最新最全PKPM钢结构计算

合集下载

钢结构计算公式

钢结构计算公式

钢结构计算公式在建筑和工程领域,钢结构因其高强度、轻质、施工便捷等优点而被广泛应用。

要设计和建造安全可靠的钢结构,准确的计算公式是至关重要的。

接下来,让我们一起深入了解一些常见的钢结构计算公式。

首先,我们来谈谈钢结构的受力分析。

在钢结构中,最常见的受力形式包括拉力、压力、剪力和弯矩。

对于承受拉力或压力的构件,其强度计算公式为:σ = N / A ,其中σ表示应力,N 表示拉力或压力,A 表示构件的横截面积。

这个公式可以帮助我们判断构件在受力时是否会发生破坏。

当钢结构构件受到剪力时,我们需要用到剪力计算公式:τ = V /A ,其中τ表示剪应力,V 表示剪力,A 表示受剪面积。

通过这个公式,可以评估构件在剪力作用下的安全性。

弯矩是钢结构中另一个重要的受力形式。

对于受弯构件,我们通常使用抗弯强度计算公式:σ = M / W ,其中 M 表示弯矩,W 表示截面抵抗矩。

这个公式可以帮助我们确定构件在弯曲时的承载能力。

接下来,让我们看看钢结构的稳定性计算。

钢结构的稳定性对于结构的安全至关重要。

对于受压构件,我们需要考虑其稳定性,常用的欧拉公式为:Pcr =π²E I /(μL)² ,其中 Pcr 表示临界压力,E 表示弹性模量,I 表示截面惯性矩,μ表示长度系数,L 表示构件的计算长度。

在钢结构的连接设计中,也有一系列的计算公式。

例如,对于螺栓连接,我们需要计算螺栓所承受的剪力和拉力,以确定所需螺栓的数量和规格。

螺栓的抗剪承载力计算公式为:Nv =nvπd²fvb / 4 ,其中nv 表示受剪面数量,d 表示螺栓直径,fvb 表示螺栓的抗剪强度。

对于焊接连接,焊缝的强度计算也是必不可少的。

例如,对接焊缝的抗拉强度计算公式为:σ = N /lwδ ,其中 lw 表示焊缝长度,δ 表示焊缝厚度。

钢结构的变形计算也是设计中需要考虑的重要因素。

例如,梁的挠度计算公式为:f = 5ql⁴/(384EI) ,其中 q 表示均布荷载,l 表示梁的跨度。

钢结构PKPM抗震计算模型一

钢结构PKPM抗震计算模型一

一、结构模型概况
1.楼层信息
(一)楼层表
2.材料信息
(一)材料表
(二)配筋信息
(1) 梁、柱、支撑
(2) 剪力墙
3.风荷载信息
基本风压:0.55(kN/m2)
地面粗糙度:D
风压高度变化修正系数η:1.00
风荷载计算用阻尼比:0.02 4.工况和组合
(一)工况表
(二)组合表
二、分析结果
1.地震作用下的基底总反力
2.结构周期及振型方向
3.各地震方向参与振型的有效质量系数
4.竖向构件的倾覆力矩及百分比
(1) X向规定水平力
(2) Y向规定水平力
5.竖向构件地震剪力及百分比
6.规定水平作用下的位移比验算
(1) X向规定水平力
(2) Y向规定水平力
7.地震作用下的楼层位移和位移角验算
(1) 单向地震力作用
结构的最大层间位移为1/1707(塔1的第2F层)
7.弹塑性层间位移角
8.抗倾覆验算
【结论】整体抗倾覆能力足够,零应力区面积满足规范要求。

9.整体稳定刚重比验算
该结构ΣN/ΣH/250 > 0.1,应考虑重力二阶效应
塔1刚重比验算
【结论】该结构刚重比Di*Hi/Gi ≥ 5,能够通过高钢规(6.1.7)的整体稳定验算
三、时程分析包络结果
1.结构底部地震剪力包络结果
2.楼层剪力包络结果
3.楼层位移角包络结果
4.楼层位移包络结果
5.层间位移包络结果。

PKPM计算流程最全

PKPM计算流程最全

PKPM计算流程最全PKPM(平面空间钢结构分析与设计软件)是一种广泛应用于钢结构工程设计中的计算软件。

它包括了建模、荷载输入、分析计算、结果输出等多个步骤。

下面是PKPM计算流程的详细介绍。

1.建模:首先,需要根据实际情况使用PKPM软件进行建模。

建模主要包括定义结构的几何特征和材料特性。

几何特征包括结构的尺寸、形态和连接方式等;材料特性主要包括钢材的强度、弹性模量和重量等。

通过上述信息的输入,PKPM可以自动生成结构的三维模型。

2.荷载输入:在完成建模后,需要考虑实际使用条件下所受的荷载。

荷载包括静态荷载和动态荷载。

静态荷载包括自重、直接作用荷载和附加作用荷载等;动态荷载包括风荷载、地震荷载和温度荷载等。

根据实际情况,使用PKPM软件进行荷载输入,并定义荷载的作用位置和方向。

3.分析计算:在完成荷载输入后,需要进行结构的力学分析计算。

PKPM软件会根据建模和荷载输入的信息,利用结构力学的理论进行计算。

主要的分析计算包括线性静力分析、弯矩-剪力分析和构造稳定性分析等。

这些计算可以得到结构的内力和变形等数据。

4.结果输出:在完成分析计算后,需要将结果输出。

PKPM软件可以将分析计算得到的数据以图表和报告的形式进行展示。

结果输出包括结构受力状态、应力分布、位移变形、结构的安全评估和合理性检验等。

根据输出结果,可以对设计方案进行优化和改进,并进行相应的结构调整。

总结起来,PKPM计算流程主要包括建模、荷载输入、分析计算和结果输出等步骤。

通过PKPM软件进行这些步骤可以有效地进行结构的分析和设计工作,提高工作效率和设计质量。

PKPM钢结构计算实例

PKPM钢结构计算实例

PKPM钢结构计算实例PKPM是一种常用的钢结构计算软件,广泛应用于房屋建筑、工业厂房、桥梁和高层建筑等领域。

下面将通过一个实际的钢结构计算实例来介绍PKPM的使用。

假设我们需要设计一个用于工业厂房建筑的钢结构。

首先,我们需要给出建筑的设计参数,包括建筑的类型、使用情况、结构形式和尺寸等。

在PKPM软件中,我们可以选择“新建工程”来创建一个新的项目。

然后,在“模型”选项卡中,我们可以输入建筑的基本参数,例如建筑类型为工业厂房,使用要求为普通状况,结构形式为框架结构。

接下来,我们需要输入建筑的尺寸参数。

在PKPM软件中,可以使用“节点”和“荷载”选项卡来输入节点和荷载信息。

首先,在“节点”选项卡中,我们可以输入建筑的节点坐标和节点类型。

可以通过手动输入或导入自动绘图软件生成的节点坐标文件来完成节点的输入。

然后,在“荷载”选项卡中,我们可以输入建筑的荷载参数。

可以输入自重荷载、活荷载、风荷载和温度荷载等参数。

需要注意的是,建筑的荷载参数需要根据工程实际情况进行合理估计。

PKPM软件提供了自动计算荷载的功能,可以根据建筑尺寸和使用要求自动计算出荷载参数。

完成节点和荷载信息的输入后,我们就可以开始进行结构的分析和计算。

在PKPM软件中,我们可以选择“分析”选项卡,然后选择“线性分析”或“非线性分析”来进行结构的分析计算。

线性分析适用于小荷载和较简单的结构,而非线性分析适用于大荷载和复杂的结构。

在分析计算过程中,PKPM软件会根据输入的节点和荷载信息自动生成结构的刚度矩阵和荷载矩阵,并进行相应的求解和计算。

分析完成后,我们可以查看和分析计算结果。

PKPM软件提供了丰富的结果展示功能,可以生成结构的受力图、变形图和应力图等,帮助工程师直观地了解和评估结构的受力性能。

最后,根据结果分析和评估,我们可以对结构进行优化设计。

在PKPM软件中,我们可以通过修改节点坐标、荷载参数或材料参数等来进行设计优化。

并且,PKPM软件提供了多种设计规范和标准的支持,可以根据工程要求选择不同的设计规范进行设计。

pkpm钢结构高厚比验算

pkpm钢结构高厚比验算

pkpm钢结构高厚比验算摘要:1.pkpm 钢结构高厚比验算的背景和意义2.pkpm 钢结构高厚比的计算方法和限值3.pkpm 钢结构计算中出现高厚比超限的问题和解决方法4.pkpm 钢结构计算中的其他注意事项5.结论和建议正文:一、pkpm 钢结构高厚比验算的背景和意义pkpm 是一种广泛应用于钢结构设计的软件,其中涉及到的高厚比验算,是指对钢结构中腹板的局部稳定性进行计算和检验。

高厚比主要是指腹板的高度与厚度的比值,这个比值对于钢结构的稳定性和安全性有着重要的影响。

因此,在进行钢结构设计时,对高厚比进行验算,可以确保设计方案的合理性和安全性。

二、pkpm 钢结构高厚比的计算方法和限值在pkpm 中,高厚比的计算方法是通过腹板的高度和厚度来确定的。

通常情况下,高厚比的限值是由设计规范来规定的,一般情况下,高厚比的限值不应大于3。

如果计算得到的高厚比超过这个限值,就需要对设计方案进行调整,以确保结构的安全性。

三、pkpm 钢结构计算中出现高厚比超限的问题和解决方法在使用pkpm 进行钢结构计算时,有时会出现高厚比超限的问题。

这可能是由于设计方案不合理,或者计算参数设置不当等原因导致的。

对于这个问题,可以通过调整设计方案,或者修改计算参数来解决。

比如,可以尝试增加腹板的厚度,或者减小腹板的高度,以降低高厚比。

四、pkpm 钢结构计算中的其他注意事项在进行pkpm 钢结构计算时,还需要注意一些其他的问题,比如构件的规格和材料性能等。

构件的规格应该根据实际需求和设计规范来选择,材料性能也应该根据实际情况来确定。

这样才能保证计算结果的准确性和可靠性。

五、结论和建议pkpm 钢结构高厚比验算是钢结构设计中非常重要的一环,对于确保结构的安全性和稳定性有着重要的作用。

在进行高厚比验算时,应该严格按照设计规范和计算方法来进行,同时,还需要注意一些其他的问题,比如构件的规格和材料性能等。

PKPM 设计参数- 钢结构新型结构-

PKPM 设计参数- 钢结构新型结构-

PKPM 设计参数PKPM 设计参数楼层组装—设计参数a.总信息1.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,砌体,底框)。

