《圆周角与圆心角的关系》教学设计详案
圆周角和圆心角的关系教案
圆周角和圆心角的关系教案教案:圆周角和圆心角的关系教学目标:1.理解圆周角和圆心角的定义;2.掌握圆周角和圆心角的关系;3.运用所学知识解决实际问题。
教学准备:1.教材:《数学必修二》;2.教具:投影仪、计算器。
教学过程:Step 1:导入新知1.讲解圆周角和圆心角的概念。
圆周角:圆上的两条弧所对的角叫做圆周角。
圆心角:由圆心射出的两条弧所对的角叫做圆心角。
2.提问学生:“在圆上,两条弧所对的角是否相等?”3.引导学生发现,根据圆周角的定义,圆周角的度数等于弧所对的圆心角的一半。
Step 2:讲解圆周角和圆心角的关系1.通过投影仪展示有关圆周角和圆心角的图形,并示范解题方法。
2.教师讲解定理:“在同一个圆或等圆中,所对圆心角相等的圆周角也相等;所对圆周角相等的圆心角也相等。
”Step 3:练习1.完成教材《数学必修二》的相关习题。
2.制定小组练习题,提高学生之间的合作学习能力。
Step 4:运用1.学生进行一些实际问题的解答,如“一个园丁想在花园中心种一圈花,他决定每两株花之间的夹角是圆心角45°,他一共要种多少株花?”引导学生运用圆周角和圆心角的关系解题。
2.学生自主完成其他实际问题的解答。
Step 5:总结1.归纳总结圆周角和圆心角的关系,明确圆周角等于所对圆心角的一半。
2.提问巩固所学内容。
教学扩展:1.学生之间进行小组竞赛,比赛谁能最快解出题目中的圆周角和圆心角的关系。
2.学生利用计算器综合运用所学知识解决实际问题。
圆周角和圆心角的关系教学设计
问题3:回归足球场问题,甲、乙、丙三位同学的位置供你选择,你认为在哪个位置射门更有利?
几何画板验证:
1.先采用《几何画板》的度量功能,量出∠AOB、∠ACB、∠ADB和∠AEB,发现:∠AOB最大,∠ACB=∠ADB=∠AEB,
2.采用计算机功能,计算∠ACB和∠AOB的比值,发现:∠ACB:∠AOB=1:2
让学生自由发挥,相互交流
复习上节内容为本节做铺垫
以学生熟悉的足球射门游戏为背景(PPT展示),在实物场景中,抽象出几何图形以境生问,以问激趣,导入新课
新
知
学
习
1.圆周角的定义的学习
问题1:
将圆心角顶点向上移,
直至与⊙O相交于点C?观察得到的∠ACB有什么特征?(课件展示)
(师板书圆周角定义,并强调定义的两个要点)
经历圆周角定理的探索、证明、应用的过程,养成自主探究、合作交流的学习习惯,体会类比、分类的数学思想方法
(3)情感态度与价值观
让学生在主动探索、合作交流的过程,获得成功的愉悦,体验实现价值后的快乐,锻炼锲而不舍的意志
四、教学环境
√□简易多媒体教学环境□交互式多媒体教学环境□网络多媒体环境教学环境□移动学习□其他
难点:圆周角定理的证明中采用的分类思想及由“特殊到一般”的数学思想方法
二、学生分析
(一)学习条件和起点能力分析:
1、学习条件分析
(1)必要条件:学生已经学习圆心角、弧、弦之间关系,研究了圆的对称性,掌握了三角形外角定理。
(2)支持性条件:在三角形的学习中,学生已经累了一定的探究活动经验,掌握了一定的探究及理论证明方法,具备了一定的推理能力和分类讨论、化归等能力。
本节课的内容是在学生已经学习圆心角、弧、弦之间关系的基础上进行研究的,通过本节课的学习,进一步巩固了圆心角有关知识,也为今后学习圆的有关性质打下坚实的基础。通过本节课的学习,学生体会由特殊到一般、分类、化归思想、并能熟练地应用“圆周角与圆心角的关系”进行论证和计算。因此,确定本节课的重难点
圆周角和圆心角的关系优秀教案
圆周角和圆心角的关系【课时安排】2课时【第一课时】【教学目标】一、教学知识点。
(一)了解圆周角的概念。
(二)理解圆周角定理的证明。
二、能力训练要求。
经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想。
三、情感与价值观要求。
通过观察、猜想、验证推理,培养学生探索数学问题的能力和方法。
【教学重点】圆周角概念及圆周角定理。
【教学难点】认识圆周角定理需分三种情况证明的必要性。
【教学方法】指导探索法。
【教学过程】一、创设问题情境,引入新课。
[师]前面我们学习了与圆有关的哪种角?它有什么特点?请同学们画一个圆心角。
[生]学习了圆心角,它的顶点在圆心。
[师]圆心是圆中一个特殊的点,当角的顶点在圆心时,就有圆心角。
这样角与圆两种不同的图形产生了联系,在圆中还有比较特殊的点吗?如果有,把这样的点作为角的顶点,会是怎样的图形?二、讲授新课。
(一)圆周角的概念。
[师]同学们请观察下面的图(1)。
这是一个射门游戏,球员射中球门的难易与他所处的位置B对球门AC的张角(∠ABC)有关。
[师]图中的∠ABC,顶点在什么位置?角的两边有什么特点?[生]∠ABC的顶点B在圆上,它的两边分别和圆有另一个交点。
(通过学生观察,类比得到定义。
)圆周角(angle in a circular segment)定义:顶点在圆上,并且角的两边和圆相交的角。
[师]请同学们考虑两个问题:1.顶点在圆上的角是圆周角吗?2.圆和角的两边都相交的角是圆周角吗?请同学们画图回答上述问题。
[师]通过画图,相互交流,讨论认清圆周角概念的本质特征,从而总结出圆周角的两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦。
(二)补充练习1判断下列图示中,各图形中的角是不是圆周角,并说明理由。
答:由圆周角的两个特征知,只有C是圆周角,而A、B、D、E都不是。
(三)研究圆周角和圆心角的关系。
[师]在图(1)中,当球员在B、D、E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC。
北师大版九年级数学下册:第三章 3.4.2《圆周角和圆心角的关系》精品教学设计
北师大版九年级数学下册:第三章 3.4.2《圆周角和圆心角的关系》精品教学设计一. 教材分析北师大版九年级数学下册第三章3.4.2《圆周角和圆心角的关系》是本章的重要内容。
本节内容通过探究圆周角和圆心角之间的关系,引入圆周角定理,进一步引导学生发现圆周角定理的实际应用,从而加深学生对圆的性质的理解。
教材通过丰富的例题和练习,帮助学生掌握圆周角定理,并能运用到实际问题中。
二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的基本概念和性质有所了解。
但是,对于圆周角和圆心角之间的关系,可能还存在一定的困惑。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索圆周角和圆心角的关系,从而得出结论。
