《函数的应用》指数函数、对数函数与幂函数PPT

合集下载

指数函数、幂函数、对数函数增长的比较(45张PPT)——高中数学必修第一册

指数函数、幂函数、对数函数增长的比较(45张PPT)——高中数学必修第一册

一次函数y=kx(k>0),指数函数y=ax(a>1)和对数函数y=logbx(b>1)的增长有何差异?
一般地,无论k(k>0)、a(a>1)、b(b>1)如何取值,三种函数在区间(0,+∞)上都单调递增,但一次函数总是保持固定的增长速度;指数函数的增长速度都会越来越快,并且指数函数的函数值最终总会大于一次函数的函数值;对数函数的增长速度都会越来越慢,并且对数函数的函数值最终总会小于一次函数的函数值.
401
626
901
y2
2
32
1024
32768
1.05×106
3.36×107
1.07×109
y3
2
10
20
30
40
50
60
y4
2
4.322
5.322
5.907
6.322
6.644
6.907
【解析】(1)由于指数型函数的增长式为爆炸式增长,则当x越来越大时,函数y=的增长速度最快,故选A.
(2)从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,变量y1,y2,y3,y4都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,可知变量y2关于x呈指数函数变化.
x
y=2x
y=2x
0
1
0
2
4
4
4
16
8
6
64
12
8
256
16
10
1024
20
12
4096
24



可以看到,当自变量x越来越大时,y=2x的图象就像与x轴垂直一样,2x的值快速增长;而函数y=2x的增长速度依然保持不变,与函数y=2x的增长速度相比几乎微不足道.

幂函数、指函数与对函数PPT课件

幂函数、指函数与对函数PPT课件

D. b > a > 1 O
思路二:
1b a
x
数形结合
26
题型三:幂函数性质的应用
3.比较下列各组数的大小:
< 1
1
(1)1.32 ____ 1.4 2
解后反思 两个数比较
(2)0.261
_>____
0.271
大小,何时 用幂函数模
(3)(5.2)2 _<____(5.3)2
型,何时用 指数函数模
即 log2 a log2 b 0 log2 1
a b 1 所以答案选C. 25
能力提升
变②:若0 < loga 2 < logb 2,则
C
()
A. 0 < a < b < 1 y
B. 0 < b < a < 1
1
C. a > b > 1
x=2
y= logb x
y= loga x
解析式 y = a x ( a > 0, a≠1)
y
图 象 0<a<1
y a>1
1
(描点)
1
0
x
0
x
y = log a x ( a > 0, a≠1)
y 0<a<1
y a>1
01
x
01
x
定义域
R
(0 , +∞)
值域
(0 , +∞)
R
定点
都过点(0,1)
都过点(1,0)
范围
x<0时,y>1;x>0时,y>10;<x<1时 x>0时 x<0时 y>0

常用函数图像

常用函数图像

函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]极限的几何解释(1) 极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(2) (局部保号性) 极限的性质(3) (不等式性质) 极限的性质(4) (局部有界性) 极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)等价无穷小(x->0)sinx等价于xarcsinx等价于x tanx等价于x arctanx等价于x1-cosx等价于x^2/2sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞) 夹逼定理(1)夹逼定理(2)数列的夹逼性(1) 数列的夹逼性(2) pi 是派的意思(如果你没有切换到公式版本)^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。

指数函数对数函数与幂函数指数函数与对数函数的关系pptx

指数函数对数函数与幂函数指数函数与对数函数的关系pptx
对数函数的图像是一条直线,在定义域内单调递 增。
性质
对数函数的图像与y轴的交点为1,函数的导数是1/x',其中x'是x的倒数。
复合对数函数
定义
复合对数函数是指数函数和对数函数的组合形式,它表示为log(base) (x) ^ (y),其中base是底数,x和y是函数的自变量。
当n为负整数时,幂 函数的最大值出现在 x=1处,且最大值为 1/2;
当n为分数时,幂函 数的最大值出现在 x=1处,且最大值为 1。
复合幂函数
定义
复合幂函数是指由幂函数与其他函数复合而成的函数,如 $f(x) = \sin x^{2}$。
性质
复合幂函数的性质取决于其内部的幂函数的性质以及外部函 数的性质。例如,如果内部函数是偶函数,则复合幂函数也 是偶函数;如果内部函数是奇函数,则复合幂函数也是奇函 数。
复合指数函数
定义:复合指数函数是指形式为f(ax+b)的函数,其中 a和b是常数,且a≠0。
1. 复合指数函数的图像与指数函数的图像类似,但需 要根据具体的函数表达式来确定。
性质
2. 复合指数函数的性质与指数函数的性质类似,但需 要根据具体的函数表达式来进行判断。
02
对数函数
对数函数的定义与性质
性质
1. 当x为有理数时,a^x仍为有 理数;当x为无理数时,a^x亦 为无理数。
2. 当a>1时,a^x>0;当 0<a<1时,a^x<0。
指数函数的图像与性质
图像:指数函数的图像是一条连续的曲线,经过原点 ,并在第一象限内单调递增。
1. 函数值y随x的增大而增大(当x为正数时)。
性质
2. 当x=0时,y=1(当a>1时),y=0(当0<a<1时 )。

