人教版高中数学必修一第一章测试含答案(供参考)
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。
人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前
第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。
人教版高中数学必修一第一章单元测试(含答案)
高中数学《必修一》第一章教学质量检测卷佛冈中学全校学生家长的全体 1、下列各组对象中不能构成集合的是()A 、佛冈中学高一(20)班的全体男生B 、C 、李明的所有家人D 王明的所有好朋友 选择 (将 题的 填入2、 已知集合A x R|x 5 ,B x R x 1 ,那么AI B 等于3、4、5、 A 、6、 7、 A. C. {2, 2,3,4,5 3,4} D.B.2, 3,4,12,3,4,5,6,7,8 ,集合 A {1,2,315}, 设全集U 则图中的阴影部分表示的集合为()A. 2B. 4,6C. 1,3,5D. 4,6,7,8 下列四组函数中表示同一函数的是 A. f(x) x , g(x) (Tx )2B. f (x) C. f (x)廉,g(x) |x|D. f(x) 函数 f(x)= 2x 2- 1 , x? (0,3) o1B 1C 、2D B {2,4,6} ()x 2,g(x) x 1 0 , g(x) < x 1 ■. 1 x若f (a )= 7,则a 的值是() x 2,(x 0)血 设f(x) !,(x 0),则f[f(1)]() A 3B 1C.0D.-1 函数f (x ) = . x + 3的值域为() A 、[3 , +x ) B 、(一x, 3]C 、[0 , +x )D R 8、下列四个图像中,不可能是函数图像的是 () 9、设f (x )是R上 的偶函数,且在 [0,+ x )上单调 递增,则f(-2),f(3),f(- )的大小顺序是:() A f(- )>f(3)>f(-2)B 、f(- )>f(-2)>f(3) C 、f(-2)>f(3)>f(- )D 、f(3)>f(-2)>f(- ) 10、在集合{a , b , c , d }上定义两种运算 和 如下:那么 b (a c)() A. aB. bC. cD. d二、填空题(本大题共4小题,每小题5分,共20分) 11、 函数y 1 (x 3)0的定义域为12、 函数f(x) x 2 6x 10在区间[0,4]的最大值是Q I /'13、 若 A { 2,2,3,4} , B {x|x t 2,t A},用列举法表示 B 是.14、 下列命题:①集合a,b,c,d 的子集个数有16个;②定义在R 上的奇函数f(x)必满足f (0) 0 ; ③f(x) 2x 1 2 2 2x 1既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤f(x)」x在 ,0 U 0, 上是减函数。
人教版 高中数学必修一课后习题配套参考答案(解析版)
人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版习题1.2(第24页)练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R∈,且12x x <, 因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞U ,因为对定义域内每一个x 都有22()11()()x x f x f x x x-++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3(第39页)1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-, 由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >, 得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x=-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为xm ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题(第44页)A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320xx -+=的解为121,2x x ==,即集合{1,2}C =.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P POcm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==I 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a=时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a=,而B A ⊆,则11a =-,或11a =,得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭I ,即{(0,0)}A B =I ;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭I,即A C =∅I ;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭I; 则39()(){(0,0),(,)}55A B B C =-IU I .6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞U .7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---,即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x=, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数; (2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.解:由(){1,3}U A B =U ð,得{2,4,5,6,7,8,9}A B =U ,集合A B U 里除去()U A B I ð,得集合B , 所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. .5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则 0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩ 由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。
人教版高一数学必修一各章节同步练习(含答案)
第一章 1.1 1.1.1集合的含义与表示基础巩固一、选择题1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是( )A .②B .③C .②③D .①②③[答案] C[解析] 高一数学中的难题的标准不确定,因而构不成集合,而正三角形标准明确,能构成集合,方程x 2-2=0的解也是确定的,能构成集合,故选C.2.已知集合A ={x |x ≤10},a =2+3,则a 与集合A 的关系是( ) A .a ∈A B .a ∉A C .a =A D .{a }∈A[答案] A[解析] 由于2+3<10,所以a ∈A .3.(2015·山东临沂检测)集合{x ∈N *|x -2<3}的另一种表示形式是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5} D .{1,2,3,4,5}[答案] B[解析] 由x -2<3,得x <5,又x ∈N *,所以x =1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.4.方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27的解集是( )A.⎩⎪⎨⎪⎧x =3y =-7B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7} [答案] D[解析] 解方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7,用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D. 5.已知集合S ={a ,b ,c }中的三个元素是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形[答案] D[解析] 由集合中元素的互异性知a ,b ,c 互不相等,故选D.6.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( )A .2B .3C .0或3D .0或2或3[答案] B[解析] 因为2∈A ,所以m =2或m 2-3m +2=2,解得m =0或m =2或m =3.又集合中的元素要满足互异性,对m 的所有取值进行一一检验可得m =3,故选B.二、填空题7.用符号∈与∉填空:(1)0________N *;3________Z ; 0________N ;(-1)0________N *; 3+2________Q ;43________Q .(2)3________{2,3};3________{(2,3)}; (2,3)________{(2,3)};(3,2)________{(2,3)}. (3)若a 2=3,则a ________R ,若a 2=-1,则a ________R . [答案] (1)∉ ∉ ∈ ∈ ∉ ∈ (2)∈ ∉ ∈ ∉ (3)∈ ∉[解析] (1)只要熟记常用数集的记号所对应的含义就很容易辨别.(2)中3是集合{2,3}的元素;但整数3不是点集{(2,3)}的元素;同样(2,3)是集合{(2,3)}的元素;因为坐标顺序不同,(3,2)不是集合{(2,3)}的元素.(3)平方等于3的数是±3,当然是实数,而平方等于-1的实数是不存在的.8.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,则b -a =________.[答案] 2[解析] 显然a ≠0,则a +b =0,a =-b ,b a=-1,所以a =-1,b =1,b -a =2. 三、解答题9.已知集合A 含有a -2,2a 2+5a,12三个元素,且-3∈A ,求a 的值. [解析] ∵-3∈A ,则-3=a -2或-3=2a 2+5a , ∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,∴a =-1舍去. 当a =-32时,经检验,符合题意.故a =-32.[注意] (1)分类讨论意识的建立.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识,如本例按照元素-3与a -2,2a 2+5a,12的关系分类 ,即可做到不重不漏.(2)注意集合中元素的互异性.求解与集合有关的字母参数时,需利用集合元素的互异性来检验所求参数是否符合要求,如本例在求出a 的值后,需代入验证是否满足集合中元素的互异性.10.已知集合A ={x |ax 2-3x +2=0}. (1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.[分析] 将求集合中元素问题转化为方程根问题.(1)集合A 为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax 2-3x +2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.[解析] (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根, 则Δ=9-8a =0,解得a =98,此时A ={43},符合题意.综上所述,当a =0时,A ={23},当a =98时,A ={43}.(2)由(1)可知,当a =0时,A ={23}符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.综上所述,若集合A 中至少有一个元素,则a ≤98.[点评] “a =0”这种情况容易被忽视,如“方程ax 2+2x +1=0”有两种情况:一是“a =0”,即它是一元一次方程;二是“a ≠0”,即它是一元二次方程,只有在这种情况下,才能用判别式“Δ”来解决.能力提升一、选择题1.(2015·河北衡水中学期末)下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{x |x 2=1} C .{1} D .{y |(y -1)2=0}[答案] B[解析] {x |x 2=1}={-1,1},另外三个集合都是{1},选B.2.下列六种表示法:①{x =-1,y =2};②{(x ,y )|x =-1,y =2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x ,y )|x =-1或y =2}.能表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集的是( )A .①②③④⑤⑥B .②③④⑤C .②⑤D .②⑤⑥[答案] C [解析] 方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解是⎩⎪⎨⎪⎧x =-1,y =2.故选C.3.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M[答案] D[解析] 当x >0,y >0,z >0时,代数式的值为4,所以4∈M ,故选D.4.设A ,B 为两个实数集,定义集合A +B ={x |x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为( )A .3B .4C .5D .6[答案] B[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素.二、填空题5.已知P ={x |2<x <k ,x ∈N ,k ∈R },若集合P 中恰有3个元素,则实数k 的取值范围是________.[答案] {k |5<k ≤6}[解析] x 只能取3,4,5,故5<k ≤6.6.(2015·湖南郴州模拟)用列举法写出集合{33-x ∈Z |x ∈Z }=________.[答案] {-3,-1,1,3} [解析] ∵33-x∈Z ,x ∈Z , ∴3-x 为3的因数. ∴3-x =±1,或3-x =±3. ∴33-x =±3,或33-x=±1. ∴-3,-1,1,3满足题意. 三、解答题7.数集A 满足条件:若a ∈A ,则1+a 1-a ∈A (a ≠1).若13∈A ,求集合中的其他元素.[分析] 已知a ∈A ,1+a 1-a ∈A ,将a =13代入1+a1-a 即可求得集合中的另一个元素,依次,可得集合中的其他元素.[解析] ∵13∈A ,∴1+131-13=2∈A ,∴1+21-2=-3∈A ,∴1-31+3=-12∈A ,∴1-121+12=13∈A . 故当13∈A 时,集合中的其他元素为2,-3,-12.8.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.[解析] (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a,即a =±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.第一章 1.1 1.1.2集合间的基本关系基础巩固一、选择题1.对于集合A,B,“A⊆B”不成立的含义是( )A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A[答案] C[解析] “A⊆B”成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,故选C.2.下列命题中,正确的有( )①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A.①②B.②③C.②④D.③④[答案] C[解析] ①空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.3.已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x是等腰直角三角形},D={x|x是等边三角形},则( )A.A⊆B B.C⊆BC.D⊆C D.A⊆D[答案] B[解析] ∵正方形必为矩形,∴C⊆B.4.下列四个集合中,是空集的是( )A.{0} B.{x|x>8,且x<5}C.{x∈N|x2-1=0} D.{x|x>4}[答案] B[解析] 选项A、C、D都含有元素.而选项B无元素,故选B.5.若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A有( )A.3个B.4个C.5个D.6个[答案] D[解析] 集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.6.设集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围为( ) A .a ≥2 B .a ≤1 C .a ≥1 D .a ≤2[答案] A[解析] 在数轴上表示出两个集合(图略),因为A B ,所以a ≥2. 二、填空题7.用适当的符号填空:(1){x |x 是菱形}________{x |x 是平行四边形}; {x |x 是三角形}________{x |x 是斜三角形}. (2)Z ________{x ∈R |x 2+2=0}; 0________{0};Ø________{0};N ________{0}. [答案] (1)(2) ∈[解析] (1)判断两个集合之间的关系,可以根据子集的定义来加以判断,特别要注意判断出包含关系后,还要进一步判断是否具有真包含关系.(2)集合{x ∈R |x 2+2=0}中,由于实数范围内该方程无解,因此{x ∈R |x 2+2=0}=Ø;0是集合{0}中的元素,它们之间是属于关系;{0}是含有一个元素0的集合;Ø是不含任何元素的集合,故Ø{0};自然数集N 中含有元素0,但不止0这一个元素.8.(2012·大纲全国改编)已知集合A ={1,2,m 3},B ={1,m },B ⊆A ,则m =________. [答案] 0或2或-1[解析] 由B ⊆A 得m ∈A ,所以m =m 3或m =2,所以m =2或m =-1或m =1或m =0,又由集合中元素的互异性知m ≠1.所以m =0或2或-1.三、解答题9.判断下列集合间的关系:(1)A ={x |x -3>2},B ={x |2x -5≥0}; (2)A ={x ∈Z |-1≤x <3},B ={x |x =|y |,y ∈A }. [解析] (1)∵A ={x |x -3>2}={x |x >5},B ={x |2x -5≥0}={x |x ≥52},∴利用数轴判断A 、B 的关系. 如图所示,AB .(2)∵A ={x ∈Z |-1≤x <3}={-1,0,1,2},B ={x |x =|y |,y ∈A ,∴B ={0,1,2},∴B A .10.已知集合M ={x |x =m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z },P ={x |x =p 2+16,p ∈Z },试确定M ,N ,P 之间的关系.[解析] 解法一:集合M ={x |x =m +16,m ∈Z },对于集合N ,当n 是偶数时,设n =2t (t ∈Z ), 则N ={x |x =t -13,t ∈Z };当n 是奇数时,设n =2t +1(t ∈Z ),则N ={x |x =2t +12-13,t ∈Z }={x |x =t +16,t ∈Z }.观察集合M ,N 可知M N .对于集合P ,当p 是偶数时,设p =2s (s ∈Z ),则P ={x |x =s +16,s ∈Z },当p 是奇数时,设p =2s -1(s ∈Z ),则P ={x |x =2s -12+16,s ∈Z } ={x |x =s -13,s ∈Z }.观察集合N ,P 知N =P . 综上可得:MN =P .解法二:∵M ={x |x =m +16,m ∈Z }={x |x =6m +16,m ∈Z }={x |x =3×2m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z }={x |x =3n -26,n ∈Z }={x |x =3n -1+16,n -1∈Z },P ={x |x =p 2+16,p ∈Z }={x |x =3p +16,p ∈Z },比较3×2m +1,3(n -1)+1与3p +1可知,3(n -1)+1与3p +1表示的数完全相同, ∴N =P,3×2m +1只相当于3p +1中当p 为偶数时的情形, ∴MP =N .综上可知M P =N .能力提升一、选择题1.(2015·瓮安一中高一期末试题)设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k∈Z },则( )A .M =NB .M NC .M ND .M 与N 的关系不确定[答案] B[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得M ={…-34,-14,14,34,54…}, N ={…0,14,12,34,1…},∴MN ,故选B.解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B.[点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整数,则k +m (m 是一个整数)也是任意整数,而2k +1,2k -1均为任意奇数,2k 为任意偶数.2.(2015·湖北孝感期中)集合A ={(x ,y )|y =x }和B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5,则下列结论中正确的是( )A .1∈AB .B ⊆AC .(1,1)⊆BD .Ø∈A[答案] B[解析] B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5={(1,1)},故选B. 3.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能是( ) A .0 B .1 C .2 D .3[答案] D[解析] 由题意知,a =0时,B =Ø,满足题意;a ≠0时,由2a∈A ⇒a =1,2,所以a 的值不可能是3.4.集合P ={3,4,5},Q ={6,7},定义P *Q ={(a ,b )|a ∈P ,b ∈Q },则P *Q 的子集个数为( )A .7B .12C .32D .64[答案] D[解析] 集合P *Q 的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P *Q 的子集个数为26=64.二、填空题5.已知集合M ={x |2m <x <m +1},且M =Ø,则实数m 的取值范围是________. [答案] m ≥1[解析] ∵M =Ø,∴2m ≥m +1,∴m ≥1.6.集合⎩⎨⎧x ,y ⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =-x +2,y =12x +2⊆{(x ,y )|y =3x +b },则b =________.[答案] 2[解析] 解方程组⎩⎪⎨⎪⎧y =-x +2y =12x +2得⎩⎪⎨⎪⎧x =0y =2,代入y =3x +b 得b =2. 三、解答题7.设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求实数a 、b 的值.[解析] ∵B 中元素是关于x 的方程x 2-2ax +b =0的根,且B ⊆{-1,1},∴关于x 的方程x 2-2ax +b =0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B ={x |x 2-2ax +b =0}⊆A ={-1,1},且B ≠Ø, ∴B ={-1}或B ={1}或B ={-1,1}. 当B ={-1}时,Δ=4a 2-4b =0且1+2a +b =0,解得a =-1,b =1. 当B ={1}时,Δ=4a 2-4b =0且1-2a +b =0,解得a =b =1. 当B ={-1,1}时,有(-1)+1=2a ,(-1)×1=b ,解得a =0,b =-1.8.设集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.[解析] (1)当m +1>2m -1,即m <2时,B =Ø,满足B ⊆A .当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,只需⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤5,即2≤m ≤3.综上,当B ⊆A 时,m 的取值范围是{m |m ≤3}.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5},∴集合A 的非空真子集个数为28-2=254.(3)∵x ∈R ,且A ={x |-2≤x ≤5}, B ={x |m +1≤x ≤2m -1},又不存在元素x 使x ∈A 与x ∈B 同时成立,∴当B =Ø,即m +1>2m -1,得m <2时,符合题意;当B ≠Q ,即m +1≤2m -1,得m ≥2时,⎩⎪⎨⎪⎧ m ≥2,m +1>5,或⎩⎪⎨⎪⎧ m ≥2,2m -1<-2,解得m >4.综上,所求m 的取值范围是{m |m <2或m >4}.第一章 1.1 1.1.3 第一课时并集和交集基础巩固一、选择题1.下面四个结论:①若a ∈(A ∪B ),则a ∈A ;②若a ∈(A ∩B ),则a ∈(A ∪B );③若a ∈A ,且a ∈B ,则a ∈(A ∩B );④若A ∪B =A ,则A ∩B =B .其中正确的个数为( )A .1B .2C .3D .4[答案] C[解析] ①不正确,②③④正确,故选C.2.已知集合M ={x |-3<x ≤5},N ={x |x >3},则M ∪N =( )A .{x |x >-3}B .{x |-3<x ≤5}C .{x |3<x ≤5}D .{x |x ≤5}[答案] A[解析] 在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.3.(2015·全国高考卷Ⅰ文科,1题)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2[答案] D[解析] A∩B={8,14},故选D.4.(2015·浙江省期中试题)集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=( )A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}[答案] D[解析] A∩B={1,2},(A∩B)∪C={1,2,3,4},故选D.5.若A∪B=Ø,则( )A.A=Ø,B≠ØB.A≠Ø,B=ØC.A=Ø,B=ØD.A≠Ø,B≠Ø[答案] C6.设集合A={x|-1≤x≤2},集合B={x|x≤a},若A∩B=Ø,则实数a的取值集合为( )A.{a|a<2} B.{a|a≥-1}C.{a|a<-1} D.{a|-1≤a≤2}[答案] C[解析] 如图.要使A∩B=Ø,应有a<-1.二、填空题7.若集合A={2,4,x},B={2,x2},且A∪B={2,4,x},则x=________.[答案] 0,1或-2[解析] 由已知得B⊆A,∴x2=4或x2=x,∴x=0,1,±2,由元素的互异性知x≠2,∴x =0,1或-2.8.已知集合A ={x |x ≥5},集合B ={x |x ≤m },且A ∩B ={x |5≤x ≤6},则实数m =________.[答案] 6[解析] 用数轴表示集合A 、B 如图所示.由于A ∩B ={x |5≤x ≤6},得m =6.三、解答题9.设集合A ={a 2,a +1,-3},B ={a -3,2a -1,a 2+1},A ∩B ={-3},求实数a 的值.[解析] ∵A ∩B ={-3},∴-3∈B .∵a 2+1≠-3,∴①若a -3=-3,则a =0,此时A ={0,1,-3},B ={-3,-1,1},但由于A ∩B ={1,-3}与已知A ∩B ={-3}矛盾,∴a ≠0.②若2a -1=-3,则a =-1,此时A ={1,0,-3},B ={-4,-3,2},A ∩B ={-3}.综上可知a =-1.10.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围.[解析] (1)∵B ={x |x ≥2},A ={x |-1≤x <3},∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a 2},B ∪C =C ⇔B ⊆C , ∴-a 2<2,∴a >-4. 能力提升一、选择题1.已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则M ∪N =( )A .{0,1}B .{-1,0}C .{-1,0,1}D .{-1,1} [答案] C[解析] 由题意可知,集合N ={-1,0},所以M ∪N =M .2.若集合M ={(x ,y )|x +y =0},P ={(x ,y )|x -y =2},则M ∩P 等于( )A .(1,-1)B .{x =1或y =-1}C .{1,-1}D .{(1,-1)} [答案] D[解析] M ∩P 的元素是方程组⎩⎪⎨⎪⎧ x +y =0x -y =2的解∴M ∩P ={(1,-1)}.3.(2015·衡水高一检测)若集合A ,B ,C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系为( )A .C AB .AC C .C ⊆AD .A ⊆C [答案] D[解析] ∵A ∩B =A ,∴A ⊆B ,又B ∪C =C ,∴B ⊆C ,∴A ⊆C ,故选D.4.当x ∈A 时,若x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,由A 的所有孤立元素组成的集合称为A 的“孤星集”,若集合M ={0,1,3}的孤星集为M ′,集合N ={0,3,4}的孤星集为N ′,则M ′∪N ′=( )A .{0,1,3,4}B .{1,4}C .{1,3}D .{0,3} [答案] D[解析] 由条件及孤星集的定义知,M ′={3},N ′={0},则M ′∪N ′={0,3}.二、填空题5.以下四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆A ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的为________.[答案] ②③④[解析] ①是错误的,a ∈(A ∪B )时可推出a ∈A 或a ∈B ,不一定推出a ∈A .6.已知集合A ={x |x 2+px +q =0},B ={x |x 2-px -2q =0},且A ∩B ={-1},则A ∪B =________.[答案] {-2,-1,4}[解析] 因为A ∩B ={-1},所以-1∈A ,-1∈B ,即-1是方程x 2+px +q =0和x 2-px -2q =0的解,所以⎩⎪⎨⎪⎧ -12-p +q =0,-12+p -2q =0,解得⎩⎪⎨⎪⎧p =3,q =2, 所以A ={-1,-2},B ={-1,4},所以A ∪B ={-2,-1,4}.三、解答题7.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},A ∪B =R ,求a 的取值范围.[解析] ∵B ={x |x <-1或x >5},A ∪B =R ,∴⎩⎪⎨⎪⎧2a <-1,a +8≥5,解得-3≤a <-12. 8.设A ={x |x 2+8x =0},B ={x |x 2+2(a +2)x +a 2-4=0},其中a ∈R .如果A ∩B =B ,求实数a 的取值范围.