三. 教学目标1.知识与技能:理解圆周角定理,能运用圆周角定理解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的观察能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:圆周角定理的得出和应用。
2.难点:圆周角定理的理解和运用。
五. 教学方法1.引导发现法:教师引导学生观察、操作、思考,发现圆周角和圆心角的关系。
2.合作交流法:学生分组讨论,分享探究成果,培养团队合作意识。
3.实践操作法:学生动手操作,加深对圆周角定理的理解。
六. 教学准备1.教学课件:制作圆周角和圆心角关系的课件,便于引导学生观察和思考。
2.教学素材:准备一些关于圆周角和圆心角的例题和练习题,用于巩固所学知识。
3.学生活动材料:准备一些圆形的纸片,让学生动手操作,探索圆周角和圆心角的关系。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾圆的基本性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示一些关于圆周角和圆心角的图片,引导学生观察和思考。
3.操练(10分钟)学生分组讨论,分享探究成果,教师引导学生得出圆周角定理。
北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1
北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1一. 教材分析北师大版数学九年级下册 3.4《圆周角和圆心角的关系》是本节课的主要内容。
通过本节课的学习,让学生理解圆周角和圆心角的关系,掌握圆周角定理,并能运用圆周角定理解决实际问题。
教材通过引入圆周角和圆心角的概念,引导学生探究它们之间的关系,从而发现圆周角定理。
二. 学情分析学生在学习本节课之前,已经学习了圆的基本概念,如圆的半径、直径等,对圆有一定的认识。
但学生对圆周角和圆心角的概念可能比较陌生,需要通过实例和探究活动来理解和掌握。
此外,学生需要具备一定的观察和推理能力,通过观察图形和逻辑推理来发现圆周角定理。
三. 教学目标1.知识与技能目标:让学生掌握圆周角定理,能运用圆周角定理解决实际问题。
2.过程与方法目标:通过观察、操作、推理等过程,培养学生的观察能力和推理能力。
3.情感态度与价值观目标:让学生体验数学学习的乐趣,培养学生的探究精神和合作意识。
四. 教学重难点1.教学重点:圆周角定理的掌握和运用。
2.教学难点:圆周角定理的证明和理解。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.问题驱动法:通过提出问题,引导学生观察、思考和推理,培养学生的问题解决能力。
3.合作学习法:引导学生分组讨论和合作,培养学生的团队合作意识和交流能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示圆周角和圆心角的图形和实例。
2.教学素材:准备一些相关的实例和习题,用于引导学生进行探究和练习。
3.教学工具:准备圆规、直尺等绘图工具,方便学生进行绘图和操作。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,如自行车轮子的转动、钟表的指针运动等,引导学生观察和思考这些现象与圆周角和圆心角的关系。
2.呈现(10分钟)呈现圆周角和圆心角的定义,引导学生理解它们的概念。
通过PPT展示一些实例,让学生观察和思考圆周角和圆心角之间的关系。
3.4.1圆周角和圆心角的关系(教案)
在今天的教学中,我发现学生们对圆周角和圆心角的关系这一部分内容兴趣浓厚,但也存在一些理解上的难点。首先,他们对圆周角和圆心角的定义掌握得相对较好,但在应用到具体问题时,还是会出现一些困惑。我意识到,这主要是因为他们在将理论知识转化为实际应用时,缺乏足够的练习和经验。
在讲授过程中,我尽量用生动的例子和直观的图形来解释这两个概念,但效果似乎并不如预期。我反思,可能需要更多的互动和实际操作,让学生在动手实践中感受圆周角和圆心角的关系。比如,可以设计一些更具挑战性的题目,让学生分组讨论,通过合作解决问题,加深对知识点的理解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角和圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
还有一个值得注意的问题是,在小组讨论过程中,部分学生表现出较强的依赖性,不够独立思考。针对这一问题,我将在后续教学中加强对学生的引导,培养他们独立思考的能力,鼓励他们大胆提出自己的观点和疑问。
三、教学难点与重点
1.教学重点
-理解并掌握圆周角和圆心角的定义:这是本节课的基础,要求学生能够明确圆周角和圆心角的含义,并能够正确画出相应的图形。
-掌握圆周角和圆心角的关系:学生需要理解在同圆或等圆中,相等的圆周角所对的圆心角相等,反之亦然。
-应用圆周角和圆心角的关系解决实际问题:学生应学会运用这一关系进行几何证明和计算,解决与圆相关的实际问题。
2.提高学生的逻辑推理能力:引导学生通过严密的逻辑推理证明圆周角和圆心角的关系,培养他们运用几何知识分析和解决问题的能力。
北师大版数学九年级下册3.4《圆周角和圆心角的关系》教学设计1
北师大版数学九年级下册3.4《圆周角和圆心角的关系》教学设计1一. 教材分析《圆周角和圆心角的关系》是北师大版数学九年级下册第3.4节的内容。
本节课主要通过探究圆周角和圆心角的关系,引导学生发现并证明圆周角定理。
教材通过生活中的实例引入,激发学生的兴趣,接着引导学生进行观察、思考、探究,从而发现圆周角和圆心角之间的关系。
教材内容丰富,既有理论探究,又有实际应用,有助于培养学生的数学思维能力和解决问题的能力。
二. 学情分析九年级的学生已经掌握了八年级的圆的相关知识,对圆的基本概念和性质有一定的了解。
但是,对于圆周角和圆心角的关系,他们可能还没有直观的认识。
因此,在教学过程中,教师需要通过生动的实例和形象的图示,帮助学生建立直观的认识,引导学生进行观察、思考和探究。
三. 教学目标1.理解圆周角定理,掌握圆周角和圆心角之间的关系。
2.能够运用圆周角定理解决实际问题。
3.培养学生的观察能力、思考能力和数学语言表达能力。
四. 教学重难点1.圆周角定理的证明。
2.圆周角定理在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生直观地认识圆周角和圆心角的关系。
2.探究教学法:引导学生观察、思考、探究,发现圆周角定理。
3.实践教学法:通过解决实际问题,巩固圆周角定理的应用。
六. 教学准备1.教学课件:制作课件,展示相关实例和图示。
2.教学素材:准备一些与圆周角和圆心角相关的实际问题。