2.结构主材(钢筋混凝土,砌体,钢和混凝土)。

3.结构重要性系数(《高层混凝土结构技术规程》4.7.1 ,混凝土规范3.2.3)。

4.底框层数,地下室层数按实际选用。

5.梁柱钢筋的混凝土保护层厚度(《混凝土结构设计规范》表3.4.1及表9.2.1)。

6.与基础相连的最大楼层号,按实际情况,如没有什么特殊情况,取1。

7.框架梁端负弯矩调幅系数一般取(0.85—0.9)《高层混凝土结构技术规程》5.2.3条文中有说明。

b.材料信息1.混凝土容重取 26-27,全剪力墙取27,取25时需输入粉刷层荷载。

2.钢材容重取 78。

3.梁柱主筋类别,按设计需要选取。

优先采用三级钢,可以节约钢材。

SATWE设计参数a.总信息1.水平力与整体坐标夹角(度),通常采用默认值。

(逆时针方向为正,当需进行多方向侧向力核算时,可改变次参数)2.混凝土容重取 26-27,钢材容重取 78。

3.裙房层数,转换层所在层号,地下室层数,均按实际取用。

(如果有转换层必须指定其层号)。

4.墙元细分最大控制长度,这是在墙元细分时需要的一个参数,对于尺寸较大的剪力墙,在作墙元细分形成一定的小壳元时,为确保分析精度,要求小壳元的边长不得大于给定限值Dmax,程序限定1.0≤Dmax≤5.0 ,隐含值为Dmax=2.0 , Dmax对分析精度略有影响,但不敏感,对于一般工程,可取Dmax=2.0 ,对于框支剪力墙结构, Dmax可取略小些, 例如Dmax=1.5或1.0 。

5.对所有楼板强制采用刚性楼板假定(在计算结构位移比时选用此项,除了位移比计算,其他的结构分析、设计不应选择此项)。

6.墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”,则只把墙元因细分而在其内部增加的节点凝聚掉,四边上的节点均作为出口节点,墙元的边形协调性好,分析结果符合剪力墙的实际,但计算量大。

