的零输入相应、零状态响应和全响应。

1)()-2(-1)(),()2(),(-1)-1y k y k f k f k k y ε===3)()2(-1)(),()(34)(),(-1)-1y k y k f k f k k k y ε+==+= 5)1()2(-1)(-2)(),()3()(),(-1)3,(-2)-52k y k y k y k f k f k k y y ε++====3.8、求下列差分方程所描述的离散系统的单位序列响应。

2)()-(-2)()=y k y k f k5)()-4(-1)8(-2)()+=y k y k y k f k3.9、求图所示各系统的单位序列响应。

(a)(c)3.10、求图所示系统的单位序列响应。

3.11、各序列的图形如图所示,求下列卷积和。

(1)12()()f k f k *(2)23()()f k f k *(3)34()()f k f k *(4)[]213()-()()f k f k f k *3.13、求题3.9图所示各系统的阶跃响应。

3.14、求图所示系统的单位序列响应和阶跃响应。

3.15、若LTI 离散系统的阶跃响应()()()0.5k g k k ε=,求其单位序列响应。

3.16、如图所示系统,试求当激励分别为(1)()()f k k ε= (2)()()0.5()kf k k ε=时的零状态响应。

3.18、如图所示的离散系统由两个子系统级联组成,已知()1=2cos4k h k π,()()2=k h k k a ε,激励()()()=--1f k k a k δδ,求该系统的零状态响应()zs k y 。

(提示:利用卷积和的结合律和交换律,可以简化运算。

)3.22、如图所示的复合系统有三个子系统组成,它们的单位序列响应分别为()()1=h k k ε,()()2=-5h k k ε,求复合系统的单位序列响应。

吴大正《信号与线性系统分析》(第4版)配套模拟试题及详解(一)【圣才出品】

吴大正《信号与线性系统分析》(第4版)配套模拟试题及详解(一)【圣才出品】

4 / 13
圣才电子书 十万种考研考证电子书、题库视频学习平台

4.线性时不变系统,无初始储能,当激励 e1(t)=ε(t)时,响应 r1(t)=e-3tε(t)
当激励 e2(t)=δ(t)时,其响应 r2(t)= 。 【答案】δ(t)-3e-3tε(t)
【解析】线性时不变系统的微分特性,若系统在激励 e( t ) 作用下产生响应 r( t ) ,则当
二、填空题(本大题共 9 个空,每空 5 分共 45 分)不写解答过程,写出每小题空格内 的正确答案。
1.计算下列各式:
3 / 13
圣才电子书

(1)
十万种考研考证电子书、题库视频学习平台

(2)

【答案】(1)原式= 4 sin 6
t
6
d
2
t
6

(2)原式= 4 sin 6
极点必在单位圆内。
三、画图题(本大题共 2 小题,每题 6 分共 12 分)按各小题的要求计算、画图和回答
问题。
1.已知 f(t)波形如图 2 所示,试画出
的波形。
图2
答:翻转:先将 f(t)的图形翻转,成为 f(-t);
移位:再将图形向右平移 2,成为 f(-t+2);
扩展:然后波形扩展为原来的 3 倍,成为
A.δ>某一正数 B.δ<某一负数
2 / 13
圣才电子书

C.δ<某一正数
十万种考研考证电子书、题库视频学习平台
D.δ>某一负数
【答案】D
【解析】只有当收敛域位于 s 平面的左半平面时,对应的原始信号为衰减信号,它的傅
里叶变换存在,且能令拉氏变换中的 s j 来求傅里叶变换。所以,δ>某一负数,

信号与线性系统分析 (吴大正 第四版)第七章习题答案

信号与线性系统分析 (吴大正 第四版)第七章习题答案

7.3 如图7-5的RC 带通滤波电路,求其电压比函数)()()(12s U s U s H 及其零、极点。

7.7 连续系统a 和b ,其系统函数)(s H 的零点、极点分布如图7-12所示,且已知当∞→s 时,1)(=∞H 。

(1)求出系统函数)(s H 的表达式。

(2)写出幅频响应)(ωj H 的表达式。

7.10 图7-17所示电路的输入阻抗函数)()()(11s I s U s Z =的零点在-2,极点在31j ±-,且21)0(=Z ,求R 、L 、C 的值。