3.板书设计:设计板书,突出圆周角定理的关键信息。
七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如自行车轮子的旋转,引导学生观察和思考圆周角和圆心角的关系。
让学生意识到圆周角和圆心角之间存在某种联系。
2.呈现(10分钟)教师展示一些几何图形,如圆、圆周角和圆心角,引导学生观察并思考它们之间的关系。
通过观察和思考,学生可以发现圆周角和圆心角之间的关系。
3.操练(10分钟)教师提出一些实际问题,如在自行车轮子旋转过程中,圆周角和圆心角的变化关系。
圆周角和圆心角的关系 教学设计
课 题 3.4圆周角和圆心角的关系 教学设计【学习目标】1、理解圆周角的概念,掌握圆周角的两个特征。
2、经历探索圆周角和圆心角的关系的过程。
3、理解并掌握圆周角的定理及推论,并能运用其进行简单的计算和证明。
4、在学习过程中体会分类、转化、归纳等数学思想方法。
【学习重难点】重点:理解圆周角的概念,掌握圆周角定理。
难点:圆周角定理的证明。
【学习方法】自主探究、合作交流 【学习课时】1课时【学习流程】 预 习 案【知识链接】点与圆的位置关系;圆心角、等弧的定义;圆心角、弧、弦之间的关系。
【教材助读】阅读课本P78—P80,自主完成下面问题,若不能解决与同伴交流。
【预习自测】1.圆周角的定义:顶点在 上,两边分别与圆 的角叫圆周角。
2. 圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的 。
3. 同弧或等弧所对的圆周角 。
4. 下列图形中的角是不是圆周角?是的划“√”,不是的划“×”。
( ) ( ) ( ) ( ) ( ) 5.如图,点A 、B 、C 、D 在⊙O 上,若∠BAC=40°,则(1)∠BOC= °,理由是 ; (2)∠BDC= °,理由是 。
探 究 案【导学释疑】请同学们考虑两个问题:(1)顶点在圆上的角是圆周角吗?(2)圆和角的两边都相交的角是圆周角吗? 【自主探究】 动手操作: 画一画:请同学们在⊙O 中上确定 一条劣弧AC ,画出这条弧所对的圆心角∠AOC 与圆周角∠ABC . 量一量:测量出所对的圆周角∠ABC 和圆心角∠AOC 的度数。
记录下测量的数据。
猜一猜:所对的圆周角∠ABC 和圆心角∠AOC 之间有什么关系?ODCBA第5题能证明你的结论吗.【合作探究】学习小组互相讨论、交流,寻找解题途径.想一想:一条弧所对的圆周角和圆心可能有几种位置关系?动手画一画。
证一证:如图,已知:⊙O 中,所对的圆周角是∠ABC,圆心角是∠AOC.求证:∠ABC=12 AOC.证明:(1)圆心O在∠ABC的一边上。
圆周角和圆心角的关系 (教学设计) 九年级数学下册(北师大版)
3.4.1圆周角和圆心角的关系教学设计学生喜闻乐见的足球射门的场景。
将实际图形抽象成几何图形,在球门前以球门AC为弦划了一个圆圈,进行无人防守的射门训练。
球员射中球门的难易与他所处的位置对球门AC的张角有关。
当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?两边都与圆相交.圆周角:顶点在圆上,两边都与圆相交的角。
练一练:判别下列各图形中的角是不是圆周角,并说明理由。
如图,∠AOB = 80°.̂所对的圆周角,这几个圆周(1)请你画出几个AB角有什么关系?与同伴进行交流.(2)这些圆周角与圆心角∠AOB的大小有什么关系?你是怎样发现的?与同伴进行交流.通过画图,我们知道:以圆上任意一点为顶点的圆周角有无数多个,但它们与圆心的位置关系只有三=OA OB∴∠AOC(2)第二种情况如果圆心不在圆周角的一边上时,结果会怎样?当圆心球门AC分别形成的圆周角∠ABC,∠ADC,∠AEC 这三个角的大小有什么关系?.圆上一条弧所对的圆周角能做出几个?它们之间有什么关系?如果把上面的同弧改成等弧,结论成立吗?教师总结概括圆周角定理推论:同弧或等弧所对的圆周角相等1.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()A.140°B.130°C.120°D.110°2.如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°3.已知△ABC的三个顶点在⊙O上,∠BAC=50°, ∠ABC=47°, 则∠AOB= .4.如图,△ABC的顶点A、B、C都在⊙O上,∠B=30 °,AC=2,则⊙O的半径是 .5.如图,在△ABC中,AB=AC,以AB为直径的圆交BC于D,交AC于E,(1)BD与CD的大小有什么关系?为什么?̂=DÊ.(2)求证:BD。
2024北师大版数学九年级下册3.4.2《圆周角和圆心角的关系》教学设计
2024北师大版数学九年级下册3.4.2《圆周角和圆心角的关系》教学设计一. 教材分析《圆周角和圆心角的关系》是北师大版数学九年级下册第3章《圆》的第4节内容。
本节课主要通过探究圆周角和圆心角的关系,引导学生发现圆周角定理,从而加深学生对圆的性质的理解。
教材通过生活中的实例,激发学生的学习兴趣,引导学生主动探究,培养学生的动手操作能力和逻辑思维能力。
二. 学情分析九年级的学生已经掌握了圆的基本性质和垂径定理,对几何图形的观察和分析能力有一定的基础。
但是,对于圆周角和圆心角的关系,学生可能初次接触,需要通过实例和动手操作来理解和掌握。
因此,在教学过程中,教师需要关注学生的认知基础,以引导为主,让学生在探究中掌握知识。
三. 教学目标1.知识与技能:理解圆周角定理,能运用圆周角定理解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的探究能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 教学重难点1.重点:圆周角定理的理解和运用。
2.难点:圆周角定理的证明和圆心角、圆周角、弦的关系的理解。
五. 教学方法1.引导探究法:教师引导学生观察、操作、猜想、验证,激发学生的思维。
2.小组合作法:学生分组讨论,培养团队协作能力。
3.实例分析法:通过生活中的实例,让学生理解圆周角定理的应用。
六. 教学准备1.教学课件:制作课件,展示圆周角和圆心角的图片和动画。
2.学具:为学生准备圆规、直尺、剪刀等学具,方便学生动手操作。
3.实例:收集生活中的圆周角和圆心角的实例,用于课堂讲解。
七. 教学过程1.导入(5分钟)利用课件展示圆周角和圆心角的图片,引导学生关注圆周角和圆心角的关系。
提问:你们观察过这些图片,发现有什么特点吗?2.呈现(10分钟)教师简要介绍圆周角定理,让学生尝试理解圆周角定理的含义。
提问:你们能用自己的语言解释一下圆周角定理吗?3.操练(10分钟)学生分组讨论,利用学具进行动手操作,验证圆周角定理。