2024最新PKPM钢结构计算经验全集

2024最新PKPM钢结构计算经验全集

2024最新PKPM钢结构计算经验全集1.设计前的准备工作在进行PKPM钢结构计算前,需要进行一些准备工作。

首先要明确设计要求和标准,如国家标准、建筑规范等。

其次要对设计的结构进行充分的了解,包括结构形式、截面形状、荷载情况等。

还要了解PKPM软件的使用方法和计算原理。

2.结构模型的建立在PKPM软件中建立结构模型时,应按照实际结构的情况进行准确的建模。

要选择合适的材料性能参数,包括钢材的弹性模量、屈服强度、抗拉强度等。

3.荷载的施加在进行钢结构计算时,首先要施加正确的荷载。

应根据实际使用情况,包括静载、动载和温度荷载等,合理设置荷载参数。

对于地震作用的计算,应根据规范要求选择设计地震动参数。

4.结果的分析与判断在PKPM软件中进行结构计算后,应仔细分析计算结果。

要对结构内力进行检查,确保结构的强度、刚度和稳定性等满足设计要求。

如果结构存在问题,如局部屈曲、应力过大等,要重新优化设计。

5.设计注意事项钢结构计算过程中需要注意以下几个方面。

首先是梁的计算,应根据梁的受力特点选择合适的截面形式和尺寸。

其次是柱的计算,应根据柱的轴力和弯矩确定合适的截面尺寸。

还要注意钢构件的连接方式和节点设计,确保连接处的强度和刚度。

6.设计案例分析为了更好地理解PKPM钢结构计算的应用,可以通过一些实际的设计案例进行分析。

可以选择一些具有代表性的钢结构项目,如钢框架、钢桥梁、钢屋面等,分析其受力情况、结构设计和计算结果等。

通过实例分析,可以更加直观地了解PKPM软件在钢结构计算中的应用。

7.设计中的常见问题及解决方法在使用PKPM软件进行钢结构计算过程中,可能会遇到一些常见的问题。

如其中一构件出现不平衡荷载、模型收敛失败等。

对于这些问题,可以通过调整荷载设置、优化结构模型和调整参数等方式解决。

通过以上的经验全集,可以帮助工程师更好地应用PKPM软件进行钢结构计算。

这些经验可以帮助工程师提高计算的准确性和效率,同时保证结构的安全性和可靠性。

PKPM钢结构计算书

PKPM钢结构计算书

####### ### ### ###### ## ######## ## #### #### ## #### ## ######### ## ### ## ###### ## ## ######## ## # ## ## ######## #### ## ## ####### ## ## ##============================================================================== BUILDING STRUCTURE ANALYSIS PROGRAMVersion 7.0Institute of Building Structure,China Academy of Building Research.Copyright (C) 1997-2011. All rights reserved.Address : 30,Bei San Huan Dong Road,Beijing,P.R.China. Post : 100013Telephone : (010)84276262,64517586Project Name : 大壳TBOutput File Name : 大壳TB.JSSCurrent Date : 2016/ 4/25Current Time : 21: 4:35PMSAP 计 算 书 目 录________________________(ITEM001) 系统总信息(ITEM002) 本工程中各工况的设定(ITEM003) 构件内力基本组合系数(ITEM004) 结构质量分布表(吨)(ITEM005) 各楼层各类构件数量及材料统计(ITEM006) 各层弹性楼板面积统计(ITEM007) 各层风荷载(ITEM008) 各工况外载力系向O(x0,y0,z0)点的静力等效力矢(ITEM009) 按高规附录(E.0.1)条计算的楼层侧向剪切刚度比(ITEM010) 按高规附录(E.0.2)条计算的楼层侧向剪弯刚度比(ITEM011) 按[楼层剪力/层间位移]计算的楼层刚度比(ITEM012) 各地震方向参与振型的有效质量系数(ITEM013) 各振型的基底地震力(按抗规5.2.5调整前)(ITEM014) 按抗规(5.2.5)条计算的地震力放大系数(ITEM015) 各楼层的总剪力和总弯矩(ITEM016) 结构周期及振型方向(ITEM017) 适用于不规则结构的楼层水平位移及位移角统计(ITEM018) 单塔多塔通用的框架0.2V0(0.25V0)调整系数(ITEM019) 水平荷载作用下的楼层位移及位移比(ITEM020) 风荷载作用下结构顶点最大加速度(m/s**2)(ITEM021) 结构分塔剪重比(ITEM022) 各楼层抗剪承载力及与上层承载力的比值(ITEM023) 大震下弹塑性层间位移角(简化方法)(ITEM024) 抗倾覆验算(ITEM025) 整体稳定刚重比验算(ITEM026) 剪力墙底部加强区范围(ITEM027) 结构时程响应汇总第 1 页(ITEM028) 各层框架剪力及倾覆弯矩百分比(ITEM029) 框支框架地震剪力及倾覆力矩百分比(ITEM030) 高位转换时转换层上部与下部结构的剪弯刚度比(ITEM031) 框架承担的倾覆力矩百分比(用V*H求和方法计算)(ITEM001) 系统总信息________________________1.总信息建筑物所在地区 (0全国1上海) IAREA= 0 (全国) 材料(0=砼1/2=钢+砼3=钢4=砌体) IEARTHFCE= 3 (无填充墙的钢结构)结构类型(1框架2框剪3框架筒...) KIND_TB= 1 (框架结构)结构规则性(0规则1立2平3立平) IREGULAR= 0 (立面平面均规则)多层或高层(0=高层1=多层) MULTI_HEI= 0 (高层结构)是否复杂高层结构(1/0) ICOMPLICATED= 0 (非复杂高层结构)地震作用方向数 NEDIR= 2是否考虑竖向地震作用(1/0) I_EZ_EZZ= 0 (不考虑竖向地震作用)是否考虑双向地震效应(1/0) IEQUAKE_XY= 0 (不考虑双向地震效应)是否考虑P-DELT效应(1/0) IPDELT= 0 (不考虑P-DELTA效应)是否自动考虑梁柱刚域(1/0) IAUTORIGID= 0 (不考虑梁柱交接部位刚域)考虑施工影响标志(0/1/2/3) IIISGYX= 1 (施工模拟算法1)特征值算法选择(1=Guyan 2=Mritz) IEIGEN= 1 (Guyan 方法)刚度阵存储(1=双精度0=单精度) IREADWRITE= 0 (单精度计算模式)混凝土容重(kN/m**3) ROU_CONCRETE= 25钢材容重(kN/m**3) ROU_STEEL= 78.500结构是否按中/大震不屈服设计(1/0) IMIDEAR= 0 (否)框架梁端配筋考虑受压钢筋 NGB_CONSIDERED= 0 (框架梁端配筋不考虑受压钢筋)楼层刚度算法(1剪切2剪弯3抗规) ISTIFRATIO= 3 (楼层刚度比采用层间剪力比层间位移算法)梁和弹性楼板的竖向定位 BEAM_EZ= 0 (梁和弹性楼板的中性面与柱顶对齐)开洞墙梁转框架梁的跨高比 WBTOBEAM= 0 (不启用墙梁转框架梁功能)钢构件净毛面积比 RNET= 0.900钢柱长度系数计算方式 ICLEN_COEF= 0 (钢柱计算长度系数采用有侧移算法)结构是否按中/大震弹性设计 IMIDEAR_ELA= 0 (否)第 2 页2.剪力墙信息剪力墙模型(0:细分1:简化) IWALLMODEL= 1 (简化模型)墙水平边界细分尺寸(m) WSIDE_LENX= 1墙垂直边界细分尺寸(m) WSIDE_LENY= 1墙侧节点是否预先消去(1/0) IWPRESOLVE= 1 (墙侧节点预先消去)判断边缘构件时考虑轴压比(1/0) K646TAB= 03.楼板信息自动形成刚性楼板假定(2/1/0) IRIGIDSLAB= 2 (考虑自然刚性楼板假定)计算楼板应力和配筋(2/1/0) IPOLY_REIN= 1 (计算楼板应力和配筋)楼板网格类型(0/1/2/3) IPOLY_MESH= 1 (非规则网格)采用强制刚性楼板假定(1/0) JRIGIDSLAB= 0 (不采用强制刚性楼板假定)4.温度荷载信息温度荷载工况数 NTCASE= 0温度荷载组合系数 T_COM= 0混凝土弹性模量折减系数 E_REDUCE= 1温度场类型(0=CONTINUOUS;1=STEP) ITEMTYPE= 0 (连续型温差场)砼构件温度效应折减系数 TEM_REDUCE= 0.3005.地震反应谱分析信息地震分组(0,1,2代表1,2,3组) NEARFAR= 0 (第一组)地震烈度 LIEDU= 7场地类型 IGRDTYPE= 2振型效应组合方式(0=CQC;1=SRSS) ICOMTYPE= 0 (CQC 组合方式)框架抗震等级 IEFR= 1剪力墙抗震等级 IEW= 2振型阻尼比 DAMP= 0.050参与振型个数 NMODE= 15周期折减系数 REDUCET= 1地震作用放大系数 ELDCOEF= 1活荷载质量折减系数 RLOAD_MASS_LIVE= 0.500是否考虑偶然偏心地震(0不考虑) NEDIRA= 0 (不考虑偶然偏心地震)自动计算最不利地震方向(1/0) IAUTOEANGLE= 0 (程序不自动考虑最不利地震工况EXO和EYO)水平地震影响系数最大值 (g) ALFMAX= 0.080特征周期 (s) TG= 0.350结构阻尼类型(0/1/2/3/4) KDAMP= 0确定结构阻尼的第一频率序号指定 IOMIGA1= 0确定结构阻尼的第二频率序号指定 IOMIGA2= 0是否采用抗规5.2.5条的剪重比调整 IAUTO525= 2 (考虑抗规 5.2.5 条的剪重比调整)自定义地震设计谱插值点数 NPSPEC= 0 (采用抗第 3 页震规范地震设计谱)钢框架抗震等级 IE_STS= 1抗震构造措施抗震等级提高 NDEGREE_GZ= 0竖向地震作用系数底线值 EV_COEF_MIN= 06.风荷载信息风荷载数 NWINDLOAD= 2第 1 风荷载工况号 LDN= 3第 1 风荷载作用角度(度) ALF= 0第 1 风荷载基本风压(kN/m**2) W0= 0第 1 风荷载体型系数 RMUS= 1.300第 1 风荷载地面粗糙度类别 ISMOOTH= 3第 1 风荷载作用方向结构周期(s) T= 0.200第 2 风荷载工况号 LDN= 4第 2 风荷载作用角度(度) ALF= 90第 2 风荷载基本风压(kN/m**2) W0= 0第 2 风荷载体型系数 RMUS= 1.300第 2 风荷载地面粗糙度类别 ISMOOTH= 3第 2 风荷载作用方向结构周期(s) T= 0.200竖向风荷载数 NZWINDLOAD= 0风荷载作用下结构的阻尼比 DAMP_WIND= 0.050舒适度验算采用的结构风压(kN/m**2) W0ACC= 0舒适度验算采用的结构阻尼比 DAMP_WIND_SSD= 0.0207.活荷信息梁活荷不利布置考虑至几层 LIVE23_LEV= 0折减墙柱设计活荷(1/0) IREDUCE_CWLL= 0 (不折减墙、柱设计活荷)折减传给基础的活荷(1/0) IREDUCE_BASELL= 0 (不折减传给基础的活荷)1层折减系数 REDUCE_LL1= 12-3层折减系数 REDUCE_LL23= 0.8504-5层折减系数 REDUCE_LL45= 0.7006-8层折减系数 REDUCE_LL68= 0.6509-20层折减系数 REDUCE_LL920= 0.60020层以上折减系数 REDUCE_LL20UP= 0.550梁活荷折减的临界从属面积(m**2) B_ATT_A= 25梁活荷折减系数 BEAM_COEF_LL= 0.900 (当梁的从属面积超过临界从属面积时起作用)8.地下室信息地下室层数 NBASEMENT0= 0地面Z坐标(m) Z_GROUND= 63.885X向回填土刚度系数 (KN/m/m**2) SOILKX= 0Y向回填土刚度系数 (KN/m/m**2) SOILKY= 0地下室沿X向的宽度(m) WIDTH_X= 113.422地下室沿Y向的宽度(m) WIDTH_Y= 113.422回填土高度(m) [结构底面到地面的距离] SH= 0回填土X向总刚度值(KN/m) RKX= 0回填土Y向总刚度值(KN/m) RKY= 0X向受回填土约束的节点总数 NPOINTX= 0Y向受回填土约束的节点总数 NPOINTY= 0顶部回填土刚度折减系数 TSOIL_FACTOR= 1第 4 页竖向人防荷载工况号 LDN= 0横向人防荷载工况号 LDNLAT= 0人防等级 NDEGREE= 5人防层数 NST= 0外墙荷载(KN/M**3) QLAT= 0顶板荷载(KN/M**2) QTOP= 0水土压力工况号 LDN= 0墙面外保护层厚度(M) DS_WALL= 0.035回填土密度 (t/m**3) ROU_SOIL= 1.800室外地坪标高(M) HSOIL= -0.350地下水位标高(M) HWATER= -20回填土侧压力系数 PCOEF= 0.500室外地面附加荷载(KN/M**2) Q_GROUND= 09.计算调整信息0.2V0剪力调整分段数 NSEG02Q= 0塑性梁端负弯矩调幅系数 CBL= 0.850梁设计弯矩放大系数 CLL= 1连梁刚度折减系数 BEC= 0.700梁刚度放大系数下限值 BEZ_MIN= 1梁刚度放大系数上限值 BEZ_MAX= 3梁扭矩折减系数下限值 BET_MIN= 0.400梁扭矩折减系数上限值 BET_MAX= 1转换层层号 ITFLOOR= 0结构重要性系数 STRU_IMPORTANCE= 1强制指定的薄弱层个数 NWEAKST= 0指定的底部加强区起算层号ISUB0_STRENGTHEN= 1指定的底部加强区终止层号ISUB1_STRENGTHEN= 0薄弱层地震效应调整系数 COEF_WEAKST= 1.250考虑结构使用年限的活荷调整系数FLIVE_COEF= 1风荷载内力放大系数 FWIND_COEF= 1墙刚度折减系数 SHEARWALL_STIF_COEF= 1柱轴压比按纯框架结构控制 IACR_TO_FRAME= 0强制指定的约束层个数 NRES_FLOOR= 0强制指定的过渡层个数 NGD_FLOOR= 0嵌固端所在层号 ISUB_FIX= 0按抗规6.1.14条调整地下室顶板梁内力 K6114= 0加强层个数 NJQ= 0框支柱剪力调整系数上限 COEF_KZZ02Q_MAX= 5框架0.2V0调整系数上限 COEF_KJ02Q_MAX= 210.配筋设计信息柱主筋级别 AGCB= 3柱箍筋级别 AVCB= 3墙主筋级别 AGW= 3墙水平分布筋级别 AVW= 3墙竖向分布筋配筋率 UTW= 0.003楼板钢筋级别 AGP= 3梁箍筋加密区间距(mm) BGUJM= 100柱箍筋加密区间距(mm) CGUJM= 100墙水平筋间距(mm) WGUJM= 200柱箍筋类型(0普通1复合2...) IGUJIN_TYPE= 0 (普通箍)柱配筋算法(0=双偏压1=单偏压) IUNIMOMENT= 1 (柱主筋第 5 页计算采用单偏压算法)梁保护层厚度(mm) DS_BEAM= 35柱保护层厚度(mm) DS_COLU= 35板保护层厚度(mm) DS_SLAB= 20剪力墙边缘构件箍筋级别 AVBMEM= 3实配钢筋超配系数 GJCPCOEF= 1.150墙竖向分布筋级别 AVW_VER= 3梁主筋级别 AGBB= 3梁箍筋级别 AVBB= 311.时程分析信息时程分析标志(1考虑0不考虑) IDYN= 0 (不考虑时程分析计算)地震波作用方向数 NDDIR= 2地震波条数 NWAVE= -312.