指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质

指数函数、对付数函数、幂函数的图像与本量之阳早格格创做(一)指数与指数函数1.根式(1)根式的观念(2).二个要害公式 ①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ; ②a a n n =)((注意a 必须使n a 蓄意思). 2.有理数指数幂 (1)幂的有闭观念 ①正数的正分数指数幂:0,,1)mnaa m n N n *=>∈>、且;②正数的背分数指数幂: 10,,1)m nm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的背分数指数幂不意思. 注:分数指数幂与根式不妨互化,常常利用分数指数幂举止根式的运算.(2)有理数指数幂的本量n 为奇数n为奇数①aras=ar+s(a>0,r、s∈Q);②(ar)s=ars(a>0,r、s∈Q);③(ab)r=arbs(a>0,b>0,r∈Q);. 3.指数函数的图象与本量y=ax a>1 0<a<1 图象定义域R值域(0,+∞)本量(1)过定面(0,1)(2)当x>0时,y>1; x<0时,0<y<1 (2) 当x>0时,0<y<1; x<0时, y>1(3)正在(-∞,+∞)上是删函数(3)正在(-∞,+∞)上是减函数注:如图所示,是指数函数(1)y=ax,(2)y=bx,(3),y=cx (4),y=dx的图象,怎么样决定底数a,b,c,d与1之间的大小闭系?提示:正在图中做曲线x=1,与它们图象接面的纵坐标即为它们各自底数的值,即c1>d1>1>a1>b1,∴c>d>1>a>b.即无论正在轴的左侧仍旧左侧,底数按顺时针目标变大.(二)对付数与对付数函数1、对付数的观念(1)对付数的定义如果(01)x a N a a =>≠且,那么数x 喊干以a 为底,N 的对付数,记做log N a x =,其中a 喊干对付数的底数,N 喊干真数. (2)几种罕睹对付数2、对付数的本量与运算规则(1)对付数的本量(0,1a a >≠且):①1log 0a =,②log 1a a =,③logNa a N =,④log Na a N =.(2)对付数的要害公式:①换底公式:log log (,1,0)log N Na b baa b N =>均为大于零且不等于; ②1log log b a ab =. (3)对付数的运算规则:如果0,1a a >≠且,0,0M N >>那么 ①N M MN a a a log log )(log +=; ②NM NMa a a log log log -=;③)(log log R n M n M a n a ∈=; ④b mnb a n amlog log =. 3、对付数函数的图象与本量象本量(1)定义域:(0,+∞)(2)值域:R(3)当x=1时,y=0即过定面(1,0) (4)当01x <<时,(,0)y ∈-∞; 当1x >时,(0,)y ∈+∞ (4)当1x >时,(,0)y ∈-∞; 当01x <<时,(0,)y ∈+∞ (5)正在(0,+∞)上为删函数(5)正在(0,+∞)上为减函数注:决定图中各函数的底数a ,b ,c ,d 与1的大小闭系 提示:做背来线y=1,该曲线与四个函数图象接面的横坐标即为它们相映的底数. ∴0<c<d<1<a<b. 4、反函数指数函数y=ax 与对付数函数y=logax 互为反函数,它们的图象闭于曲线y=x 对付称. (三)幂函数 1、幂函数的定义形如y=xα(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数注:幂函数与指数函数有真量辨别正在于自变量的位子分歧,幂函数的自变量正在底数位子,而指数函数的自变量正在指数位子.2、幂函数的图象注:正在上图第一象限中怎么样决定y=x3,y=x2,y=x ,12y x =,y=x-1要领:可绘出x=x0;当x0>1时,按接面的下矮,从下到矮依次为y=x3,y=x2, y=x ,12y x =, y=x-1;当0<x0<1时,按接面的下矮,从下到矮依次为y=x-1,12y x =,y=x , y=x2,y=x3. 3、幂函数的本量y=x y=x2y=x312y x =y=x-1定义域 R R R [0,+∞) {}|0x x R x ∈≠且值域 R [0,+∞) R [0,+∞) {}|0y y R y ∈≠且奇奇性 奇 奇奇非奇非奇 奇单调性删x ∈[0,+∞)时,删; x ∈(,0]-∞时,减删 删x ∈(0,+∞)时,减; x ∈(-∞,0)时,减定面 (1,1)三:例题诠释,闻一知十知识面1:指数幂的化简与供值 例1.(2007育才A)(1)估计:25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+---;(2)化简:5332332323323134)2(248aa a a ab aa ab b ba a ⋅⋅⨯-÷++--变式:(2007执疑A )化简下列各式(其中各字母均为正数):(1);)(65312121132ba ba b a ⋅⋅⋅⋅--(2).)4()3(6521332121231----⋅÷-⋅⋅b a b a b a(3)1200.2563433721.5()82(23)()63-⨯-+⨯+⨯- 知识面2:指数函数的图象及应用 例2.(2009广附A)已知真数a 、b 谦脚等式b a )31()21(=,下列五个闭系式:①0<b <a;②a <b <0;③0<a <b;④b <a <0;⑤a=b.其中不可能创造的闭系式有 ( ) A.1个B.2个C.3个D.4个变式:(2010华附A )若曲线a y 2=与函数 0(|1|>-=a a y x 且)1≠a 的图象有二个公同面,则a 的与值范畴是_______. 知识面3:指数函数的本量例3.(2010省真B )已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(Ⅰ)供b 的值;(Ⅱ)推断函数()f x 的单调性;(Ⅲ)若对付任性的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒创造,供k 的与值范畴.变式:(2010东莞B )设a >0,f(x)=x x aa ee +是R 上的奇函数.(1)供a 的值;(2)供证:f(x)正在(0,+∞)上是删函数.知识面4:对付数式的化简与供值 例4.(2010云浮A )估计:(1))32(log 32-+(2)2(lg2)2+lg2·lg5+12lg )2(lg 2+-;(3)21lg 4932-34lg 8+lg 245.变式:(2010惠州A )化简供值. (1)log2487+log212-21log242-1;(2)(lg2)2+lg2·lg50+lg25;(3)(log32+log92)·(log43+log83).知识面5:对付数函数的本量例5.(2011深圳A )对付于01a <<,给出下列四个不等式: ①1log (1)log ();a a a a a+<+②1log (1)log (1)a a a a+>+;③111;aaaa++<④111;aaaa++>其中创造的是()(A )①与③(B )①与④(C )②与③(D )②与④变式:(2011韶闭A )已知0<a <1,b >1,ab >1,则loga bb b ba1log ,log,1的大小闭系是 ( )bb b b a 1log log 1<< B.b b b b a a 1log 1log log <<C.bb b ab a 1log 1log log << D.b b b a a b log 1log 1log << 例6.