北师大版数学九年级下册《圆周角和圆心角的关系》教学设计1
北师大版数学九年级下册《圆周角和圆心角的关系》教学设计1一. 教材分析《圆周角和圆心角的关系》是北师大版数学九年级下册第20章“圆”的一部分。
本节课主要内容是探究圆周角和圆心角之间的关系,理解并掌握圆周角定理。
通过本节课的学习,学生能够进一步理解圆的性质,为后续学习圆的其他性质和应用打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积的计算方法,以及一些简单的圆的性质。
但是,对于圆周角和圆心角的关系,学生可能还没有直观的认识,需要通过实例和推理来逐步建立概念。
三. 教学目标1.了解圆周角定理,理解圆周角和圆心角之间的关系。
2.能够运用圆周角定理解决一些实际问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.圆周角定理的推导和理解。
2.圆周角定理在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生观察、思考和推理。
2.运用多媒体辅助教学,展示实例和动画,帮助学生直观地理解圆周角和圆心角的关系。
3.学生进行小组讨论和交流,促进学生之间的合作和思考。
4.通过练习和问题解决,巩固学生对圆周角定理的理解和应用。
六. 教学准备1.多媒体教学设备。
2.圆规、量角器等数学工具。
3.相关的图片和实例。
4.练习题和问题解决题。
七. 教学过程导入(5分钟)教师通过展示一些与圆相关的图片,如圆形的桌面、车轮等,引导学生观察和思考圆的性质。
然后提出问题:“你们认为圆周角和圆心角之间有什么关系呢?”让学生发表自己的观点和想法。
呈现(10分钟)教师通过多媒体展示圆周角定理的推导过程。
首先,画出一个圆和一条弧,然后通过旋转这条弧,形成一个圆周角。
接着,画出圆心角,并通过几何推理说明圆周角和圆心角之间的关系。
最后,给出圆周角定理的表述:“圆周角等于它所对的圆心角的一半。
”操练(10分钟)教师学生进行小组讨论,让学生通过观察和推理来验证圆周角定理。
每个小组都可以通过画图和测量来寻找圆周角和圆心角之间的关系。
圆周角与圆心角的关系教学详案
圆周角与圆心角的关系教学详案教学设计一、课题:圆周角与圆心角的关系二、课型:新授课三、课时:一课时四、教学目标1、经历探索圆周角和圆心角的关系的过程2、理解圆周角的概念及其相关性质3、体会分类、转化、归纳等数学方法五、重点、难点重点:探索“圆周角与圆心角的关系”的过程,掌握圆周角定理并能灵活应用。
难点:圆心与圆周角的三种位置关系,用分类、归纳思想推理验证“圆周角与圆心角的关系”六、教学方法:指导探索法七、教学模式:“四边式”教学八、教学媒体;多媒体课件PPT九、教学过程复习旧知(2 分钟)师:学习这节课之前先回答屏幕上的问题如图1 , / AOB是____________________ 角。
如图2 ,弧AB=M CD ,则/ AOBW Z COD勺大小关系是:_____________________________【设计意图】通过具体习题引导学生回顾圆心角的定义以及在同圆或等圆中同弧所对的圆心角相等的知识来启发新知,符合学生认知的延续性。
本节教材中给出的引例是将实际问题抽象成数学问题,但我并没有采用它,是因为这个例子映射的是"同弧所对的圆周角相等"的知识点,直接拿出学生在认知上可能有障碍,我觉得这个例子放在最前面时并不太合适。
(一)边学(8-10分钟)师:首先我们明确本节课的教学目标1、经历探索圆周角和圆心角的关系的过程2、理解圆周角的概念及其相关性质3、体会分类、转化、归纳等数学方法生1:读教学目标生2:读教学目标师:下面请同学们带着学习目标以及大屏幕上的问题进入本节棵的自主学习阶段。
生:阅读教材回答问题。
1、什么是圆周角,有什么特征?射门游戏:过球门AC了一个圆,球员在B、D、E处射门,仅从数学的角度考虑站在哪一个位置射球最有利?2.在00中画出弧所对’的圆心角、分别能画出几个?亠3、按要求画圆周角/BAC.①圆心在圆周角的内部②圆心在圆周角的一边上③圆心在圆周角的外部4、你能用一句话概括一条弧所对的圆周角与圆心角之间的关系么,你能证明你的结论吗?(二)边练(5-8 分钟)师:同学们学习的都很认真,下面我们来检验一下大家的学习情况1什么是圆周角,有什么特征?、生:圆周角定义: 顶点在圆上, 它的两边分别与圆还有另一个交点。
九年级数学下册《圆周角和圆心角的关系》教案、教学设计
在本章节的教学过程中,学生将通过以下过程与方法提升自身能力:
1.通过观察、猜想、验证、总结等环节,培养学生的逻辑思维能力。
2.以小组合作的形式,进行讨论、交流、分享,提高学生的合作意识和沟通能力。
3.运用数形结合的思想,将抽象的数学问题具体化,培养学生的空间想象能力。
4.引导学生运用已学知识解决新问题,提高学生的知识迁移能力和问题解决能力。
2.定理推导:教师通过几何画板等工具,动态展示圆周角和圆心角之间的关系,引导学生发现圆周角定理。
3.例题解析:教师针对圆周角定理,给出典型例题,讲解解题思路和方法。
4.知识拓展:教师介绍圆周角和圆心角在其他学科领域的应用,如圆周率在物理学、天文学等方面的运用。
(三)学生小组讨论,500字
在学生小组讨论环节,教师组织学生进行以下活动:
1.基础题:针对圆周角和圆心角的基本概念,设计一些填空题、选择题,让学生巩固所学。
2.提高题:设计一些需要运用圆周角定理的题目,让学生在解决问题中提高自己的能力。
3.实践题:结合生活实际,设计一些应用题,让学生将所学知识运用到实际问题中。
(五)总结归纳,500字
在总结归纳环节,教师引导学生进行以下活动:
4.实践应用,巩固提高
(1)教师设计具有梯度的问题,让学生运用所学知识解决,巩固所学。
(2)学生进行课堂练习,教师巡回指导,及时发现问题,进行针对性辅导。
(3)课后作业布置,注重知识拓展和实际应用,提高学生的解决问题的能力。
5.总结反思,评价反馈
(1)教师引导学生总结本节课所学内容,强化重点知识。
(2)学生自我评价,反思学习过程中的优点和不足。
(一)教学重难点
1.重点:圆周角和圆心角的概念及其关系,圆周角定理及其推论。
《圆周角和圆心角的关系》教学设计