荷载分项系数及组合值系数永久荷载分项系数(永久荷载控制) GAMA_G1= 1.350永久荷载分项系数(可变荷载控制) GAMA_G2= 1.200活荷载分项系数 GAMA_L = 1.400活荷载组合值系数 PSI_L = 0.700风荷载分项系数 GAMA_W = 1.400风荷载组合值系数(不与地震组合) PSI_W1 = 0.600风荷载组合值系数(与地震组合) PSI_W2 = 0.200水平地震作用分项系数 GAMA_EH= 1.300竖向地震分项系数(不组合水平地震)GAMA_EV1= 1.300竖向地震分项系数(组合水平地震) GAMA_EV2= 0.500活荷载准永久值系数 PSIQ_L= 0.500风荷载准永久值系数 PSIQ_W= 0地震荷载准永久值系数 PSIQ_E= 0活荷载频遇值系数 PSIF_L= 0.600风荷载频遇值系数 PSIF_W= 0.400地震荷载频遇值系数 PSIF_E= 0.100温度荷载准永久值系数 PSIQ_TEM= 0温度荷载频遇值系数 PSIF_TEM= 0温度荷载组合值系数(与风组合) PSI_TEMW= 0温度荷载组合值系数(与地震风组合)PSI_TEME= 013.砌体结构信息砌块种类(0=烧结砖1=蒸压砖2=砼砌块)MBLOCK= 0 (烧结砖)砌块容重(KN/M**3) ROU_BLOCK= 0构造柱刚度折减系数 RCON= 0托砖墙的梁的恒活内力放大系数 RCONBEAM= 0底部框架层数 NFST= 0砌块种类变化起始层号 MFST= 0第一种砌块弹性模量(N/MM**2) EBLOCK1= 0第一种砌块抗压设计强度(N/MM**2) FCBLOCK1= 0第一种砌块抗拉设计强度(N/MM**2) FTBLOCK1= 0第一种砌块抗剪设计强度(N/MM**2) FVBLOCK1= 0第二种砌块弹性模量(N/MM**2) EBLOCK2= 0第二种砌块抗压设计强度(N/MM**2) FCBLOCK2= 0第二种砌块抗拉设计强度(N/MM**2) FTBLOCK2= 0第 6 页第二种砌块抗剪设计强度(N/MM**2) FVBLOCK2= 0(ITEM002) 本工程中各工况的设定__________________________________工况 1: DL 恒荷载工况 2: LL 活荷载工况 3: WX ( 0.0度) X向风载工况 4: WY ( 90.0度) Y向风载工况 5: EZ Z向地震(抗震规范)工况 6: WZX X正向风载工况 7: WZY Y正向风载工况 8: WFX X负向风载工况 9: WFY Y负向风载工况10: S 用户自定义荷载工况11: LX ( 0.0度) X静震 (对应于EX 地震的静力工况)工况12: PX ( 0.0度) X静震P (对应于EX 地震的正偏心静力工况)工况13: MX ( 0.0度) X静震M (对应于EX 地震的负偏心静力工况)工况14: LY ( 90.0度) Y静震 (对应于EY 地震的静力工况)工况15: PY ( 90.0度) Y静震P (对应于EY 地震的正偏心静力工况)工况16: MY ( 90.0度) Y静震M (对应于EY 地震的负偏心静力工况)工况17: EX ( 0.0度) X向地震工况18: EY ( 90.0度) Y向地震(ITEM003) 构件内力基本组合系数__________________________________基本组合系数表:1 1.35*DL 0.98*LL2 1.20*DL 1.40*LL 0.84*WX3 1.20*DL 1.40*LL -0.84*WX4 1.20*DL 1.40*LL 0.84*WY5 1.20*DL 1.40*LL -0.84*WY6 1.20*DL 0.98*LL 1.40*WX7 1.20*DL 0.98*LL -1.40*WX8 1.20*DL 0.98*LL 1.40*WY9 1.20*DL 0.98*LL -1.40*WY10 1.00*DL 0.98*LL11 1.00*DL 1.40*LL 0.84*WX12 1.00*DL 1.40*LL -0.84*WX13 1.00*DL 1.40*LL 0.84*WY14 1.00*DL 1.40*LL -0.84*WY第 7 页15 1.00*DL 0.98*LL 1.40*WX16 1.00*DL 0.98*LL -1.40*WX17 1.00*DL 0.98*LL 1.40*WY18 1.00*DL 0.98*LL -1.40*WY19 1.20*DL 0.60*LL 0.28*WX 1.30*EX20 1.20*DL 0.60*LL -0.28*WX 1.30*EX21 1.20*DL 0.60*LL 0.28*WY 1.30*EY22 1.20*DL 0.60*LL -0.28*WY 1.30*EY23 1.20*DL 0.60*LL 0.28*WX -1.30*EX24 1.20*DL 0.60*LL -0.28*WX -1.30*EX25 1.20*DL 0.60*LL 0.28*WY -1.30*EY26 1.20*DL 0.60*LL -0.28*WY -1.30*EY27 1.00*DL 0.50*LL 0.28*WX 1.30*EX28 1.00*DL 0.50*LL -0.28*WX 1.30*EX29 1.00*DL 0.50*LL 0.28*WY 1.30*EY30 1.00*DL 0.50*LL -0.28*WY 1.30*EY31 1.00*DL 0.50*LL 0.28*WX -1.30*EX32 1.00*DL 0.50*LL -0.28*WX -1.30*EX33 1.00*DL 0.50*LL 0.28*WY -1.30*EY34 1.00*DL 0.50*LL -0.28*WY -1.30*EY35 1.20*DL 1.40*LL 0.84*WZX36 1.20*DL 1.40*LL 0.84*WFX37 1.20*DL 1.40*LL 0.84*WZY38 1.20*DL 1.40*LL 0.84*WFY39 1.20*DL 0.98*LL 1.40*WZX40 1.20*DL 0.98*LL 1.40*WFX41 1.20*DL 0.98*LL 1.40*WZY42 1.20*DL 0.98*LL 1.40*WFY43 1.00*DL 1.40*LL 0.84*WZX44 1.00*DL 1.40*LL 0.84*WFX45 1.00*DL 1.40*LL 0.84*WZY46 1.00*DL 1.40*LL 0.84*WFY47 1.00*DL 0.98*LL 1.40*WZX48 1.00*DL 0.98*LL 1.40*WFX49 1.00*DL 0.98*LL 1.40*WZY50 1.00*DL 0.98*LL 1.40*WFY51 1.20*DL 0.60*LL 0.28*WZX 1.30*EX52 1.20*DL 0.60*LL 0.28*WFX 1.30*EX53 1.20*DL 0.60*LL 0.28*WZY 1.30*EY54 1.20*DL 0.60*LL 0.28*WFY 1.30*EY55 1.20*DL 0.60*LL 0.28*WZX -1.30*EX56 1.20*DL 0.60*LL 0.28*WFX -1.30*EX57 1.20*DL 0.60*LL 0.28*WZY -1.30*EY58 1.20*DL 0.60*LL 0.28*WFY -1.30*EY59 1.00*DL 0.50*LL 0.28*WZX 1.30*EX60 1.00*DL 0.50*LL 0.28*WFX 1.30*EX61 1.00*DL 0.50*LL 0.28*WZY 1.30*EY62 1.00*DL 0.50*LL 0.28*WFY 1.30*EY63 1.00*DL 0.50*LL 0.28*WZX -1.30*EX64 1.00*DL 0.50*LL 0.28*WFX -1.30*EX65 1.00*DL 0.50*LL 0.28*WZY -1.30*EY66 1.00*DL 0.50*LL 0.28*WFY -1.30*EY (ITEM004) 结构质量分布表(吨)________________________________第 8 页层号 Xc Yc Zc 层质量 累积层质量 层扭转质量矩 累积层扭转质量矩1 0.286 -0.025 77.263 84.68 84.68 159491.19 159491.19结构的楼层质量比--------------------层号 层质量 本层质量/下层质量 超限提示1 84.685 1.00结构总质量 = 84.7 Ton结构总质心绝对坐标 (XCG,YCG,ZCG) = 0.286 -0.025 77.263结构总质心相对坐标 (XCR,YCR,ZCR) = 0.503 0.500 0.535结构在X向的抗倾覆力矩 X-MOM = 41749.5结构在Y向的抗倾覆力矩 Y-MOM = 41949.0(ITEM005) 各楼层各类构件数量及材料统计__________________________________________层号 塔号 构件 材料 数量 层高(m)1 1 柱单元 Q345 1672 24.737层号 柱纵筋 柱箍筋 梁纵筋 梁箍筋 墙主筋 墙水平分布筋 墙竖向分布筋 边缘构件箍筋 墙竖筋率(%) 楼板钢筋1 3 3 3 3 3 3 3 3 0.300 3(ITEM006) 各层弹性楼板面积统计__________________________________层号 四边形板 三角形板 多边形板 本层面积1 0.000 0.000 0.000 0.000整体结构弹性楼板总面积 = 0.000######## 结构主控自由度总数 = 3246######## 结构出口自由度总数 = 3246######## 结构独立自由度总和 = 3246第 9 页(ITEM007) 各层风荷载________________________*风载* WX 工况 3 方向角 0.0 结构类型1 地面粗糙度3 体型系数 1.30 基本风压 0.00地区0 层数 1 周期 0.20层号 标高 迎风面积 风压 本层风荷 层剪力 层弯矩1 24.737 2805.720 0.000 0.000 0.000 0.000该方向总风载= 0.0 kN 总迎风面积= 2805.720 m**2 总附加扭矩= 0.0 kN*m 次方向总风载= 0.0 kN*风载* WY 工况 4 方向角 90.0 结构类型1 地面粗糙度3 体型系数 1.30 基本风压 0.00地区0 层数 1 周期 0.20层号 标高 迎风面积 风压 本层风荷 层剪力 层弯矩1 24.737 2805.720 0.000 0.000 0.000 0.000该方向总风载= 0.0 kN 总迎风面积= 2805.720 m**2 总附加扭矩= 0.0 kN*m 次方向总风载= 0.0 kN(ITEM008) 各工况外载力系向O(x0,y0,z0)点的静力等效力矢_________________________________________________________(X0,Y0,Z0) = ( 0.000 0.000 0.000)Fx Fy Fz Mx My Mz工况 1 (DL ) 0.000 0.000 -803.467 20.922 242.566 0.000(ITEM009) 按高规附录(E.0.1)条计算的楼层侧向剪切刚度比_________________________________________________________第 10 页*下列输出适用于多塔、广义层结构*层号 塔号 X柱刚度 Y柱刚度 X向墙刚度 Y向墙刚度 X 向总刚度 X向刚度比 Y向总刚度 Y向刚度比1 1 0.755E+07 0.748E+07 0.000E+00 0.000E+00 0.755E+07 1.00 0.748E+07 1.00注: 下面的RX,RY是本层刚度与上层刚度70%的比值和本层刚度与上三层平均刚度80%的比值中的较小者若某层的RX或RY小于1,则该楼层为柔软层层号 塔号 RX RY1 1 1.25 1.25(ITEM010) 按高规附录(E.0.2)条计算的楼层侧向剪弯刚度比_________________________________________________________*下列输出适用于多塔、广义层结构*层号 塔号 X柱刚度 Y柱刚度 X向墙刚度 Y向墙刚度 X 向总刚度 X向刚度比 Y向总刚度 Y向刚度比1 1 0.120E+08 0.119E+08 0.000E+00 0.000E+00 0.120E+08 1.00 0.119E+08 1.00注: 下面的RX,RY是本层刚度与上层刚度70%的比值和本层刚度与上三层平均刚度80%的比值中的较小者若某层的RX或RY小于1,则该楼层为柔软层层号 塔号 RX RY1 1 1.25 1.25* 程序自动确定的最不利地震方向角 = 4.66 度(ITEM011) 按[楼层剪力/层间位移]计算的楼层刚度比___________________________________________________第 11 页*下列输出适用于多塔、广义层结构*X刚度比 : 本层X刚度比下层X刚度Y刚度比 : 本层Y刚度比下层Y刚度X刚度比1: 本层X刚度比上层X刚度的70%和上三层X刚度平均值的80%中的小者(抗规3.4.3;高规3.5.2-1)Y刚度比1: 本层Y刚度比上层Y刚度的70%和上三层Y刚度平均值的80%中的小者(抗规3.4.3;高规3.5.2-1)X刚度比2: 本层X刚度与本层层高的乘积与上层X刚度与上层层高的乘积的比值(高规3.5.2-2)Y刚度比2: 本层Y刚度与本层层高的乘积与上层Y刚度与上层层高的乘积的比值(高规3.5.2-2)层号 塔号 X刚度 Y刚度 X刚度比 Y刚度比 X刚度比1 Y刚度比1 X刚度比2 Y刚度比2 刚度比2下限 薄弱层调整系?1 1 0.560E+08 0.554E+08 1.00 1.00 1.25 1.25 1.00 1.00 1.50 1.00(ITEM012) 各地震方向参与振型的有效质量系数______________________________________________MODE NO. EX EY1 0.017 0.017 0.005 0.0052 0.005 0.022 0.021 0.0263 0.000 0.023 0.000 0.0264 0.001 0.024 0.000 0.0265 0.004 0.027 0.000 0.0266 0.005 0.032 0.000 0.0267 0.000 0.033 0.006 0.0328 0.000 0.033 0.000 0.0329 0.012 0.045 0.008 0.04010 0.007 0.052 0.011 0.05111 0.000 0.052 0.000 0.05112 0.000 0.052 0.000 0.05113 0.000 0.052 0.000 0.05114 0.000 0.052 0.006 0.05615 0.005 0.057 0.000 0.057第 1 地震方向 EX ( 0.0度) 的有效质量系数为 0.057,参与振型数不够,建议增加振型数重算 !第 2 地震方向 EY ( 90.0度) 的有效质量系数为 0.057,参与振型数不够,建议增加振型数重算 !