(2010广州B )已知函数f(x)=logax(a >0,a≠1),如果对付于任性x ∈[3,+∞)皆有|f(x)|≥1创造,试供a 的与值范畴.变式:(2010广俗B )已知函数f (x )=log2(x2-ax-a)正在区间(-∞,1-3]上是单调递减函数.供真数a 的与值范畴.知识面6:幂函数的图象及应用 例7.(2009佛山B)已知面(22),正在幂函数()f x 的图象上,面124⎛⎫- ⎪⎝⎭,,正在幂函数()g x 的图象上.问当x 为何值时有:(1)()()f x g x >;(2)()()f x g x =;(3)()()f x g x <.变式:(2009掀阳B )已知幂函数f(x)=x 322--m m (m ∈Z )为奇函数,且正在区间(0,+∞)上是单调减函数.(1)供函数f(x);(2)计划F (x )=a)()(x xf bx f -的奇奇性.四:目标预测、胜利正在视1.(A )函数41lg )(--=x x x f 的定义域为( )A .(1,4)B .[1,4)C .(-∞,1)∪(4,+∞)D .(-∞,1]∪(4,+∞)2.(A )以下四个数中的最大者是( )(A) (ln2)2(B) ln(ln2)(C) ln 2(D) ln23(B )设a>1,函数f(x)=logax 正在区间[a,2a ]上的最大值与最小值之好为,21则a=( )(A)2 (B )2 (C )22 (D )44.(A )已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a fb f ==5(),2c f =则( )(A )a b c << (B )b ac << (C )c b a << (D )c a b << 5.(B )设f(x)=1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩则不等式f(x)>2的解集为( )(A)(1,2)⋃(3,+∞) (B)(10,+∞)(C)(1,2)⋃(10,+∞)(D)(1,2)6.(A )设2log 3P =,3log 2Q =,23log (log 2)R =,则( ) A.R Q P <<B.P R Q <<C.Q R P <<D.R P Q << 7.(A)已知c a b 212121log log log <<,则( )A .c a b 222>>B .c b a 222>>C .a b c 222>>D .b a c 222>> 8.(B )下列函数中既是奇函数,又是区间[]1,1-上单调递减的是( )(A )()sin f x x = (B)()1f x x =-+(C)1()()2xx f x a a -=+ (D)2()2xf x ln x-=+9.(A )函数y =的定义域是:()A [1,)+∞B 23(,)+∞C 23[,1] D 23(,1] 10.(A)已知函数kx y x y ==与41log 的图象有公同面A ,且面A 的横坐标为2,则k ( )A .41- B .41 C .21- D .2111.(B )若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x 、三、四象限,则一定有( )A .010><<b a 且B .01>>b a 且C .010<<<b a 且D .01<>b a 且12.(B)若函数)10(log )(<<=a x x f a 正在区间]2,[a a 上的最大值是最小值的3倍,则a=( )A.42B.22C. 41D.21 13.(A)已知0<x <y <a <1,则有( )(A )0)(log <xy a (B )1)(log 0<<xy a(C )2)(log 1<<xy a (D )2)(log >xy a14.(A )已知x x f 26log )(=,那么)8(f 等于( ) (A )34(B )8(C )18(D )2115.(B )函数y =lg|x| ( )A .是奇函数,正在区间(-∞,0)上单调递加B .是奇函数,正在区间(-∞,0)上单调递减C .是奇函数,正在区间(0,+∞)上单调递加D .是奇函数,正在区间(0,+∞)上单调递减 16.(A )函数3)4lg(--=x x y 的定义域是____________________________. 17.(B )函数1(01)x y a a a -=>≠,的图象恒过定面A ,若面A 正在曲线10(0)mx ny mn +-=>上,则11mn+的最小值为 .18.(A )设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩ 则1(())2g g =__________19.(B )若函数f(x) = 1222--+a ax x 的定义域为R ,则a 的与值范畴为___________.20.(B)若函数)2(log )(22a a x x x f ++=是奇函数,则a=.21.(B)已知函数xx xx f -+-=11log 1)(2,供函数)(x f 的定义域,并计划它的奇奇性战单调性. 参照问案:三:例题诠释,闻一知十 例1. 解:(1)92,(2)2a变式:解:(1)1, (2).4514545)(45)·232321233136123abab ab b a b a b a b -=⋅-=⋅-=÷-=------ (3)110 例2. 解:B变式:解:)21,0(;例3. 解:(Ⅰ)1=b (Ⅱ)减函数. (Ⅲ)31-<k变式:解:(1)a=1.(2)略 例4. 解:(1)-1.(2)1.(3)21.变式:解:(1).232log 221log 242481272322-===⨯⨯⨯-(2)2.(3)45例5. 解:选D.变式:解: C例6. 解:(1,3]∪[31,1) 变式:解:{a|2-23≤a <2}例7. 解:(1)当1x >或者1x <-时,()()f x g x >;(2)当1x =±时,()()f x g x =;(3)当11x -<<且0x ≠时,()()f x g x <.变式:解:(1)f(x)=x-4.(2)F (x )=32bx x a-, ∴F (-x )=2x a+bx3.①当a≠0,且b≠0时,F (x )为非奇非奇函数;②当a=0,b≠0时,F (x )为奇函数;③当a≠0,b=0时,F (x )为奇函数;④当a=0,b=0时,F (x )既是奇函数,又是奇函数. 四:目标预测、胜利正在视1—5 ADDDC ; 6—10 AADDA ; 11—15 CADDB.16. (-, 3)(3,4) 17. 4 18.21 19.[-1,0] 20.22 21.[解]x 须谦脚,11011,0110<<->-+⎪⎩⎪⎨⎧>-+≠x x x xx x 得由 所以函数)(x f 的定义域为(-1,0)∪(0,1).果为函数)(x f 的定义域闭于本面对付称,且对付定义域内的任性x ,有)()11log 1(11log 1)(22x f xx x x x x x f -=-+--=+---=-,所以)(x f 是奇函数.钻研)(x f 正在(0,1)内的单调性,任与x1、x2∈(0,1),且设x1<x2 ,则 得)()(21x f x f >0,即)(x f 正在(0,1)内单调递减, 由于)(x f 是奇函数,所以)(x f 正在(-1,0)内单调递减.。