[解析] ∵A ={x }x 2+8x =0}={0,-8},A ∩B =B ,∴B ⊆A .当B =Ø时,方程x 2+2(a +2)x +a 2-4=0无解,即Δ=4(a +2)2-4(a 2-4)<0,得a <-2.当B ={0}或{-8}时,这时方程的判别式 Δ=4(a +2)2-4(a 2-4)=0,得a =-2.将a =-2代入方程,解得x =0,∴B ={0}满足.当B ={0,-8}时,⎩⎪⎨⎪⎧ Δ>0,-2a +2=-8,a 2-4=0,可得a =2.综上可得a =2或a ≤-2. [点评] (1)当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时,要考虑B =Ø的情形,切不可漏掉.(2)利用集合运算性质化简集合,有利于准确了解集合之间的关系.第一章 1.1 1.1.3 第二课时补集基础巩固一、选择题1.(2015·重庆三峡名校联盟)设全集I ={1,2,3,4,5},集合A ={2,3,5},集合B ={1,2},则(∁I B )∩A 为( )A .{2}B .{3,5}C .{1,3,4,5}D .{3,4,5}[答案] B[解析] 因为全集I ={1,2,3,4,5},集合B ={1,2},则∁I B ={3,4,5}.所以(∁I B )∩A 为{3,5}.故选B.[易错警示] 本小题的关键是先求出集合B的补集,再求交集.集合的运算是集合关系的基础知识,要理解清楚,可能渗透在一个大题中,不熟练会导致整体看不懂或理解错误.2.设全集U={1,2,3,4,5},A={1,3,5},则∁U A的所有非空子集的个数为( )A.4 B.3C.2 D.1[答案] B[解析] ∵∁U A={2,4},∴非空子集有22-1=3个,故选B.3.若P={x|x<1},Q={x|x>-1},则( )A.P⊆Q B.Q⊆PC.(∁R P)⊆Q D.Q⊆∁R P[答案] C[解析] ∵P={x|x<1},∴∁R P={x|x≥1}.又Q={x|x>-1},∴(∁R P)⊆Q,故选C.4.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )A.M∪N B.M∩NC.(∁U M)∪(∁U M) D.(∁U M)∩(∁U N)[答案] D[解析] ∵M∪N={1,2,3,4},∴(∁U M)∩(∁U N)=∁U(M∪N)={5,6},故选D.5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∪(∁U B)等于( )A.{x|-2≤x≤4}B.{x|x≤3,或x≥4}C.{x|-2≤x<-1}D.{x|-1≤x≤3}[答案] A[解析] 由题意可得∁U B={x|-1≤x≤4},A={x|-2≤x≤3},所以A∪(∁U B)={x|-2≤x≤4},故选A.6.已知集合A={x|x<a},B={x|x<2},且A∪(∁R B)=R,则a满足( )A.a≥2B.a>2C.a<2 D.a≤2[答案] A[解析] ∁R B={x|x≥2},则由A∪(∁R B)=R得a≥2,故选A.二、填空题7.已知集合A={3,4,m},集合B={3,4},若∁A B={5},则实数m=________.[答案] 58.U =R ,A ={x |-2<x ≤1或x >3},B ={x |x ≥4},则∁U A =________,∁A B =________.[答案] {x |x ≤-2或1<x ≤3} {x |-2<x ≤1或3<x <4}三、解答题9.已知全集U ={2,3,a 2-2a -3},A ={2,|a -7|},∁U A ={5},求a 的值.[解析] 解法1:由|a -7|=3,得a =4或a =10.当a =4时,a 2-2a -3=5,当a =10时,a 2-2a -3=77∉U ,∴a =4.解法2:由A ∪∁U A =U 知⎩⎪⎨⎪⎧ |a -7|=3a 2-2a -3=5,∴a =4.10.(2015·唐山一中月考试题)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2},求A ∩B ,(∁U A )∪B ,A ∩(∁U B ).[分析] 利用数轴,分别表示出全集U 及集合A ,B ,先求出∁U A 及∁U B ,然后求解.[解析] 如图所示,∵A ={x |-2<x <3},B ={x |-3≤x ≤2},∴∁U A ={x |x ≤-2或3≤x ≤4},∁U B ={x |x <-3或2<x ≤4}.∴A ∩B ={x |-2<x ≤2},(∁U A )∪B ={x |x ≤2或3≤x ≤4},A ∩(∁UB )={x |2<x <3}.[点评] (1)数轴与Venn 图有同样的直观功效,在数轴上可以直观地表示数集,所以进行数集的交、并、补运算时,经常借助数轴求解.(2)不等式中的等号在补集中能否取到要引起重视,还要注意补集是全集的子集.能力提升一、选择题1.如图,阴影部分用集合A 、B 、U 表示为( )A .(∁U A )∩BB .(∁U A )∪(∁U B )C .A ∩(∁U B )D .A ∪(∁U B )[答案] C[解析] 阴影部分在A中,不在B中,故既在A中也在∁U B中,因此是A与∁U B的公共部分.2.设S为全集,则下列说法中,错误的个数是( )①若A∩B=Ø,则(∁S A)∪(∁S B)=S;②若A∪B=S,则(∁S A)∩(∁S B)=Ø;③若A∪B=Ø,则A=B.A.0 B.1C.2 D.3[答案] A[解析] 借助文氏图可知,①②正确,对于③于由A∪B=Ø,∴A=Ø,B=Ø,∴A=B,故选A.3.设全集U={1,2,3,4,5},集合S与T都是U的子集,满足S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5}则有( )A.3∈S,3∈T B.3∈S,3∈∁U TC.3∈∁U S,3∈T D.3∈∁U S,3∈∁U T[答案] B[解析] 若3∈S,3∈T,则3∈S∩T,排除A;若3∈∁U S,3∈T,则3∈(∁U S)∩T,排除C;若3∈∁U S,3∈∁U T,则3∈(∁U S)∩(∁U T),排除D,∴选B,也可画图表示.4.(2008·北京)已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于( )A.{x|-2≤x<4} B.{x|x≤3或x≥4}C.{x|-2≤x<-1} D.{x|-1≤x≤3}[答案] D[解析] ∁U B={x|-1≤x≤4},A∩∁U B={x|-1≤x≤3},故选D.二、填空题5.已知全集为R,集合M={x∈R|-2<x<2},P={x|x≥a},并且M⊆∁R P,则a的取值范围是________.[答案] a≥2[解析] M={x|-2<x<2},∁R P={x|x<a}.∵M⊆∁R P,∴由数轴知a≥2.6.已知U =R ,A ={x |a ≤x ≤b },∁U A ={x |x <3或x >4},则ab =________.[答案] 12[解析] ∵A ∪(∁U A )=R ,∴a =3,b =4,∴ab =12.三、解答题7.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.[提示] 由2∈B,4∈A ,列方程组求解.[解析] ∵(∁U A )∩B ={2},∴2∈B ,∴4-2a +b =0.①又∵A ∩(∁U B )={4},∴4∈A ,∴16+4a +12b =0.②联立①②,得⎩⎪⎨⎪⎧ 4-2a +b =0,16+4a +12b =0,解得⎩⎪⎨⎪⎧ a =87,b =-127.经检验,符合题意:∴a =87,b =-127. [点评] 由题目中所给的集合之间的关系,通过分析得出元素与集合之间的关系,是解决此类问题的关键.8.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[分析] 本题从条件B ⊆∁R A 分析可先求出∁R A ,再结合B ⊆∁R A 列出关于a 的不等式组求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =Ø,则a +3≤2a ,即a ≥3,满足B ⊆∁R A .(2)若B ≠Ø,则由B ⊆∁R A ,得2a ≥-1且2a <a +3,即-12≤a <3. 综上可得a ≥-12.第一章 1.1 1.1.3 第三课时习题课基础巩固一、选择题1.(2015·全国高考卷Ⅱ文科,1题)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∩B =( )A .{x |-1<x <3}B .{x |-1<x <0}C.{x|0<x<2} D.{x|2<x<3}[答案] A[解析] A∪B={x|-1<x<3},故选A.2.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)等于( )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[答案] B[解析] 画出数轴,如图所示,∁U B={x|x≤1},则A∩∁U B={x|0<x≤1},故选B.3.图中阴影部分所表示的集合是( )A.B∩(∁U(A∪C))B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B)D.[∁U(A∩C)]∪B[答案] A[解析] 阴影部分位于集合B内,且位于集合A、C的外部,故可表示为B∩(∁U(A∪C)),故选A.4.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-2或x>4},那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}[答案] A[解析] 方法1:∁U A={x|x<-2或x>3},∁U B={x|-2≤x≤4}∴(∁U A)∩(∁U B)={x|3<x≤4},故选C.方法2:A∪B={x|x≤3或x>4},(∁U A)∩(∁U B)=∁U(A∪B)={x|3<x≤4}.故选A.5.已知集合A={x|-1≤x≤1},B={x|-1≤x≤a},且(A∪B)⊆(A∩B),则实数a=( )A.0 B.1C.2 D.3[答案] B[解析] ∵(A ∪B )⊆(A ∩B ),∴(A ∪B )=(A ∩B ), ∴A =B ,∴a =1.6.设U 为全集,对集合X ,Y 定义运算“*”,X *Y =∁U (X ∩Y ),对于任意集合X ,Y ,Z ,则(X *Y )*Z =( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z [答案] B[解析] X *Y =∁U (X ∩Y )(X *Y )*Z =∁U [∁U (X ∩Y )∩Z ]=∁U (∁U (X ∩Y ))∪∁U Z =(X ∩Y )∪∁U Z ,故选B. 二、填空题7.(河北孟村回民中学2014~2015学年高一九月份月考试题)U ={1,2},A ={x |x 2+px +q =0},∁U A ={1},则p +q =________.[答案] 0[解析] 由∁U A ={1},知A ={2}即方程x 2+px +q =0有两个相等根2,∴p =-4,q =4,∴p +q =0.8.已知集合A ={(x ,y )|y =2x -1},B ={(x ,y )|y =x +3},若m ∈A ,m ∈B ,则m 为________.[答案] (4,7)[解析] 由m ∈A ,m ∈B 知m ∈(A ∩B ), 由⎩⎪⎨⎪⎧y =2x -1y =x +3,得⎩⎪⎨⎪⎧x =4y =7,∴A ∩B ={(4,7)}.三、解答题9.已知全集U =R ,A ={x |2≤x <5},B ={x |3≤x <7},求: (1)(∁R A )∩(∁R B ) (2)∁R (A ∪B ) (3)(∁R A )∪(∁R B ) (4)∁R (A ∩B )[分析] 在进行集合运算时,充分利用数轴工具是十分有效的手段,此例题可先在数轴上画出集合A 、B ,然后求出A ∩B ,A ∪B ,∁R A ,∁R B ,最后可逐一写出各小题的结果.[解析] 如图所示,可得A ∩B ={x |3≤x <5},A ∪B ={x |2≤x <7}.∁R A ={x |x <2或x ≥5}, ∁R B ={x |x <3或x ≥7}. 由此求得(1)(∁R A )∩(∁R B )={x |x <2或x ≥7}. (2)∁R (A ∪B )={x |x <2或x ≥7}.(3)(∁R A )∪(∁R B )={x |x <2或x ≥5}∪{x <3或x ≥7}={x |x <3或x ≥5}. (4)∁R (A ∩B )={x |x <3或x ≥5}.[点评] 求解集合的运算,利用数轴是有效的方法,也是数形结合思想的体现. 10.已知U =R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},(∁UB )∩A ={4},求A ∪B .[分析] 先确定p 和q 的值,再明确A 与B 中的元素,最后求得A ∪B . [解析] ∵(∁U A )∩B ={2},∴2∈B 且2∉A . ∵A ∩(∁U B )={4},∴4∈A 且4∉B .∴⎩⎪⎨⎪⎧42+4p +12=0,22-5×2+q =0.解得p =-7,q =6,∴A ={3,4},B ={2,3},∴A ∪B ={2,3,4}.能力提升一、选择题1.设A 、B 、C 为三个集合,(A ∪B )=(B ∩C ),则一定有( ) A .A ⊆C B .C ⊆A C .A ≠C D .A =Ø[答案] A[解析] ∵A ∪B =(B ∩C )⊆B , 又B ⊆(A ∪B ),∴A ∪B =B ,∴A ⊆B , 又B ⊆(A ∪B )=B ∩C ,且(B ∩C )⊆B , ∴(B ∩C )=B ,∴B ⊆C ,∴A ⊆C .2.设P ={3,4},Q ={5,6,7},集合S ={(a ,b )|a ∈P ,b ∈Q },则S 中元素的个数为( )A .3B .4C .5D .6[答案] D[解析] S ={(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)}共6个元素,故选D. 3.(2015·陕西模拟)已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )中元素的个数为( )A.1 B.2C.3 D.4[答案] B[解析] 因为集合A={1,2},B={2,4},所以A∪B={1,2,4},所以∁U(A∪B)={3,5}.4.设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k<2},且B∩(∁U A)≠Ø,则( )A.k<0 B.k<2C.0<k<2 D.-1<k<2[答案] C[解析] ∵U=R,A={x|x≤1或x≥3},∴∁U A={x|1<x<3}.∵B={x|k<x<k+1,k<2},∴当B∩(∁U A)=Ø时,有k+1≤1或k≥3(不合题意,舍去),如图所示,∴k≤0,∴当B∩(∁U A)≠Ø时,0<k<2,故选C.二、填空题5.(2014·福建,理)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2,④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.[答案] 6[解析] 根据题意可分四种情况:(1)若①正确,则a=1,b=1,c≠2,d=4,符合条件的有序数组有0个;(2)若②正确,则a≠1,b≠1,c≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a≠1,b=1,c=2,d=4,符合条件的有序数组为(3,1,2,4);(4)若④正确,则a≠1,b=1,c≠2,d≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.6.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是________.[答案]1 12[解析] 如图,设AB 是一长度为1的线段,a 是长度为34的线段,b 是长度为13的线段,a ,b 可在线段AB 上自由滑动,a ,b 重叠部分的长度即为M ∩N 的“长度”,显然,当a ,b各自靠近线段AB 两端时,重叠部分最短,其值为34+13-1=112.三、解答题7.已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},试探求a 取何实数时,(A ∩B )Ø与A ∩C =Ø同时成立.[解析] B ={x |x 2-5x +6=0}={2,3},C ={x |x 2+2x -8=0}={2,-4},由A ∩BØ与A ∩C =Ø同时成立可知,3是方程x 2-ax +a 2-19=0的解,将3代入方程得a 2-3a -10=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}={2,3},此时A ∩C ={2},与此题设A ∩C =Ø矛盾,故不适合.当a =-2时,A ={x |x 2+2x -15=0}={3,-5},此时(A ∩B )Ø与A ∩C =Ø同时成立,则满足条件的实数a =-2.8.设A ,B 是两个非空集合,定义A 与B 的差集A -B ={x |x ∈A ,且x ∉B }. (1)试举出两个数集,求它们的差集;(2)差集A -B 与B -A 是否一定相等?说明理由;(3)已知A ={x |x >4},B ={x |-6<x <6},求A -(A -B )和B -(B -A ). [解析] (1)如A ={1,2,3},B ={2,3,4}, 则A -B ={1}. (2)不一定相等,由(1)B -A ={4},而A -B ={1}, 故A -B ≠B -A .又如,A =B ={1,2,3}时,A -B =Ø,B -A =Ø,此时A -B =B -A ,故A -B 与B -A 不一定相等. (3)因为A -B ={x |x ≥6},B -A ={x |-6<x ≤4}, A -(A -B )={x |4<x <6}, B -(B -A )={x |4<x <6}.第一章 1.2 1.2.1函数的概念基础巩固一、选择题1.下列四种说法中,不正确的是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 [答案] B2.f (x )=1+x +x1-x 的定义域是( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)∪(1,+∞)[答案] D[解析] ⎩⎪⎨⎪⎧1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D.3.各个图形中,不可能是函数y =f (x )的图象的是( )[答案] A[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A. 4.(2015·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.5.下列各组函数相同的是( )A .f (x )=x 2-1x -1与g (x )=x +1B .f (x )=-2x 3与g (x )=x ·-2x C .f (x )=2x +1与g (x )=2x 2+xxD .f (x )=|x 2-1|与g (t )=t 2-12[答案] D[解析] 对于A.f (x )的定义域是(-∞,1)∪(1,+∞),g (x )的定义域是R ,定义域不同,故不是相同函数;对于B.f (x )=|x |·-2x ,g (x )=x ·-2x 的对应法则不同;对于C ,f (x )的定义域为R 与g (x )的定义域是{x |x ≠0},定义域不同,故不是相同函数;对于D.f (x )=|x 2-1|,g (t )=|t 2-1|,定义域与对应关系都相同,故是相同函数,故选D.6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上[答案] C[解析] 当a 在f (x )定义域内时,有一个交点,否则无交点. 二、填空题 7.已知函数f (x )=11+x,又知f (t )=6,则t =________. [答案] -56[解析] f (t )=1t +1=6.∴t =-568.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.[答案] (1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 三、解答题9.求下列函数的定义域,并用区间表示:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[分析] 列出满足条件的不等式组⇒解不等式组⇒求得定义域[解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [规律总结] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x +3+1x +2. (1)求函数的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.[解析] (1)使根式x +3有意义的实数x 的集合是{x |x ≥-3},使分式1x +2有意义的实数x 的集合是{x |x ≠-2},所以这个函数的定义域是{x |x ≥-3}∩{x |x ≠-2}={x |x ≥-3,且x ≠-2}. (2)f (-3)=-3+3+1-3+2=-1; f (23)=23+3+123+2=113+38=38+333. (3)因为a >0,故f (a ),f (a -1)有意义.f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1.能力提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.( ) A .1 B .2 C .3 D .0[答案] B[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B. 2.(2012·高考安徽卷)下列函数中,不满足:f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x [答案] C[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件. 3.(2014~2015惠安中学月考试题)A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )[答案] B[解析] A 、C 、D 的值域都不是[1,2],故选B. 4.(2015·盘锦高一检测)函数f (x )=11-2x 的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =( )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)[答案] B 二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值范围是________. [答案] (1,2)[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;其中只与x 的一个值对应的y 值的范围是________.[答案] [-3,0]∪[2,3] [1,2)∪(4,5] [解析] 观察函数图象可知f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域: (1)y =31-1-x;(2)y =x +10|x |-x;(3)y =2x +3-12-x +1x.[解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.8.已知函数f (x )=1+x 21-x 2,(1)求f (x )的定义域. (2)若f (a )=2,求a 的值.(3)求证:f ⎝ ⎛⎭⎪⎫1x=-f (x ). [解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x21-x2,且f (a )=2,所以f (a )=1+a 21-a 2=2,即a 2=13,解得a =±33. (3)由已知得f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,-f (x )=-1+x 21-x 2=x 2+1x 2-1, ∴f ⎝ ⎛⎭⎪⎫1x =-f (x ).第一章 1.2 1.2.2 第一课时函数的表示方法基础巩固一、选择题1.已知y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[答案] C[解析] 设y =k x ,由1=k 2得,k =2,因此,y 关于x 的函数关系式为y =2x.2.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( ) A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)[答案] D[解析] 由题意得y +2x =20,∴y =20-2x .又∵2x >y ,∴2x >20-2x ,即x >5.由y >0,即20-2x >0得x <10,∴5<x <10.故选D.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是( ) A .g (x )=2x +1 B .g (x )=2x -1 C .g (x )=2x -3 D .g (x )=2x +7[答案] B[解析] ∵g (x +2)=f (x )=2x +3,∴令x +2=t ,则x =t -2,g (t )=2(t -2)+3=2t -1.∴g (x )=2x -1.4.(2015·安丘一中月考)某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A .成绩y 不是考试次数x 的函数B .成绩y 是考试次数x 的函数C .考试次数x 是成绩y 的函数D .成绩y 不一定是考试次数x 的函数 [答案] B5.如果二次函数的二次项系数为1,图象开口向上,且关于直线x =1对称,并过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1 B .f (x )=-(x -1)2+1 C .f (x )=(x -1)2+1 D .f (x )=(x -1)2-1[答案] D6.(2015·武安中学周测题)若f (x )满足关系式f (x )+2f (1x)=3x ,则f (2)的值为( )。
高中数学必修一 第一章章末检测(含答案解析)
第一章章末检测(时间:120 分钟 满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1.设集合 M ={1,2,4,8},N ={x |x 是 2 的倍数},则 M ∩N 等于( ) A .{2,4} B .{1,2,4} C .{2,4,8} D .{1,2,8} 2.若集合 A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则 A ∩B 等于( ) A .{x |-1≤x ≤1} B .{x |x ≥0} C .{x |0≤x ≤1}D .∅3.若ax 2a >0),且 f ( 2),则 a 等于( )A .12B .12C.0 D .2 4.若函数 f (x )满足 f (3x +2)=9x +8,则 f (x )的解析式是( ) A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2 或 f (x )=-3x -45.设全集 U ={1,2,3,4,5},集合 M ={1,4},N ={1,3,5},则 N ∩(∁U M )等于( ) A .{1,3} B .{1,5} C .{3,5} D .{4,5}6. 已知函数 f (x )=1在区间[1,2]上的最大值为 A ,最小值为 B ,则 A -B 等于( )xA.1 2B. -1 2C.1 D .-1 7.f (x )=ax 2+(a 3-a )x (-∞,-1]上递增,则 a 的取值范围是( ) A .a B a ≤ 3 C .0<D a <0+3 (x >10)8.设 f (x )f (x +5)) (x ≤10),则 f (5)的值是( )A .24B .21C .18D .169.f (x )=(m -1)x 2+2mx +3 为偶函数,则 f (x )在区间(2,5)上是( ) A .增函数 B .减函数 C. 有增有减 D .增减性不确定10. 设 集 合 A =[01 1 , ),B =[ ,1],函数 f (x )=+1, x ∈A2 ,若 x 0∈A ,且 f [f (x 0)] 2 2 ∈A ,则 x 0 的取值范围是( ) A .(0,1] B .(11 , ](1-x ), x ∈B4 4 2 C .(1,1) D .[0,3]4 2 8 11. 若函数 f (x )=x 2+bx +c 对任意实数 x 都有 f (2+x )=f (2-x ),那么( ) A .f (2)<f (1)<f (4) B .f (1)<f (2)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 12. 若 f (x )和 g (x )都是奇函数,且 F (x )=f (x )+g (x )+2,在(0,+∞)上有最大值 8,则在(-∞,0)上 F (x )有( )A .最小值-8B .最大值-8C .最小值-6D .最小值-4二、填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13. 已知函数 y =f (x )是 R 上的增函数,且 f (m +3)≤f (5),则实数 m 的取值范围是 .14. 函数 f (x )=-x 2+2x +3 在区间[-2,3]上的最大值与最小值的和为 .15. 若函数 f (x )=x 2+(a +1)x +a为奇函数,则实数 a = .x16.如图,已知函数 f (x )的图象是两条直线的一部分,其定义域为(-1,0]∪(0,1),则不等式 f (x )-f (-x )>-1 的解集是 .三、解答题(本大题共 6 小题,共 70 分)17.(10 分)设集合 A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中 p 、q 为常数,x∈R ,当 A ∩B ={12}时,求 p 、q 的值和 A ∪B .18.(12 分)已知函数 f (x )=x +2,x -6(1)点(3,14)在 f (x )的图象上吗? (2)当 x =4 时,求 f (x )的值; (3)当 f (x )=2 时,求 x 的值.19.(12 分)函数 f (x )是 R 上的偶函数,且当 x >0 时,函数的解析式为 f (x )=2-1.x(1) 用定义证明 f (x )在(0,+∞)上是减函数; (2) 求当 x <0 时,函数的解析式.20.(12 分)函数 f (x )=4x 2-4ax +a 2-2a +2 在区间[0,2]上有最小值 3,求 a 的值.21.(12 分)已知函数 f (x )对一切实数 x ,y ∈R 都有 f (x +y )=f (x )+f (y ),且当 x >0 时,f (x )<0,又 f (3)=-2.(1) 试判定该函数的奇偶性;(2) 试判断该函数在 R 上的单调性;(3) 求 f (x )在[-12,12]上的最大值和最小值.22.(12 分)已知函数 y =x + t有如下性质:如果常数xt >0,那么该函数在(0, t ]上是减函数,在[ t ,+∞)上是增函数.(1) 已知 f (x ) 4x 2-12x -3x ∈[0,1],利用上述性质,求函数 f (x )的单调区间和值域;= ,2x +1(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a 的值.第一章章末检测答案解析1.C [因为N={x|x 是2 的倍数}={…,0,2,4,6,8,…},故M∩N={2,4,8},所以C 正确.]2.C [A={x|-1≤x≤1},B={y|yA∩B={x|0≤x≤1}.]3.A [f( 2)=2a-2=2,∴a=124.B [f(3x+2)=9x+8=3(3x+2)+2,∴f(t)=3t+2,即f(x)=3x+2.]5.C [∁U M={2,3,5},N={1,3,5},则N∩(∁U M)={1,3,5}∩{2,3,5}={3,5}.]6.A [f(x)=1在[1,2]上递减,x∴f(1)=A,f(2)=B,∴A-B=f(1)-f(2)=1-1=1.]2 27.D [由题意知a<0,-a3-a≥-1,2a-a22+1≥-1,即a2≤3.a<0.]8.A [f(5)=f(f(10))=f(f(f(15)))=f(f(18))=f(21)=24.]9.B [f(x)是偶函数,即f(-x)=f(x),得m=0,所以f(x)=-x2+3,画出函数f(x)=-x2+3 的图象知,f(x)在区间(2,5)上为减函数.] 