(ITEM013) 各振型的基底地震力(按抗规5.2.5调整前)___________________________________________________第 12 页(X0,Y0,Z0) = 0.000 0.000 63.895*地震工况* 1 EX ( 0.0度)振型号 Fx Fy Fz Mx My Mz1 1.136 0.545 0.000 -7.484 15.826 0.8322 0.272 -0.576 0.000 7.918 3.719 0.3673 0.004 -0.003 0.000 0.042 0.046 -1.9344 0.005 0.001 0.000 -0.018 0.034 0.0155 0.008 0.007 0.000 -0.101 0.034 0.1716 0.002 0.001 0.000 -0.021 -0.022 0.0277 0.000 0.000 0.000 0.002 0.000 0.0018 0.001 0.001 0.000 -0.013 0.022 0.0249 2.000 1.629 0.000 -23.059 28.117 1.07110 1.276 -1.575 0.000 22.308 18.148 0.27411 0.000 0.000 0.000 0.003 0.002 -0.30212 0.000 0.000 0.000 -0.002 0.000 0.00513 0.028 0.004 0.000 -0.068 0.537 0.01514 0.006 -0.052 0.000 0.955 0.094 -0.01115 0.499 0.037 0.000 -0.715 9.059 -0.088*地震工况* 2 EY ( 90.0度)振型号 Fx Fy Fz Mx My Mz1 0.261 -0.545 0.000 7.592 3.590 0.399第 13 页2 1.220 0.576 0.000 -7.871 16.761 -0.7773 0.003 0.003 0.000 -0.038 0.036 1.6304 0.000 -0.001 0.000 0.007 0.004 0.0035 0.006 -0.007 0.000 0.028 0.082 0.1406 0.001 -0.001 0.000 -0.013 0.012 0.0167 0.000 0.000 0.000 -0.003 -0.019 0.0088 0.001 -0.001 0.000 0.016 0.009 0.0179 1.327 -1.629 0.000 22.904 18.784 0.87210 1.944 1.575 0.000 -22.399 27.532 -0.33911 0.001 0.000 0.000 -0.005 0.008 0.88812 0.000 0.000 0.000 0.000 0.004 0.00913 0.001 -0.004 0.000 0.073 0.009 0.00214 0.480 0.052 0.000 -0.873 8.901 0.09815 0.003 -0.037 0.000 0.671 0.053 -0.006(ITEM014) 按抗规(5.2.5)条计算的地震力放大系数_________________________________________________地震方向 地震力放大系数 结构最小剪重比 规范限值EX ( 0.0度) 3.437 0.465 % 1.600 %EY ( 90.0度) 3.428 0.467 % 1.600 %(ITEM015) 各楼层的总剪力和总弯矩____________________________________第 1 地震方向 EX ( 0.0度) 各楼层的总剪力、总弯矩 (楼层内力截面处的内力)层号 本方向剪力 垂直方向剪力 本方向弯矩 垂直方向弯矩1 12.9( 1.60%) 0.3( 0.04%) 182.0( 0.91%) 4.0( 0.02%)第 2 地震方向 EY ( 90.0度) 各楼层的总剪力、总弯矩 (楼层内力截面处的内力)第 14 页层号 本方向剪力 垂直方向剪力 本方向弯矩 垂直方向弯矩1 12.9( 1.60%) 0.3( 0.04%) 182.0( 0.91%) 3.3( 0.02%)第 1 地震方向 EX ( 0.0度) 各楼层的地震荷载 (楼层内力截面至层顶范围内的地震作用)层号 本方向作用力 垂直方向作用力1 12.4 0.3第 2 地震方向 EY ( 90.0度) 各楼层的地震荷载 (楼层内力截面至层顶范围内的地震作用)层号 本方向作用力 垂直方向作用力1 12.4 0.2(ITEM016) 结构周期及振型方向________________________________周期(s) 方向角(度) 类型 扭振成份 X侧振成份 Y侧振成份 总侧振成份1 1.213365 87.4 X 0.00 0.82 0.181.002 1.207427 -2.9 Y 0.00 0.18 0.82 1.003 1.159994 98.0 TORSION 0.99 0.00 0.00 0.014 0.981672 0.9 X 0.05 0.84 0.11 0.955 0.961936 -1.3 X 0.13 0.59 0.28 0.876 0.936758 -0.1 X 0.02 0.97 0.01 0.987 0.927494 90.0 Y 0.00 0.02 0.98 1.008 0.884398 90.5 Y 0.19 0.02 0.79 0.819 0.554793 80.7 X 0.00 0.60 0.40 1.0010 0.553835 -4.7 Y 0.00 0.40 0.60 1.0011 0.534496 66.9 TORSION 1.00 0.00 0.00 0.0012 0.513016 21.0 Y 0.27 0.25 0.48 0.7313 0.467615 3.4 X 0.00 0.98 0.02 1.0014 0.465131 91.3 Y 0.00 0.01 0.99第 15 页1.0015 0.463516 1.3 X 0.00 1.00 0.00 1.00(ITEM017) 适用于不规则结构的楼层水平位移及位移角统计________________________________________________________静力工况 WX ( 0.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 0.000 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 0.000 (发生于 1 层 1 塔)静力工况 WY ( 90.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 0.000 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 0.000 (发生于 1 层 1 塔)静力工况 LX ( 0.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 0.82 0.79 1.04 1/90495 1/97519 1.08本工况下全楼最大层间位移角= 1/90495 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.038 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.078 (发生于 1 层 1 塔)静力工况 PX ( 0.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 0.85 0.79 1.08 1/85649 1/98466 1.15第 16 页本工况下全楼最大层间位移角= 1/85649 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.078 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.150 (发生于 1 层 1 塔)静力工况 MX ( 0.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 0.90 0.79 1.13 1/78170 1/97098 1.24 本工况下全楼最大层间位移角= 1/78170 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.130 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.242 (发生于 1 层 1 塔)静力工况 LY ( 90.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 0.81 0.81 1.01 1/91045 1/92603 1.02 本工况下全楼最大层间位移角= 1/91045 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.010 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.017 (发生于 1 层 1 塔)静力工况 PY ( 90.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 0.83 0.79 1.05 1/83805 1/93241 1.11 本工况下全楼最大层间位移角= 1/83805 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.049 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.113 (发生于 1 层 1 塔)静力工况 MY ( 90.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 0.84 0.82 1.03 1/84675 1/92175 1.09 本工况下全楼最大层间位移角= 1/84675 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.032 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.089 (发生于 1 层 1 塔)第 17 页地震工况 EX ( 0.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 2.99 2.86 1.04 1/23410 1/24714 1.06本工况下全楼最大层间位移角= 1/23410 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.044 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.056 (发生于 1 层 1 塔)地震工况 EY ( 90.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 2.93 2.88 1.02 1/23967 1/24909 1.04本工况下全楼最大层间位移角= 1/23967 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.017 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.039 (发生于 1 层 1 塔)(ITEM018) 单塔多塔通用的框架0.2V0(0.25V0)调整系数_____________________________________________________SFCE_FACTOR1= 0.250 SFCE_FACTOR2= 1.800第 1 地震工况 EX 的0.2V0调整系数层号 塔号 调整系数 框架剪力 框架剪力底限 本段最大框架剪力 基底剪力 基底塔块1 1 1.000 0. 0. 0. 687. 1 - 1;第 2 地震工况 EY 的0.2V0调整系数层号 塔号 调整系数 框架剪力 框架剪力底限 本段最大框架剪力 基底剪力 基底塔块第 18 页1 1 1.000 0. 0. 0. 689. 1 - 1;(ITEM019) 水平荷载作用下的楼层位移及位移比______________________________________________( 1 ).WX ( 0.0度)风荷载引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WX ( 0.0度)风荷载引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 2 ).WY ( 90.0度)风荷载引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WY ( 90.0度)风荷载引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)第 19 页本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 3 ). WZX 特殊风荷载引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WZX 特殊风荷载引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 4 ). WZY 特殊风荷载引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WZY 特殊风荷载引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 5 ). WFX 特殊风荷载引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00第 20 页本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WFX 特殊风荷载引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 6 ). WFY 特殊风荷载引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WFY 特殊风荷载引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 7 ). LX ( 0.0度)指定水平力引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)LX ( 0.0度)指定水平力引起的楼层层间位移第 21 页层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 8 ). PX ( 0.0度)正偏心指定水平力引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)PX ( 0.0度)正偏心指定水平力引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 9 ). MX ( 0.0度)负偏心指定水平力引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)MX ( 0.0度)负偏心指定水平力引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)第 22 页本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)(10 ). LY ( 90.0度)指定水平力引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)LY ( 90.0度)指定水平力引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)(11 ). PY ( 90.0度)正偏心指定水平力引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)PY ( 90.0度)正偏心指定水平力引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)(12 ). MY ( 90.0度)负偏心指定水平力引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00第 23 页。