《圆周角与圆心角的关系》教学设计教学目标:1.掌握圆周角的概念和圆周角定理的证明.2.经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想.3.学生自主探索定理的过程中,经历猜想、推理、验证等环节,获得正确学习方式.培养学生的探索精神和解决问题的能力.教学重点与难点:重点:圆周角定理的证明及应用.难点:圆周角定理的证明和分类讨论问题的应用.课前准备:多媒体课件、圆规、三角板.教学过程:一、创设情境,引入新课活动内容1:视频欣赏(多媒体播放足球射门视频)活动内容2:设疑导入如图,在足球射门的游戏中,球员射中球门的难易程度与他所处的位置B对球门AC的张角(∠BAC)有关.当球员在B、D、E三点射门时,他所处的位置对球门AC分别形成三个张角∠BAC,∠BAC,∠BAC.这三个角的大小有什么关系?在这三点射门的效果一样吗?今天就让我们一起来共同学习圆周角和圆心角的关系.【板书课题:3.4圆周角和圆心角的关系(1)】处理方式:学生观看视频后思考、分析并进行交流.设计意图:通过视频欣赏,充分调动学生的课堂热情和积极性,同时也让学生感受到生活或娱乐中处处体现着数学的艺术.通过设疑,激发学生的求知欲,培养学习兴趣.二、探究学习,感悟新知活动内容1:圆周角的概念问题1:观察右图中的∠BAC,∠BAC,∠BAC,你有什么发现?与同伴交流.问题2:∠BAC,∠BAC,∠BAC是圆心角吗?它们与圆心角的区别是什么?与同伴交流.处理方式:学生先自主思考,然后与同伴交流自己的想法.教师组织学生说出自己发现,引导学生与圆心角进行对比,重点引导学生说出∠BAC、∠BAC、∠BAC的共同特特征,把握两点特征:角的顶点在圆上;两边在圆内的部分是圆的两条弦.接着给出圆周角定义:顶点在圆上,并且两边分别与圆还有另一个交点.像这样的角,叫做圆周角.巩固练习:火眼金睛1.判断下列各图形中的角是不是圆周角.(第1题图)(第2题图)2.指出图中的圆周角.处理方式:教师先引导学生回顾圆周角定义中的两个条件:①顶点在圆上;②两边分别与圆还有另一个交点.对于第2题,因为半径AO没有延长,所以∠OAB严格来说还不算是一个圆周角,这里有必要向学生说明一下,但以后在解题中,我们又往往会忽略这些角,因为只要把半径AO延长与圆相交后,就会形成圆周角了,所以这里要特别注意.两题可采用抢答的形式来完成.设计意图:通过让学生经历“观察--发现—对比--交流---总结”这一数学活动过程,一方面积累数学活动的经验,另一方面也加深了学生对圆周角的理解.类比圆心角来学习圆周角,学生会感觉自然,易于接受;通过两个练习,让学生加深了对圆周角定义的理解和直观感受. 让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.活动内容2:圆周角与圆心角的关系1.直观感受:做一做如图,∠AOB=80°.(1)请你画几个AB所对的圆周角?这几个圆周角有什么关系?与同伴进行交流.(2)这些圆周角和圆心角∠AOB的大小有什么关系?你是怎么发现的?与同伴进行交流.处理方式:对于问题(1)应先让学生明确问题的要求,找到特定的弧,然后再画圆周角.学生所画的圆周角的位置会有不同,教师可以从中找出典型的图形进行展示,同时引导学生观察所画的圆周角与圆心角∠AOB有几种位置关系,然后通过对比猜测这几个圆周角的关系,与同伴交流自己的想法.学生所画圆周角展示:对于问题(2),教师可引导学生通过度量来进行猜测验证这些圆周角和圆心角∠AOB 的大小有什么关系.并启发学生思考:为什么不同位置的圆周角度数相同?从而初步得出结论:圆周角的度数等于它所对弧上的圆心角的一半.设计意图:通过画图加深对圆周角的理解,同时在画图的过程中让学生感受所画的圆周角与圆心角∠AOB所对的弧是同一段弧.为下面的对比或度量猜测结论做好铺垫.2.猜想:议一议在上图中,改变∠AOB的度数,你得到的结论还成立吗?说说你的想法,并与同伴交流.处理方式:学生猜想结论是否成立,并尝试进行说理.3.证明已知:如图,∠C 是AB 所对的圆周角,∠AOB 是AB 所对的圆心角. 求证:12C AOB ∠=∠.分析:根据圆周角和圆心角的位置关系,分三种情况讨论:(1)圆心O 在圆周角∠C 的一边上,如图(1);(2)圆心O 在圆周角∠C 的内部,如图(2);(3)圆心O 在圆周角∠C 的外部,如图(3).处理方式:先引导学生明确题意,再根据圆周角和圆心角的位置关系,进行分析--讨论--证明.证明时先让学生证明圆心O 在圆周角∠C 的一边上的情况,对于另外两种情况教师应适时进行引导,分析如何添加辅助线,将其转化为(1)的情况进行证明.情况(1)可让学生到黑板板演,适时点拨强调,规范学生的解题步骤.情况(2)(3)如果时间充足可让学生板演证明过程,也可借助实物投影展示学生的证明过程.注意要及时给予肯定的评价,帮助学生树立信心.证明:(1)当圆心O 在圆周角∠C 的一边上时,如图(1).∵∠AOB 是△ACO 的外角,∴∠AOB =∠C +∠A .∵OA=OC ,∴∠A =∠C .∴∠AOB =2∠C ,12C AOB ∠=∠即. (2)当过点C 作直径CD .证明过程略.(3)当过点C 作直径CD . 证明过程略.(2)(3)4.总结归纳通过以上证明过程你能得出什么结论?圆周角定理: 圆周角的度数等于它所对弧上的圆心角度数的一半.5.应用(1)如图,在直径为AB的半圆中,O为圆心,C,D为半圆上的两点,∠COD=50°,则∠CAD=_______.第(1)题第(2)题(2)如图,A、B、C为⊙O上三点,∠ABO=65°,求∠BCA的度数.处理方式:学生在说出答案的同时,请学生说出理由.教师总结:求圆周角时,要想到它所对的弧对的圆心角.设计意图:通过学生画圆周角,并测量出来,就能直观地感受它们之间的关系,然后就会很努力的去验证这个目标.两个巩固练习,是为了让学生活学活用.三、拓展延伸,提高认识想一想:(1)在足球射门的游戏中,球员在B、D、E三点射门时,所形成的三个张角∠BAC,∠BAC,∠BAC大小有什么关系?你能用圆周角定理证明你的结论吗?(2)如图,在⊙O中AB=EF,那么∠C和∠G的大小有什么关系?为什么?处理方式:(1)引导学生观察∠BAC,∠BAC,∠BAC是同弧(AC )所对的圆周角,根据圆心角定理,它们都等于AC 所对圆心角的一半,所以这几个圆周角相等.(2)引导学生结合圆心角定理和圆周角定理得出∠C 和∠G .根据以上学生的回答教师及时提出问题:由以上两题你能得出什么结论?学生思考总结后给出圆周角定理的推论:同弧或等弧所对的圆周角相等巩固训练:1.判断题:(1)在同圆或等圆中等弧所对的圆周角相等. ( )(2)相等的圆周角所对的弧也相等. ( )(3)同弦所对的圆周角相等. ( )2.在如图所示的8个角中,哪些是相等的角?你能从图中找出几对相似三角形吗?处理方式:训练习题由学生独立思考,然后采用抢答的形式完成.对于第1题中的第(3)题,要留给学生更多的思考空间.第(2)个问题由学生来处理,最后总结:由同一条弧去找圆周角,相似三角形也是去找相等的角.设计意图:学生掌握圆周角定理的基础上,应用圆周角定理得出推论,让学生更能深刻的体会到圆心角和圆周角的关系和联系.即时训练就是加深对知识的理解和应用.四、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再与大家一起分享.学生畅谈自己的收获!设计意图:通过学生对本节课所学进行梳理,理清本节课的主要内容,并且养成反思与总结的习惯,培养学生自主发展的意识.五、达标检测,反馈提高1.如图,点B ,C 在⊙O 上,且BO =BC ,则圆周角∠BAC 等于 .OABC(第1题)(第2题)(第3题)2.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC 的度数为.3.(选做)如图,弦AB与CD相交于点P,求证:P A•PB=PC•PD处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,尽可能地调动学生学习数学的积极性,使每个学生都能有所提高,明确哪些学生需要加强辅导,达到全面提高的目的.六、布置作业,课堂延伸必做题:课本80页,习题3.4第1、2题.选做题:课本81页,习题3.4第4题.板书设计:学生活动区域。