10.C [∵x0∈A,∴f(x0)=x0+1∈B,2∴f[f(x0)]=f(x0+1)=2(1-x0-1),2 2即f[f(x0)]=1-2x0∈A,所以0≤1-2x0<1,2即1<x0≤1,又x0∈A,4 2∴1<x0<1,故选C.]4 211.A [由f(2+x)=f(2-x)可知:函数f(x)的对称轴为x=2,由二次函数f(x)开口方向,可得f(2)最小;又f(4)=f(2+2)=f(2-2)=f(0),在x<2 时y=f(x)为减函数.∵0<1<2,∴f(0)>f(1)>f(2),即f(2)<f(1)<f(4).]=- ≠,, 12.D [由题意知 f (x )+g (x )在(0,+∞)上有最大值 6,因 f (x )和 g (x )都是奇函数,所以f (-x )+g (-x )=-f (x )-g (x )=-[f (x )+g (x )],即 f (x )+g (x )也是奇函数,所以 f (x )+g (x )在(-∞,0)上有最小值-6, ∴F (x )=f (x )+g (x )+2 在(-∞,0)上有最小值-4.]13.m ≤2解析 由函数单调性可知,由 f (m +3)≤f (5)有 m +3≤5, 故 m ≤2. 14.-1解析 f (x )=-x 2+2x +3=-(x -1)2+4,∵1∈[-2,3],∴f (x )max =4,又∵1-(-2)>3-1,由 f (x )图象的对称性可知,f (-2)的值为 f (x )在[-2,3]上的最小值,即 f (x )min =f (-2)=-5,∴-5+4=-1. 15.-1解析 由题意知,f (-x )=-f (x ), x 2-(a +1)x +a x 2+(a +1)x +a 即 =- ,-xx ∴(a +1)x =0 对 x ≠0 恒成立, ∴a +1=0,a =-1.16.(-1,-1)∪[0,1)2解析 由题中图象知,当 x ≠0 时,f (-x )=-f (x ),所以 f (x )-[-f (x )]>-1,∴f (x )>-1,2 由题图可知,此时-1<x <-1或 0<x <1.当 x =0 时,2f (0)=-1,f (0)-f (-0)=-1+1=0,0>-1 满足条件.因此其解集是{x |-1<x <-12 0≤x <1}.17.解 ∵A ∩B ={1 2 },∴1∈A .2∴2( 1)2+3p (1 2 2)+2=0.∴p =-5.∴A ={1,2}.3 2 又∵A ∩B = 1 1B .∴ 1 2 { },∴ ∈2 21 2( ) +2 +q =0.∴q =-1.2 ∴B ={1,-1}.∴A ∪B ={-1 12 22}.18.解 (1)∵f (3) 3+2 5 14. 3-63 ∴点(3,14)不在 f (x )的图象上.(2)当 x =4 时,f (4) 4+2 = =-3. 4-6 (3)若 f (x )=2,则x +2=2,x -6∴2x -12=x +2,∴x =14. 19.(1)证明 设 0<x 1<x 2,则f (x 1)-f (x 2)=( 2 -1)-( 2-1)x 1 x 2= 或2(x 2-x 1) = ,x 1x 2∵0<x 1<x 2,∴x 1x 2>0,x 2-x 1>0, ∴f (x 1)-f (x 2)>0, 即 f (x 1)>f (x 2),∴f (x )在(0,+∞)上是减函数. (2)解 设 x <0,则-x >0,∴f (-x )=- 2-1,x又 f (x )为偶函数,∴f (-x )=f (x )=-2-1,x 即 f (x )=-2-1(x <0). x20.解 ∵f (x )=4(x -a)2-2a +2,2①当a≤0,即 a ≤0 时,函数 f (x )在[0,2]上是增函数.2∴f (x )min =f (0)=a 2-2a +由 a 2-2a +2=3,得 a =∵a ≤0,∴a =1- 2.②当 0<a<2,即 0<a <4 时,2 f (x )min =f (a)=-2a +2.2由-2a +2=3,得 a =- 1∉(0,4),舍去.2③当a≥2,即 a ≥4 时,函数 f (x )在[0,2]上是减函数,2f (x )min =f (2)=a 2-10a +18.由 a 2-10a +18 a =∵a ≥4,∴a =5综上所述,a =1 a =521.解 (1)令 x =y =0,得 f (0+0)=f (0)=f (0)+f (0) =2f (0),∴f (0)=0.令 y =-x ,得 f (0)=f (x )+f (-x )=0, ∴f (-x )=-f (x ), ∴f (x )为奇函数.(2)任取 x 1<x 2,则 x 2-x 1>0,∴f (x 2-x 1)<0, ∴f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1)<0, 即 f (x 2)<f (x 1)∴f (x )在 R 上是减函数.(3)∵f (x )在[-12,12]上是减函数, ∴f (12)最小,f (-12)最大.又 f (12)=f (6+6)=f (6)+f (6)=2f (6) =2[f (3)+f (3)]=4f (3)=-8, ∴f (-12)=-f (12)=8.∴f (x )在[-12,12]上的最大值是 8,最小值是-8.22.解 (1)y =f (x ) 4x 2-12x -3 4= =2x +1+ -8,2x +1设 u =2x +1,x ∈[0,1],1≤u ≤3,2x +1≤ 则 y =u +4-8,u ∈[1,3].u由已知性质得,当 1≤u ≤2,即 0≤x 1时, 2所以减区间为[0,1];2f (x )单调递减;当 2≤u ≤3,即 1≤x ≤1 时,f (x )单调递增;2 所以增区间为[1,1];2 由 f (0)=-3, f (1)=-4,f (1)=-11 2 3得 f (x )的值域为[-4,-3]. (2) g (x )=-x -2a 为减函数,故 g (x )∈[-1-2a ,-2a ],x ∈[0,1].由题意,f (x )的值域是 g (x )的值域的子集,1-2a ≤-4 2a ≥-3∴a =32 . ,。
新教材人教版高一数学上册单元测试题含答案全套
新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题集合与常用逻辑用语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此. 4.下列命题中正确的是( ){}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}A B =-29a =3a =±A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z 223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个.2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意; ②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2).3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+={}10B x ax =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求: (1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a a <≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
新教材人教版高一数学上册单元测试题含答案全套
新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此.4.下列命题中正确的是( )A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,{}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}AB =-29a =3a =±(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R 2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N =【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个. 【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,{(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A 4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意;②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2). 【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求:A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+=}10B =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =(1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a ≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥a {}24a a a <≥或243y x x =-+{}|0A x x a =≤≤x A ∈1-a a x A ∈3a 2a ≥2243(2)1y x x x =-+=--2x =1-x A ∈1-2A ∈2a ≥2(2)1y x =--2x =x A ∈3x A ∈3,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
高中数学必修一 第一章测试题(含答案)
必修一 第一章 集合与简易逻辑单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知全集U ={1,2,3,4,5,6,7},A ={2,3,5,7},B ={1,3,6,7},则∁U (A ∩B )=( ) A .{4}B .∅C .{1,2,4,5,6}D .{1,2,3,5,6}2.A ={2,3},B ={x ∈N|x 2−3x <0},则A ∪B =( ) A .{1,2,3}B .{0,1,2,}C .{0,2,3}D .{0,1,2,3}3.下列各组集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={(x,y)|x +y =1},N ={y |x +y =1} C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}4.已知全集U =Z ,集合M ={x|−1<x <2,x ∈Z},N ={−1,0,1,2},则()C U M N ⋂=( ) A .{−1,2}B .{−1,0}C .{0,1}D .{1,2}5.设集合U ={1,2,3,4},M ={1,2,3},N ={2,3},则∁U (M ∩N )=( ) A .{4}B .{1,2}C .{}2,3D .{1,4}6.下列各式中:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.正确的个数是( ) A .1B .2C .3D .47.命题“∃x ∈R ,x 2−2x +2≤0”的否定是( ) A .∃x ∈R ,x 2−2x +2≥0 B .∃x ∈R ,2220x x -+> C .∀x ∈R ,2220x x -+>D .∀x ∈R ,x 2−2x +2≤08.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件9.若命题:“∃x ∈R ,使x 2−x −m =0”是真命题,则实数m 的取值范围是( ) A .[−14,0]B .10,4⎡⎤⎢⎥⎣⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦10.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4B .a ≤4C .a ≥5D .a ≤511.已知集合A ={x|ax =x 2},B ={0,1,2},若A ⊆B ,则实数a 的值为( ) A .1或2B .0或1C .0或2D .0或1或212.已知集合A ={x|−2≤x ≤5},B ={x|m +1≤x ≤2m −1}.若B ⊆A ,则实数m 的取值范围为( ) A .m ≥3B .2≤m ≤3C .3m ≤D .m ≥2二、填空题 13.已知集合A ={−1,0,1},B ={0,a,a 2},若A =B ,则a =______.14.已知集合M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4},那么集合M ∩N= 15.“方程220x x a --=没有实数根”的充要条件是________.16.已知A ,B 是两个集合,定义A −B ={x|x ∈A,x ∉B},若A ={x|−1<x <4},B ={x|x >2},则A −B =_______________.三、解答题 17.已知A ={a −1,2a 2+5a +1,a 2+1}, −2∈A ,求实数a 的值.18.已知集合A ={x |−4<x <2},B ={x |x <−5或x >1}.求A ∪B ,A ∩(∁R B ); 19.已知集合U ={1,2,3,4,5,6,7,8,9},A ={x|3≤x ≤7且x ∈U},B ={x|x =3n,n ∈Z 且x ∈U}.(1)写出集合B 的所有子集; (2)求A ∩B ,A ∪∁U B .20.已知全集U =R ,集合A ={x|−1≤x ≤3}. (1)求C U A ;(2)若集合B ={x |2x −a >0},且B ⊆(C U A ),求实数a 的取值范围.21.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R .(1)当a=1时,求(C U A)∩B;(2)若“x∈B”是“x∈A”的必要条件,求实数a的取值范围.22.命题p:“∀x∈[1,2],x2+x−a≥0”,命题q:“∃x∈R,x2+3x+2−a=0”.(1)写出命题p的否定命题¬p,并求当命题¬p为真时,实数a的取值范围;(2)若p和q中有且只有一个是真命题,求实数a的取值范围.参考答案:1.C【分析】先求交集,再求补集,即得答案.【详解】因为A={2,3,5,7},B={1,3,6,7},所以A∩B={3,7},A B={1,2,4,5,6}.又全集U={1,2,3,4,5,6,7},所以()U故选:C2.A【分析】根据一元二次不等式的运算求出集合B,再根据并集运算即可求出结果.【详解】因为B={x∈N|x2−3x<0},所以B={1,2},所以A∪B={1,2,3}.故选:A.【点睛】本题主要考查了集合的并集运算,属于基础题.3.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A:集合M={(3,2)}表示含有点(3,2)的集合,N={(2,3)}表示含有点(2,3)的集合,显然不是同一集合,故A错误;对于B:集合M表示的是直线x+y=1上的点组成的集合,集合N=R为数集,故B错误;对于C:集合M、N均表示含有4,5两个元素组成的集合,故是同一集合,故C正确;对于D:集合M表示的是数集,集合N为点集,故D错误;故选:C4.A【解析】根据集合M,求出C U M,然后再根据交集运算即可求出结果.【详解】M={x|−1<x<2,x∈Z}={0,1}∴()C {1,2}U M N ⋂=-. 故选:A.【点睛】本题主要考查集合的交集和补集运算,属于基础题. 5.D【分析】根据交集、补集的定义计算可得;【详解】解:∵集合U ={1,2,3,4},M ={1,2,3},N ={2,3} ∴M ∩N ={2,3}, 则∁U (M ∩N)={1,4}. 故选:D . 6.B【分析】根据相等集合的概念,元素与集合、集合与集合之间的关系,空集的性质判断各项的正误.【详解】∈集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{0,1,2}⊆{2,1,0},正确; ③空集是任意集合的子集,故∅⊆{0,1,2},正确; ④空集没有任何元素,故∅≠{0},错误;⑤两个集合所研究的对象不同,故{0,1},{(0,1)}为不同集合,错误; ⑥元素与集合之间只有属于、不属于关系,故错误; ∈∈∈正确. 故选:B. 7.C【分析】根据存在量词命题的否定为全称量词命题判断即可;【详解】解:命题“∃x ∈R ,2220x x -+”为存在量词命题,其否定为:∀x ∈R ,2220x x -+>;故选:C 8.B【分析】“返回家乡”的前提条件是“攻破楼兰”,即可判断出结论. 【详解】“返回家乡”的前提条件是“攻破楼兰”, 故“攻破楼兰”是“返回家乡”的必要不充分条件 故选:B9.C【分析】利用判别式即可得到结果.【详解】∵“∃x∈R,使x2−x−m=0”是真命题,∴Δ=(−1)2+4m≥0,解得m≥−14.故选:C10.C【分析】先要找出命题为真命题的充要条件{a|a≥4},从集合的角度充分不必要条件应为{a|a≥4}的真子集,由选择项不难得出答案【详解】命题“∀x∈[1,2],x2-a≤0”为真命题,可化为∀x∈[1,2],a≥x2恒成立即只需a ≥(x2)max,即命题“∀x∈[1,2],x2-a≤0”为真命题的的充要条件为a≥4,而要找的一个充分不必要条件即为集合{a|a≥4}的真子集,由选择项可知C 符合题意.故选:C11.D【解析】先求出集合A,再根据A⊆B,即可求解.【详解】解:当a=0时,A={0},满足A⊆B,当a≠0时,A{0,a},若A⊆B,∴a=1或a=2,综上所述:a=0,1或a=2.故选:D.12.C【分析】讨论B=∅,B≠∅两种情况,分别计算得到答案.【详解】当B=∅时:m+1>2m−1∴m<2成立;当B≠∅时:{m+1≤2m−1m+1≥−22m−1≤5解得:2≤m≤3.综上所述:3m 故选C【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误. 13.1-【分析】根据集合相等,元素相同,即可求得a 的值. 【详解】∵集合A ={−1,0,1},B ={0,a,a 2},A =B ,1a ∴=-,a 2=1.故答案是:1-. 14.{(3,1)}-【分析】确定集合中的元素,得出求交集就是由求得方程组的解所得. 【详解】因为M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4}, 所以M ∩N ={(x,y)|{x +y =2x −y =4}={(3,−1)}.故答案为:{(3,1)}-. 15.a <−1【解析】利用判别式求出条件,再由充要条件的定义说明.【详解】解析因为方程220x x a --=没有实数根,所以有440a ∆=+<,解得a <−1,因此“方程220x x a --=没有实数根”的必要条件是a <−1.反之,若a <−1,则Δ<0,方程220x x a --=无实根,从而充分性成立.故“方程220x x a --=没有实数根”的充要条件是“a <−1”. 故答案为:a <−1【点睛】本题考查充要条件,掌握充要条件的定义是解题关键. 16.{x|−1<x ≤2}【分析】根据集合的新定义,结合集合A 、B 求A −B 即可.【详解】由题设,A −B ={x|x ∈A,x ∉B},又A ={x|−1<x <4},B ={x|x >2}, ∴A −B ={x|−1<x ≤2}. 故答案为:{x|−1<x ≤2} 17.−32【分析】由−2∈A ,有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2,解方程求出实数a 的值,但要注意集合元素的互异性.【详解】因为−2∈A ,所以有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2, 当a −1=−2时,a =−1,此时a −1=2a 2+5a +1=−2不符合集合元素的互异性,故舍去;当2a2+5a+1=−2时,解得a=−32,a=−1由上可知不符合集合元素的互异性,舍去,故a=−32.【点睛】本题考查了元素与集合之间的关系,考查了集合元素的互异性,考查了解方程、分类讨论思想.18.A∪B={x|x<−5或x>−4};A∩(∁R B)={x|−4<x≤1}【分析】由并集、补集和交集定义直接求解即可.【详解】由并集定义知:A∪B={x|x<−5或x>−4};∵∁R B={x|−5≤x≤1},∴A∩(∁R B)={x|−4<x≤1}.19.(1)∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【分析】(1)根据题意写出集合B,然后根据子集的定义写出集合B的子集;(2)求出集合A,利用交集的定义求出集合A∩B,利用补集和并集的定义求出集合A∪∁U B.【详解】(1)∵B={x|x=3n,n∈Z且x∈U},∴B={3,6,9},因此,B的子集有:∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)由(1)知B={3,6,9},则∁U B={1,2,4,5,7,8},∵A={x|3≤x≤7且x∈U}={3,4,5,6,7},因此,A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【点睛】本题考查有限集合的子集,以及补集、交集和并集的运算,考查计算能力,属于基础题.20.(1) {x|x>3或x<−1};(2) a≥6.【分析】(1)利用数轴,根据补集的定义直接求出C U A;(2)解不等式化简集合B的表示,利用数轴根据B⊆(C U A),可得到不等式,解这个不等式即可求出实数a的取值范围.【详解】(1)因为集合A={x|−1≤x≤3}.所以C U A={x|x>3或x<−1};(2) B={x|2x−a>0}={x|x>a2}.因为B⊆(C U A),所以有362aa≤⇒≥.【点睛】本题考查了补集的定义,考查了已知集合的关系求参数问题,运用数轴是解题的关键. 21.(1)(C U A)∩B={x|−1≤x<0}(2)a <−4或0≤a ≤12【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x ∈B ”是“x ∈A ”的必要条件等价于A ⊆B .讨论A 是否为空集,即可求出实数a 的取值范围.(1)当a =1时,集合{}|05A x x =≤≤,C U A ={x|x <0或x >5}, (C U A)∩B ={x|−1≤x <0}.(2)若“x ∈B ”是“x ∈A ”的必要条件,则A ⊆B , ①当A =∅时,a −1>2a +3,∴a <−4;②A ≠∅,则a ≥−4且a −1≥−1,2a +3≤4,∴0≤a ≤12. 综上所述,a <−4或0≤a ≤12. 22.(1)a >2 (2)a >2或a <−14【分析】(1)根据全称命题的否定形式写出¬p ,当命题¬p 为真时,可转化为(x 2+x −a)min ,当x ∈[1,2],利用二次函数的性质求解即可;(2)由(1)可得p 为真命题时a 的取值范围,再求解q 为真命题时a 的取值范围,分p 真和q 假,p 假和q 真两种情况讨论,求解即可 (1)由题意,命题p :“∀x ∈[1,2],x 2+x −a ≥0”,根据全称命题的否定形式,¬p :“∃x ∈[1,2],x 2+x −a <0” 当命题¬p 为真时,(x 2+x −a)min ,当x ∈[1,2]二次函数y =x 2+x −a 为开口向上的二次函数,对称轴为x =−12 故当x =1时,函数取得最小值,即(x 2+x −a)min 故实数a 的取值范围是a >2 (2)由(1)若p 为真命题a ≤2,若p 为假命题a >2 若命题q :“∃x ∈R ,x 2+3x +2−a =0” 为真命题 则Δ=9−4(2−a)≥0,解得14a ≥-故若q 为假命题a <−14由题意,p 和q 中有且只有一个是真命题, 当p 真和q 假时,a ≤2且a <−14,故a <−14; 当p 假和q 真时,a >2且14a ≥-,故a >2;综上:实数a 的取值范围是a >2或a <−14。
人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试(有答案解析)
一、选择题1.已知集合{}*N 0A x x y =∈=≥∣,若B A ⊆且集合B 中恰有2个元素,则满足条件的集合B 的个数为( ). A .1B .3C .6D .102.已知:250p x ->,2:20q x x -->,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件3.已知全集U =R ,集合M ={x |x 2+x ﹣2≤0},集合N ={y |y },则(C U M )∪N 等于( ) A .{x |x <﹣2或x ≥0} B .{x |x >1} C .{x |x <﹣1或1<x ≤3} D .R4.m n 是两条不同的直线,α是平面,n α⊥,则//m α是m n ⊥的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.定义:若平面点集A 中的任一个点00(,)x y ,总存在正实数r ,使得集合{(,)}x y r A <⊆,则称A 为一个开集.给出下列集合:①22{(,)|1}x y x y +=;②{(,)|20}x y x y ++≥;③{(,)|6}x y x y +<;④22{(,)|0(1}x y x y <+<. 其中是开集的是( ) A .①④B .②③C .②④D .③④6.判断下列命题①命题“若14m ≥-,则方程20x x m +-=有实根”的逆命题为真命题;②命题“若21x =,则1x =.”的否命题为“若21x =,则1x ≠.”;③若命题“p q ∧”为假命题,则命题“p q ∨”是假命题;④命题“x R ∀∈,22x x ≥."的否定是“0x R ∃∈,0202x x <.” 中正确的序号是( )A .①③B .②③C .①④D .②④7.“3,a =b =”是双曲线22221(0,0)x y a b a b -=->>( )A .充要条件B .必要不充分条件C .即不充分也不必要条件D .充分不必要条件8.命题“对任意x ∈R ,都有20x ≥”的否定为 A .对任意x ∈R ,都有20x < B .不存在x ∈R ,都有20x < C .存在0x ∉R ,使得200x <D .存在0x ∈R ,使得200x <9.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( )A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈10.不等式220x x --<成立的一个充分不必要条件是21a x a <<+,则a 的取值范围为( ) A .–11a ≤≤B .–11a ≤<C .–11a <<D .11a -<≤11.下列命题中,不正确的是( )A .0x R ∃∈,20010x x -+≥B .若0a b <<则11a b> C .设0a >,1a ≠,则“log 1a b >”是“b a >”的必要不充分条件D .命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”12.已知a ,b R ∈,“1a b +<”是“11a b a b ⎧+<⎪⎨-<⎪⎩”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.设U =R ,集合2{|320}A x x x =++=, ()2{|10}B x x m x m =+++=,若UA B,则m =__________.14.已知集合(){},320,A a b a b a N =+-=∈,()(){}2,10,B a b k a a b a N =-+-=∈,若存在非零整数k ,满足A B ⋂≠∅,则k =______.15.已知:条件p :120x-≥和q :()()22110x a x a a -+++<,若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是______.16.已知集合{}{}10|133xA aB x =-=,,,<<,若A B ⋂=∅,则实数a 的取值范围是______.17.已知命题31:01x p A xx ⎧⎫-=≤⎨⎬-⎩⎭,命题{}2:30q B x x mx =--+>.若命题q 是p 的必要不充分条件,则m 的取值范围是____; 18.已知集合{}{}22,1,A B a==,若{}0,1,2AB =,则实数a =________.19.已知集合{}12A =,,{}12B =-,,则A B =______.20.下列命题中,正确的是___________.(写出所有正确命题的编号) ①在中,是的充要条件;②函数的最大值是;③若命题“,使得”是假命题,则; ④若函数,则函数在区间内必有零点.三、解答题21.设集合{|33},{|13}A x x B x a x a =-≤≤=-≤≤+. (1)若1a =,求,A B A B ;(2)若AB B =,求实数a 的取值范围. 22.在“①AB B =,②RB A ⊆,③A B =∅”这三个条件中任选一个,补充在下面横线上,求解下列问题.问题:已知集合{}24120A x x x =-++>,集合{5}B x m x m =<<+.(1)若2m =,求AB ,()R A B ;(2)若______,求m 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.23.已知集合(){}223120A x x a x a a =--+-<,集合{}2430B x x x =-+<.(1)当2a =时,求A B ;(2)命题P :x A ∈,命题Q :x B ∈,若P 是Q 的充分条件,求实数a 的取值范围. 24.集合(){}21|,A x y y x mx ==-+-,(){},3,03|B x y y x x ==-≤≤.(Ⅰ)当4m =时,求A B ;(Ⅱ)若A B ⋂≠∅,求实数m 的取值范围.25.已知集合{}1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17S =,集合{}128,,,X x x x =是集合S 的一个含有8个元素的子集.(1)当{}1,2,5,7,11,13,16,17X =时,设,(1,8)i j x x X i j ∈≤≤, ①写出方程3i j x x -=的解(,i j x x );②若方程(0)i j x x k k -=>至少有三组不同的解,写出k 的所有可能取值;(2)证明:对任意一个X ,存在正整数k ,使得方程i j x x k -=(1,8)i j ≤≤至少有三组不同的解.26.设全集是实数集R ,集合{}13A x x =-<<,{}22B x m x m =-<<+. (1)若AB =∅,求实数m 的取值范围;(2)若2B ∈,求A B .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将方程平方整理得()2224820y xy x x -+-=,再根据判别式得04x ≤≤,故1,2,3,4x =,再依次检验得{}2,3,4A =,最后根据集合关系即可得答案.【详解】解:根据题意将x 22x x =+继续平方整理得:()2224820y xy x x -+-=,故该方程有解. 所以()222641620x x x ∆=--≥,即240x x -+≥,解得04x ≤≤, 因为*N x ∈,故1,2,3,4x =,当1x =时,易得方程无解,当2x =时,240y y -=,有解,满足条件; 当3x =时,242490y y -+=,方程有解,满足条件; 当4x =时,28160y y -+=,方程有解,满足条件; 故{}2,3,4A =,因为B A ⊆且集合B 中恰有2个元素, 所以B 集合可以是{}2,3,{}2,4,{}3,4. 故选:B. 【点睛】本题考查集合的元素,集合关系,解题的关键在于将方程平方转化为()2224820y xy x x -+-=,再结合判别式得1,2,3,4x =,进而求出集合{}2,3,4A =.