最新最全PKPM钢结构计算

最新最全PKPM钢结构计算

PKPM做钢结构的经验集萃1、优化设计并非是把别人的设计拿过来,按照原设计思路死扣用钢量(俗称“蚊子腿上剔精肉”),因为这样通常大幅度降低了原设计的安全度,“荷载优化”是选取适当的荷载,应当兼顾业主对结构小幅改动的可能性,比如吊挂灯具、功能分区重新布局。

把恒载取得很小,用钢量没有减小太多,功能限制则限制太死。

优化首先考虑变化方案,简化结构传力模式和传力途径,做到大处节省,具体到杆件节点则要放宽。

如果原结构各部件安全储备相差严重时,可以选择一个合适的安全储备标准来调整各构件型号,该加大的加大,该减小的减小。

结构安全是整体安全,个别杆件强大没啥用。

2、《建筑工程施工质量验收统一标准》(GB50300-2001)5.0.6条:检测单位鉴定达不到要求时,经原设计单位核算认为满足安全时可以验收。

一级建造师《项目管理》中讲:检测单位鉴定达不到要求时,经原设计单位核算认为满足安全时可以验收。

对未达要求的行为承担“违约责任”。

3、网架焊接球如果采用压制钢板制作,钢板厚度公差接近±2.5mm,《强规》规定偏差不大于13%和1.5mm。

怎么办呢?制作时可以把钢板加厚1mm就可以避质检找麻烦了。

4、设置20吨以上的吊车的厂房在国内不允许按《门式刚架规程》设计,主要在于国内吊车梁安装偏差和吊车轨道安装偏差造成卡规,使水平力增加4-5倍,导致厂房剧烈晃动,没法正常使用。

总之,任何先进的设计方法都无法超越实际施工水平来实现,要求符合国情(或者“公司加工实力”)。

比如对20吨驾操吊车的门架按美国规范控制柱头位移为H/240(国内H/400),晃动得没人愿意驾操,省那一点点钢材和厂房适用性相比就显“设计扣到家”有多么可笑了。

5、什么样的维护系统需要考虑阵风系数?(1)、对脆性材料。

如玻璃幕墙,必须采用阵风系数。

(2)、对阵风作用下,对荷载临时提高能够承受的钢材等,不需要考虑阵风系数。

(3)、不该考虑阵风系数的维护系统考虑了阵风系数,安全度比主结构高出一倍,不利于主体安全。

PKPM-钢结构建模参数

PKPM-钢结构建模参数

结构类型:根据实际情况选择。

设计规范:对于混凝土构件,程序会自动选用《混凝土结构设计规范》(GB50010)进行设计。

设计控制参数:参考《钢结构规范》《门式刚架规程》等。

对于长细比,当结构类型选择单层钢结构厂房或者多层钢结构时,按照《抗规》(GB50011)规定,柱的容许长细比与其轴压比有关,在建模期间无法确定,程序增加“自动确定容许长细比”选项。

当选中选项后,由程序在内力分析后自动确定柱的容许长细比;当不选中该选项时,由用户交互输入构件的容许长细比。

无吊车,采用砌体墙时,柱顶位移限值应为h/240。

多台吊车组合时的荷载折减系数:参照《荷载规范》表6.2.2选取。

单层厂房阶形柱计算长度折减系数:只有在按照《钢结构设计规范》验算的时候才需要填写。

参考《钢结构设计规范》表5.3.4填写。

门式刚架梁按压弯构件验算平面内稳定性:只有在按照《门规》验算的时候才需要选取。

对于门式刚架的钢梁,是仅按照压弯构件计算强度和平面外的稳定性,还是除此之外还要按压弯构件验算平面内稳定性。

坡度较大时,斜梁轴力较大,这个时候轴力对稳定性的影响就不能忽视了。

(《门规》6.1.6条文说明)《冷弯薄壁型钢结构技术规范》10.1.1条文说明:当屋面坡度不大于1:2.5时,由于轴力很小,可仅按压弯构件计算平面内强度,而不必验算其在平面内的稳定性。

通常轻钢厂房屋面坡度为5%~10%,均小于1:2.5,这个时候是可以不勾选的。

摇摆柱设计内力放大系数:只有在按照《门规》验算的时候才需要选取。

对于摇摆柱,在计算其强度和稳定性的时候,将柱的轴力设计值乘以该系数进行计算,用于考虑摇摆柱非理想铰接的不利影响。

放大系数可取1.5。

自重放大系数:只在钢构件自重荷载计算时考虑了该选项参数,用钢量计算的时候没有计入。

考虑到端板、加劲肋等节点部分构件增加的重量,一般可取1.15。

钢柱计算长度系数计算方法:只对按《钢规》线刚度比计算柱平面内计算长度系数的时候起作用,有侧移或者无侧移框架的界定,应按《钢规》界定,钢桁架结构应按无侧移计算。

pkpm钢结构高厚比验算

pkpm钢结构高厚比验算

pkpm钢结构高厚比验算(实用版)目录1.PKPM 钢结构高厚比验算的概念和意义2.高厚比的计算方法和限值3.在 PKPM 软件中进行高厚比验算的步骤4.高厚比验算中常见的问题及解决方法5.总结正文正文”。

请从以下文本开始任务,文本:pkpm 钢结构高厚比验算一、PKPM 钢结构高厚比验算的概念和意义PKPM 钢结构高厚比验算是指在 PKPM 软件中对钢结构的腹板高度与厚度之比进行计算和验算,以确保钢结构的稳定性和安全性。

高厚比是专门指腹板的局部稳定,通常是指腹板高度比上腹板厚度。

在钢结构设计中,高厚比的合理控制至关重要,因为它直接影响到钢结构的稳定性和安全性。

二、高厚比的计算方法和限值在钢结构设计中,高厚比的计算方法和限值通常遵循相关的设计规范。

计算方法一般为:高厚比 = 腹板高度 / 腹板厚度。

根据不同的设计要求和规范,高厚比的限值会有所不同。

通常情况下,高厚比的限值应控制在100 以内,以确保钢结构的稳定性和安全性。

三、在 PKPM 软件中进行高厚比验算的步骤1.打开 PKPM 软件,并导入需要进行高厚比验算的钢结构模型。

2.找到“高厚比验算”功能模块,并点击进入。

3.在“高厚比验算”界面中,输入相关的设计参数,如腹板高度、腹板厚度等。

4.点击“计算”按钮,软件将自动进行高厚比验算,并显示结果。

5.根据验算结果,如果高厚比超过限值,需要对钢结构设计进行调整,以确保高厚比的合理控制。

四、高厚比验算中常见的问题及解决方法在 PKPM 钢结构高厚比验算中,可能会遇到一些问题,如高厚比超限等。

针对这些问题,可以采取以下解决方法:1.调整腹板高度和厚度:通过调整腹板高度和厚度,使得高厚比控制在合理范围内。

2.优化钢结构设计:对钢结构设计进行优化,简化结构传力模式和传力途径,以减小高厚比。

3.咨询专业工程师:如果高厚比问题无法解决,可以咨询专业工程师,寻求专业的技术支持。

五、总结PKPM 钢结构高厚比验算是确保钢结构稳定性和安全性的重要环节。

PKPM钢结构计算实例

PKPM钢结构计算实例

某车间计算实例房屋概况:南北朝向,为一幢单层双跨排架结构建筑物,建筑面积约1460.00m2,建造于2008年。

共计8间,开间除两端为5.40m外其余均为6.00m,跨度为16.00+16.00m。

上部结构由砼柱、钢梁承重,屋盖采用C型钢檩条(175×70×25×2.5@1450mm),彩钢瓦屋面,砖砌围护墙。

3~4轴、8~9轴屋面各设6道水平支撑,水平支撑间设刚性杆;A、B、C轴柱顶钢梁间各设1道刚性水平通长系杆;檩条与钢梁间隔根设隅撑,檩条间设置直拉条/斜拉条;B~C轴设有一台5.0吨吊车。

排架立面示意图结构平面图结构验算:一、新建工程→钢结构→门式刚架→门式钢架二维设计(或新建工程→钢结构→框排架→pk交互输入与优化计算)二、网络生成→快速建模→门式刚架三、柱、梁布置1、截面定义→增加→选取截面类型→输入截面参数注:1、对于钢构件则需要区分轴压对Y 截面分类(具体参考钢结构设计规范 表5.1.2-1);四、计算长度(平面外、平面内)注:1、平面内计算长度系统默认;2、平面外计算长度(柱:取柱间支撑的高度。

梁:取水平支撑或隅撑的间距)。

五、铰接构件注:1、对于节点处由螺栓连接<6颗螺栓时设铰接点;2、对于钢/砼构件连接处设铰接点。

六、恒载输入→梁间恒载注:1、梁间恒载需将屋面恒荷载换算成梁间线荷载;2、计算公式:屋面恒载*(梁左侧开间的一半+梁右侧开间的一半)。

七、活载输入→梁间活载注:1、梁间恒载需将屋面恒荷载换算成梁间线荷载;2、计算公式同梁间恒载;3、屋面荷载取值:不上人屋面取0.5(荷载规范);若水平投影面积大于60m2则屋面活荷载可取不小于0.3(门规);以上荷载取值与屋面雪荷载取值相比取大值。