指数函数,对数函数与幂函数

指数函数,对数函数与幂函数

指数函数,对数函数与幂函数1.指数函数指数函数是数学中一个非常重要的概念,在许多自然科学和社会科学领域都有广泛的应用。

指数函数的一般形式为f(x)=a^x,其中a为底数,x为指数。

指数函数的特点是底数和指数的变化会对函数图像产生显著的影响。

1.1底数变化对图像的影响当底数a>1时,指数函数的图像呈现出“增长”的趋势,具有上凸的形状;当0<a<1时,指数函数的图像则呈现出“衰减”的趋势,具有下凸的形状。

1.2指数变化对图像的影响当指数x增大时,可以看出指数函数的值迅速增加或减小,这就是指数函数的“指数增长”或“指数衰减”。

这种增长或衰减速度是非常快的,甚至可以说是“爆炸性的”。

1.3应用举例指数函数在自然科学中应用非常广泛,例如在化学反应中,我们可以利用指数函数来描述反应速率的变化;在生物学中,指数函数可用于描述生物种群的增长和衰减趋势;在工程学中,指数函数也可以用来表示物体的温度、光强度等特征随时间变化的规律。

2.对数函数对数函数是数学中另一个非常重要的概念。

对数函数的一般形式为y=loga x,其中a为底数,x为被求对数的数,而y则表示底数为a时,x的对数值。

对数函数与指数函数是非常相关的,因为两者是互相反转的运算。

2.1底数变化对图像的影响当底数a>1时,对数函数的图像增长非常缓慢,在x轴右侧有一个水平的渐近线;当0<a<1时,对数函数的图像下降非常缓慢,在x轴右侧也有一个水平的渐近线。

2.2负数和零的情况在对数函数中,负数和零都是没有意义的,因为无法把它们表示为任何正数的幂,也无法得到它们的对数值。

因此,在对数函数中只考虑正数。

2.3应用举例对数函数在实践中也有广泛的应用。

例如在物理学中,对数函数可用于描述声音的强度、光线的亮度、辐射的强度等特征的变化;在金融学中,对数函数可以用来计算资金的复利增长;在计算机科学中,对数函数的底数通常为2,被广泛用于算法的时间复杂度分析等方面。

图表总结指数函数、对数函数、幂函数对比与联系

图表总结指数函数、对数函数、幂函数对比与联系

幂函数一、基础知识1.幂函数的概念一般地,形如y =x α(α∈R)的函数称为幂函数,其中底数x 是自变量,α为常数.幂函数的特征(1)自变量x 处在幂底数的位置,幂指数α为常数;(2)x α的系数为1;(3)只有一项.2.五种常见幂函数的图象与性质函数特征性质y =xy =x2y =x3y =x12y =x -1图象定义域R R R {x |x ≥0}{x |x ≠0}值域R {y |y ≥0}R {y |y ≥0}{y |y ≠0}奇偶性奇偶奇非奇非偶奇单调性增(-∞,0)减,(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)二、常用结论对于形如f (x )=xn m(其中m ∈N *,n ∈Z,m 与n 互质)的幂函数:(1)当n 为偶数时,f (x )为偶函数,图象关于y 轴对称;(2)当m ,n 都为奇数时,f (x )为奇函数,图象关于原点对称;(3)当m 为偶数时,x >0(或x ≥0),f (x )是非奇非偶函数,图象只在第一象限(或第一象限及原点处).指数式、对数式一、基础知识1.指数与指数运算(1)根式的性质①(na )n=a (a 使na 有意义).②当n 是奇数时,na n =a ;当n 是偶数时,na n =|a,a ≥0,a ,a <0.(2)分数指数幂的意义分数指数幂的意义是解决根式与分数指数幂互化问题的关键.①a m n =na m (a >0,m ,n ∈N *,且n >1).②am n=1am n=1n a m(a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于0,0的负分数指数幂没有意义.(3)有理数指数幂的运算性质①a r·a s=a r+s(a>0,r,s∈Q);②a ra s=a r-s(a>0,r,s∈Q);③(a r)s=a rs(a>0,r,s∈Q);④(ab)r=a r b r(a>0,b>0,r∈Q).(1)有理数指数幂的运算性质中,要求指数的底数都大于0,否则不能用性质来运算.(2)有理数指数幂的运算性质也适用于无理数指数幂.2.对数的概念及运算性质一般地,如果a(a>0,且a≠1)的b次幂等于N,就是a b=N,那么,数b就叫做以a 为底N的对数,记作:log a N=b.指数、对数之间的关系(1)对数的性质①负数和零没有对数;②1的对数是零;③底数的对数等于1.(2)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M -log a N ;③log a (N n )=n log a N (n ∈R).二、常用结论1.换底公式的变形(1)log a b ·log b a =1,即log a b =1log b a (a ,b 均大于0且不等于1);(2)log am b n=nm log a b (a ,b 均大于0且不等于1,m ≠0,n ∈R);(3)log N M =log a M log a N =log b Mlog b N (a ,b ,N 均大于0且不等于1,M >0).2.换底公式的推广log a b ·log b c ·log c d =log a d (a ,b ,c 均大于0且不等于1,d >0).3.对数恒等式a log aN =N (a >0且a ≠1,N >0).指数函数一、基础知识1.指数函数的概念函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R,a 是底数.形如y =ka x ,y =a x +k (k ∈R 且k ≠0,a >0且a ≠1)的函数叫做指数型函数,不是指数函数.2.指数函数y =a x (a >0,且a ≠1)的图象与性质底数a >10<a <1图象性质定义域为R,值域为(0,+∞)图象过定点(0,1)当x >0时,恒有y >1;当x <0时,恒有0<y <1当x >0时,恒有0<y <1;当x <0时,恒有y >1在定义域R 上为增函数在定义域R 上为减函数注意指数函数y =a x (a >0,且a ≠1)的图象和性质与a 的取值有关,应分a >1与0<a <1来研究.二、常用结论指数函数图象的特点(1)指数函数的图象恒过点(0,1),(1,a 依据这三点的坐标可得到指数函数的大致图象.(2)函数y =a x 与y (a >0,且a ≠1)的图象关于y 轴对称.(3)底数a 与1的大小关系决定了指数函数图象的“升降”:当a >1时,指数函数的图象“上升”;当0<a <1时,指数函数的图象“下降”.对数函数一、基础知识1.对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).y =log a x 的3个特征(1)底数a >0,且a ≠1;(2)自变量x >0;(3)函数值域为R.2.对数函数y =log a x (a >0,且a ≠1)的图象与性质底数a >10<a <1图象性质定义域:(0,+∞)值域:R图象过定点(1,0),即恒有log a 1=0当x >1时,恒有y >0;当0<x <1时,恒有y <0当x >1时,恒有y <0;当0<x <1时,恒有y >0在(0,+∞)上是增函数在(0,+∞)上是减函数注意当对数函数的底数a 的大小不确定时,需分a >1和0<a ,<1两种情况进行讨论.3.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y=x对称.二、常用结论对数函数图象的特点(1)对数函数的图象恒过点(1,0),(a,大致图象.(2)函数y=log a x与y=log1ax(a>0,且a≠1)的图象关于x轴对称.(3)当a>1时,对数函数的图象呈上升趋势;当0<a<1时,对数函数的图象呈下降趋势.。