考查运算求解能力,化归转化能力,是中档题.2.A解析:A 【分析】先求出,p q 对应的不等式的解,再利用集合包含关系,进而可选出答案. 【详解】由题意,5:2502p x x ->⇒>,设5|2A x x ⎧⎫=>⎨⎬⎩⎭2:20q x x -->,解得:2x >或1x <-,设{|2B x x =>或}1x <-显然A 是B 的真子集,所以p 是q 的充分不必要条件. 故选:A. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.3.A解析:A 【分析】解出不等式x 2+x ﹣2≤0的解集,求出补集,根据集合的运算法则求解. 【详解】解不等式x 2+x ﹣2≤0得:-2≤x ≤1,C U M=()(),21,-∞-+∞,N ={y |y }[)0,=+∞, (C U M )∪N={x |x <﹣2或x ≥0}. 故选:A 【点睛】此题考查集合的基本运算,关键在于准确求解二次不等式,根据集合的运算法则求解.4.A解析:A 【分析】根据线面平行的性质定理、线面垂直的定义结合充分条件、必要条件的定义判断即可. 【详解】当//m α时,过直线m 作平面β,使得l αβ=,则//m l ,n α⊥,l α⊂,n l ∴⊥,m n ∴⊥,即//m m n α⇒⊥; 当m n ⊥时,由于n α⊥,则m α⊂或//m α,所以,//m n m α⊥⇒/.综上所述,//m α是m n ⊥的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了空间点、线、面位置关系的判断,考查推理能力,属于中等题.5.D解析:D 【分析】根据开集的定义逐个验证选项,即可得到答案. 【详解】①:22{(,)|1}x y x y +=表示以原点为圆心,1为半径的圆, 则在该圆上任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆故①不是开集;②{(,)|20}x y x y ++≥,在曲线20x y ++=任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆,故该集合不是开集; ③{(,)|6}x y x y +<平面点集A 中的任一点00(,)x y ,则该点到直线的距离为d ,取r d =,则满足{(,)|}x y r A ⊆,故该集合是开集;④22{(,)|0(1}x y x y <+<表示以点()0,3为圆心,1为半径除去圆心和圆周的圆面,在该平面点集A 中的任一点00(,)x y ,则该点到圆周上的点的最短距离为d ,取r d =,则满足{(,)}x y r A <⊆,故该集合是开集. 故答案选D 项. 【点睛】本题属于集合的新定义型问题,考查对新定义的理解并解决问题,属于中档题.6.C解析:C 【分析】①写出原命题的逆命题,并判断真假性. ②根据否命题的知识判断真假性.③根据含有逻辑联结词命题真假性来判断命题的真假性. ④根据全称命题的否定的知识判断真假性. 【详解】①原命题的逆命题为:若方程20x x m +-=有实根,则14m ≥-.当方程20x x m +-=有实根则11404m m ∆=+≥⇒≥-.所以逆命题为真命题.所以①正确. ②原命题的否命题为:若21x ≠,则1x ≠.所以②错误.③由于p q ∧为假命题,所以,p q 中至少有一个是假命题,可能是一真一假,所以p q ∨可能为真命题.所以③错误. ④原命题的否定是0x R ∃∈,0202x x <.所以④正确.综上所述,正确的序号为①④.故选:C 【点睛】本小题主要考查四种命题,考查含有逻辑连接词命题,考查全称命题的否定,属于中档题.7.D解析:D 【分析】将双曲线22221(0,0)x y a b a b -=->>标准化为22221(0,0)y x a b b a -=>>,由于离心率为2可得2234a b =,在根据充分、必要条件的判定方法,即可得到结论.【详解】将双曲线22221(0,0)x y a b a b -=->>标准化22221(0,0)y x a b b a -=>>则根据离心率的定义可知本题中应有222a b c e b c +===,则可解得2234a b =,因为3,a =b =可以推出2234a b =;反之2234a b =成立不能得出3,a =b =. 故选:D . 【点睛】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.8.D解析:D 【解析】命题“对任意x R ∈,都有20x ≥”的否定为:存在0x R ∈,使得200x <,选D.9.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥, 故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.10.D解析:D 【分析】求解一元二次不等式可得220x x --<的解集,再由题意得关于a 的不等式组求解即可. 【详解】由不等式220x x --<,得12x -<<,∵不等式220x x --<成立的一个充分不必要条件是21a x a <<+,∴()2,1a a +⫋()12-,, 则221112a a a a ⎧<+⎪≥-⎨⎪+≤⎩且1a ≥-与212a +≤的等号不同时成立,解得11a -<≤, ∴a 的取值范围为11a -<≤, 故选:D . 【点睛】本题主要考查充分必要条件的判定及其应用,考查数学转化思想方法,属于中档题.11.C解析:C 【分析】根据存在性命题的判定方法,可判定A 正确;根据不等式的性质,可判定B 正确;根据对数的运算性,可判定C 不正确;根据含有一个量词的否定,可判定D 正确. 【详解】对于A 中,由2000131()024x x x -+=-+≥,所以A 为真命题; 对于B 中,由0a b <<,则110b aa b ab --=>,所以11a b>,所以B 是正确的; 对于C 中,设0a >,1a ≠,例如11,24a b ==,则121log log 24a b ==,所以充分性不成立,又如1,22a b ==,此时12log log 21a b ==-,所以必要性不成立,所以“log 1a b >”是“b a >”的既不充分也不必要条件,所以C 是错误的;对于D 中,根据全称命题和存在性命题的关系,可得命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”,所以是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到含有一个量词的真假判定及否定,对数的运算性质,不等式的性质等知识的综合应用,属于中档试题.12.C解析:C 【分析】由绝对值不等式的基本性质,集合充分必要条件的判定方法,即可求解. 【详解】由题意,a ,b R ∈,1a b +<,可得1a b a b +≤+<且1a b a b -≤+<,所以充分性是成立的; 反之11a b a b ⎧+<⎪⎨-<⎪⎩,可得1111a b a b -<+<⎧⎨-<-<⎩,即1a b +<,所以必要性是成立的,综上可得:a ,b R ∈,1a b +<是11a b a b ⎧+<⎪⎨-<⎪⎩成立的充要条件.故选:C . 【点睛】本题主要考查了绝对值不等式的基本性质,以及充分条件、必要条件的判定方法,其中解答中熟练应用绝对值不等式的性质是解答的关键,着重考查了推理与运算能力.二、填空题13.1或2【详解】解方程可得因为所以当m=1时满足题意;当即m=2时满足题意故m=1或2解析:1或2 【详解】{|21}A x x x ==-=-或,解方程()210x m x m +++=可得1x x m =-=-或因为UA B ,所以B A ⊆,当1m -=-即m =1时,满足题意;当2m -=-,即m =2时,满足题意,故m =1或2.14.【分析】首先根据条件得到有实数解从而得到又根据为非零整数所以再分别验证的值即可得到答案【详解】因为存在非零整数满足所以有实数解且整理得:有实数解且所以解得因为为非零整数所以当时解得或符合题意当时解得 解析:1-【分析】首先根据条件得到()2231b a b k a a =-⎧⎪⎨=-+⎪⎩k ≤≤,又根据k 为非零整数,所以1,1,2k =-,再分别验证k 的值即可得到答案. 【详解】因为存在非零整数,满足A B ⋂≠∅,所以()2231b ab k a a =-⎧⎪⎨=-+⎪⎩有实数解,且a N ∈.整理得:()2320ka k a k +-+-=有实数解,且0k ≠,a N ∈.所以()()23420k k k ∆=---≥k ≤≤, 因为k 为非零整数,所以1,1,2k =-当1k =-时,2430a a -+=,解得1a =或3,符合题意. 当1k =时,2210a a +-=,解得a N ∉,舍去. 当2k =时,220a a +=,解得a N ∉,舍去. 综上1k =-. 故答案为:1- 【点睛】本题主要考查集合的交集运算,同时一元二次不等式的解法,属于中档题.15.【分析】根据是的必要不充分条件得到计算得到答案【详解】即;即是的必要不充分条件故得到解得故答案为:【点睛】本题考查了根据必要不充分条件求参数意在考查学生的推断能力 解析:102-<≤a【分析】根据p ⌝是q ⌝的必要不充分条件,得到{}1012x x x a x a ≠⎧⎫<≤⊂<<+⎨⎬⎩⎭,计算得到答案. 【详解】120x-≥,即102x <≤;()()22110x a x a a -+++<,即1a x a <<+.p ⌝是q ⌝的必要不充分条件,故{}1012x x x a x a ≠⎧⎫<≤⊂<<+⎨⎬⎩⎭,得到0112a a ≤⎧⎪⎨+>⎪⎩,解得102-<≤a . 故答案为:102-<≤a .【点睛】本题考查了根据必要不充分条件求参数,意在考查学生的推断能力.16.或或【解析】【分析】由指数不等式的解法得由集合的运算及集合元素的互异性可得实数的取值范围是或或【详解】解:解不等式可得即又且则或或故答案为:或或【点睛】本题考查了指数不等式的解法及集合的运算重点考查解析:1a <-或 10a -<<或1a ≥ 【解析】 【分析】由指数不等式的解法得{}|01B x x =<<,由集合的运算及集合元素的互异性可得实数a 的取值范围是1a <-或10a -<<或1a ≥.【详解】解:解不等式133x <<可得01x <<,即{}|01B x x =<<,又{}1,0,A a =-,且A B φ⋂=,则1a <-或10a -<<或1a ≥,故答案为:1a <-或 10a -<<或1a ≥.【点睛】本题考查了指数不等式的解法及集合的运算,重点考查了集合元素的互异性,属基础题. 17.【分析】求得命题又由命题是的必要不充分条件所以是的真子集得出不等式组即可求解得到答案【详解】由题意命题命题又由命题是的必要不充分条件所以是的真子集设则满足解得经验证当适合题意所以的取值范围是【点睛】 解析:(],2-∞【分析】 求得命题1:{|1}3p A x x =≤<,又由命题q 是p 的必要不充分条件,所以A 是B 的真子集, 得出不等式组1()03(1)0f f ⎧>⎪⎨⎪≥⎩,即可求解,得到答案.【详解】 由题意,命题311:0{|1}13x p A x x x x ⎧⎫-=≤=≤<⎨⎬-⎩⎭,命题{}2:30q B x x mx =--+>.又由命题q 是p 的必要不充分条件,所以A 是B 的真子集,设()23f x x mx =--+,则满足2111()()30333(1)130f m f m ⎧=--+>⎪⎨⎪=--+≥⎩,解得2m ≤, 经验证当2m =适合题意,所以m 的取值范围是(],2-∞.【点睛】本题主要考查了分式不等式的求解,以及利用充要条件求解参数问题,其中解答中正确求解集合A ,再根集合的包含关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.18.0【解析】分析:根据集合的并集的含义有集合A 或B 必然含有元素0又由集合AB 可得从而求得结果详解:根据题意若则A 或B 必然含有元素0又由则有即故答案是0点睛:该题考查的是有关集合的运算问题利用两个集合的 解析:0.【解析】分析:根据集合的并集的含义,有集合A 或B 必然含有元素0,又由集合A,B 可得20a =,从而求得结果.详解:根据题意,若{}=0,1,2A B ⋃,则A 或B 必然含有元素0,又由{}{}22,1,A B a ==,则有20a =,即0a =,故答案是0.点睛:该题考查的是有关集合的运算问题,利用两个集合的并集中的元素来确定有关参数的取值问题,属于基础题目.19.{-112};【解析】=={-112}解析:{-1,1,2};【解析】A B ⋃={}{}1212,,⋃-={-1,1,2} 20.①③④【分析】根据正弦定理及三角形的性质可判断(1);利用均值不等式可判断(2);利用假命题求参数的范围可判断(3);利用零点存在性定理可判断(4)【详解】解:对于(1)sinA >sinB ⇔2Rsi 解析:①③④【分析】根据正弦定理,及三角形的性质,可判断(1);利用均值不等式,可判断(2);利用假命题求参数的范围,可判断(3);利用零点存在性定理,可判断(4).【详解】解:对于(1),sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B (其中R 为△ABC 外接圆半径),故(1)正确;对于(2),x 21x +=--(1﹣x 21x+-)+1≤﹣1=﹣+1,当且仅当x =12)错误; 对于(3),若命题“x R ∃∈,使得()2310ax a x +-+≤”是假命题⇔命题:“∀x ∈R ,使得ax 2+(a ﹣3)x +1>0”恒成立.∵a =0时,不符合题意,∴20(3)40a a a ⎧⎨=--<⎩>∴1a 9<<,故(3)正确; 对于(4),∵()12a f a b c =++=-,∴3a +2b +2c =0,∴32c a b =--. 又f (0)=c ,f (2)=4a +2b +c ,∴f (2)=a ﹣c .(i )当c >0时,有f (0)>0,又∵a >0,∴()102a f =-<,故函数f (x )在区间(0,1)内有一个零点,故在区间(0,2)内至少有一个零点.(ii )当c ≤0时,f (1)<0,f (0)=c ≤0,f (2)=a ﹣c >0,∴函数f (x )在区间(1,2)内有一零点,故(4)正确.故正确答案为:①③④【点睛】本题考查的知识点是命题的真假判断与应用,熟练掌握正弦定理,均值不等式,二次函数的,图象和性质,函数零点存在定理,是解答的关键.三、解答题21.(1){}34A B x x ⋃=-≤≤,{}03A B x x ⋂=≤≤;(2)20a -≤≤.【分析】(1)代入a 的值,根据交集和并集的概念以及运算求解出,AB A B ; (2)根据AB B =分析出B A ⊆,由此列出关于a 的不等式,求解出a 的取值范围. 【详解】(1)当1a =时,{}04B x x =≤≤且{}33A x x =-≤≤, 所以{}34A B x x ⋃=-≤≤,{}03A B x x ⋂=≤≤;(2)因为AB B =,所以B A ⊆,且31a a +>-,所以B ≠∅, 所以1333a a -≥-⎧⎨+≤⎩,所以20a -≤≤. 【点睛】结论点睛:常见集合的交集、并集运算性质:(1)若A B B =,则B A ⊆;(2)若A B B ⋃=,则A B ⊆. 22.(1){|26}AB x x =<<,()R A B {|2x x =≤-或2}x >;(2)选①,21m -≤≤;选②,7m ≤-或6m ≥;选③7m ≤-或6m ≥. 【分析】先解二次不等式可得A ,进而可得A R ,(1)再利用交集并集的定义直接求解即可;(2)若选①,由B A ⊆列不等式求解即可;若选②,由52m +≤-或6m ≥即可得解;若选③,由52m +≤-或6m ≥即可得解.【详解】 集合{}24120{|26}A x x x x x =-++>=-<<,{|2R A x x =≤-或6}x ≥ (1)若2m =,{27}B x x =<<,则{|26}A B x x =<<,()R A B {|2x x =≤-或2}x >.(2)若选①A B B =,则B A ⊆,所以562m m +≤⎧⎨≥-⎩,解得21m -≤≤; 若选②R B A ⊆,则52m +≤-或6m ≥,解得:7m ≤-或6m ≥;若选③AB =∅,则52m +≤-或6m ≥, 解得:7m ≤-或6m ≥.【点睛】本题主要考查了集合的交并补的运算及由集合的包含关系求参,属于基础题. 23.(1)()2,3;(2)[]1,2.【分析】(1)把2a =代入化简A ,求解一元二次不等式化简B ,再由交集运算得答案; (2)由P 是Q 的充分条件,得A B ⊆.然后对a 分类求解A ,再由两集合端点值间的关系列不等式组求解.【详解】解:(1)当2a =时,22{|(31)20}{|23}A x x a x a a x x =--+-<=<<, 2{|430}{|13}B x x x x x =-+<=<<.{|23}{|13}{|23}A B x x x x x x =<<<<=<<;(2):P x A ∈,:Q x B ∈,若P 是Q 的充分条件,则A B ⊆. 因为(){}()(){}223120120A x x a x a a x x a x a =--+-<=+--< 当1a =时,A =∅,显然成立;当1a <时,{|21}A x a x a =-<<,{|13}B x x =<<,∴2113a a -⎧⎨⎩,解得a ∈∅; 当1a >时,{|21}A x a x a =<<-,{|13}B x x =<<,∴1213a a >⎧⎨-⎩,解得12a <. ∴实数a 的取值范围是[]1,2.【点睛】本题考查交集及其运算,考查充分必要条件的判定及其应用,考查数学转化思想方法,属于中档题.24.(Ⅰ){(1,2)}AB =;(Ⅱ)[3,)m ∈+∞.【分析】(Ⅰ)联立曲线与直线的方程求出交点,结果写成点集的形式;(Ⅱ)A B ⋂≠∅转化为当[0,3]x ∈时方程213x mx x -+-=-有解,当0x =时,方程不成立;当 (0,3]x ∈时,41m x x +=+,由对勾函数的单调性求出函数4()f x x x=+在(0,3]上的值域即可求得m 的取值范围.【详解】 (Ⅰ)24113203y x x x y x y x ⎧=-+-=⎧⎪=-⇒⎨⎨=⎩⎪≤≤⎩,所以{(1,2)}A B =; (Ⅱ)A B ⋂≠∅等价于当[0,3]x ∈时方程213x mx x -+-=-有解,即2(1)40x m x -++=在[0,3]x ∈上有解, 当0x =时,方程不成立,所以0不是方程的解;当 (0,3]x ∈时,41m x x +=+①, 因为函数4()f x x x=+在(0,2]上单调递减,(2,3]上单调递增,(2)224f =+=, 所以()[4,)f x ∈+∞,①式有解,则143m m +≥⇒≥.综上所述:[3,)m ∈+∞.【点睛】本题考查集合的交集运算,根据集合交集的结果求参数,属于基础题.25.(1)①(,)(5,2),(16,13)i j x x =②4,6.(2)证明见详解.【分析】(1)①根据两个元素之差为3,结合集合X 的元素,即可求得;②根据题意要求,写出集合X 中从小到大8个数中所有的差值(限定为正数)的可能,计算每个差值出现的次数,即可求得k ;(2)采用反证法,假设不存在满足条件的k ,根据差数的范围推出矛盾即可.【详解】(1)①方程3i j x x -=的解有:(,)(5,2),(16,13)i j x x =.②以下规定两数的差均为正,则:列出集合X 的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16.这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以k 的可能取值有4,6.(2)证明:不妨设128117x x x ≤<<<≤,记1(1,2,,7)i i i a x x i +=-=,2(1,2,,6)i i i b x x i +=-=,共13个差数.假设不存在满足条件的k , 则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6, 从而127126()()2(126)749a a a b b b +++++++≥++++= ① 又127126818721()()()()a a a b b b x x x x x x +++++++=-++--81722()()2161446x x x x =-+-≤⨯+=,这与①矛盾.故假设不成立,结论成立.即对任意一个X ,存在正整数k ,使得方程i j x x k -=(1,8)i j ≤≤至少有三组不同的解.【点睛】本题考查集合新定义问题,涉及反证法的使用,本题的关键是要理解题意,小心计算,大胆求证.26.(1)5m ≥或3m ≤- (2)当01m <≤时,()1,2A B m =-+;当14m <<时,()2,3A B m =-【分析】(1)若A B =∅,则23m -≥或21m +≤-,解得实数m 的取值范围; (2)若2B ∈则()0,4m ∈,结合交集定义,分类讨论可得A B . 【详解】解:(1)若A B =∅,则23m -≥或21m +≤-,即5m ≥或3m ≤-.所以m 的取值范围为5m ≥或3m ≤-.(2)∵2B ∈,则22m -<且22m +>,∴04m <<.当01m <≤时,()1,2AB m =-+; 当14m <<时,()2,3AB m =-. 【点睛】本题考查集合的交集运算,元素与元素的关系,分类讨论思想,属于中档题.。
人教版高中数学必修一第一章《集合与函数》检测习题(含答案解析)
人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U 是实数集R ,M ={x |x 2>4},N ={x |x -12≥1},则上图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}2.设2a =5b =m ,且a 1+b 1=2,则m 等于( )A. B .10C .20D .1003.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)的大小关系是( )A .f (-1)>f (2)B .f (-1)<f (2)C .f (-1)=f (2)D .无法确定4.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( )A .A ⊆B B .A BC .A =BD .A ∩B =∅5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p %为( )A .10%B .12%C .25%D .40% 6.设则f (f (2))的值为( ) A .0B .1C .2D .37.定义运算:a *b =如1*2=1,则函数f(x)的值域为( ) A .RB .(0,+∞)C .(0,1]D .[1,+∞)8.若2lg(x -2y )=lg x +lg y ,则log 2y x 等于( )A .2B .2或0C .0D .-2或09.设函数,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4B .3C .2D .110.在下列四图中,二次函数y =ax 2+bx 与指数函数y =(a b )x 的图象只可为( )11.已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (31)<f (2)<f (21)B .f (21)<f (2)<f (31)C .f (21)<f (31)<f (2)D .f (2)<f (21)<f (31)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x x2+(a +1x +a 为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数;②定义域为{x ∈R |x ≠0};③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集.(1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10},(1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分)函数f (x )=x +12x -1,x ∈3,5].(1)判断单调性并证明;(2)求最大值和最小值.20.(本小题满分12分)已知二次函数f(x)=-x2+2ax-a在区间0,1]上有最大值2,求实数a的值.21.(本小题满分12分)已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f (x )在(0,+∞)上的单调性,并给出证明;(3)若a ≥0且f (a +1)≤93,求a 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2+x a(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.参考答案与解析1.C [题图中阴影部分可表示为(∁U M )∩N ,集合M ={x |x >2或x <-2},集合N ={x |1<x ≤3},由集合的运算,知(∁U M )∩N ={x |1<x ≤2}.]2.A [由2a =5b =m 得a =log 2m ,b =log 5m ,∴a 1+b 1=log m 2+log m 5=log m 10.∵a 1+b 1=2,∴log m 10=2,∴m 2=10,m =.]3.A [由y =f (x +1)是偶函数,得到y =f (x )的图象关于直线x =1对称,∴f (-1)=f (3). 又f (x )在[1,+∞)上为单调增函数,∴f (3)>f (2),即f (-1)>f (2).]4.A [∵x ∈R ,∴y =2x >0,即A ={y |y >0}.又B ={y |y =x 2,x ∈R }={y |y ≥0},∴A ⊆B .]5.C [利润300万元,纳税300·p %万元,年广告费超出年销售收入2%的部分为200-1000×2%=180(万元),纳税180·p %万元,共纳税300·p %+180·p %=120(万元),∴p %=25%.]6.C [∵f (2)=log 3(22-1)=log 33=1,∴f (f (2))=f (1)=2e 1-1=2.]7.C[由题意可知f (x )=2-x ,x>0.2x x ≤0,作出f (x )的图象(实线部分)如右图所示;由图可知f (x )的值域为(0,1].]8.A [方法一 排除法.由题意可知x >0,y >0,x -2y >0,∴x >2y ,y x >2,∴log 2y x >1.方法二 直接法.依题意,(x -2y )2=xy ,∴x 2-5xy +4y 2=0,∴(x -y )(x -4y )=0,∴x =y 或x =4y ,∵x -2y >0,x >0,y >0,∴x >2y ,∴x =y (舍去),∴y x =4,∴log 2y x =2.]9.B [当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.]10.C [∵a b >0,∴a ,b 同号.若a ,b 为正,则从A 、B 中选.又由y =ax 2+bx 知对称轴x =-2a b <0,∴B 错,但又∵y =ax 2+bx 过原点,∴A 、D 错.若a ,b 为负,则C 正确.]11.B [据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =a x (0<a <1)是减函数,函数f (x )=a x -2的图象是把y =a x 的图象向右平移2个单位得到的,而y =log a |x |(0<a <1)是偶函数,当x >0时,y =log a |x |=log a x 是减函数.]12.C [由f (2-x )=f (x )知f (x )的图象关于直线x =22-x +x =1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|31-1|>|21-1|,∴f (21)<f (31)<f (2).]13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2.14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A ,∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即-x x2-(a +1x +a =-x x2+(a +1x +a ,∴(a +1)x =0对x ≠0恒成立,∴a +1=0,a =-1.16.y =x 2或y =1+x ,x<01-x ,x>0,或y =-x 2(答案不唯一)解析:可结合条件来列举,如:y =x 2或y =1+x ,x<01-x ,x>0或y =-x 2.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}.当a =1时,B =(-∞,1].∴A ∩B =.(2)∵A ⊆B ,∴2a -1≤0,-4a -1≤0,∴-41≤a ≤21,即实数a 的取值范围是21.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10},(∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴a -4≤3,a +4≥7,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下:任取x 1,x 2∈3,5]且x 1<x 2.∵ f (x )=x +12x -1=x +12(x +1-3=2-x +13,∴ f (x 1)-f (x 2)=x1+13-x2+13=x2+13-x1+13=(x1+1(x2+13(x1-x2,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在3,5]上为增函数.(2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=23,f (x )]最小值=f (3)=45.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a .①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2,即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2,即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减,∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾.综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数.(2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x2x1<1,f (x 1)=f ·x2x1=f x2x1·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f x2x1f (x 2)=f (x 2)x2x1.∵0<f x2x1<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3,∴9=f (3)]3,∴f (3)=93,∵f (a +1)≤93,∴f (a +1)≤f (3),∵a ≥0,∴a +1≤3,即a ≤2,综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ).∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+x a (x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+x 1.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x11-x21=(x 1+x 2)(x 1-x 2)+x1x2x2-x1=(x 1-x 2)x1x21, 由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>x1x21,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.。
人教版高中数学必修一 第一章 1.2.2 复合函数问题练习(含答案)
( x1 2 x1 3) ( x 2 2 x 2 3) = ( x 2 x1 )( x 2 x1 2)
∵ x 2 x1 3
2
2
2
∴ x 2 x1 0
2
x2 x1 2 0
又底数 0
∴ ( x1 2 x1 3) > ( x 2 2 x 2 3) ∴ y 2 y1 0 即 y 2 y1
2
整理得 y x 7 x 6 ,
g ( x) x 2 7 x 6 .