八、左、右风输入→自动布置注:1、砼排架柱、轻钢屋面结构可参照(门规);2、地面粗糙度、风压参考(荷载规范)。

九、吊车荷载注:1、在吊车数据库选取吊车类型、跨度、吨位相同或相近的吊车数据。

PKPM钢结构计算

PKPM钢结构计算

你好,介绍如下一、建模1、重新编排PKPM主界面,项目清晰,操作方便。

2、仿Auto CAD全新操作界面,动态查询构件及菜单信息。

3、改进正交轴网对话框,可以定义、标注上下开间不对称建筑,任意拼接轴网。

4、采用对话框方式对构件边定义边布置,可以对构件排序、检索、查询。

5、增加通过抬高上节点标高,按斜率成批输入斜梁功能。

6、将次梁、层间梁布置提前到与主梁一同布置,使用更便捷。

7、增加楼板自重计算功能,由用户选择使用。

8、将梁、柱、墙、节点、次梁的荷载输入修改,前移到与建模同时进行。

9、完善了原有的楼层拼装拷贝、工程拼装拷贝功能。

10、可以随时动态观看全楼模型三维渲染造型效果。

11、可以转换DWG图形为PKPM模型数据及录入异形柱截面。

二、计算1、SATWE软件增添了新的求解器,运算速度大大提高,对于大型项目计算十分有利。

2、允许对任意单构件定义抗震等级、砼强度等级及钢材等级。

3、在配筋简图中,标出了柱非加密区箍筋面积和节点核心区箍筋面积,标出了地下室剪力墙平面外的竖向分布筋面积。

4、在“特殊构件定义”中,增加了门式钢架梁、组合梁、门式钢架柱定义,并对门式钢架梁柱、组合梁进行验算和配筋。

5、在“荷载组合”参数定义中,增加人工自定义组合系数功能。

6、增加在梁和节点上定义特殊风荷载。

7、增加温度应力、支座位移、弹性支座的分析计算功能。

8、增加并改进了对水平风荷载、多塔结构、变截面构件、方钢管混凝土截面构件、刚性杆、水平支撑、柱间支撑的分析验算功能。

9、增加框架整体稳定验算功能,做到高规第5.4.4强制性条文规定的验算要求。

10、增加楼层层间受剪承载力验算功能。

11、增加人防荷载按房间定义的功能。

12、改进异型柱构件配筋计算,固定钢筋和分布钢筋的直径可不同。

13、改进受弯构件人防配筋计算,可按容许延性比要求进行优化筋配计算。

14、改进楼板内力及挠度计算,可以作人防计算并生成计算书。

15、弹塑性动力时程分析软件EPDA更加实用化,并已分析计算多项实际工程。

PKPM计算全参数

PKPM计算全参数

PKPM计算全参数PKPM(Physical Diagram Analysis Method)是一种针对钢结构进行结构分析和设计的计算方法。

它是根据物理图解分析的原理和方法,通过对结构的内力平衡条件和位移协调条件进行分析,来计算结构的受力状态和变形情况的一种理论计算方法。

在PKPM计算中,需要考虑的参数较多,下面将详细介绍PKPM计算的全参数。

1.结构材料参数:-弹性模量(E):钢结构的弹性模量是指单位面积受力后产生的应力与应变之比,是材料刚性和变形能力的量度。

根据每种钢材料的不同,其弹性模量的数值也会有差异。

-屈服强度(σy):钢材的屈服强度是指单位面积受力时,钢材开始发生塑性变形的应力值。

不同类型的钢材具有不同的屈服强度。

-破坏应变(εu):钢材的破坏应变是指材料发生破坏时的应变值。

不同类型的钢材在破坏时表现出不同的应变值。

2.截面参数:-截面面积(A):截面面积是指钢结构截面上各个部分的面积之和,是计算受力和弯曲等问题时的重要参数。

-惯性矩(I):惯性矩是指钢结构截面对于弯曲应力分布的阻力能力,是刚度和变形性能的一个重要指标。

3.荷载参数:-静载荷(G):静载荷是指所有稳定作用于结构上的自重和外部荷载的总和。

静载荷的大小直接影响结构的受力状态。

-活载荷(Q):活载荷是指结构在使用过程中受到的非永久性、可变化的荷载,如人员、货物等。

活载荷的大小会影响结构的变形和破坏。

4.边界条件:-支座刚度(k):支座刚度是指结构受力点的支座的刚度,是模拟结构与地基之间约束程度的参数。

支座刚度的大小会影响结构的位移和变形情况。

5.结构拆装参数:-焊接强度(τ):焊接强度是指焊接接头的承载能力和破坏程度的指标,是决定焊接接头在使用过程中是否安全可靠的参数。

-螺栓预紧力(N):螺栓预紧力是指通过对螺栓施加预紧力来使螺栓接头形成一定的摩擦力,从而使结构受力的一种方法。

螺栓预紧力的大小会影响结构的受力和变形情况。

6.安全系数:-安全系数(γ):安全系数是指结构或材料承受的荷载与其承载能力之间的比值,用于保证结构在使用过程中的安全性。

pkpm钢结构高厚比验算

pkpm钢结构高厚比验算

pkpm钢结构高厚比验算摘要:1.pkpm 钢结构高厚比验算的背景和意义2.pkpm 钢结构高厚比的定义和计算方法3.pkpm 钢结构高厚比验算中常见的问题和解决方法4.pkpm 钢结构高厚比验算的实际应用案例5.pkpm 钢结构高厚比验算的注意事项和建议正文:一、pkpm 钢结构高厚比验算的背景和意义pkpm 是一种广泛应用于建筑结构设计的软件,其中钢结构设计是其重要的应用之一。

在钢结构设计中,高厚比验算是一个非常关键的环节。

高厚比是指腹板的局部稳定,通常是指腹板高度比上腹板厚度。

高厚比验算的目的是确保钢结构在受力情况下具有足够的稳定性和安全性。

二、pkpm 钢结构高厚比的定义和计算方法在pkpm 中,高厚比的计算方法是比较腹板的高度和厚度。

具体的计算公式为:高厚比= 腹板高度/ 腹板厚度。

腹板高度是指腹板顶部到腹板底部的垂直距离,腹板厚度是指腹板的厚度。

通常情况下,高厚比的限值是由设计规范规定的,如果计算得到的高厚比超过限值,则需要进行调整。

三、pkpm 钢结构高厚比验算中常见的问题和解决方法在pkpm 钢结构高厚比验算中,常见的问题包括高厚比超限、计算结果不稳定等。

这些问题的解决方法主要包括调整构件规格、修改设计参数、重新进行计算等。

四、pkpm 钢结构高厚比验算的实际应用案例例如,在一座钢结构桥梁的设计中,需要进行高厚比验算以确保桥梁的稳定性和安全性。

通过pkpm 软件进行计算,可以得到桥梁各个部分的高厚比,如果计算结果超过设计规范的限值,则需要进行调整,直到满足设计要求。

五、pkpm 钢结构高厚比验算的注意事项和建议在进行pkpm 钢结构高厚比验算时,需要注意以下几点:1.准确输入构件的规格和材料参数,以确保计算结果的准确性。

2.根据设计规范选择合适的高厚比限值。

3.如果计算结果超过限值,需要及时调整构件规格或设计参数,以确保结构的稳定性和安全性。

最新PKPM知识堂钢结构

最新PKPM知识堂钢结构

P K P M知识堂钢结构知识堂问答—钢结构问:带夹层门式刚架结构采用STS软件如何设计?日期:2011/6/13答:门式刚架规程所规定的计算长度确定方法是针对单层轻型钢结构房屋,仅适用于单层门式刚架结构。

实际工程中可能存在局部带夹层或下层整层夹层情况(如下图)。

对于这类夹层梁与柱刚接形成局部二层或整体二层的结构,建议计算长度的确定方法可以采用钢结构设计规范线刚度比方法确定的计算长度系数,采用STS软件的设置为:第一,计算参数设置:门式刚架类型;按钢结构设计规范验算;有侧移框架。

其他控制参数可以按门规要求输入。

第二,修改构件的验算规范,与夹层相连的柱、夹层梁建议设计规范指定为钢结构设计规范,轻钢屋面梁验算规范指定为门规。

再进行结构计算时,计算长度确定就是按总体计算参数中的钢结构设计规范线刚度比方法确定计算长度,总体控制按门规控制,夹层部分构件按钢结构设计规范校核,轻钢屋面按门规校核。

问:门式刚架柱、梁平面外计算长度如何选取?日期:2011/6/13答:采用平面分析程序,由于没有平面外信息,程序自身无法正确判断平面外计算长度的选取,程序默认取的平面外计算长度为杆件自身的长度,工程设计人员应对平面外计算长度进行确认和修改。

平面外的计算长度应取平面外有效支撑之间的间距。

门式刚架类型,对于边柱和屋面梁,当采用压型钢板屋面、墙面,且压型钢板与檩条有可靠连接时,墙梁和檩条设置隅撑的情况下,隅撑能起到边柱和屋面梁的平面外支撑作用,则边柱和屋面梁的平面外计算长度可以取设置隅撑的间距。

对于有吊车或跨度较大的厂房,柱平面外计算长度建议按柱间支撑选取。

2011/6/13答:STS程序对于冷弯薄壁檩条提供了按门规设计、与按冷弯薄壁型钢规范设计选项,如果选择门规进行檩条验算时,风吸力下翼缘稳定验算程序提供按门规附录E 计算与按式(6.3.7-2)验算两个选择。

选择原则如下:1、压型钢板屋面(厚度>0.66mm),屋面与檩条有可靠连接(自攻螺钉等紧固件),设置单层拉条靠近上翼缘,选择按门规附录E计算;2、刚度较弱的屋面(塑料瓦材料等)、非可靠连接的压型钢板(扣合式等),应选择6.3.7-2式或冷弯规范计算,拉条的约束作用应根据实际拉条设置情况选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PKPM做钢结构的经验集萃1、优化设计并非是把别人的设计拿过来,按照原设计思路死扣用钢量(俗称“蚊子腿上剔精肉”),因为这样通常大幅度降低了原设计的安全度,“荷载优化”是选取适当的荷载,应当兼顾业主对结构小幅改动的可能性,比如吊挂灯具、功能分区重新布局。

把恒载取得很小,用钢量没有减小太多,功能限制则限制太死。

优化首先考虑变化方案,简化结构传力模式和传力途径,做到大处节省,具体到杆件节点则要放宽。

如果原结构各部件安全储备相差严重时,可以选择一个合适的安全储备标准来调整各构件型号,该加大的加大,该减小的减小。

结构安全是整体安全,个别杆件强大没啥用。

2、《建筑工程施工质量验收统一标准》(GB50300-2001)5.0.6条:检测单位鉴定达不到要求时,经原设计单位核算认为满足安全时可以验收。

一级建造师《项目管理》中讲:检测单位鉴定达不到要求时,经原设计单位核算认为满足安全时可以验收。

对未达要求的行为承担“违约责任”。

3、网架焊接球如果采用压制钢板制作,钢板厚度公差接近±2.5mm,《强规》规定偏差不大于13%和1.5mm。

怎么办呢?制作时可以把钢板加厚1mm就可以避质检找麻烦了。

4、设置20吨以上的吊车的厂房在国内不允许按《门式刚架规程》设计,主要在于国内吊车梁安装偏差和吊车轨道安装偏差造成卡规,使水平力增加4-5倍,导致厂房剧烈晃动,没法正常使用。