《圆周角和圆心角的关系》教学设计
圆周角和圆心角的关系(第1课时)教学目标:(一)知识与技能 1.理解圆周角定义,掌握圆周角定理.2.会熟练运用定理解决问题.(二)过程与方法经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想。
(三)情感态度价值观通过观察、猜想、验证推理,培养学生探索问题的能力和方法教学重点:理解圆周角定义,掌握圆周角定理并会熟练运用定理解决问题. 教学难点:认识圆周角定理需分三种情况证明的必要性教学设计第一环节知识回顾活动内容:Array1.圆心角的定义?——顶点在圆心的角叫圆心角2.圆心角的度数和它所对的弧的度数有何关系?如图:∠AOB弧AB的度数3.在同圆或等圆中,如果两个圆心角、两条、两条中有一组量相等,那么它们所对应的其余各组量都分别相等.活动目的:通过三个简单的练习,复习本章第二节课学习的同圆或等圆中弧和圆心角的关系.第二环节探究新知1活动内容:(1)问题:我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况?类比圆心角定义,得出圆周角定义:顶点在圆上,并且两边分别与圆还有一个交点的角叫做圆周角.活动目的:本环节的设置,需要学生类比圆心角的定义,采用分类讨论和类比的思想方法得出圆周角的定义.第三环节 定义的应用 活动内容:(1)练习、如图,指出图中的圆心角和圆周角 解:圆心角有∠AOB 、∠AOC 、∠BOC 圆周角有∠BAC 、∠ABC 、∠ACB活动目的:在学习了圆周角的定义后,为了下面学习圆周角的定理做铺垫,有必要先让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.点A 在圆内点A 在圆外点A 在圆上.BOC A.B OC AO BC顶点在圆心.C .A OB圆心角圆周角第四环节 探究新知2 活动内容:(一)问题提出:当球员在B,D,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?教师提示:类比圆心角探知圆周角在同圆或等圆中,相等的弧所对的圆心角相等.在同圆或等圆中,相等的弧所对的圆周角有什么关系?为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有什么关系.(二)做一做:如图,∠AOB =80°,(1)请你画出几个 所对的圆周角,这教师提示:思考圆周角和圆心角有几种不同的位置关系?三种:圆心在圆周角一边上,圆心在圆周角内,圆心在圆周角外.(2)这些圆周角与圆心角∠AOB 的大小有什么关系? ∠AOB =2∠ACB(三)议一议:改变圆心角∠A0B 的度数,上述结论还成立吗?成立AB ⌒CC(四)猜想出圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半. 符号语言: (五)证明定理:已知:如图,∠ACB 是 所对的圆周角,∠AOB 是 所对的圆心角,求证:分析:1.首先考虑一种特殊情况:当圆心(O )在圆周角(∠ACB )的一边(BC )上时,圆周角∠ACB 与圆心角∠AOB 的大小关系.∵∠AOB 是△ACO 的外角∴∠AOB =∠C +∠A∵OA=OC ∴∠A =∠C∴∠AOB =2∠C2.当圆心(O)在圆周角(∠ACB )的内部时,圆周角∠ACB与圆心角∠AOB 的大小关系会怎样? 老师提示:能否转化为1的情况? 过点C 作直径CD .由1可得:3.当圆心(O)在圆周角(∠ACB)的外部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?12ACB AOB∠=∠AB ⌒AB ⌒12ACB AOB∠=∠12ACB AOB∠=∠即11,22ACD AOD BCD BOD∠=∠∠=∠()12ACD BCD AOD BOD ∴∠+∠=∠+∠12ACB AOB∠=∠即C●OACB老师提示:能否也转化为1的情况?过点C 作直径CD.由1可得:活动目的:本活动环节,让学生经历猜想,实验,证明这三个探究问题的基本环节,得到一般的规律.规律探索后,得出圆周角定理,并对探究过程中的三种情况逐一加以演绎推理,证明定理.第五环节 方法小结 活动内容:化归化归DD思想方法:分类讨论,“特殊到一般”的转化活动目的:通过回顾圆周角定理的证明过程,体会探究过程中的数学思想方法的运用.第六环节定理的应用 活动内容:问题回顾:当球员在B,D,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?11,22ACD AOD BCD BOD∠=∠∠=∠()12ACD BCD AOD BOD ∴∠-∠=∠-∠12ACB AOB∠=∠即连接AO 、CO ,由此得出定理:同弧或等弧所对的圆周角相等.活动目的:通过回顾之前提出的问题,直接应用圆周角定理解决问题,然后推导出另一条圆周角与弧的定理. 第七环节 课堂小结活动内容:(一) 这节课主要学习了两个知识点: 1.圆周角定义.2.圆周角定理及其定理应用.(二)方法上主要学习了圆周角定理的证明,渗透了类比,“特殊到一般”的思想方法和分类讨论的思想方法.(三)圆周角及圆周角定理的应用极其广泛,也是中考的一个重要考点,望同学们灵活运用.活动目的:通过小结,让学生回顾本节课的学习内容,尤其是知识内容和方法内容都应该进行总结,让学生懂得,我们学习不但是学习了知识,更重要的是要学会进行方法的总结. 五、教学设计反思111,,222ABC AOC ADC AOC AEC AOC ∠=∠∠=∠∠=∠ABC ADC AEC∴∠=∠=∠。
圆周角和圆心角的关系教案
圆周角和圆心角的关系教案教案目标:1. 理解和描述圆周角和圆心角的概念;2. 掌握圆周角和圆心角之间的关系;3. 能够解决与圆周角和圆心角相关的问题。