5、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造 方程组,通过解方程组求得函数解析式. 例5 设 f ( x)满足f ( x) 2 f ( ) x, 求 f ( x) .
三 复合函数定义域问题 (1)、已知
n(n 1) , 2
f ( x)
的定义域 ,所以 ,E 为 的作用范围为 D,又 f 对 的定义域。 的定义域为_____________。 ,所以 的作用范围为(0,1)
思路:设函数
的定义域为 D,即
x x 2 x x 4 则 2 ,解得: , y y 6 y y 3 2
点 M ( x , y ) 在 y g ( x) 上 , y x 2 x .
把
x x 4 2 代入得: 6 y ( x 4) ( x 4) . y 6 y
① 1得 :
式 中 的 x= 1, 2, …, n- f (2) f (1) 2,f (3) f (2) 3, ,f (n) f (n 1) n
将上述各式相加得: f ( n) f (1) 2 3 n ,
(完整word版)人教版高中数学必修一第一章单元测试(含
第3题图高中数学《必修一》第一章教学质量检测卷一、选择题(将选择题的答案填入下面的表格.本大题共10小题,每小题5分,共50分。
)题号12345678910答案1、下列各组对象中不能构成集合的是( )A、佛冈中学高一(20)班的全体男生B、佛冈中学全校学生家长的全体C、李明的所有家人D、王明的所有好朋友( )A.{1,2,3,4,5} B.{2,3,4,5}C.{2,3,4},则图中的阴影部分表示的集合为( )的值是 ( )A、3B、1 C. 0 D。
-18、下列四个图像中,不可能是函数图像的是 ( )9、设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(—2),f题号一二151617181920总分得分10、在集合{a,b,c,d}上定义两种运算和如下:A.a B.b C.c D.d二、填空题(本大题共4小题,每小题5分,共20分)的定义域为在区间[0,4]的最大值是B是 .16上是减函数。
其中真命题的序号是 (把你认为正确的命题的序号都填上)。
三、解答题(本大题6小题,共80分。
解答时应写出文字说明、证明过程或演算步骤).15、(本题满分12分)已知集合a的取值范围.16、(本题满分1217、(本题满分1418、 (本题满分14分)已知函(1)用分段函数的形式表示该函数;(2)画出该函数的图象;(3)写出该函数的值域.19、(本题满分1420、 (本题满分14高中数学《必修一》第一章教学质量检测卷参考答案一、选择题题号12345678910答案D D B C C A A B A C二、填空题12、-1 13、 14、①②三、解答题15、解:(1)A∪B={x∣2<x<10}……………..4分(2)(C R A)∩B={ x∣2〈x〈3或7≤x<10}...。
..。
.。
.。
.。
..。
...。
8分(3)a≥7.。
..。
.。
.。
..。
12分16.解:.2分证明:的定义域是,定义域关于原点对称…………….4分内任取一个x,则有。
(完整)高中数学必修一单元测试及答案
第一章 集合与函数概念一、选择题1.已知全集U ={0,1,2}且U A ={2},则集合A 的真子集共有( ). A .3个B .4个C .5个D .6个2.设集合A ={x |1<x ≤2},B ={ x |x <a },若A ⊆B ,则a 的取值范围是( ). A .{a |a ≥1}B .{a |a ≤1}C .{a |a ≥2}D .{a |a >2}3.A ={x |x 2+x -6=0},B ={x |mx +1=0},且A B A =,则m 的取值集合是( ).A .⎭⎬⎫⎩⎨⎧21- ,31B .⎭⎬⎫⎩⎨⎧21- ,31- ,0C .⎭⎬⎫⎩⎨⎧21- ,31 ,0 D .⎭⎬⎫⎩⎨⎧21 ,31 4.设I 为全集,集合M ,N ,P 都是其子集,则图中的阴影部分表示的集合为( ). A .M ∩(N ∪P )B .M ∩(P ∩I N )C .P ∩(I N ∩I M )D .(M ∩N )∪(M ∩P )5.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧1=2-3-,x y y x |)(, P ={(x ,y )|y ≠x +1},那么U (M ∪P )等于( ).A .∅B .{(2,3)}C .(2,3)D .{(x ,y )| y =x +1}6.下列四组中的f (x ),g (x ),表示同一个函数的是( ). A .f (x )=1,g (x )=x 0B .f (x )=x -1,g (x )=xx 2-1C .f (x )=x 2,g (x )=(x )4D .f (x )=x 3,g (x )=39x7.函数f (x )=x 1-x 的图象关于( ). A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称8.函数f (x )=11+x 2(x ∈R )的值域是( ).A .(0,1)B .(0,1]C .[0,1)D .[0,1]9.已知f (x )在R 上是奇函数,f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ). A .-2B .2C .-98D .98(第4题)10.定义在区间(-∞,+∞)的奇函数f (x )为增函数;偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合.设a >b >0,给出下列不等式:①f (b )-f (-a )>g (a )-g (-b );②f (b )-f (-a )<g (a )-g (-b ); ③f (a )-f (-b )>g (b )-g (-a );④f (a )-f (-b )<g (b )-g (-a ). 其中成立的是( ).A .①与④B .②与③C .①与③D .②与④二、填空题11.函数x x y +-=1的定义域是 .12.若f (x )=ax +b (a >0),且f (f (x ))=4x +1,则f (3)= .13.已知函数f (x )=ax +2a -1在区间[0,1]上的值恒正,则实数a 的取值范围是 . 14.已知I ={不大于15的正奇数},集合M ∩N ={5,15},(I M )∩(I N )={3,13},M ∩(I N )={1,7},则M = ,N = .15.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,若A ∪B =A ,则m 的取值范围是_________.16.设f (x )是R 上的奇函数,且当x ∈[0,+∞)时,f (x )=x (1+x 3),那么当x ∈(-∞,0]时,f (x )= .三、解答题17.已知A ={x |x 2-ax +a 2-19=0},B ={ x |x 2-5x +6=0},C ={x |x 2+2x -8=0},且∅(A ∩B ),A ∩C =∅,求a 的值.18.设A 是实数集,满足若a ∈A ,则a-11∈A ,a ≠1且1 A . (1)若2∈A ,则A 中至少还有几个元素?求出这几个元素. (2)A 能否为单元素集合?请说明理由. (3)若a ∈A ,证明:1-a1∈A .∈19.求函数f(x)=2x2-2ax+3在区间[-1,1]上的最小值.20.已知定义域为R 的函数f (x )=ab-x x +2+21+是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.第二章 基本初等函数(Ⅰ)一、选择题 1.对数式log 32-(2+3)的值是( ). A .-1B .0C .1D .不存在2.当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图象是( ).A B C D 3.如果0<a <1,那么下列不等式中正确的是( ). A .(1-a )31>(1-a )21 B .log 1-a (1+a )>0 C .(1-a )3>(1+a )2D .(1-a )1+a >14.函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象如图所示,则a ,b ,c ,d 的大小顺序是( ).A .1<d <c <a <bB .c <d <1<a <bC .c <d <1<b <aD .d <c <1<a <b5.已知f (x 6)=log 2 x ,那么f (8)等于( ). A .34 B .8 C .18 D .21 6.如果函数f (x )=x 2-(a -1)x +5在区间⎪⎭⎫⎝⎛121 ,上是减函数,那么实数a 的取值范围是( ). A . a ≤2B .a >3C .2≤a ≤3D .a ≥37.函数f (x )=2-x -1的定义域、值域是( ). A .定义域是R ,值域是RB .定义域是R ,值域为(0,+∞)C .定义域是R ,值域是(-1,+∞)D .定义域是(0,+∞),值域为R8.已知-1<a <0,则( ).A .(0.2)a <a⎪⎭⎫⎝⎛21<2aB .2a <a⎪⎭⎫⎝⎛21<(0.2)aC .2a <(0.2)a <a⎪⎭⎫⎝⎛21D .a⎪⎭⎫⎝⎛21<(0.2)a <2a9.已知函数f (x )=⎩⎨⎧+-1 log 1≤413> ,,)(x x x a x a a是(-∞,+∞)上的减函数,那么a 的取值范围是( ).A .(0,1)B .⎪⎭⎫ ⎝⎛310,C .⎪⎭⎫⎢⎣⎡3171,D .⎪⎭⎫⎢⎣⎡171, 10.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ). A .(0,1) B .(1,2) C .(0,2) D .[2,+∞)二、填空题11.满足2-x >2x 的 x 的取值范围是 .12.已知函数f (x )=log 0.5(-x 2+4x +5),则f (3)与f (4)的大小关系为 . 13.64log 2log 273的值为_____.14.已知函数f (x )=⎪⎩⎪⎨⎧,≤ ,,>,020log 3x x x x 则⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为_____.15.函数y =)-(34log 5.0x 的定义域为 . 16.已知函数f (x )=a -121+x,若f (x )为奇函数,则a =________. 三、解答题17.设函数f(x)=x2+(lg a+2)x+lg b,满足f(-1)=-2,且任取x∈R,都有f(x)≥2x,求实数a,b的值.18.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.19.求下列函数的定义域、值域、单调区间:(1)y=4x+2x+1+1;(2)y=2+3231x-x⎪⎭⎫⎝⎛.20.已知函数f(x)=log a(x+1),g(x)=log a(1-x),其中a>0,a≠1.(1)求函数f(x)-g(x)的定义域;(2)判断f(x)-g(x)的奇偶性,并说明理由;(3)求使f(x)-g(x)>0成立的x的集合.第三章 函数的应用一、选择题1.下列方程在(0,1)内存在实数解的是( ). A .x 2+x -3=0B .x1+1=0 C .21x +ln x =0D .x 2-lg x =02.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且一个零点是2,则使得f (x )<0的x 的取值范围是( ).A .(-∞,-2]B .(-∞,-2)∪(2,+∞)C .(2,+∞)D .(-2,2)3. 若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是( ). A .{a |a >1}B .{a |a ≥2}C .{a |0<a <1}D .{a |1<a <2}4.若函数f (x )的图象是连续不断的,且f (0)>0,f (1)f (2)f (4)<0,则下列命题正确的是( ). A .函数f (x )在区间(0,1)内有零点 B .函数f (x )在区间(1,2)内有零点 C .函数f (x )在区间(0,2)内有零点 D .函数f (x )在区间(0,4)内有零点5. 函数f (x )=⎩⎨⎧0>,ln +2-0 ,3-2+2x x x x x ≤的零点个数为( ).A .0B .1C .2D .36. 图中的图象所表示的函数的解析式为( ).A .y =23|x -1|(0≤x ≤2) B .y =23-23|x -1|(0≤x ≤2)C .y =23-|x -1|(0≤x ≤2)D .y =1-|x -1|(0≤x ≤2)7.当x ∈(2,4)时,下列关系正确的是( ).A .x 2<2xB .log 2 x <x 2C .log 2 x <x1 D .2x <log2 x 8.某种动物繁殖数量y (只)与时间x (年)的关系为y =a log 2(x +1),设这种动物第1年有100只,则第7年它们繁殖到( ).A.300只B.400只C.500只D.600只9.某商场出售一种商品,每天可卖1 000件,每件可获利4元.据经验,若这种商品每件每降价0.1元,则比降价前每天可多卖出100件,为获得最好的经济效益每件单价应降低( )元.A.2元B.2.5元C.1元D.1.5元10.某市的一家报刊摊点,从报社买进一种晚报的价格是每份是0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(30天计算)里,有20天每天卖出量可达400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,为使每月所获利润最大,这个摊主每天从报社买进()份晚报.A.250 B.400 C.300 D.350二、填空题11.已知函数f(x)=x2+ax+a-1的两个零点一个大于2,一个小于2,则实数a的取值范围是.12.用100米扎篱笆墙的材料扎一个矩形羊圈,欲使羊的活动范围最大,则应取矩形长米,宽米.13.在国内投寄平信,将每封信不超过20克重付邮资80分,超过20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重x(0<x≤40)(克)的函数,其表达式为.14.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为aty-⎪⎭⎫⎝⎛=161(a为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为.(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室.15.已知f(x)=(x+1)·|x-1|,若关于x的方程f(x)=x+m有三个不同的实数解,则实数m的取值范围.16.设正△ABC边长为2a,点M是边AB上自左至右的一个动点,过点M的直线l垂直与AB,设AM=x,△ABC内位于直线l左侧的阴影面积为y,y表示成x的函数表达式为.(第14题)三、解答题17.某农家旅游公司有客房300间,日房租每间为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日房租每增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?18.A市和B市分别有某种库存机器12台和6台,现决定支援C市10台机器,D市8台机器.已知从A市调运一台机器到C市的运费为400元,到D市的运费为800元;从B市调运一台机器到C市的运费为300元,到D市的运费为500元.(1)若要求总运费不超过9 000元,共有几种调运方案?(2)求出总运费最低的调运方案,最低运费是多少?19.某地西红柿从2月1号起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(距2月1日的天数,单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a·log b t;(2)利用你选取的函数,求西红柿种植成本Q最低时的上市天数及最低种植成本.20.设计一幅宣传画,要求画面面积为4 840 cm2,画面的宽与高的比为λ(λ<1 ),画面的上、下各留8 cm空白,左、右各留5 cm空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?期末测试题考试时间:90分钟试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分.在每小题的4个选项中,只有一项是符合题目要求的.1.设全集U=R,A={x|x>0},B={x|x>1},则A∩U B=().A.{x|0≤x<1}B.{x|0<x≤1}C.{x|x<0}D.{x|x>1}2.下列四个图形中,不是..以x为自变量的函数的图象是().A B C D 3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ). A .a 2+a +2B .a 2+1C .a 2+2a +2D .a 2+2a +14.下列等式成立的是( ). A .log 2(8-4)=log 2 8-log 2 4 B .4log 8log 22=48log 2 C .log 2 23=3log 2 2D .log 2(8+4)=log 2 8+log 2 45.下列四组函数中,表示同一函数的是( ). A .f (x )=|x |,g (x )=2x B .f (x )=lg x 2,g (x )=2lg xC .f (x )=1-1-2x x ,g (x )=x +1D .f (x )=1+x ·1-x ,g (x )=1-2x 6.幂函数y =x α(α是常数)的图象( ). A .一定经过点(0,0) B .一定经过点(1,1) C .一定经过点(-1,1)D .一定经过点(1,-1)7.国内快递重量在1 000克以内的包裹邮资标准如下表:运送距离x (km ) O <x ≤500 500<x ≤1 000 1 000<x ≤1 500 1 500<x ≤2 000 …邮资y (元)5.006.007.008.00…如果某人从北京快递900克的包裹到距北京1 300 km 的某地,他应付的邮资是( ). A .5.00元B .6.00元C .7.00元D .8.00元8.方程2x =2-x 的根所在区间是( ). A .(-1,0)B .(2,3)C .(1,2)D .(0,1)9.若log 2 a <0,b⎪⎭⎫⎝⎛21>1,则( ).A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <010.函数y =x 416-的值域是( ). A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)11.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( ). A .f (x )=x1B .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln (x +1)12.奇函数f (x )在(-∞,0)上单调递增,若f (-1)=0,则不等式f (x )<0的解集是( ). A .(-∞,-1)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-1,0)∪(0,1)D .(-1,0)∪(1,+∞)13.已知函数f (x )=⎩⎨⎧0≤ 30log 2x x f x x ),+(>,,则f (-10)的值是( ).A .-2B .-1C .0D .114.已知x 0是函数f (x )=2x +x -11的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则有( ). A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中横线上. 15.A ={x |-2≤x ≤5},B ={x |x >a },若A ⊆B ,则a 取值范围是 . 16.若f (x )=(a -2)x 2+(a -1)x +3是偶函数,则函数f (x )的增区间是 . 17.函数y =2-log 2x 的定义域是 . 18.求满足8241-x ⎪⎭⎫⎝⎛>x -24的x 的取值集合是 .三、解答题:本大题共3小题,共28分.解答应写出文字说明、证明过程或演算步骤. 19.(8分) 已知函数f (x )=lg (3+x )+lg (3-x ). (1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并说明理由.20.(10分)已知函数f(x)=2|x+1|+ax(x∈R).(1)证明:当a>2时,f(x)在R上是增函数.(2)若函数f(x)存在两个零点,求a的取值范围.21.(10分)某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?参考答案第一章 集合与函数的概念一、选择题1.A 解析:条件U A ={2}决定了集合A ={0,1},所以A 的真子集有∅,{0},{1},故正确选项为A .2.D 解析:在数轴上画出集合A ,B 的示意图,极易否定A ,B .当a =2时,2 B ,故不满足条件A ⊆B ,所以,正确选项为D .3.C 解析:据条件A ∪B =A ,得B ⊆A ,而A ={-3,2},所以B 只可能是集合∅,{-3},{2},所以,m 的取值集合是C .4.B 解析:阴影部分在集合N 外,可否A ,D ,阴影部分在集合M 内,可否C ,所以,正确选项为B .5.B 解析:集合M 是由直线y =x +1上除去点(2,3)之后,其余点组成的集合.集合P 是坐标平面上不在直线y =x +1上的点组成的集合,那么M P 就是坐标平面上除去点(2,3)外的所有点组成的集合.由此U (M P )就是点(2,3)的集合,即U (M P )={(2,3)}.故正确选项为B .6.D 解析:判断同一函数的标准是两函数的定义域与对应关系相同,选项A ,B ,C 中,两函数的定义域不同,正确选项为D .7.C 解析:函数f (x )显然是奇函数,所以不难确定正确选项为C .取特殊值不难否定其它选项.如取x =1,-1,函数值不等,故否A ;点(1,0)在函数图象上,而点(0,1)不在图象上,否选项D ,点(0,-1)也不在图象上,否选项B .8.B 解析:当x =0时,分母最小,函数值最大为1,所以否定选项A ,C ;当x 的绝对值取值越大时,函数值越小,但永远大于0,所以否定选项D .故正确选项为B .9.A 解析:利用条件f (x +4)=f (x )可得,f (7)=f (3+4)=f (3)=f (-1+4)=f (-1),再根据f (x )在R 上是奇函数得,f (7)=-f (1)=-2×12=-2,故正确选项为A .10.C 解析:由为奇函数图像关于原点对称,偶函数图象关于y 轴对称,函数f (x ),g (x )在区间[0,+∞)上图象重合且均为增函数,据此我们可以勾画两函数的草图,进而显见①与③正确.故正确选项为C .二、填空题11.参考答案:{x | x ≥1}.解析:由x -1≥0且x ≥0,得函数定义域是{x |x ≥1}. 12.参考答案:319.解析:由f (f (x ))=af (x )+b =a 2x +ab +b =4x +1,所以a 2=4,ab +b =1(a ∈>0),解得a =2,b =31,所以f (x )=2x +31,于是f (3)=319.13.参考答案:⎪⎭⎫⎝⎛ 21,.解析:a =0时不满足条件,所以a ≠0.(1)当a >0时,只需f (0)=2a -1>0; (2)当a <0时,只需f (1)=3a -1>0. 综上得实数a 的取值范围是⎪⎭⎫⎝⎛ 21,.14.参考答案:{1,5,7,15},{5,9,11,15}.解析:根据条件I ={1,3,5,7,9,11,13,15},M ∩N ={5,15},M ∩(I N )={1,7},得集合M ={1,5,7,15},再根据条件(I M )∩(I N )={3,13},得N ={5,9,11,15}.15.参考答案:(2,4].解析:据题意得-2≤m +1<2m -1≤7,转化为不等式组⎪⎩⎪⎨⎧7 ≤1-21-2<1+2- ≥1+m m m m ,解得m 的取值范围是(2,4].16.参考答案:x (1-x 3). 解析:∵任取x ∈(-∞,0],有-x ∈[0,+∞), ∴ f (-x )=-x [1+(-x )3]=-x (1-x 3), ∵ f (x )是奇函数,∴ f (-x )=-f (x ). ∴ f (x )=-f (-x )=x (1-x 3),即当x ∈(-∞,0]时,f (x )的表达式为f (x )=x (1-x 3). 三、解答题17.参考答案:∵B ={x |x 2-5x +6=0}={2,3}, C ={x |x 2+2x -8=0}={-4,2}, ∴由A ∩C =∅知,-4 ,2 A ; 由∅(A ∩B )知,3∈A .∴32-3a +a 2-19=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}=B ,与A ∩C =∅矛盾. 当a =-2时,经检验,符合题意. 18.参考答案:(1)∵ 2∈A ,∴a -11=2-11=-1∈A ; ∴a -11=1+11=21∈A ; ∈A ∈ +∞ +∞∴a -11=21-11=2∈A .因此,A 中至少还有两个元素:-1和21. (2)如果A 为单元素集合,则a =a-11,整理得a 2-a +1=0,该方程无实数解,故在实数范围内,A 不可能是单元素集.(3)证明: a ∈A ⇒a -11∈A ⇒ a1-1-11∈A ⇒1+-1-1a a ∈A ,即1-a 1∈A .19.参考答案: f (x )=222⎪⎭⎫ ⎝⎛a x -+3-22a .(1)当2a<-1,即a <-2时,f (x )的最小值为f (-1)=5+2a ; (2)当-1≤2a ≤1,即-2≤a ≤2时,f (x )的最小值为⎪⎭⎫⎝⎛2a f =3-22a ;(3)当2a>1,即a >2时,f (x )的最小值为f (1)=5-2a . 