总之,任何先进的设计方法都无法超越实际施工水平来实现,要求符合国情(或者“公司加工实力”)。

比如对20吨驾操吊车的门架按美国规范控制柱头位移为H/240(国内H/400),晃动得没人愿意驾操,省那一点点钢材和厂房适用性相比就显“设计扣到家”有多么可笑了。

5、什么样的维护系统需要考虑阵风系数?(1)、对脆性材料。

如玻璃幕墙,必须采用阵风系数。

(2)、对阵风作用下,对荷载临时提高能够承受的钢材等,不需要考虑阵风系数。

(3)、不该考虑阵风系数的维护系统考虑了阵风系数,安全度比主结构高出一倍,不利于主体安全。

6、挠度有三种:(1)、与安全有关的控制标准。

(2)、反映安装质量的控制标准。

(3)、外形美观的控制标准。

比如,单层网壳仅仅计算稳定性缺陷考虑1/300,挠度大了影响结构安全。

但对双层网壳仅是对施工质量的控制。

7、《网架规程》中:“温度应力计算”仅限于四边支撑网架。

8、生物界的工程原则就是我们追求的工程设计原则:(1)、节省。

用最少消耗达到最大效果。

(2)、安全。

做可以超载性生物体(建筑物),即使部分损坏也不危及整体生存。

(3)、简单快捷。

9、网架、网壳计算风载不大时,永久荷载占总荷载50%以内时,不需要按“1.35*恒载”考虑。

10、网架活载取值不要小于0.5KN/M2.。

11、如果附加荷载超过25Kg/M2,应当考虑檩条上是否有集中荷载按集中荷载计算。

12、中国的《荷载规范》对风载的规定和美国规范比较:美国规范,向上的风吸力大些,两端水平风力大,中间风力小。

《门式钢架规程》侧移近似计算方法只适合初步估算,正式的侧移计算应用弹性整体计算方法。

13、门式钢架风载取值,对风载《全国民用建筑工程设计技术措施》规定:L/H≤4时应该用《荷载规程》;L/H>4时应该按门式钢架规程。

14、开敞式:指的是开口面积≥80%的墙面面积。

部分封闭式:A、开口集中在一墙面上。

B、该墙面洞口面积大于其他墙面洞口面积之和。

C、开口面大于本墙面5%。

D、不均匀的大开口,内部风压加大为+0.6、-0.3(不再是±0.2)。

15、“端区宽度”<“柱距”时,以一半为界,檩条墙梁哪边多就按哪边算。

16、《门式刚架规程》中风压组合规定以“а<100”为前提。

此时墙面风压降低10%。

所以,如果“а>100”时,计算墙面风压应该按门规规定的再加10%。

17、迎风面墙体门窗突然打开情况下的“刚性模型”“气弹性模型”风洞实验表明:屋面内表面风压为平均风压的5倍,位移为平均的5-10倍。

所以不稀奇某外资公司好几座还来不及装门窗的厂房屋面板放了风筝。

18、风振系数:(1)、H/B>1.5的高层房屋需要考虑风振系数(有计算方法)。

(2)、T>0.25S的大跨度屋盖结构(没有计算方法)。

(3)、比较柔性的看台挑棚结构,最大风振系数1.9。

(4)、一般大跨度网架网壳或者钢结构,最大风振系数取1.5。

不是“阵风系数”啊,伙计。

19、屋面雪载和地面雪载不同:(1)、屋面雪容重比地面大。

因为雪融后被吸收入积雪海绵体再重新冻结。

(2)、屋面积雪通常比地面雪薄。

因为屋面积雪被风吹走一部分。

《荷载规范》规定:积雪分布系数,其中:Sk为屋面雪压;S0为地面雪压。

20、采暖系数:中国规范不区分采暖分区与非采暖分区;美国规范区分,非采暖分区雪载加大为1.2倍。

用美国软件计算是不是要小心些呢!21、ASTM A653 Grade33(37,40,50)相当于中国的Q235(Q255/Q275/Q340),多用来做彩板和薄壁型钢系列,CFS计算时对照着看吧。

1KSI=69N/mm2是个不小的单位。

22、冷弯薄壁型钢的弯曲半径可以按Rmax≤min(2t,2.38mm)计算。

所以,当t<1.2mm时,Rmax≤2t;t≥1.2时,R=2.4mm。

可以用来计算异形薄壁型钢或者彩板的展开宽度。

CFS建模也用到弯曲半径,用它比自己瞎晕一个值强!23、薄壁型钢防腐金属镀层,恶劣环境≥G90,一般环境条件≥G40或者G60。

薄壁型钢腹板开孔不大于38*102mm,应居中,否则补强。

补强方法:孔边向外25.4mm,#8螺钉@25.4mm连接。

Hh≤0.5H,Lh≤max(00.5H,102mm)。

来自《住宅钢结构设计与施工》24、冷弯薄壁型钢结构用螺钉应不小于#8,应穿过钢构件最少3个螺纹。

25、门式刚架和普通框架的风载比较:见《门式刚架规程》《荷载规范》故有结论:对柱,《GB50009-2001》是《CECS102:2002》的1.63倍,前者偏于安全。

对梁,《CECS102:2002》是《GB50009-2001》的1.5倍,前者安全。

轻型结构计算适用于门式刚架,但未必是门式刚架;按《门式刚架规程》取用风荷载的结构可以是普通钢结构,只要是低矮房屋,L/H<4都可以使用。

26、当轻型结构屋顶高度>18m时,风载体形系数须按《荷载规范》取值,构造措施可以按《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002)规定采用。

对柱脚铰接,L/H>2.3以及柱脚刚接,L/H>3.0时按《门刚规程》风载取值,如果按《荷载规范》取值,结构偏于安全。

27、门式刚架的抗震设计原则:(1)、采用底部剪力法。

因为门架属于低矮型剪切变形为主,质量刚度分布均匀,两个振型周期相差太大,以第一振型为主,所以采用底部剪力法计算。

(2)、7度及其以下不需要地震计算(8度及其以上才计算地震)。

但不是说就可以不采取抗震措施。

(3)、门架抗震措施主要是加强节点:A、构件之间尽量采用螺栓连接;B、梁柱节点,在梁下翼加掖板;C、梁柱连接点处宽厚比适当减小;D、柱间支撑与构件连接处节点按1.2倍杆件承载力设计;E、柱间支撑和柱连接处的柱脚锚栓要做抗拔验算,并防止锚栓抗剪,设置抗剪键。

28、砌体维护部分和钢柱的连接需要有一定柔性,需要一个适当的间隙,间隙应大于侧移值。

29、降雪频繁的地区不适合采用采光板。

30、屋面板材料和涂层:热镀锌基板牌号宜用StE280-2Z和StE345-2Z。

涂层:(1)、不锈钢板、铝镁合金板宜用于高层建筑。

(2)、镀铝锌原色板、镀层165g/ m2宜用于使用年限较久的建筑。

(3)、镀锌板镀层275g/ m2,宜用于较高建筑。

(4)、镀锌板镀层180g/ m2,宜用非重要建筑。

(5)、彩色涂层板,涂层采用聚偏氯乙烯,宜用于较高建筑。

(6)、涂层采用硅改性钢板或者高耐用性聚酯,用于一般建筑。

31、一般端板的厚度不小于“理论计算”所得的连接螺栓直径的1.0倍,且不小于16厚。

特别是承压性高强螺栓。

并不是“厚度不小于螺栓直径”啊!32、柱底板厚度除计算满足外,还要不小于16厚,不小于柱翼缘厚度的1.5倍。

另外,跨度(单跨)大于30米时,锚栓不得小于M30。

33、门式刚架的阻尼比可取0.05,多层钢结构则根据具体情况。

34、焊接栓钉(剪力钉)是,应该用耐热稳弧焊接磁环;当采用弯起钢筋时,一般采用Q235钢,采用槽钢时,一般采用4#槽钢。

35、组合梁:不许直接承受动力荷载。

计算内力用弹性方法,截面强度和连接件强度按塑性方法计算。

挠度裂缝按弹性方法。

施工阶段需要验算强度、稳定性、挠度。

混凝土强度增强到75%以前,施工活荷载可以取1.0,当下部设置支撑时(而且支撑距离≤3m),可以不验算。

be=b0+min(6he1, )+min(6he2, ),其中he1和he2指“板总厚度-压型钢板波高”。

36、对于仅承受静荷载且集中力不大,跨度≤20米的等截面组合梁,可以采用部分抗剪连接组合梁。

按弹性方法计算组合梁内力时,考虑塑性发展的内力调整系数≤15%。

37、组合梁负弯矩段,下翼缘受压,次梁可以为侧向支撑点,如果次梁和主梁高差太大时,采用隅撑支撑下翼缘,支撑点间距≤16Bs(梁受压翼缘的宽度)。

宽厚比:≤9(Q235)和7.4(Q345)。

38、组合梁的挠度限制:施工阶段≤L/200。

使用阶段:(1)、L≤7M时,挠度≤min(200,L/250);(2)、7M<L≤9M时,挠度≤min(250,L/300);(3)、L>9M时,挠度≤min(300,L/400);39、门式刚架问答一2009-06-08 22:141、看弯矩图时,可看到弯矩,却不知弯矩和构件截面有什么关系?答:受弯构件受弯承载力Mx/(γx*Wx)+My/(γy*Wy)≤f其中W为截面抵抗矩根据截面抵抗矩可手工算大致截面2、就是H型钢平接是怎样规定的?答:想怎么接就怎么接, 呵呵. 主要考虑的是弯矩和/或剪力的传递. 另外, 在动力荷载多得地方, 设计焊接节点要尤其小心平接:.3、“刨平顶紧”,刨平顶紧后就不用再焊接了吗?答:磨光顶紧是一种传力的方式,多用于承受动载荷的位置。

为避免焊缝的疲劳裂纹而采取的一种传力方式。

有要求磨光顶紧不焊的,也有要求焊的。

看具体图纸要求。

接触面要求光洁度不小于12.5,用塞尺检查接触面积。

刨平顶紧目的是增加接触面的接触面积,一般用在有一定水平位移、简支的节点,而且这种节点都应该有其它的连接方式(比如翼缘顶紧,腹板就有可能用栓接)。

一般的这种节点要求刨平顶紧的部位都不需要焊接,要焊接的话,刨平顶紧在焊接时不利于融液的深入,焊缝质量会很差,焊接的部位即使不开坡口也不会要求顶紧的。

相关文档
最新文档