7.14 如图7-27所示的离散系统,已知其系统函数的零点在2,极点在-0.6,求各系数a,b。

7.18 图7-29所示连续系统的系数如下,判断该系统是否稳定。

(1)3,210==a a ; (2)3,210-=-=a a ; (3)3,210-==a a 。

7.19 图7-30所示离散系统的系数如下,判断该系统是否稳定。

(1)1,2110-==a a ; (2)1,2110==a a ;(3)1,2110=-=a a 。

7.20 图7-31所示为反馈系统,已知44)(2++=s s ss G ,K 为常数。

为使系统稳定,试确定K 值的范围。

7.26 已知某离散系统的差分方程为)1()2()1(5.1)(-=---+k f k y k y k y(1) 若该系统为因果系统,求系统的单位序列响应h(k)。

(2) 若该系统为稳定系统,求系统的单位序列响应h(k),并计算输入)()5.0()(k k f k ε-=时的零状态响应)(k y zs 。

7.28 求图7-36所示连续系统的系统函数)(sH。

7.30 画出图7-40所示的信号流图,求出其系统函数)(sH。

解(a)由s域系统框图可得系统的信号流图如图7-41(a)。

流图中有一个回路。

其增益为(b)由s 域系统框图可得系统的信号流图如图7-41(b)。

流图中有一个回路。

信号与线性系统分析习题答案

信号与线性系统分析习题答案

信号与线性系统课后答案第一章 信号与系统(一)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))t fε=(sin)(t(5))t f=r)(t(sin(7))(t f kε2)(k=(10))(])1k(kf kε()1[=-+1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

信号与线性系统分析 (吴大正 第四版)第七章习题答案

信号与线性系统分析 (吴大正 第四版)第七章习题答案

7.3 如图7-5的RC 带通滤波电路,求其电压比函数)()()(12s U s U s H 及其零、极点。

7.7 连续系统a 和b ,其系统函数)(s H 的零点、极点分布如图7-12所示,且已知当∞→s 时,1)(=∞H 。

(1)求出系统函数)(s H 的表达式。

(2)写出幅频响应)(ωj H 的表达式。

7.10 图7-17所示电路的输入阻抗函数)()()(11s I s U s Z =的零点在-2,极点在31j ±-,且21)0(=Z ,求R 、L 、C 的值。

7.14 如图7-27所示的离散系统,已知其系统函数的零点在2,极点在-0.6,求各系数a,b。

7.18 图7-29所示连续系统的系数如下,判断该系统是否稳定。

(1)3,210==a a ; (2)3,210-=-=a a ; (3)3,210-==a a 。

7.19 图7-30所示离散系统的系数如下,判断该系统是否稳定。

(1)1,2110-==a a ; (2)1,2110==a a ;(3)1,2110=-=a a 。

7.20 图7-31所示为反馈系统,已知44)(2++=s s ss G ,K 为常数。

为使系统稳定,试确定K 值的范围。

7.26 已知某离散系统的差分方程为)1()2()1(5.1)(-=---+k f k y k y k y(1) 若该系统为因果系统,求系统的单位序列响应h(k)。