综上可知,f (x )的最小值为⎪⎪⎪⎩⎪⎪⎪⎨⎧.> ,-,≤≤ ,-,<- ,+22522232252a a a a a a - 20.参考答案:(1)∵函数f (x )为R 上的奇函数,∴ f (0)=0,即a b2+-1+=0,解得b =1,a ≠-2, 从而有f (x )=ax x +21+2-+1.又由f (1)=-f (-1)知a4++12-=-a 1++121-,解得a =2.(2)先讨论函数f (x )=2+21+2-+1x x =-21+1+21x 的增减性.任取x 1,x 2∈R ,且x 1<x 2,f (x 2)-f (x 1)=1+212x -1+211x =))((1+21+22-21221x x x x ,∵指数函数2x 为增函数,∴212-2x x <0,∴ f (x 2)<f (x 1), ∴函数f (x )=2+21+2-+1x x 是定义域R 上的减函数.由f (t 2-2t )+f (2t 2-k )<0得f (t 2-2t )<-f (2t 2-k ),∴ f (t 2-2t )<f (-2t 2+k ),∴ t 2-2t >-2t 2+k (*). 由(*)式得k <3t 2-2t .又3t 2-2t =3(t -31)2-31≥-31,∴只需k <-31,即得k 的取值范围是⎪⎭⎫ ⎝⎛31- -∞,.第二章 初等函数一、选择题1.A 解析:log 32-(2+3)=log 32-(2-3)-1,故选A .2.A 解析:当a >1时,y =log a x 单调递增,y =a -x 单调递减,故选A . 3.A 解析:取特殊值a =21,可立否选项B ,C ,D ,所以正确选项是A .4.B 解析:画出直线y =1与四个函数图象的交点,它们的横坐标的值,分别为a ,b ,c ,d 的值,由图形可得正确结果为B .5.D 解析:解法一:8=(2)6,∴ f (26)=log 22=21. 解法二:f (x 6)=log 2 x ,∴ f (x )=log 26x =61log 2 x ,f (8)=61log 28=21. 6.D 解析:由函数f (x )在⎪⎭⎫⎝⎛121 ,上是减函数,于是有21-a ≥1,解得a ≥3. 7.C 解析:函数f (x )=2-x-1=x ⎪⎭⎫ ⎝⎛21-1的图象是函数g (x )=x⎪⎭⎫ ⎝⎛21图象向下平移一个单位所得,据函数g (x )=x⎪⎭⎫⎝⎛21定义域和值域,不难得到函数f (x )定义域是R ,值域是(-1,+∞).8.B 解析:由-1<a <0,得0<2a <1,0.2a >1,a⎪⎭⎫⎝⎛21>1,知A ,D 不正确.当a =-21时,2121-⎪⎭⎫⎝⎛=501.<201.=2120-.,知C 不正确. ∴ 2a<a⎪⎭⎫⎝⎛21<0.2a .9.C 解析:由f (x )在R 上是减函数,∴ f (x )在(1,+∞)上单减,由对数函数单调性,即0<a <1 ①,又由f (x )在(-∞,1]上单减,∴ 3a -1<0,∴ a <31②,又由于由f (x )在R 上是减函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最小值7a -1要大于等于f (x )在[1,+∞)上的最大值0,才能保证f (x )在R 上是减函数.∴ 7a -1≥0,即a ≥71③.由①②③可得71≤a <31,故选C .10.B 解析:先求函数的定义域,由2-ax >0,有ax <2,因为a 是对数的底,故有a >0且a ≠1,于是得函数的定义域x <a 2.又函数的递减区间[0,1]必须在函数的定义域内,故有1<a2,从而0<a <2且a ≠1.若0<a <1,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )增大,即函数 y =log a (2-ax )在[0,1]上是单调递增的,这与题意不符.若1<a <2,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )减小,即函数 y =log a (2-ax )在[0,1]上是单调递减的.所以a 的取值范围应是(1,2),故选择B . 二、填空题11.参考答案:(-∞,0). 解析:∵ -x >x ,∴ x <0.12.参考答案:f (3)<f (4). 解析:∵ f (3)=log 0.5 8,f (4)=log 0.5 5,∴ f (3)<f (4). 13.参考答案:21. 解析:64log 2log 273=3lg 2lg ·64lg 27lg =63=21.14.参考答案:41. 解析:⎪⎭⎫⎝⎛91f =log 391=-2,⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛91f f =f (-2)=2-2=41. 15.参考答案:⎥⎦⎤ ⎝⎛143 ,. 解析:由题意,得 ⎪⎩⎪⎨⎧0 34log 0345.0≥)-(>-x x ⇔ ⎪⎩⎪⎨⎧13443 ≤->x x ∴ 所求函数的定义域为⎥⎦⎤⎝⎛143 ,. 16.参考答案:a =21. 解析:∵ f (x )为奇函数, ∴ f (x )+f (-x )=2a -121+x -121+x -=2a -1212++x x =2a -1=0,∴ a =21. 三、解答题17.参考答案:a =100,b =10. 解析:由f (-1)=-2,得1-lg a +lg b =0 ①,由f (x )≥2x ,得x 2+x lg a +lg b ≥0(x ∈R ).∴Δ=(lg a )2-4lg b ≤0 ②.联立①②,得(1-lg b )2≤0,∴ lg b =1,即b =10,代入①,即得a =100. 18.参考答案:(1) a 的取值范围是(1,+∞) ,(2) a 的取值范围是[0,1].解析:(1)欲使函数f (x )的定义域为R ,只须ax 2+2x +1>0对x ∈R 恒成立,所以有⎩⎨⎧0 <440a -a >,解得a >1,即得a 的取值范围是(1,+∞);(2)欲使函数 f (x )的值域为R ,即要ax 2+2x +1 能够取到(0,+∞) 的所有值. ①当a =0时,a x 2+2x +1=2x +1,当x ∈(-21,+∞)时满足要求; ②当a ≠0时,应有⎩⎨⎧0 ≥440a -a =>Δ⇒ 0<a ≤1.当x ∈(-∞,x 1)∪(x 2,+∞)时满足要求(其中x 1,x 2是方程ax 2+2x +1=0的二根).综上,a 的取值范围是[0,1].19.参考答案:(1)定义域为R .令t =2x (t >0),y =t 2+2t +1=(t +1)2>1, ∴ 值域为{y | y >1}.t =2x 的底数2>1,故t =2x 在x ∈R 上单调递增;而 y =t 2+2t +1在t ∈(0,+∞)上单调递增,故函数y =4x +2x +1+1在(-∞,+∞)上单调递增.(2)定义域为R .令t =x 2-3x +2=223⎪⎭⎫ ⎝⎛x --41⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡,+∞41-t ∈. ∴ 值域为(0,43].∵ y =t⎪⎭⎫⎝⎛31在t ∈R 时为减函数,∴ y =2+3-231x x ⎪⎭⎫⎝⎛在 ⎝⎛-∞,⎪⎭⎫23上单调增函数,在 ⎝⎛23,+∞⎪⎪⎭⎫为单调减函数. 20.参考答案:(1){x |-1<x <1}; (2)奇函数;(3)当0<a <1时,-1<x <0;当a >1时,0<x <1.解析:(1)f (x )-g (x )=log a (x +1)-log a (1-x ),若要式子有意义,则 即-1<x <1,所以定义域为{x |-1<x <1}.(2)设F (x )=f (x )-g (x ),其定义域为(-1,1),且F (-x )=f (-x )-g (-x )=log a (-x +1)-log a (1+x )=-[log a (1+x )-log a (1-x )]=-F (x ),所以f (x )-g (x )是奇函数.(3)f (x )-g (x )>0即log a (x +1)-log a (1-x )>0有log a (x +1)>log a (1-x ).x +1>01-x >0x +1>0当0<a <1时,上述不等式 解得-1<x <0;当a >1时,上述不等式 解得0<x <1. 第三章 函数的应用 参考答案一、选择题1.C 解析:易知A ,B ,D 选项对应的函数在区间(0,1)内的函数值恒为负或恒为正,当x 是接近0的正数时,21x +ln x <0;当x 接近1时,21x +ln x >0. 所以选C . 2.D 解析:因为函数f (x )是定义在R 上的偶函数且一个零点是2,则另一个零点为-2,又在(-∞,0]上是减函数,则f (x )<0的x 的取值范围是(-2,2).3.A 解析:设函数y =a x (a >0,且a ≠1)和函数y =x +a ,则函数f (x )=a x -x -a (a >0且a 1)有两个零点, 就是函数y =a x (a >0,且a ≠1)与函数y =x +a 的图象有两个交点,由图象可知当0<a <1时两函数只有一个交点,不符合,当a >1时,因为函数y =a x (a >1)的图象过点(0,1),而直线y =x +a 所过的点(0,a )一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是{a |a >1}.4.D 解析:因为f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,函数的图象与x 轴相交有多种可能.例如,所以函数f (x )必在区间(0,4)内有零点,正确选项为D . 5. C 解析:当x ≤0时,令x 2+2x -3=0解得x =-3;当x >0时,令-2+ln x =0,得x =100,所以已知函数有两个零点,选C .x +1>01-x >0 x +1>1-x(第4题)还可以作出f (x )的图象,依图判断.6. B 解析:取特殊值x =1,由图象知y =f (1)=32,据此否定A ,D ,在取x =0, 由图象知y =f (0)=0,据此否C ,故正确选项是B.或者勾画选项B 的函数图象亦可判断.7.B 解析:当x ∈(2,4)时,x 2∈(4,16),2x ∈(4,16),log 2 x ∈(1,2),x 1∈⎪⎭⎫ ⎝⎛2141 ,,显然C 、D 不正确,但对于选项A ,若x =3时,x 2=9>23=8,故A 也不正确,只有选项B 正确.8.A 解析:由题意知100=a log 2(1+1),得a =100,则当x =7时,y =100 log 2(7+1)=100×3=300.9.D 解析:设每件降价0.1x 元,则每件获利(4-0.1x )元,每天卖出商品件数为(1 000+100x ). 经济效益:y =(4-0.1x )(1 000+100x )=-10x 2+300x +4 000=-10(x 2-30x +225-225)+4 000 =-10(x -15)2+6 250.x =15时,y max =6 250.每件单价降低1.5元,可获得最好的经济效益.10.B 解析:若设每天从报社买进x (250≤x ≤400,x ∈N )份,则每月共可销售(20x +10×250)份,每份可获利润0.10元,退回报社10(x -250)份,每份亏损0.15元,建立月纯利润函数f (x ),再求f (x )的最大值,可得一个月的最大利润.设每天从报社买进x 份报纸,每月获得的总利润为y 元,则依题意,得 y =0.10(20x +10×250)-0.15×10(x -250)=0.5x +625,x ∈[250,400]. ∵ 函数y 在[250,400]上单调递增,∴ x =400时,y max =825(元). 即摊主每天从报社买进400份时,每月所获得的利润最大,最大利润为825元. 二、填空题11.参考答案:(-∞,-1).解析:函数f (x )=x 2+ax +a -1的两个零点一个大于2,一个小于2,即f (2)<0,可求实数a 的取值范围是(-∞,-1).12.参考答案:长宽分别为25米. 解析:设矩形长x 米,则宽为21(100-2x )=(50-x )米,所以矩形面积y =x (50-x )=-x 2+50 x =-(x -25)2+625,矩形长宽都为25米时,矩形羊圈面积最大.13.参考答案:f (x )=⎩⎨⎧)<( )<(40≤ 20 16020≤ 008x x解析:在信件不超过20克重时,付邮资80分,应视为自变量在0<x ≤20范围内,函数值是80分;在信件超过20克重而不超过40克重时,付邮资160分,应视为自变量在20<x ≤40范围内,函数值是160分,遂得分段函数.14.参考答案:(1) y =⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛- )>( )(1.01611.0≤ ≤ 0101.0t t t t ; (2)0.6.解析:(1)据图象0≤t ≤0.1时,正比例函数y =k t 图象过点(0.1,1),所以,k =10, 即y =10t ;当t >0.1时,y 与t 的函数y =at -⎪⎭⎫⎝⎛161(a 为常数)的图像过点(0.1,1),即得1=a-⎪⎭⎫ ⎝⎛1.0161,所以a =0.1,即y =1.0161-⎪⎭⎫⎝⎛t .(2)依题意得1.0161-⎪⎭⎫⎝⎛t ≤0.25,再由y =lg x 是增函数,得(t -0.1)lg161≤lg 41,∵ lg 41<0,即得t -0.1≥0.5,所以,t ≥0.6. 15.参考答案:-1<m <45. 解析:由f (x )=(x +1)|x -1|=得函数y =f (x )的图象(如图).按题意,直线y =x +m 与曲线y =(x +1)|x -1|有三个不同的公共点,求直线y =x +m 在y 轴上的截距m 的取值范围.由 得x 2+x +m -1=0.Δ=1-4(m -1)=5-4m ,由Δ=0,得m =45,易得实数m 的取值范围是-1<m <45.16.参考答案:y =⎪⎪⎩⎪⎪⎨⎧)<( -+- )<( a x a a ax x a x x 2≤ 33223≤ 023222解析:当直线l 平移过程中,分过AB 中点前、后两段建立y 与x 的函数表达式. (1)当0<x ≤a 时,y =21x ·3x =23 x 2;x 2-1,x ≥11-x 2,x <1 y =1-x 2,y =x +m(第15题)(2)当a <x ≤2a 时,y =21·2a ·3a -21(2a -x )·3(2a -x )=-23x 2+23ax -3a 2.所以,y =⎪⎪⎩⎪⎪⎨⎧)<( -+- )<( a x a a ax x a x x 2≤ 33223≤ 023222三、解答题17.参考答案:每间客房日租金提高到40元.解析:设客房日租金每间提高2x 元,则每天客房出租数为300-10x , 由x >0,且300-10x >0,得0<x <30.设客房租金总收入y 元,y =(20+2x )(300-10x )=-20(x -10)2 +8 000(0<x <30), 当x =10时,y max =8 000.即当每间客房日租金提高到20+10×2=40元时,客房租金总收入最高,为每天8 000元.18.参考答案:设从B 市调运x (0≤x ≤6)台到C 市,则总运费y =300x +500(6-x )+400(10-x )+800[8-(6-x )]=200x +8 600(0≤x ≤6). (1)若200x +8 600≤9 000,则x ≤2. 所以x =0,1,2,故共有三种调运方案.(2)由y =200x +8 600(0≤x ≤6)可知,当x =0时,总运费最低,最低费用是8 600元. 19.参考答案:(1)根据表中数据,表述西红柿种植成本Q 与上市时间t 的变化关系的函数决不是单调函数,这与函数Q =at +b ,Q =a ·b t ,Q =a ·log b t 均具有单调性不符,所以,在a ≠0的前提下,可选取二次函数Q =at 2+bt +c 进行描述.把表格提供的三对数据代入该解析式得到: 150250500 62108110100 1215050500 2=++=++=++c b a c b a c b a 解得a =2001,b =-23,c =2425.所以,西红柿种植成本Q 与上市时间t 的函数关系是Q =2001t 2-23t +2425.(2)当t =-2001223-⨯=150天时,西红柿种植成本Q 最低为Q =2001×1502-23×150+2425=100(元/100 kg ).20.参考答案:高为88 cm ,宽为55 cm .解析:设画面高为x cm ,宽为λx cm ,λx 2=4 840,设纸张面积为S ,有 S =(x +16)( λx +10)=λx 2+(16 λ+10)x +160,将λ=28404x 代入上式可得,S =10(x +x 48416⨯)+5 000=10(x -x88)2+6 760,所以,x =x88,即x =88 cm 时,宽为λx =55 cm ,所用纸张面积最小.期末测试 参考答案一、选择题1.B 解析:U B ={x |x ≤1},因此A ∩U B ={x |0<x ≤1}. 2.C 3.C 4.C 5. A 6.B 7.C 8.D9.D 解析:由log 2 a <0,得0<a <1,由b⎪⎭⎫⎝⎛21>1,得b <0,所以选D 项.10.C 解析:∵ 4x >0,∴0≤16- 4x <16,∴x416-∈[0,4).11.A 解析:依题意可得函数应在(0,+∞)上单调递减,故由选项可得A 正确. 12.A13.D 14.B解析:当x =x 1从1的右侧足够接近1时,x-11是一个绝对值很大的负数,从而保证 f (x 1)<0;当x =x 2足够大时,x-11可以是一个接近0的负数,从而保证f (x 2)>0.故正确选项是B . 二、填空题15.参考答案:(-∞,-2). 16.参考答案:(-∞,0). 17.参考答案:[4,+∞).18.参考答案:(-8,+∞). 三、解答题19.参考答案:(1)由⎩⎨⎧0303>->+x x ,得-3<x <3,∴ 函数f (x )的定义域为(-3,3). (2)函数f (x )是偶函数,理由如下:由(1)知,函数f (x )的定义域关于原点对称, 且f (-x )=lg (3-x )+lg (3+x )=f (x ), ∴ 函数f (x )为偶函数.20.参考答案:(1)证明:化简f (x )=⎩⎨⎧1221 ≥22<-,-)-(-,+)+(x x a x x a因为a >2,所以,y 1=(a +2)x +2 (x ≥-1)是增函数,且y 1≥f (-1)=-a ; 另外,y 2=(a -2)x -2 (x <-1)也是增函数,且y 2<f (-1)=-a . 所以,当a >2时,函数f (x )在R 上是增函数.(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足⎩⎨⎧0022<-)<-)(+(a a a 解得a 的取值范围是(0,2).21.参考答案:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为500003600 3-=12,所以这时租出了100-12=88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=⎪⎭⎫ ⎝⎛50000 3100--x (x -150)-50000 3-x ×50=-501(x -4 050)2+307 050. 所以,当x =4 050 时,f (x )最大,其最大值为f (4 050)=307 050. 当每辆车的月租金定为4 050元时,月收益最大,其值为307 050元.。
人教版本高中高一数学必修一第一章练习试题与包括答案
集合与函数根底测试一、选择题 ( 共 12 小题,每题 5 分,四个选项中只有一个符合要求 ).函数 y == x2- x + 10在区间〔 , 〕上是〔〕16 2 4A .递减函数B .递增函数C .先递减再递增D .选递增再递减.x y 22.方程组 { x y 0 的解构成的集合是〔〕A . {( 1,1)}B . {1,1}C .〔1,1〕D . {1}3.集合 A={ a ,b ,c}, 以下可以作为集合 A 的子集的是〔〕A. aB. {a ,c} C. {a , eD.{a ,b ,c ,d}} 4.以下图形中,表示 MN 的是〔〕MNNM M NMNABCD5.以下表述正确的选项是〔〕A. { 0}B.{ 0}C.{ 0}D.{ 0}6、设集合 A ={x|x 参加自由泳的运发动 } ,B ={x|x 参加蛙泳的运发动 } ,对于“既参 加自由泳又参加蛙泳的运发动〞用集合运算表示为 ( ) ∩B B ∪B B7. 集合 A={x x2k, k Z } ,B={ x x2k 1, k Z } ,C={ x x 4k1, kZ } 又 aA,bB, 那么有〔 〕A. 〔 a+b 〕 AB. (a+b) BC.(a+b) CD. (a+b)A 、B 、C 任一个〕8.函数 f 〔x 〕=- x 2+ 〔 a - 〕 x +2 在〔-∞, 〕上是增函数,那么 a 的范围是〔a ≥ 2 1 4.a ≤-A . 5.a ≥3.a ≤35B CD9. 满足条件 {1,2,3} M {1,2,3,4,5,6} 的集合 M 的个数是〔〕A. 8B. 7C. 6D. 510. 全集 U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 } , A= {3 ,4 ,5 } , B= {1 ,3 ,6 } ,那么集 合 { 2 ,7 ,8} 是 〔 〕A. A BB. A BC. C U A C U BD. C U A C U B11. 以下函数中为偶函数的是〔〕A . yxB . y xC . y x 2D . y x 3 1 12. 如果集合 A={ x | ax 2 + 2x + 1=0} 中只有一个元素,那么 a 的值是〔 〕 A .0 B . 0 或 1 C .1 D .不能确定 二、填空题 ( 共 4 小题,每题 4 分,把答案填在题中横线上 ).函数 f 〔x 〕= × - | x |的单调减区间是.132 2 3___________14.函数 y =1的单调区间为 ___________.x +115. 含 有 三 个 实 数 的 集 合 既 可 表 示 成 { a, b,1} , 又 可 表 示 成 { a 2 , ab,0}, 那么 a2 0 0 3b2 0 0 4. a16. 已知集合U{ x | 3 x 3} , M { x |1x 1} ,C U N { x | 0 x 2} 那么集合N, M (C U N ), M N.三、解答题 ( 共 4 小题,共 44 分〕17. 集合A{ x x2 4 0} ,集合 B { x ax20} ,假设B A ,求实数a的取值集合.18.设 f 〔x〕是定义在 R上的增函数, f 〔 xy〕= f 〔x〕+ f 〔 y〕,f 〔3〕= 1,求解不等式 f 〔x〕+ f 〔x-2〕> 1.19.函数 f 〔x〕是奇函数,且当 x> 0 时, f 〔x〕= x3+2x2— 1,求 f 〔x〕在 R 上的表达式.20.二次函数 f (x)x 22(m1)x2m m 2的图象关于y 轴对称,写出函数的解析表达式,并求出函数 f (x)的单调递增区间.必修 1 第一章 集合测试集合测试参考答案:一、 1~5 CABCB6~10ABACC11~12cB二、 13 [ 0, 3],〔-∞,- 3 〕4414 〔-∞,- 1〕,〔- 1,+∞〕15 -1 16N { x | 3 x 0 或 2x3} ;M(C U N ) { x | 0 x 1} ;MN { x | 3 x 1或 2 x 3} .三、17 .{0.-1,1} ;18.解:由条件可得 f 〔 x 〕+ f 〔x - 〕= f [x 〔x - 〕],2 2 1 = f 〔 〕.3所以 f [x 〔x -2〕]>f 〔3〕,又 f 〔x 〕是定义在 R 上的增函数,所以有 x 〔x -2〕> 3,可解得 x >3 或 x <- 1.答案: x >3 或 x <- 1.19..解析:此题主要是培养学生理解概念的能力.f 〔 x 〕= x 3+2x 2 -1.因 f 〔 x 〕为奇函数,∴ f 〔0〕= -1 .当 x <0 时,- x >0,f 〔- x 〕=〔- x 〕3+ 2〔- x 〕2- 1=- x 3+2x 2-1,∴f 〔x 〕= x 3-2x 2+1.20.二次函数f ( x)x 22(m1) x2mm 2 的图象关于 y 轴对称,∴ m1,那么f (x)x 21,函数f ( x)的单调递增区间为,0 ..。
人教版高中数学选择性必修第一册-第1章-空间向量与立体几何-章末检测卷(含答案)