教学步骤:I. 引入(约5分钟)- 利用生活中的例子引起学生对圆周角和圆心角的注意,例如车轮、钟表等。
- 引导学生思考圆周角和圆心角的定义和特点。
II. 讲解圆周角和圆心角的概念(约10分钟)- 通过示意图解释圆周角和圆心角的定义,并介绍角度的度量单位。
- 强调圆周角是指相邻两条弧所对应的角,圆心角是指以圆心为顶点的角。
III. 圆周角和圆心角的关系(约15分钟)- 阐述圆周角和圆心角之间的关系,即圆周角的度数是圆心角的二倍。
- 使用具体案例和图形进行说明,让学生理解这一关系。
IV. 解决问题(约15分钟)- 给学生一些练习题,让他们应用所学的知识解决问题。
- 引导学生逐步解决问题,并给予必要的提示和指导。
- 鼓励学生主动思考和讨论,提高解决问题的能力。
V. 总结(约5分钟)- 和学生一起总结本节课所学的内容,检查是否达到了教学目标。
- 强调圆周角和圆心角之间的关系对圆的几何性质的重要性。
VI. 拓展活动(约10分钟)- 给学生一些拓展问题,让他们运用所学的知识进行探究和进一步思考。
- 鼓励学生在小组内互相讨论和合作,提出自己的观点和解决方法。
VII. 课堂作业(约5分钟)- 布置一些课后作业,包括练习题和思考题,巩固和拓展所学的内容。
- 强调作业的重要性,并鼓励学生按时完成和提交。
备注:以上教案的时间安排仅供参考,请根据实际情况做适当调整。
(教案完)。
圆周角与圆心角的关系教学设计
课题圆周角与圆心角的关系导学案教学目标知识能力1、了解圆周角的概念。
2、理解圆周角定理的证明。
过程与方法1、经历探索圆周角和圆心角的关系的过程,学会从特殊到一般的思想方法。
2、经历自主探索的过程,发展学生的观察、分析、类比、猜想的能力,体会分类证明的思想。
情感、态度与价值观1、通过圆周角定理的证明,培养学生对数学的逻辑严密性的体验,树立正确的数学学习观。
2、培养学生的合作交流意识和数学交流能力。
教学重点圆周角的概念和圆周角定理的证明教学难点理解圆周角定理的证明中的分类证明思想。
教学突破教师在教学过程中,可引导学生画图和归纳,从特殊到一般。
逐步转化,将问题变为学生容易接受的形式。
教学过程:一创设问题情景,引入新课1、复习圆心角定义。
2、那和圆有关的角除了圆心角之外,还有没有别的角呢?今天我们就来探讨这个话题。
二、讲述新课(一)圆周角的定义1、顶点在圆上,并且角的两边和圆相交的叫圆周角。
(板书)特征:1)角的定点在圆上2)角的两边和圆相交2、判别下列各图形中的角是不是圆周角?并说明理由。
(二)看一看有没有圆周角?∠BAC有没有圆心角?∠BOC它们有什么共同的特点?它们都对着同一条弧BC(三)猜想归纳:请画出弧BC 所对的圆周角. 若按圆心O 与这个圆周角的位置关系来分类,我们可以分成几类?圆周角的度数与什么有关系?动手量一量∠BOC 与∠BAC 有何数量关系?(四)证一证1、首先考虑一种特殊情况:当圆心(O)在圆周角(∠BAC)的一边(AB)上时,圆周角∠BAC 与圆心角∠BOC 的大小关系. A B C OAB C O∵∠B OC是△ACO的外角∴∠BOC=∠C+∠A.∵OA=OC,∴∠A=∠C∴∠BOC=2∠A即∠BAC = 1/2∠BOC2、如果圆心不在圆周角的一边上,结果会怎样?当圆心(O)在圆周角(∠ABC)的内部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?教师提示:能否转化为1中的情况过点A作直径AD.由1可得:∵∠BAD = 1/2∠BOD,∠CAD = 1/2∠COD∴∠BAC = 1/2∠BOC.3、当圆心(O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样? 教师提示:能否转化为1中的情况过点B作直径AD.由1可得:∵∠BAD = 1/2∠BOD,∠CAD = 1/2∠COD∴∠BAC = 1/2∠BOC.综上所述,圆周角∠ABC与圆心角∠AOC的大小关系是:圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半即∠BAC = 1/2∠BOC(板书)老师提示:圆周角定理是承上启下的知识点,要予以重视.随堂练习:完成课本111页随堂练习1、2三、课时小结本节课我们主要学习了圆周角定义及圆周角定理,请大家好好体会圆周角定理的证明过程中从一般到特殊的思想以及分类证明的思想,这是我们研究数学问题的一般方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆周角与圆心角的关系》教学设计
秭归县郭家坝中学颜昭英
教学目标:
(一)教学知识点
(1)理解圆周角的概念,掌握圆周角的两个特征;
(2)理解圆周角与圆心角的关系,并能熟练地运用它们进行论证和计算,,有机渗透的“由特殊到一般”思想、“分类”思想、“化归”思想。
(二)能力训练要求
通过圆周角概念的形成,渗透数学建模的思想,使学生经历数学建模的过程,形成建模的方法;
引导学生主动地通过:观察、实验、猜想、验证“圆周角与圆心角的关系”,培养学生的合情推理能力、实践能力与创新精神,从而提高数学素养;
通过圆周角定理的证明,有机渗透的“由特殊到一般”思想、“分类”思想、“化归”思想、使学生了解分类、转化、归纳等数学思想方法。
(三)情感态度与价值观
运用实例分析,使学生认识到数学与实际生活有着紧密的联系,学会用数学的眼光看待生活中的实际问题。
在证明圆周角定理的过程中,通过小组讨论、展示各自所画图形这一环节,在合作探究中培养学生的协作意识,体现交流的价值;
通过“观察——测量——证明”这三个环节的活动,让学生意识到,观察测量发现的规律只是建立在统计的基础上,而定理的形成须严谨的数理论证。
教学重点:
圆周角的概念和圆周角定理
经历探索“圆周角与圆心角的关系”的过程,了解“圆周角与圆心角的关系”
教学难点:
了解圆周角的分类、用化归思想合情推理验证“圆周角与圆心角的关系”
圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想。
教学方法:
以学生的活动为主线,以突出重点、突破难点、发展学生数学素养为目的,采用以“探究式教学法”为主,讲授法、发现法、分组交流合作法、启发式教学法、多媒体辅助教学等多种方法相结合。
学法
在动手实践、自主探索、合作交流活动中发现新知和发展能力,使观察、实验、猜想、验证、归纳、推理贯穿整个学习过程。
教具
圆规、直尺、投影仪、课件
教学过程:
一、视频分析,导入新课
师:大家对足球比赛一定不陌生,现在我们就一起来看一段足球射门的片段。
播放“小角度射门”的视频片段,引导学生注意解说员强调的“小角度射门”。
师:这是一个精彩的进球,以至于解说员最后特别强调“小角度射门得手”,大家知道他为什么要强调“小角度”吗?