高中数第3章指数函数、对数函数和幂函数3.4.1.2用二分法求方程的近似解课件苏教版必修1

高中数第3章指数函数、对数函数和幂函数3.4.1.2用二分法求方程的近似解课件苏教版必修1
点附近的函数值的参考数据如表:
x 0
0.5
0.531 25 0.562 5 0.625 0.75 1
f(x) -1.307 -0.084 -0.009
0.066 0.215 0.512 1.099
由二分法求得方程ln(x+1)+2x-m=0的近似解(精确度0.05)可能是
(
). (导学号51790116)
高中数第3章指数函数、对数函
数和幂函数3.4.1.2用二分法求方
程的近似解课件苏教版必修1
学习目标
重点难点
1.会用二分法求方程的近似
解.
重点:用二分法求方程的
近似解.
2.明确函数零点的近似值的
判断方法.
难点:零点近似值的判定
方法.
1.二分法的含义
(1)满足的条件:函数y=f(x)在区间(a,b)上连续不断且f(a)·f(b)<0.

1
则当 x∈(-∞,0)时,x >0, <0,
2
1
所以- >0,所以

2 1

2 1
f(x)=x - >0 恒成立.

所以 x - =0 在(-∞,0)内无实数解.

(导学号
典例导学
即时检测


1.准确理解“二分法”的含义:
二分法就是通过不断地将所选区间一分为二,使区间的两个端点逐
步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确
零点,都能用二分法求函数零点,故选A.
典例导学
即时检测


1.下列图象表示的函数中,能用二分法求零点的是(
).
答案:C
解析:由题图知,只有C中有变号零点,能用二分法求零点.

指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式( 1)根式的概念根式的概念符号表示备注如果 x na ,那么 x 叫做 a 的 n 次方根n 1且 n N当 n 为奇数时 ,正数的 n 次方根是一个正数 ,负数的 n 次 na零的 n 次方根是零方根是一个负数当 n 为偶数时 ,正数的 n 次方根有两个 ,它们互为相反数na ( a 0) 负数没有偶次方根( 2).两个重要公式an 为奇数① n a na( a 0);| a |0)n 为偶数a(a② (n a ) n a (注意 a 必须使 n a 有意义)。

2.有理数指数幂 ( 1)幂的有关概念mnm①正数的正分数指数幂 :n( 0, 、,且1);aa am nNnm11②正数的负分数指数幂:an0, m 、 nN , 且 n 1)m(aa nna m③0 的正分数指数幂等于 0,0 的负分数指数幂没有意义 .注: 分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

( 2)有理数指数幂的性质① a r a s =a r+s (a>0,r 、 s ∈ Q);r srs② (a ) =a (a>0,r 、s ∈ Q); ③ (ab)r =a r b s (a>0,b>0,r ∈ Q);. 3.指数函数的图象与性质y=a x a>10<a<1图象定义域R值域(0,+ )性质( 1)过定点( 0, 1)( 2)当 x>0 时, y>1;(2) 当 x>0 时, 0<y<1;x<0 时 ,0<y<1x<0 时, y>1(3) 在( - ,+)上是增函数( 3)在( -, +)上是减函数注:如图所示,是指数函数(1) y=a x,(2) y=b x,( 3),y=c x( 4) ,y=d x的图象,如何确定底数 a,b,c,d 与 1 之间的大小关系?提示:在图中作直线x=1 ,与它们图象交点的纵坐标即为它们各自底数的值,即c1>d1>1>a1>b1,∴ c>d>1>a>b 。