第一章空间向量与立体几何章末检测卷(原卷版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =()A .{0}B .{1}C .{1,2}D .{0,1,2}2.已知集合U ={1,2,3,4,5,6,7},A ={x |3≤x ≤7,x ∈N },则∁U A =()A .{1,2}B .{3,4,5,6,7}C .{1,3,4,7}D .{1,4,7}3.已知集合A ={0,1},B ={z |z =x +y ,x ∈A ,y ∈A },则集合B 的子集的个数为()A .3B .4C .7D .84.若存在量词命题“∃x ∈R ,x 2-3x +5≤0”,则其否定是()A .∃x ∈R ,x 2-3x +5≥0B .∃x ∈R ,x 2-3x +5>0C .∀x ∈R ,x 2-3x +5≥0D .∀x ∈R ,x 2-3x +5>05.若集合A ={x |1<x <2},B ={x |x >b ,b ∈R },则A ⊆B 的一个充分不必要条件是()A .b ≥2B .1<b ≤2C .b ≤1D .b <16.已知集合M ={x |x 2=1},N ={x |ax =1},若N ⊆M ,则实数a 的取值集合为()A .{1}B .{-1,1}C .{1,0}D .{1,-1,0}7.已知集合A ={1,2,3},B ={x |x 2-3x +a =0,a ∈A },若A ∩B ≠∅,则a 的值为()A .1B .2C .3D .1或28.已知条件p :4x -m <0,q :1≤3-x ≤4,若p 是q 的一个必要不充分条件,则实数m 的取值范围为()A .{m |m ≥8}B .{m |m >8}C .{m |m >-4}D .{m |m ≥-4}二、多项选择题(本大题共4小题,每小题5分,共20分.在每个小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列选项中的两个集合相等的是()A .P ={x |x =2n ,n ∈Z },Q ={x |x =2(n +1),n ∈Z }B .P ={x |x =2n -1,n ∈N *},Q ={x |x =2n +1,n ∈N *}C .P ={x |x 2-x =0},Q ={xx =1+(-1)n 2,n ∈Z }D .P ={y |y =x +1},Q ={(x ,y )|y =x +1}10.对任意实数a ,b ,c ,下列命题是真命题的有()A .“a =b ”是“ac =bc ”的充要条件B .“a >b ”是“a 2>b 2”的充分条件C .“a <5”是“a <3”的必要条件D .“a +5是无理数”是“a 是无理数”的充要条件11.已知集合A ={x |x 2=x },集合B 中有两个元素,且满足A ∪B ={0,1,2},则集合B 可以是()A .{0,1}B .{0,2}C .{0,3}D .{1,2}12.我们把含有有限个元素的集合A 叫做有限集,用card(A )表示有限集合A 中元素的个数.例如,A ={x ,y ,z },则card(A )=3.若非空集合M ,N 满足card(M )=card(N ),且M ⊆N ,则下列说法正确的是()A .M ∪N =MB .M ∩N =NC .M ∪N =ND .M ∩N =∅三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知集合A ={1,3,4,7},B ={x |x =2k +1,k ∈A },则集合A ∪B 中元素的个数为________.14.命题“∃x ∈R ,使得x 2+2x +5=0”的否定是___________________________.15.已知集合A ={-2,3,4,6},集合B ={3,a ,a 2},若B ⊆A ,则实数a =________;若A ∩B ={3,4},则实数a =________.(本题第一空2分,第二空3分)16.若x ∈A ,则1x∈A ,就称A 是“伙伴关系集合”,集合M 1,0,12,2,空子集中“伙伴关系集合”的个数是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)已知集合U ={x |1<x ≤7},A ={x |2≤x <5},B ={x |3≤x <7}.求(1)A ∩B ;(2)A ∪B ;(3)(∁U A )∩(∁U B ).18.(12分)已知集合P ={2,x ,y },Q ={2x ,2,y 2},且P =Q ,求x ,y 的值.19.(12分)写出下列命题的否定,并判断它们的真假.(1)不论m 取何实数,方程x 2+x -m =0必有实数根;(2)存在一个实数x ,使得x 2+x +1≤0.20.(12分)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B ={x |1<x <2},求实数m 的值;(3)若A ∩B =∅,求实数m 的取值范围.21.(12分)设集合A ={x |-1≤x ≤2},集合B ={x |2m <x <1}.(1)若B ≠∅,且“x ∈A ”是“x ∈B ”的必要不充分条件,求实数m 的取值范围;(2)若B ∩(∁R A )中只有一个整数,求实数m 的取值范围.22.(12分)在①A ∩B =∅,②A ∩(∁R B )=A ,③A ∩B =A 这三个条件中任选一个,补充到下面的问题中,并求解下列问题:已知集合A ={x |a -1<x <2a +3},B ={x |-7≤x ≤4},若________,求实数a 的取值范围.1.已知集合A ={1,2,3,4,5,6},则满足B ∪A =A 的非空集合B 的个数为()A .31B .63C .64D .622.设集合A ={x |1<x ≤2},B ={x |x <a },若A ∪B =B ,则a 的取值范围是()A .{a |a ≥1}B .{a |a ≤1}C .{a |a ≥2}D .{a |a >2}3.已知M ={x |y =x 2-2},N ={y |y =x 2-2},则M ∩N 等于()A .NB .MC .RD .∅4.已知表示集合A ={x |x >-2}和B ={x |x <3}关系的Venn 图如图所示,则阴影部分所表示的集合为()A .{x |-2<x <3}B .{x |x ≤-2}C .{x |x ≥3}D .{x |x <3}5.已知非空集合P ={x |a +1≤x ≤2a +1},Q ={x |-2≤x ≤5}.(1)若a =3,求(∁R P )∩Q ;(2)若“x ∈P ”是“x ∈Q ”的充分不必要条件,求实数a 的取值范围.6.已知集合A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},C ={x |x 2-bx +2=0},问是否存在实数a,b同时满足B A,A∩C=C?若存在,求出a,b的所有值;若不存在,请说明理由.第一章空间向量与立体几何章末检测卷(解析版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =()A .{0}B .{1}C .{1,2}D .{0,1,2}答案C解析由题意得A ={x |x ≥1},B ={0,1,2},所以A ∩B ={1,2}.故选C.2.已知集合U ={1,2,3,4,5,6,7},A ={x |3≤x ≤7,x ∈N },则∁U A =()A .{1,2}B .{3,4,5,6,7}C .{1,3,4,7}D .{1,4,7}答案A解析由题意知A ={3,4,5,6,7},所以∁U A ={1,2}.故选A.3.已知集合A ={0,1},B ={z |z =x +y ,x ∈A ,y ∈A },则集合B 的子集的个数为()A .3B .4C .7D .8答案D解析由题意知,B ={0,1,2},则集合B 的子集的个数为23=8.故选D.4.若存在量词命题“∃x ∈R ,x 2-3x +5≤0”,则其否定是()A .∃x ∈R ,x 2-3x +5≥0B .∃x ∈R ,x 2-3x +5>0C .∀x ∈R ,x 2-3x +5≥0D .∀x ∈R ,x 2-3x +5>0答案D5.若集合A ={x |1<x <2},B ={x |x >b ,b ∈R },则A ⊆B 的一个充分不必要条件是()A .b ≥2B .1<b ≤2C .b ≤1D .b <1答案D解析由A ⊆B 得b ≤1,结合选项知A ⊆B 的一个充分不必要条件为b <1.6.已知集合M ={x |x 2=1},N ={x |ax =1},若N ⊆M ,则实数a 的取值集合为()A .{1}B .{-1,1}C .{1,0}D .{1,-1,0}答案D解析由已知得M ={-1,1},当a =0时,N =∅,满足N ⊆M ;当a ≠0时,由1a =-1得a =-1,满足条件;由1a=1得a =1,满足条件.所以实数a 的取值集合为{-1,0,1}.故选D.7.已知集合A ={1,2,3},B ={x |x 2-3x +a =0,a ∈A },若A ∩B ≠∅,则a 的值为()A .1B .2C .3D .1或2答案B解析当a =1时,B 中元素均为无理数,A ∩B =∅;当a =2时,B ={1,2},A ∩B ={1,2}≠∅;当a =3时,B =∅,则A ∩B =∅.故a 的值为2.故选B.8.已知条件p :4x -m <0,q :1≤3-x ≤4,若p 是q 的一个必要不充分条件,则实数m 的取值范围为()A .{m |m ≥8}B .{m |m >8}C .{m |m >-4}D .{m |m ≥-4}答案B解析由4x -m <0,得x <m 4,由1≤3-x ≤4,得-1≤x ≤2.∵p 是q 的一个必要不充分条件,∴m 4>2,即m >8.故选B.二、多项选择题(本大题共4小题,每小题5分,共20分.在每个小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列选项中的两个集合相等的是()A .P ={x |x =2n ,n ∈Z },Q ={x |x =2(n +1),n ∈Z }B .P ={x |x =2n -1,n ∈N *},Q ={x |x =2n +1,n ∈N *}C .P ={x |x 2-x =0},Q ={xx =1+(-1)n 2,n ∈Z }D .P ={y |y =x +1},Q ={(x ,y )|y =x +1}答案AC解析对于A ,P ,Q 都表示所有偶数组成的集合,所以P =Q ;对于B ,P 是由所有正奇数组成的集合,Q 是由所有大于1的正奇数组成的集合,所以P ≠Q ;对于C ,P ={0,1},当n 为奇数时,x =1+(-1)n 2=0,当n 为偶数时,x =1+(-1)n 2=1,所以Q ={0,1},P =Q ;对于D ,集合P 表示数集,而集合Q 表示点集,所以P ≠Q .故选AC.10.对任意实数a ,b ,c ,下列命题是真命题的有()A .“a =b ”是“ac =bc ”的充要条件B .“a >b ”是“a 2>b 2”的充分条件C .“a <5”是“a <3”的必要条件D .“a +5是无理数”是“a 是无理数”的充要条件答案CD解析对于A ,因为a =b 时ac =bc 成立,ac =bc ,c =0时a =b 不一定成立,所以“a =b ”是“ac =bc ”的充分不必要条件,故A 错;对于B ,a =-1,b =-2时,a >b ,a 2<b 2,a =-2,b =1时,a 2>b 2,a <b ,所以“a >b ”是“a 2>b 2”的既不充分也不必要条件,故B 错;对于C ,因为“a <3”时一定有“a <5”成立,所以“a <5”是“a <3”的必要条件,故C 正确;对于D ,“a +5是无理数”是“a 是无理数”的充要条件,故D 正确.故选CD.11.已知集合A ={x |x 2=x },集合B 中有两个元素,且满足A ∪B ={0,1,2},则集合B 可以是()A .{0,1}B .{0,2}C .{0,3}D .{1,2}答案BD12.我们把含有有限个元素的集合A 叫做有限集,用card(A )表示有限集合A 中元素的个数.例如,A ={x ,y ,z },则card(A )=3.若非空集合M ,N 满足card(M )=card(N ),且M ⊆N ,则下列说法正确的是()A .M ∪N =MB .M ∩N =NC .M ∪N =ND .M ∩N =∅答案ABC解析非空集合M ,N 满足card(M )=card(N ),且M ⊆N ,即M ,N 元素个数相同,且M ⊆N ,∴M =N ,∴A 、B 、C 正确.又∵M ,N 是非空集合,∴M ∩N ≠∅,D 不对.故选ABC.三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知集合A ={1,3,4,7},B ={x |x =2k +1,k ∈A },则集合A ∪B 中元素的个数为________.答案6解析由已知得,B ={3,7,9,15},所以A ∪B ={1,3,4,7,9,15},所以集合A ∪B 中元素的个数为6.14.命题“∃x ∈R ,使得x 2+2x +5=0”的否定是___________________________.答案∀x ∈R ,都有x 2+2x +5≠015.已知集合A ={-2,3,4,6},集合B ={3,a ,a 2},若B ⊆A ,则实数a =________;若A ∩B ={3,4},则实数a =________.(本题第一空2分,第二空3分)答案-22或4解析∵集合A ={-2,3,4,6},集合B ={3,a ,a 2},B ⊆A ,∴a =-2.∵A ∩B ={3,4},∴a =4或a 2=4,∴a =2或4(a =-2时不符合题意).16.若x ∈A ,则1x∈A ,就称A 是“伙伴关系集合”,集合M1,0,12,2,空子集中“伙伴关系集合”的个数是________.答案3解析“伙伴关系集合”有3个:{-1}1,12,四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)已知集合U ={x |1<x ≤7},A ={x |2≤x <5},B ={x |3≤x <7}.求(1)A ∩B ;(2)A ∪B ;(3)(∁U A )∩(∁U B ).解析(1)A ∩B ={x |3≤x <5}.(2)A ∪B ={x |2≤x <7}.(3)∁U A ={x |1<x <2或5≤x ≤7},∁U B ={x |1<x <3或x =7},(∁U A )∩(∁U B )={x |1<x <2或x =7}.18.(12分)P ={2,y },Q ={2x ,2,y 2},且P =Q ,求x,y 的值.解析∵P =Q=2x ,=y 2=y 2,=2x ,=0,=0或1=0,=0=14,=12.由元素的互异性可知x ≠y ,故x =0,y =1或x =14,y =12.19.(12分)写出下列命题的否定,并判断它们的真假.(1)不论m 取何实数,方程x 2+x -m =0必有实数根;(2)存在一个实数x ,使得x 2+x +1≤0.解析(1)这一命题可以表述为p :“对所有的实数m ,方程x 2+x -m =0有实数根”,其否定形式是綈p :“存在实数m ,使得x 2+x -m =0没有实数根”.注意到当Δ=1+4m <0,即m <-14时,一元二次方程没有实数根,因为綈p 是真命题,所以原命题是一个假命题.(2)这一命题的否定形式是綈p :“对所有实数x ,都有x 2+x +1>0”.利用配方法可以证得綈p 是一个真命题,所以原命题是一个假命题.20.(12分)已知集合A ={x |1<x <3},集合B={x |2m <x <1-m }.(1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B ={x |1<x <2},求实数m 的值;(3)若A ∩B =∅,求实数m 的取值范围.解析(1)由A ⊆B -m >2m,m ≤1,-m ≥3,解得m ≤-2,即实数m 的取值范围为{m |m ≤-2}.(2)m ≤1,-m =2≤12,=-1,∴m =-1.(3)由A ∩B =∅,得当2m ≥1-m ,即m ≥13时,B =∅,符合题意;当2m <1-m ,即m <13时,需<13,-m ≤1<13,m ≥3,得0≤m <13或m 无解,即0≤m <13.综上知m ≥0,即实数m 的取值范围为{m |m ≥0}.21.(12分)设集合A ={x |-1≤x ≤2},集合B ={x |2m <x <1}.(1)若B ≠∅,且“x ∈A ”是“x ∈B ”的必要不充分条件,求实数m 的取值范围;(2)若B ∩(∁R A )中只有一个整数,求实数m 的取值范围.解析(1)由题意知B ≠∅且B A ,∵A ={x |-1≤x ≤2},∴-1≤2m <1⇒-12≤m <12.(2)∵A ={x |-1≤x ≤2},∴∁R A ={x |x <-1或x >2}.①当m <12时,B ={x |2m <x <1},若B ∩(∁R A )中只有一个整数,则-3≤2m <-2,得-32≤m <-1;②当m ≥12时,不符合题意.综上,m 的取值范围是-32≤m <-1.22.(12分)在①A ∩B =∅,②A ∩(∁R B )=A ,③A ∩B =A 这三个条件中任选一个,补充到下面的问题中,并求解下列问题:已知集合A ={x |a -1<x <2a +3},B ={x |-7≤x ≤4},若________,求实数a 的取值范围.解析若选择①A ∩B =∅,则当A =∅,即a -1≥2a +3,即a ≤-4时,满足题意;当a >-4>-4,a +3≤-7>-4,-1≥4,解得a ≥5.综上可知,实数a 的取值范围是{a |a ≤-4或a ≥5}.若选择②A ∩(∁R B )=A ,则A 是∁R B 的子集,∁R B ={x |x <-7或x >4},当a -1≥2a +3,即a ≤-4时,A =∅,满足题意;当a >-4>-4,a +3≤-7>-4,-1≥4,解得a ≥5.综上可得,实数a 的取值范围是{a |a ≤-4或a ≥5}.若选择③A ∩B =A ,则A ⊆B ,当a -1≥2a +3,即a ≤-4时,A =∅,满足题意;当a >-4-1≥-7,a +3≤4,解得-4<a ≤12.综上可知,实数a 1.已知集合A ={1,2,3,4,5,6},则满足B ∪A =A 的非空集合B 的个数为()A .31B .63C .64D .62答案B解析∵A ∪B =A ,∴B ⊆A ,∵A ={1,2,3,4,5,6},∴满足A ∪B =A 的非空集合B 的个数为26-1=63.2.设集合A ={x |1<x ≤2},B ={x |x <a },若A ∪B =B ,则a 的取值范围是()A .{a |a ≥1}B .{a |a ≤1}C .{a |a ≥2}D .{a |a >2}答案D解析由A ∪B =B 得A ⊆B ,又A ={x |1<x ≤2},B ={x |x <a },故a >2.3.已知M ={x |y =x 2-2},N ={y |y =x 2-2},则M ∩N 等于()A .NB .MC .RD .∅答案A解析M ={x |y =x 2-2}=R ,N ={y |y =x 2-2}={y |y ≥-2},故M ∩N =N .4.已知表示集合A ={x |x >-2}和B ={x |x <3}关系的Venn 图如图所示,则阴影部分所表示的集合为()A .{x |-2<x <3}B .{x |x ≤-2}C .{x |x ≥3}D .{x |x <3}答案B解析∵A ={x |x >-2},B ={x |x <3},∴A ∪B =R .设U =R ,则∁U A ={x |x ≤-2},∴题图中阴影部分所表示的集合为(∁U A )∩B ={x |x ≤-2}.5.已知非空集合P ={x |a +1≤x ≤2a +1},Q ={x |-2≤x ≤5}.(1)若a =3,求(∁R P )∩Q ;(2)若“x ∈P ”是“x ∈Q ”的充分不必要条件,求实数a 的取值范围.解析因为P 是非空集合,所以2a +1≥a +1,即a ≥0.(1)当a =3时,P ={x |4≤x ≤7},∁R P ={x |x <4或x >7},Q ={x |-2≤x ≤5},所以(∁R P )∩Q ={x |-2≤x <4}.(2)“x ∈P ”是“x ∈Q ”的充分不必要条件,即P Q ,+1≥-2,a +1≤5,≥0,且a +1≥-2和2a +1≤5的等号不能同时取得,解得0≤a ≤2,即实数a 的取值范围为{a |0≤a ≤2}.6.已知集合A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},C ={x |x 2-bx +2=0},问是否存在实数a ,b 同时满足B A ,A ∩C =C ?若存在,求出a ,b 的所有值;若不存在,请说明理由.解析∵A ={x |x 2-3x +2=0}={1,2},B ={x |(x -1)[x -(a -1)]=0},又B A ,∴a -1=1,即a =2.∵A ∩C =C ,∴C ⊆A ,则C 中的元素有以下三种情况:(1)若C =∅,即方程x 2-bx +2=0无实根,∴Δ=b 2-8<0,-22<b <22,符合题意.(2)若C ={1}或C ={2},即方程x 2-bx +2=0有两个相等的实根,∴Δ=b 2-8=0,b =±22,此时C ={2}或C ={-2},不符合题意,舍去.(3)若C ={1,2},则b =1+2=3,而两根之积恰好等于2,符合题意.故同时满足B A ,A ∩C =C 的实数a ,b 存在,a =2,-22<b <22或b =3.。
人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)
一、选择题1.已知集合()(){}225A x x x =+-<,(){}2log 1,B x x a a N =->∈,若A B =∅,则a 的可能取值组成的集合为( )A .{}0B .{}1C .{}0,1D .*N2.已知全集U =R ,集合{|01},{1,0,1}A x R x B =∈<=-,则()UA B =( )A .{}1-B .{1}C .{1,0}-D .{0,1}3.已知集合{}2|40A x R x x =∈-<,{}|28xB x R =∈<,则A B =( )A .()0,3B .()3,4C .()0,4D .(),3-∞4.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x R x =∈-≤<,则()A B C ⋃⋂=A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}5.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤ C .21a -<<D .2a <-或1a >6.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.若命题“∃x 0∈R ,x +(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( ) A .(-1,3)B .[-1,3]C .(-∞,-1)∪(3,+∞)D .(-∞,-1]∪[3,+∞)8.“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件9.设集合{}1,0,1,2,3A =-, 2{|30}B x x x =->,则()R A C B ( )A .{-1}B .{0,1,2,3}C .{1,2,3}D .{0,1,2}10.已知命题P :∃0x R ∈,20010x x -+≥;命题Q :若a <b ,则1a >1b,则下列为真命题的是( ) A .P Q ∧B .P Q ⌝∧ C .P Q ⌝∧D .P Q ⌝⌝∧11.命题“∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为( )A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立12.已知函数()31f x x ax =--,则()f x 在()1,1-上不单调的一个充分不必要条件是( ) A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,3a ∈二、填空题13.已知命题:“∃x ∈{ x |1≤x ≤2},使x 2+2x +a ≥0”为真命题,则实数a 的取值范围是______.14.①一个命题的逆命题为真,它的否命题一定也为真:②在ABC 中,“60B ∠=︒”是“,,A B C ∠∠∠三个角成等差数列”的充要条件; ③1{2x y >>是3{2x y xy +>>的充要条件;④“22am bm <”是“a b <”的充分必要条件; 以上说法中,判断错误的有_______________. 15.给出下列三种说法:①命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(q ⌝)”是假命题.②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3. ③命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x≠1,则x 2-3x +2≠0”. 其中所有正确说法的序号为________________.16.已知“21[2]102x ,,x mx ∃∈-+≤”是假命题,则实数m 的取值范围为________. 17.若命题:“2000,10x R ax ax ∃∈-->”为假命题,则实数a 的取值范围是__________.18.下列命题中,正确的是___________.(写出所有正确命题的编号) ①在中,是的充要条件;②函数的最大值是;③若命题“,使得”是假命题,则; ④若函数,则函数在区间内必有零点.19.给出下列四个命题:⑴“直线a ∥直线b ”的必要不充分条件是“a 平行于b 所在的平面”; ⑵“直线l ⊥平面α”的充要条件是“l 垂直于平面α内的无数条直线”; ⑶“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件; ⑷“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”. 上面命题中,所有真命题的序号为______. 20.集合{}*110,,S x x x N n N=≤≤∈∈共有120个三元子集()1,2,...,120iA i =,若将i A 的三个元素之和记为()1,2,...,120i a i =,则12120...a a a +++=______.三、解答题21.已知全集U =R ,集合{}2|2150A x x x =--<,集合()(){}2|210B x x a x a =-+-<.(1)若1a =,求UA 和B ;(2)若A B A ⋃=,求实数a 的取值范围.22.已知集合2102x a A x x a ⎧⎫--⎪⎪=<⎨⎬-⎪⎪⎩⎭,集合{}|32B x x =-<.(Ⅰ)当2a =时,求A B ;(Ⅱ)设p :x A ∈,q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围.23.设命题p :12≤x ≤1,命题q :x 2-(2a +1)x +a (a +1)≤0.若q 是p 的必要而不充分条件,求实数a 的取值范围.24.已知集合{}220A x x x =--<,()(){}30,B x x a x a a R =--<∈.(1)当1a =时,求集合A 和A B ;(2)若()R B C A ⊆,求实数a 的取值范围.25.已知集合121284xA x ⎧⎫=≤≤⎨⎬⎩⎭,21log ,,328B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭. (1)若{}|121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围; (2)若{}|61D x x m =>+,且()A B D =∅,求实数m 的取值范围.26.