(2) 若该系统为稳定系统,求系统的单位序列响应h(k),并计算输入)()5.0()(k k f k ε-=时的零状态响应)(k y zs 。

7.28 求图7-36所示连续系统的系统函数)(sH。

7.30 画出图7-40所示的信号流图,求出其系统函数)(sH。

解(a)由s域系统框图可得系统的信号流图如图7-41(a)。

流图中有一个回路。

其增益为(b)由s 域系统框图可得系统的信号流图如图7-41(b)。

流图中有一个回路。

信号与线性系统分析习题答案

信号与线性系统分析习题答案

1 / 257信号与线性系统课后答案第一章 信号与系统(一)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))fε=t(t(sin)(5))tf=(sinr(t)2 / 257(7))tf kε(k=(2)(10))f kεk-=(k+]()1()1[3 / 2574 / 2571-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε5 / 2576 / 257(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε7 / 2571-3 写出图1-3所示各波形的表达式。

8 / 2571-4 写出图1-4所示各序列的闭合形式表达式。

(NEW)吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解

(NEW)吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解

目 录第1章 信号与系统1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 连续系统的时域分析2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 离散系统的时域分析3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 傅里叶变换和系统的频域分析4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 连续系统的s域分析5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 离散系统的z域分析6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 系统函数7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 系统的状态变量分析8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第1章 信号与系统1.1 复习笔记一、信号的基本概念与分类信号是载有信息的随时间变化的物理量或物理现象,其图像为信号的波形。

根据信号的不同特性,可对信号进行不同的分类:确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;实信号与复信号;能量信号与功率信号等。

二、信号的基本运算1加法和乘法f1(t)±f2(t)或f1(t)×f2(t)两信号f1(·)和f2(·)的相加、减、乘指同一时刻两信号之值对应相加、减、乘。

2.反转和平移(1)反转f(-t)f(-t)波形为f(t)波形以t=0为轴反转。

图1-1(2)平移f(t+t0)t0>0,f(t+t0)为f(t)波形在t轴上左移t0;t0<0,f(t+t0)为f(t)波形在t轴上右移t0。

图1-2平移的应用:在雷达系统中,雷达接收到的目标回波信号比发射信号延迟了时间t0,利用该延迟时间t0可以计算出目标与雷达之间的距离。

这里雷达接收到的目标回波信号就是延时信号。

3.尺度变换f(at)若a>1,则f(at)波形为f(t)的波形在时间轴上压缩为原来的;若0<a<1,则f(at)波形为f(t)的波形在时间轴上扩展为原来的;若a<0,则f(at)波形为f(t)的波形反转并压缩或展宽至。

《信号与系统(第四版)》习题详解图文

《信号与系统(第四版)》习题详解图文

故f(t)与{c0, c1, …, cN}一一对应。
7
3.3 设
第3章 连续信号与系统的频域分析
试问函数组{ξ1(t),ξ2(t),ξ3(t),ξ4(t)}在(0,4)区间上是否 为正交函数组,是否为归一化正交函数组,是否为完备正交函 数组,并用它们的线性组合精确地表示题图 3.2 所示函数f(t)。
题图 3.10
51
第3章 连续信号与系统的频域分析 52
第3章 连续信号与系统的频域分析 53
第3章 连续信号与系统的频域分析 54
第3章 连续信号与系统的频域分析 55
第3章 连续信号与系统的频域分析 56
第3章 连续信号与系统的频域分析 57
第3章 连续信号与系统的频域分析
题解图 3.19-1
8
第3章 连续信号与系统的频域分析
题图 3.2
9
第3章 连续信号与系统的频域分析
解 据ξi(t)的定义式可知ξ1(t)、ξ2(t)、ξ3(t)、ξ4(t)的波形如题 解图3.3-1所示。
题解图 3.3-1
10
不难得到:
第3章 连续信号与系统的频域分析
可知在(0,4)区间ξi(t)为归一化正交函数集,从而有
激励信号为f(t)。试证明系统的响应y(t)=-f(t)。
69
证 因为
第3章 连续信号与系统的频域分析
所以

70
系统函数
第3章 连续信号与系统的频域分析

因此
71
第3章 连续信号与系统的频域分析
3.23 设f(t)的傅里叶变换为F(jω),且 试在K≥ωm条件下化简下式:
72
第3章 连续信号与系统的频域分析 73
107
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档