指数函数与对数函数的关系指数函数对数函数与幂函数PPT精品推荐课件

指数函数与对数函数的关系指数函数对数函数与幂函数PPT精品推荐课件
致性吗?
提示:当0<a<1时,上述两个函数均是其定义域上的减函数;当a>1
时,上述两个函数均是其定义域上的增函数.因此单调性具有一致
性,但变化速度有差异.
课前篇自主预习


3.填空.
(1)关系
指数函数y=ax(a>0,a≠1)与对数函数y=logax(a>0,a≠1)互为反函数.
(2)图像特征
指数函数y=ax(a>0,a≠1)与对数函数y=logax(a>0,a≠1)的图像关于
与f-1(x)互为反函数,对此不能对自变量x随意变化拓展.
课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
正解:∵g(x)的图像过定点(1,2 018),
∴f(x+1)的图像过定点(2 018,1).
又∵f(x)的图像可以看作由f(x+1)的图像向右平移1个单位长度得
到的,∴f(x)过定点(2 019,1).
)
A.(0,0) B.(0,2) C.(1,1)
D.(2,0)
答案:B
解析:∵y=f(x)的图像过点(1,0),
∴其反函数y=f-1(x)的图像必过点(0,1),
即f-1(0)=1,∴y=f-1(x)+1的图像过点(0,2).
4.已知
1-3
4
f(x)= ,则 f-1 5
1+3
=
Hale Waihona Puke 答案:-21-3除D.故选B.
方法二:若0<a<1,则曲线y=ax下降且过点(0,1),而曲线y=loga(-x)
上升且过点(-1,0),所有选项均不符合这些条件.

《对数与对数函数》指数函数、对数函数与幂函数PPT(对数函数的性质与图像)

《对数与对数函数》指数函数、对数函数与幂函数PPT(对数函数的性质与图像)
错解三中出现逻辑性错误运算变形的顺序出现了问题即开始默认了a1对原不等式进行了转化是不正确的虽然后来对a又进行了讨论看起来结果正确而实际上解答过程是错误的
人教版高中数学B版必修二
指数函数、对数函数与幂函数
4.2 对数与对数函数
4.2.3 对数函数的性质与图像
-1-
课标阐释
思维脉络
1.理解对数函数的概念,体会对
B.(-1,+∞) C.(-1,4)
D.(4,+∞)
(2)函数 y=loga -1(a>0,a≠1)的定义域为
答案:(1)A
(2)(1,+∞)
+ 1 ≥ 0,
解析:(1)由题意可知
4- > 0,
解得 x∈[-1,4),故选 A.
(2)由题意可得 -1>0,又∵偶次根号下非负,
∴x-1>0,即 x>1.
A.(0,2)
B.(0,2] C.(2,+∞)
1
指数函数、对数函数与幂函数
(2)函数 f(x)=log4 的大致图像为(
)
D.[2,+∞)
)

(1)函数
(a>0,且a≠1)是对数函数.
因忽视真数的取值范围而致误
29可看作是函数y=log0.
(5)当0<a<1时,y=logax为R上的减函数;当a>1时,y=logax为R上的增函数.
同理可得函数y=log0.2(x2-2x+2)的单调增区间为(-∞,1].
故函数y=log0.2(x2-2x+2)的单调增区间为(-∞,1],
单调减区间为[1,+∞).
课堂篇探究学习
探究一

高一数学必修教学课件第三章指数函数幂函数对数函数增长的比较

高一数学必修教学课件第三章指数函数幂函数对数函数增长的比较
结合具体案例,分析比较指数函数、幂函数和对数 函数在描述实际问题时的优缺点及适用范围。
THANK YOU
感谢聆听
计算、经济增长模型等。通过比较这些函数的增长差异,可以帮助学生
更好地理解经济学中的相关概念和原理。
02
生物学
在生物学中,这些函数可用于描述生物种群的增长、疾病的传播等。例
如,指数增长模型可用于描述某些生物种群的爆炸式增长,而对数增长
模型则适用于描述种群增长逐渐趋于稳定的情况。
03
物理学
在物理学中,幂函数可用于描述物体之间的万有引力、电场强度等物理
根据平均变化率的定义,可以 计算出f(x)=x^3在区间[1,2]上 的平均变化率为(f(2)-f(1))/(21)=(2^3-1^3)/1=7。
04
对数函数增长特性
对数函数定义及图像
对数函数定义
对数函数是以幂为自变量,指数为因变量,底数为常数的函数。
对数函数图像
对数函数的图像是一条经过原点的曲线,其形状与底数有关。当底数大于1时,图像向右上方倾斜;当底数小于1 时,图像向右下方倾斜。
与其他函数的比较
与一次函数、二次函数等相比,指数 函数的增长速度更快。当x足够大时, 指数函数的值将远远超过这些函数的 值。
典型例题解析
解析
对于(1),由于1.1<1.2且2.5>2.3,因此1.1^2.5<1.2^2.3;对于(2),由于 0.8<0.9且-0.7<-0.6,因此0.8^-0.7>0.9^-0.6。
量的变化规律。通过比较不同函数的增长特性,可以帮助学生深入理解
物理现象的本质。
在其他学科领域的应用举例
化学
在化学动力学中,反应速率常数与温度的关系通常可以用指数函数或幂函数来描述。比较 不同函数的增长差异有助于理解化学反应速率的变化规律。