学生讨论,给出解释:
射门的角度越小,进球的难度就越大。
师:可见,数学知识能够解释生活中的很多现象,也能解决生活中的很多问题。
比如说,人眼看物体有个特点,“远小近大”,通过物理知识的学习,大家也一定知道,这是因为同一个物体离人眼越远,它对人眼所成的视角越小,离人眼越近,对人眼所成的视角越大。
现在我们尝试利用角的知识来分析一下,歌剧院中座椅摆放的问题。
二、图片展示,引入圆周角的概念
(一)、展示歌剧院的图片
师:首先让我们欣赏几张著名歌剧院的室内图片,请同学们注意观察一下,
它的座椅摆放有什么特点。
图片展示,引导学生观察大厅内座椅摆放的特点。
(二)、数学建模,引入圆周角的定义
师:这些图片中的座位排列有什么特点?
学生观察,发现其座椅不是直线摆放,而是呈弧形摆放的。
此时,教师再次引导学生观察“国家大剧院”的图片,引导学生观察其特点。
师:嗯,不错,特别是这张图片,其座椅摆放的弧线几乎与舞台形成了一个圆,为什么要设计成这样呢?
在叙述的同时,利用课件演示某排座椅与舞台的示意图,进行数学模型的建立。
学生讨论分析,给出各自的理由。
生:可能是为了保证同排的观众以相同的视角观看舞台上的表演。
师:视角?究竟是指哪个角呢?让我们把这个实物图先抽象为一个数学模型,用点表示某们观众,同学们能不能在这个示意图中画出这位观众的视角呢?
G F
E
根据学生的回答完成圆周角的建模过程,并引导学生观察这个角的特点。
师:这个角与圆有了位置关系,前面我们学习过的圆心角也与圆有位置关系,大家对比这个角与圆心角,能告诉我这个角与圆的位置关系吗?
出示圆心角与圆周角的对比图,引导学生观察分析,当学生给出合理的结论时,给予充分的肯定,同时鼓励学生更加全面的观察圆周角的特点,抓住圆周角这一概念的本质特征。
生:这个角的顶点在圆上(圆周上)!
生:两条边都与圆相交。
师:那同学们能不能仿照圆心角的定义给也个角也下一个定义吗?
板书:
顶点在圆上,两边都与圆相交的角叫圆周角。
三、巩固新知
课件出示顶点在不同位置的情形,让学生判断图中的角是否为圆周角,说明理由。
四、探究圆周角定理
师:刚才那位同学说,座椅摆放成弧形,是为了尽可能保证同排观众看舞台的视角相同。
那么,图中这些角的大小真的相同吗?为什么?相信完成接下来的研究之后,大家就能有个明确的答案了。
(一)分析归纳同弧所对圆周角与圆心角的位置关系
1、画一画(请画出弧AB所对的圆周角和圆心角。
)
学生作图并观察同弧所对圆心角与圆周角的位置关系。
(同学代表在黑板上画图)
特别说明:若学生不能准确地归纳出圆周角和圆心角的三种位置关系,可采用课件动态演示的方法,在教师的启发下达成这一教学目标。
(二)探究圆周角定理
1、看一看
师:三种位置关系都已经找出来了,能观察出同弧所对圆周角与圆心角的大小关系吗?
学生观察讨论。
生:同弧所对的圆心角比圆周角大!
(出现这样的结论,教师应及时引导学生明确,大小的比较只是定性的描述,并不能准确反映二者之间的数量关系)
生:同弧所对圆心角好像是圆周角的二倍!
2、量一量
(如果学生直接给出这样的数量关系,则应该引导学生明确,人的感官并不精确,要得出准确的数量关系,可以通过科学测量、数理论证的方式进行)
师:仅仅通过肉眼的观察不能发现二者间的数量关系,那能不能通过测量,用测量的数据来研究呢?
指导学生用量角器进行测量,得出数据,并对数据进行分析处理,发现二者的数量关系近似于1:2.(在这个环节,教师应注重引导学生对测量误差的处理,同时强调作图的规范性)
板书:
“猜想:一条弧所对的圆周角是圆心角的_一半____。
?”
3、证一证
师:通过测量发现的数量关系是否成立呢,现在让我们来证明一下。
同弧所对的圆周角与圆心角有三种位置关系,该如何证明呢?
生:按三种情况分类证明。
师:三种情况中,哪一种最特殊,为什么?
生:圆心在圆周角的边上是最特殊的,因为这个时候两个角有一边在同一直线上。
师:既然要分类证明,先证明哪种情况好,为什么?
生:先证明最特殊的那种情况,因为这种情况的图形最简单。
师:很好,当解决一个问题有困难时,我们可以首先考虑其特殊情形,然后再设法解决一般问题。
即从特殊到一般,这是解决问题的一种非常有效的方法
学生在草稿上写出证明过程,教师请个别同学回答思路,使学生弄清证明过程。
师:圆心在角内和角外的情况相对复杂一些,能不能作辅助线把这两种情况
也转化为第一种情况呢?
学生讨论,并给出各自的方案,简述证明过程。
师:很好,把一般性的情形转化为特殊情形可以有效分解难题,简化问题。
这是一种很重要的思维方法。
至此,我们最终证明了同弧所对的圆周角是圆心角的一半,这一结论也叫“圆周角定理”。
补充板书:
“圆周角定理”
四、课堂练习
练习1、如图,在⊙O中,∠BOC=50°求∠BAC的大小
练习2、如图,A、B、C、D是⊙O上的四点,且∠BCD=100°⌒,求∠BOD(弧BCD所对的圆心角)和∠BAD的大小。
A
练习3: OA 、OB 、OC 都是⊙O 的半径,∠AOB=2∠BOC ,
求证:∠ACB=2∠BAC.
分析: ∠AOB 和∠ACB 都对着弧AB, ∠BOC 和∠BAC 都对着弧BC,因此,根据圆周角定理可得出它们之间的关系
证明:
∠ACB=1/2 ∠AOB
∠BAC=1/2 ∠BOC
∠AOB=2∠BOC
==>∠ACB=2∠BAC
练习4:已知OA =OB =OC ,∠AOB=2∠BOC ,求证:∠ACB=2∠BAC.
五、课堂小结
1、这节课你学到了哪些知识?
2、你收获了哪些数学思想与方法?
3、还存在哪些困惑?
六、拓展延伸
1、你现在知道歌剧院内同排观众的视角是否相等了吗?为什么? O A B C
A
C O
B。