指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质

指数函数.对数函数.幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的概念(2).两个主要公式 ①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a a a nn; ②a a n n =)((留意a 必须使n a 有意义). 2.有理数指数幂 (1)幂的有关概念①正数的正分数指数幂:0,,1)m na a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)mnm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,平日运用分数指数幂进行根式的运算.(2)有理数指数幂的性质 ①aras=ar+s(a>0,r.s∈Q);n 为奇数n 为偶数②(ar)s=ars(a>0,r.s∈Q);③(ab)r=arbs(a>0,b>0,r∈Q);. 3.指数函数的图象与性质y=ax a>1 0<a<1 图象界说域R值域(0,+∞)性质(1)过定点(0,1)(2)当x>0时,y>1; x<0时,0<y<1 (2) 当x>0时,0<y<1; x<0时, y>1(3)在(-∞,+∞)上是增函数(3)在(-∞,+∞)上是减函数注:如图所示,是指数函数(1)y=ax,(2)y=bx,(3),y=cx (4),y=dx的图象,若何肯定底数a,b,c,d与1之间的大小关系?提醒:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c1>d1>1>a1>b1,∴c>d>1>a>b.即无论在轴的左侧照样右侧,底数按逆时针偏向变大.(二)对数与对数函数1.对数的概念(1)对数的界说假如(01)xa N a a=>≠且,那么数x叫做认为a底,N的对数,记作log Nax=,个中a叫做对数的底数,N叫做真数.(2)几种罕有对数对数情势 特色记法一般对数 底数为a 0,1a a >≠且 log N a经常运用对数 底数为10 lg N天然对数底数为eln N2.对数的性质与运算轨则 (1)对数的性质(0,1a a >≠且):①1log 0a=,②log 1aa =,③log Na a N =,④log Na aN =.(2)对数的主要公式:①换底公式:log log (,1,0)log N Na b baa b N =>均为大于零且不等于; ②1log log b a ab=. (3)对数的运算轨则:假如0,1a a >≠且,0,0M N >>那么 ①N M MN a a a log log )(log +=; ②N M NMa a alog log log -=; ③)(log log R n M n M a n a ∈=; ④b mnb a n a mlog log =. 3.对数函数的图象与性质图象1a >01a <<性质 (1)界说域:(0,+∞)(2)值域:R注:肯定图中各函数的底数a,b,c,d与1的大小关系提醒:作一向线y=1,该直线与四个函数图象交点的横坐标即为它们响应的底数.∴0<c<d<1<a<b.4.反函数指数函数y=ax与对数函数y=logax互为反函数,它们的图象关于直线y=x对称.(三)幂函数1.幂函数的界说形如y=xα(a∈R)的函数称为幂函数,个中x是自变量,α为常数注:幂函数与指数函数有本质差别在于自变量的地位不合,幂函数的自变量在底数地位,而指数函数的自变量在指数地位.2.幂函数的图象注:在上图第一象限中若何肯定y=x3,y=x2,y=x,12=,y=x-1办法:y x可画出x=x0;当x0>1时,按交点的高下,从高到低依次为y=x3,y=x2, y=x,12=,y xy=x-1;当0<x0<1时,按交点的高下,从高到低依次为y=x-1,12=,y=x,y xy=x2,y=x3.3.幂函数的性质y=x y=x2y=x312y x =y=x-1界说域 R R R [0,+∞) {}|0x x R x ∈≠且值域 R [0,+∞) R [0,+∞) {}|0y y R y ∈≠且奇偶性 奇 偶奇 非奇非偶 奇单调性增x ∈[0,+∞)时,增; x ∈(,0]-∞时,减增增x ∈(0,+∞)时,减; x ∈(-∞,0)时,减定点(1,1)三:例题诠释,触类旁通常识点1:指数幂的化简与求值 例1.(2007育才A)(1)盘算:25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+---;(2)化简:5332332323323134)2(248aa a a ab aaab b ba a ⋅⋅⨯-÷++--变式:(2007执信A )化简下列各式(个中各字母均为正数):(1);)(65312121132ba ba b a ⋅⋅⋅⋅--(2).)4()3(6521332121231----⋅÷-⋅⋅b a b a b a(3)1200.2563433721.5()82(23)()63-⨯-+常识点2:指数函数的图象及运用例2.(2009广附A)已知实数a.b 知足等式b a )31()21(=,下列五个关系式:①0<b <a;②a<b <0;③0<a <b;④b<a <0;⑤a=b.个中不成能成立的关系式有 ( ) A.1个 B.2个 C.3个 D.4个变式:(2010华附A )若直线a y 2=与函数 0(|1|>-=a a y x 且)1≠a 的图象有两个公共点,则a 的取值规模是_______. 常识点3:指数函数的性质例3.(2010省实B )已知界说域为R 的函数12()22x x b f x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)断定函数()f x 的单调性;(Ⅲ)若对随意率性的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值规模.变式:(2010东莞B )设a >0,f(x)=x x aa ee +是R 上的偶函数.(1)求a 的值;(2)求证:f(x)在(0,+∞)上是增函数.常识点4:对数式的化简与求值 例4.(2010云浮A )盘算:(1))32(log 32-+(2)2(lg2)2+lg2·lg5+12lg )2(lg 2+-;(3)21lg 4932-34lg 8+lg 245.变式:(2010惠州A )化简求值.(1)log2487+log212-21log242-1;(2)(lg2)2+lg2·lg50+lg25;(3)(log32+log92)·(log43+log83).常识点5:对数函数的性质例5.(2011深圳A )对于01a <<,给出下列四个不等式: ①1log (1)log ();a a a a a +<+②1log (1)log (1)a a a a+>+; ③111;aaaa++<④111;aaaa++>个中成立的是()(A )①与③(B )①与④(C )②与③(D )②与④变式:(2011韶关A )已知0<a <1,b >1,ab >1,则loga bb b b a1log ,log ,1的大小关系是 ( )bb b b a 1log log 1<< B.b b b b a a 1log 1log log <<C.b b b a b a 1log 1log log << D.b b b a a b log 1log 1log <<例6.(2010广州B )已知函数f(x)=logax(a >0,a≠1),假如对于随意率性x∈[3,+∞)都有|f(x)|≥1成立,试求a 的取值规模.变式:(2010广雅B )已知函数f (x )=log2(x2-ax-a)在区间(-∞,1-3]上是单调递减函数.求实数a 的取值规模.常识点6:幂函数的图象及运用 例7.(2009佛山B)已知点(22),在幂函数()f x 的图象上,点124⎛⎫- ⎪⎝⎭,,在幂函数()g x 的图象上.问当x 为何值时有:(1)()()f x g x >;(2)()()f x g x =;(3)()()f x g x <.变式:(2009揭阳B )已知幂函数f(x)=x 322--m m (m∈Z)为偶函数,且在区间(0,+∞)上是单调减函数.(1)求函数f(x);(2)评论辩论F (x )=a)()(x xf bx f -的奇偶性.四:偏向猜测.成功在望 1.(A )函数41lg)(--=x xx f 的界说域为( ) A .(1,4)B .[1,4)C .(-∞,1)∪(4,+∞) D.(-∞,1]∪(4,+∞)2.(A )以下四个数中的最大者是( )(A) (ln2)2(B) ln(ln2)(C) ln 2(D) ln23(B )设a>1,函数f(x)=logax 在区间[a,2a ]上的最大值与最小值之差为,21则a=( )(A)2 (B )2 (C )22 (D )44.(A )已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a fb f ==5(),2c f =则( )(A )a b c << (B )b a c << (C )c b a <<(D )c a b <<5.(B )设f(x)= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩则不等式f(x)>2的解集为( )(A)(1,2)⋃(3,+∞) (B)(10,+∞)(C)(1,2)⋃(10,+∞)(D)(1,2)6.(A )设2log 3P =,3log 2Q =,23log (log 2)R =,则( ) A.R Q P <<B.P R Q <<C.Q R P <<D.R P Q << 7.(A)已知c a b 212121log log log <<,则( )A .c a b 222>>B .c b a 222>>C .a b c 222>>D .b a c 222>> 8.(B )下列函数中既是奇函数,又是区间[]1,1-上单调递减的是( )(A )()sin f x x = (B) ()1f x x =-+(C) 1()()2x x f x a a -=+ (D)2()2xf x lnx-=+ 9.(A)函数y =的界说域是:()A [1,)+∞B 23(,)+∞C 23[,1]D 23(,1]10.(A)已知函数kx y x y ==与41log 的图象有公共点A,且点A 的横坐标为2,则k ( )A .41- B .41 C .21- D .21 11.(B )若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x .三.四象限,则必定有( )A .010><<b a 且B .01>>b a 且C .010<<<b a 且D .01<>b a 且12.(B)若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=( ) A.42B.22C. 41D.21 13.(A)已知0<x <y <a <1,则有( )(A )0)(log <xy a (B )1)(log 0<<xy a (C )2)(log 1<<xy a (D )2)(log >xy a14.(A )已知x x f 26log )(=,那么)8(f 等于( ) (A )34(B )8(C )18(D )21 15.(B )函数y =lg|x| ( )A .是偶函数,在区间(-∞,0)上单调递增B .是偶函数,在区间(-∞,0)上单调递减C .是奇函数,在区间(0,+∞)上单调递增D .是奇函数,在区间(0,+∞)上单调递减 16.(A )函数3)4lg(--=x x y 的界说域是____________________________. 17.(B )函数1(01)x y a a a -=>≠,的图象恒过定点A ,若点A 在直线10(0)mx ny mn +-=>上,则11m n+的最小值为 . 18.(A )设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩ 则1(())2g g =__________19.(B )若函数f(x) = 1222--+a ax x 的界说域为R,则a 的取值规模为___________.20.(B)若函数)2(log )(22a a x x x f ++=是奇函数,则a=. 21.(B)已知函数xxx x f -+-=11log 1)(2,求函数)(x f 的界说域,并评论辩论它的奇偶性和单调性. 参考答案:三:例题诠释,触类旁通 例1. 解:(1)92,(2)2a变式:解:(1)1, (2).4514545)(45)2323212331361abab ab b a b a b a -=⋅-=⋅-=÷-=----- (3)110例2. 解:B变式:解:)21,0(;例3. 解:(Ⅰ)1=b (Ⅱ)减函数. (Ⅲ)31-<k 变式:解:(1)a=1.(2)略例4. 解:(1)-1.(2)1.(3)21.变式:解:(1).232log 221log 242481272322-===⨯⨯⨯-(2)2.(3)45 例5. 解:选D. 变式:解: C例6. 解:(1,3]∪[31,1)变式:解:{a|2-23≤a<2}例7. 解:(1)当1x >或1x <-时,()()f x g x >; (2)当1x =±时,()()f x g x =;(3)当11x -<<且0x ≠时,()()f x g x <. 变式:解:(1)f(x)=x-4. (2)F (x )=32bx x a -, ∴F(-x )=2x a +bx3.①当a≠0,且b≠0时,F (x )为非奇非偶函数;②当a=0,b≠0时,F (x )为奇函数; ③当a≠0,b=0时,F (x )为偶函数;④当a=0,b=0时,F (x )既是奇函数,又是偶函数. 四:偏向猜测.成功在望1—5 ADDDC; 6—10 AADDA; 11—15 CADDB. 16. (-, 3)(3,4) 17. 4 18.2119.[-1,0] 20.2221.[解]x 须知足,11011,0110<<->-+⎪⎩⎪⎨⎧>-+≠x x x x x x 得由 所以函数)(x f 的界说域为(-1,0)∪(0,1). 因为函数)(x f 的界说域关于原点对称,且对界说域内的随意率性x,有)()11log 1(11log 1)(22x f x x x x x x x f -=-+--=+---=-,所所以)(x f 奇函数. 研讨)(x f 在(0,1)内的单调性,任取x1.x2∈(0,1),且设x1<x2 ,则 得)()(21x f x f ->0,即)(x f 在(0,1)内单调递减, 因为)(x f 是奇函数,所以)(x f 在(-1,0)内单调递减.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档