已知()1f x x a x =-++.(1)若不等式()21f x x <++的解集是区间3,2的子区间,求实数a 的取值范围;(2)若对任意的x ∈R ,不等式()21>+f x a 恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】解不等式确定集合,A B ,然后由交集的结果确定参数a 的取值范围. 【详解】()(){}{}22533A x x x x x =+-<=-<<, (){}{}2log 1,2,B x x a a N x x a a N =->∈=>+∈,因为AB =∅,所以23a +≥,1a ≥.又a N ∈,∴*a N ∈.故选:D . 【点睛】本题考查由集合交集的结果求参数范围,解题时可先确定两个集合中的元素,然后分析交集的结果得出结论.2.C解析:C 【分析】根据补集的运算,求得{|0Ux A x =≤或1}x >,再结合交集的运算,即可求解.【详解】由题意,全集U =R ,集合{|01}A x R x =∈<≤, 可得{|0Ux A x =≤或1}x >,又由集合{1,0,1}B =-,所以(){1,0}UA B ⋂=-.故选:C. 【点睛】本题考查集合的补集与交集概念及运算,其中解答中熟记集合的交集、补集的概念和运算方法是解答的关键,着重考查了运算与求解能力.3.A解析:A 【分析】解不等式确定集合,A B 后再由交集定义计算. 【详解】由题意{|04}A x x =<<,{|3}B x x =<,∴{|03}(0,3)A B x x =<<=.故选:A . 【点睛】本题考查求集合的交集运算,考查解一元二次不等式和指数不等式,属于基本题.4.C【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B =-,结合交集的定义可知:(){}1,0,1A B C =-.本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.5.B解析:B 【解析】{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩ ,选A. 点睛:形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.6.B解析:B 【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选B.考点:充分必要条件.7.C解析:C 【分析】根据二次函数的图象与性质,得到关于a 的不等式,即可求解. 【详解】由题意,2000,(1)10x R x a x ∃∈+-+<,则2(1)40a ∆=-->,解得3a >或1a <-, 所以实数a 的取值范围是(,1)(3,)-∞-+∞,故选C.【点睛】本题主要考查了存在性命题的真假判定及应用,其中熟记转化为二次函数,利用二次函数的图象与性质是解答的关键,着重考查了推理与计算能力.8.A【分析】根据充分条件、必要条件的定义,结合双曲线的方程即可判定. 【详解】因为当3k >时,30k ->,30k +>,方程22133x y k k -=-+表示双曲线;当方程22133x y k k -=-+表示双曲线时,(3)(3)0k k -+>,即3k >或3k <-,不能推出3k >,所以“3k >”是“方程22133x y k k -=-+表示双曲线”的充分不必要条件,故选:A 【点睛】本题主要考查了充分条件、必要条件,双曲线的标准方程,属于中档题.9.B解析:B 【分析】解出集合B ,进而求出R C B ,即可得到()R A C B ⋂. 【详解】{}{}{}23003,03,R B x x x x x x C B x x =->=∴=≤≤或故(){}{}{}1,0,1,2,3030,1,2,3R A C B x x ⋂=-⋂≤≤=. 故选B. 【点睛】本题考查集合的综合运算,属基础题.10.B解析:B 【分析】判断命题P 为真命题,命题Q 为假命题,再依次判断每个选项得到答案. 【详解】取00x =,则200110x x -+=≥,故命题P 为真命题;取2a =-,1b =,满足a b <,但是11a b<,故命题Q 为假命题. 故P Q ∧为假命题,P Q ⌝∧为真命题,P Q ⌝∧为假命题,P Q ⌝⌝∧为假命题.故选:B. 【点睛】本题考查了命题的真假判断,命题的否定,且命题,意在考查学生的计算能力和推断能力.11.D解析:D 【分析】将“全称量词”改“存在量词”,“至少有一个成立”改为“都不成立”即可得到. 【详解】 “∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为:∃a ,b >0,a +1b≥2和b +1a ≥2都不成立.故选:D 【点睛】本题考查了全称命题的否定,属于基础题.12.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,()23[,3)f x x a a a =-∈--‘,当0a ≤时,'()0f x ≥,当3a ≥时,'()0f x ≤,所以()f x 在()1,1-上单调,则0a ≤或3a ≥,故()f x 在()1,1-上不单调时,a 的范围为(0,3),A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件.故选:D 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.二、填空题13.a≥-8【分析】等价于∃x ∈{x|1≤x≤2}求出函数在的最小值即得解【详解】由题得∃x ∈{x|1≤x≤2}x 2+2x +a≥0所以∃x ∈{x|1≤x≤2}因为函数在的最小值为此时所以故答案为:【点睛解析:a ≥-8【分析】等价于∃x ∈{ x |1≤x ≤2},2(1)1a x ≥-++,求出函数2(1)1y x =-++在[1,2]的最小值即得解. 【详解】由题得∃x ∈{ x |1≤x ≤2},x 2+2x +a ≥0,所以∃x ∈{ x |1≤x ≤2},222(1)1a x x x ≥--=-++,因为函数2(1)1y x =-++在[1,2]的最小值为8-,此时2x =. 所以8a ≥-. 故答案为:8a ≥- 【点睛】本题主要考查特称命题,考查一元二次不等式的能成立问题的求解,意在考查学生对这些知识的理解掌握水平.14.③④【解析】对于①一个命题的逆命题与其否命题互为逆否命题则若其逆命题为真其否命题也一定为真①正确;对于②若则有则三个角成等差数列反之若三个角成等差数列有又由则故在中是三个角成等差数列的充要条件②正确解析:③④ 【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若60B ∠=,则120A C ∠+∠=,有2A C B ∠+∠=∠,则,,A B C ∠∠∠三个角成等差数列,反之若,,A B C ∠∠∠三个角成等差数列, 有2A C B ∠+∠=∠,又由3=180A B C B ∠+∠+∠=∠,则60B ∠=,故在ABC ∆中,“60B ∠=”是“,,A B C ∠∠∠三个角成等差数列”的充要条件,②正确;对于③, 当19,22x y ==,则满足32x y xy +>⎧⎨>⎩,而不满足12x y >⎧⎨>⎩,则12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的不必要条件,③错误;对于④,若a b <,当0m =时,有22am bm =,则“22am bm <”是“a b <”的不必要条件,④错误,故答案为③④.15.①③【解析】试题分析:①若命题p :存在x ∈R 使得tanx=1;命题q :对任意x ∈Rx2-x+1>0则命题p 且¬q 为假命题此结论正确对两个命题进行研究发现两个命题都是真命题故可得p 且¬q 为假命题②已知解析:①③ 【解析】试题分析:①若命题p :存在x ∈R ,使得tanx=1;命题q :对任意x ∈R ,x 2-x+1>0,则命题“p 且¬q”为假命题,此结论正确,对两个命题进行研究发现两个命题都是真命题,故可得“p 且¬q”为假命题.②已知直线l 1:ax+3y-1=0,l 2:x+by+1=0.则l 1⊥l 2的充要条件为ab=−3,若两直线垂直时,两直线斜率存在时,斜率乘积为a b =−3,当a=0,b=0时,此时两直线垂直,但不满足ab=−3,故本命题不对.③命题“若x 2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x 2-3x+2≠0”,由四种命题的书写规则知,此命题正确;考点:复合命题的真假;四种命题16.【分析】求出命题的否定由原命题为假命题得命题的否定为真命题参变分离得到构造函数求在所给区间上的最小值【详解】解:由题意可知是真命题对恒成立令令则;令则;即在上单调递减上单调递增;故答案为:【点睛】本 解析:(,2)-∞【分析】求出命题的否定,由原命题为假命题,得命题的否定为真命题,参变分离得到1m x x <+,构造函数()1g x x x=+求()g x 在所给区间上的最小值.【详解】解:由题意可知,21[2]102x ,,x mx ∀∈-+>是真命题 1m x x ∴<+对1[2]2x ,∀∈恒成立, 令()1g x x x =+()211g x x '∴=-令()0g x '>则12x <≤;令()0g x '<则112x ≤<; 即()1g x x x =+在1,12⎛⎫⎪⎝⎭上单调递减,()1,2上单调递增; ()()min 11121g x g ∴==+=2m <∴故答案为:(,2)-∞ 【点睛】本题考查根据命题的真假求参数的取值范围,关键是将问题进行转化,属于中档题.17.【解析】由题意得 解析:[]4,0-【解析】 由题意得204040a a a a a <⎧=∴-≤≤⎨∆=+≤⎩或18.①③④【分析】根据正弦定理及三角形的性质可判断(1);利用均值不等式可判断(2);利用假命题求参数的范围可判断(3);利用零点存在性定理可判断(4)【详解】解:对于(1)sinA >sinB ⇔2Rsi 解析:①③④【分析】根据正弦定理,及三角形的性质,可判断(1);利用均值不等式,可判断(2);利用假命题求参数的范围,可判断(3);利用零点存在性定理,可判断(4).【详解】解:对于(1),sin A>sin B⇔2R sin A>2R sin B⇔a>b⇔A>B(其中R为△ABC外接圆半径),故(1)正确;对于(2),x21x+=--(1﹣x21x+-)+1≤﹣1=﹣+1,当且仅当x=12)错误;对于(3),若命题“x R∃∈,使得()2310ax a x+-+≤”是假命题⇔命题:“∀x∈R,使得ax2+(a﹣3)x+1>0”恒成立.∵a=0时,不符合题意,∴2(3)40aa a⎧⎨=--<⎩>∴1a9<<,故(3)正确;对于(4),∵()12af a b c=++=-,∴3a+2b+2c=0,∴32c a b=--.又f(0)=c,f(2)=4a+2b+c,∴f(2)=a﹣c.(i)当c>0时,有f(0)>0,又∵a>0,∴()102af=-<,故函数f(x)在区间(0,1)内有一个零点,故在区间(0,2)内至少有一个零点.(ii)当c≤0时,f(1)<0,f(0)=c≤0,f(2)=a﹣c>0,∴函数f(x)在区间(1,2)内有一零点,故(4)正确.故正确答案为:①③④【点睛】本题考查的知识点是命题的真假判断与应用,熟练掌握正弦定理,均值不等式,二次函数的,图象和性质,函数零点存在定理,是解答的关键.19.⑶⑷【分析】根据线面位置关系以及充要关系概念进行逐一判断【详解】(1)a平行于b所在的平面是直线a∥直线b的既不充分也不必要条件;所以(1)错;(2)l垂直于平面α内的无数条直线是直线l⊥平面α的必解析:⑶⑷【分析】根据线面位置关系以及充要关系概念进行逐一判断.【详解】(1)“a平行于b所在的平面” 是“直线a∥直线b”的既不充分也不必要条件;所以(1)错;(2)“l垂直于平面α内的无数条直线” 是“直线l⊥平面α”的必要不充分条件;所以(2)错;(3)若“平面α∥平面β”则“α内有无数条直线平行于平面β”,若 “α内有无数条直线平行于平面β”则“平面α,平面β不一定平行”,所以“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件;(4)若“有一条与α平行的直线l 垂直于β”,则α内存在一条直线垂直于β,即“平面α⊥平面β”,所以“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”. 综上填(3)(4)【点睛】本题考查线面位置关系以及充要关系,考查基本分析判断能力,属基础题.20.1980【分析】根据题意将所有元素在子集中的个数算出然后再求和即可【详解】因为集合所以含元素1的子集有同理含2345678910的子集也各有所以故答案为:1980【点睛】本题主要考查集合的新定义以及解析:1980【分析】根据题意,将所有元素在子集中的个数算出,然后再求和即可.【详解】 因为集合{}{}*110,,1,2,3,4,5,6,7,8,9,10S x x x N n N=≤≤∈∈=, 所以含元素1的子集有29C ,同理含2,3,4,5,6,7,8,9,10的子集也各有29C ,所以2121209...(123...10)a a a C +++=++++⨯,()1011098198022+⨯=⨯=. 故答案为:1980【点睛】 本题主要考查集合的新定义以及组合问题,还考查了分析推理的能力,属于中档题.三、解答题21.(1)U A ={x ∣x ≤−3或x ≥5};B =∅;(2)−1≤a【分析】(1)利用一元二次不等式的解法化简集合A 、B ,利用集合的基本运算即可算出结果; (2)因为A B A ⋃=,所以B A ⊆,对集合B 分等于空集和不等于空集两种情况讨论,求出a 的取值范围.【详解】(1)若1a =,则集合2{|2150}{|35}A x x x x x =--<=-<<,{|3U A x x ∴=-或5}x , 若1a =,则集合22{|(21)()0}{|(1)0}B x x a x a x x =-+-<=-<=∅,(2)因为A B A ⋃=,所以B A ⊆,①当B =∅时,221a a =-,解1a =,②当B ≠∅时,即1a ≠时,2{|21}B x a x a =-<<,又由(1)可知集合{|35}A x x =-<<,∴22135a a --⎧⎨⎩,解得15a -,且1a ≠, 综上所求,实数a 的取值范围为:15a-. 【点睛】 本题主要考查了集合的基本运算,考查了一元二次不等式的解法,是基础题. 22.(Ⅰ){|45}A B x x ⋂=<<;(Ⅱ)1,22⎡⎤⎢⎥⎣⎦【分析】(Ⅰ)当2a =时,求出集合A ,集合B ,由此能求出A B . (Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,从而A B ⊆,由此能求出实数a 的取值范围.【详解】解:(Ⅰ)当2a =时,集合215|0{|0}{|45}24x a x A x x x x x a x ⎧⎫---=<=<=<<⎨⎬--⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.{|45}A B x x ∴=<<.(Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,A B ∴⊆,当221a a <+时,1a ≠,集合221|0{|21}2x a A x x a x a x a ⎧⎫--=<=<<+⎨⎬-⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.∴22115a a ⎧⎨+⎩,且1a ≠,解得122a .且1a ≠, 当1a =时,A =∅,成立. 综上,实数a 的取值范围是1,22⎡⎤⎢⎥⎣⎦. 【点睛】本题考查交集、实数的取值范围的求法,考查充分条件、交集、子集等基础知识,考查运算求解能力,属于中档题. 23.[0,1]2【分析】求出q 的等价条件,结合充分条件和必要条件的定义转化为集合子集关系进行求解即可.【详解】由2(21)(1)0x a x a a -+++得1a x a +,若q 是p 的必要不充分条件, 则1[2,1][a ,1]a +, 即1211a a ⎧⎪⎨⎪+⎩,得120a a ⎧⎪⎨⎪⎩,得102a , 即实数a 的取值范围是[0,1]2, 【点睛】本题主要考查充分条件和必要条件的应用,求出命题的等价条件,转化为集合关系是解决本题的关键,属于容易题.24.(1){}12A x x =-<<,{}13A B x x ⋃=-<<;(2)0a =或1a ≤-或2a ≥.【分析】(1)先求出集合A ,B ,再根据并集的定义即可求出;(2)先求出A R ,再根据题意讨论a 的范围即可求出. 【详解】(1)由不等式220x x --<解得12x -<<,{}12A x x ∴=-<<,当1a =时,()(){}{}13013B x x x x x =--<=<<, {}13A B x x ∴⋃=-<<;(2){}12A x x =-<<,{1R A x x ∴=≤-或}2x ≥,当0a =时,{}20B x x =<=∅,满足题意; 当0a >时,{}3B x a x a =<<,要使()R B A ⊆,则2a ≥;当0a <时,{}3B x a x a =<<,要使()RB A ⊆,则1a ≤-; 综上,0a =或1a ≤-或2a ≥.【点睛】本题考查集合的并集、补集运算,考查根据集合的包含关系求参数,其中涉及一元二次不等式的求解,属于基础题.25.(1)3m ≤;(2)m 1≥.【分析】(1)化简集合A ,B ,求出AB ,分类讨论C =∅和C ≠∅情况,求解,再取并集即可得出结果.(2)求出AB ,结合数轴列不等式,即可得出结果.【详解】(1){}|27A x x =-≤≤,{}|35B y y =-≤≤,{}|25AB x x =-≤≤,①若C =∅,则121m m +>-,∴2m <; ②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,∴23m ≤≤;综上3m ≤.(2){}|37A B x x ⋃=-≤≤,∴617m +≥,∴1m ≥.【点睛】本题考查了指数不等式和对数不等式,集合的运算等基本数学知识,考查了运算求解能力和逻辑推理能力,属于基础题目.26.(1)[]1,0-(2)(),0-∞【分析】(1)首先求出不等式的解集,再根据集合的包含关系求出参数的取值范围;(2)根据绝对值的三角不等式可得()1111f x x a x a x x a x x a =-++=-++≥-++=+,故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 分类讨论计算可得;【详解】解:(1)因为()1f x x a x =-++,且()21f x x <++,2x a ∴-< ,22a x a ∴-+<<+,由题意知,()[]2,23,2a a -+⊆-,所以2322a a -≥-⎧⎨+≤⎩, 解得10a -≤≤,所以实数a 的取值范围是[]1,0-.(2)()1111f x x a x a x x a x x a =-++=-++≥-++=+,当且仅当()()10a x x -+≥时,等号成立,所以()f x 的最小值为1a +.故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+,所以10121a a a +≥⎧⎨+>+⎩或10121a a a +<⎧⎨-->+⎩,解得0a <. 所以实数a 的取值范围是(),0-∞.【点睛】本题考查绝对值不等式的解法,集合的包含关系及绝对值三角不等式的应用,属于中档题.。
高中数学人教版必修1第一章集合与函数概念单元测试卷(A)(含答案)
第一章 集合与函数概念 单元测试卷(A )时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.已知集合A ={1,2},B ={2,4},则A ∪B =( ) A .{2} B .{1,2,2,4} C .{1,2,4}D .∅2.设全集U =R ,集合M ={y |y =x 2+2,x ∈U },集合N ={y |y =3x ,x ∈U },则M ∩N 等于( ) A .{1,3,2,6} B .{(1,3),(2,6)} C .MD .{3,6}3.如图1所示,阴影部分表示的集合是( ) A .(∁U B )∩A B .(∁U A )∩B C .∁U (A ∩B )D .∁U (A ∪B )图14.设全集U ={x |0<x <10,x ∈Z },A ,B 是U 的两个真子集,(∁U A )∩(∁U B )={1,9},A ∩B ={2},(∁U A )∩B ={4,6,8},则( )A .5∈A ,且5∉B B .5∉A ,且5∉B C .5∈A ,且5∈BD .5∉A ,且5∈B5.下列各图中,可表示函数y =f (x )的图象的只可能是( )6.下表表示y 是x 的函数,则函数的值域是( )A .[2,5] C .(0,20)D .N7.图中给出的对应是从A 到B 的映射的是( )8.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0,则f [f (-2)]的值是( )A .2B .-2C .4D .-49.函数y =x 2-2x +3,-1≤x ≤2的值域是( )A .RB .[3,6]C .[2,6]D .[2,+∞)10.已知函数f (x )是(-∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图4所示,则不等式xf (x )<0的解集是( )图4A .(-2,-1)∪(1,2)B .(-2,-1)∪(0,1)∪(2,+∞)C .(-∞,-2)∪(-1,0)∪(1,2)D .(-∞,-2)∪(-1,0)∪(0,1)∪(2,+∞)11.定义在R 上的偶函数f (x )在[0,7]上是增函数,在[7,+∞)上是减函数,f (7)=6,则f (x )( )A .在[-7,0]上是增函数,且最大值是6B .在[-7,0]上是减函数,且最大值是6C .在[-7,0]上是增函数,且最小值是6D .在[-7,0]上是减函数,且最小值是612.定义在R 上的偶函数f (x )满足:对任意x 1,x 2∈(-∞,0](x 1≠x 2),都有x 2-x 1f (x 2)-f (x 1)>0,则( )A .f (-5)<f (4)<f (6)B .f (4)<f (-5)<f (6)C .f (6)<f (-5)<f (4)D .f (6)<f (4)<f (-5)第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={1,2,3,4},Q ={x |x +12<2,x ∈R },则P -Q =________.14.函数y =x 2+2x -3的单调递减区间是________.15.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________.16.设函数f (x )=⎩⎪⎨⎪⎧|x -1|(0<x <2),2-|x -1|(x ≤0,或x ≥2),则函数y =f (x )与y =12的图象的交点个数是________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R . (1)求A ∪B ,(∁U A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围.18.(12分)设A ={x |x 2+2(a +1)x +a 2-1=0},B ={x |x (x +4)(x -12)=0,x ∈Z }.若A ∩B =A ,求a 的取值范围.19.(12分)已知函数f (x )=-2x +m ,其中m 为常数. (1)求证:函数f (x )在R 上是减函数; (2)当函数f (x )是奇函数时,求实数m 的值.20.(12分)某公司生产的水笔上年度销售单价为0.8元,年销售量为1亿支.本年度计划将销售单价调至0.55~0.75元(含端点值),经调查,若销售单价调至x元,则本年度新增销售量y(亿支)与x-0.4成反比,且当x=0.65时,y=0.8.(1)求y与x的函数关系式;(2)若每支水笔的成本价为0.3元,则水笔销售单价调至多少时,本年度该公司的收益比上年度增加20%?21.(12分)已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2,(1)求函数f(x)和g(x);(2)判断函数f(x)+g(x)的奇偶性.(3)求函数f(x)+g(x)在(0,2]上的最小值.22.(12分)函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25.(1)求f(x)的解析式;(2)证明f(x)在(-1,1)上为增函数;(3)解不等式f(t-1)+f(t)<0.第一章集合与函数概念单元综合测试一答案第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.答案:C2.解析:M=[2,+∞),N=R.答案:C3.解析:因为阴影部分既在集合∁U B中又在集合A中,所以阴影部分为(∁B)∩A.U答案:A4.解析:可借助V enn图(如图2)解决,数形结合.图2答案:A5.解析:根据函数的概念知,只有“一对一”或“多对一”对应才能构成函数关系.答案:A6.答案:B7.解析:根据映射定义,A中每一个元素在B中仅有1个元素与之对应,仅D适合.答案:D8.解析:∵x =-2,而-2<0, ∴f (-2)=(-2)2=4. 又4>0,∴f [f (-2)]=f (4)=4. 答案:C9.解析:画出函数y =x 2-2x +3,-1≤x ≤2的图象,如图3所示,观察函数的图象可得图象上所有点的纵坐标的取值范围是[2,6],所以值域是[2,6].图3答案:C10.解析:xf (x )<0⇔x 与f (x )异号,由函数图象及奇偶性易得结论. 答案:D11.解析:∵f (x )是偶函数,∴f (x )的图象关于y 轴对称.∴f (x )在[-7,0]上是减函数,且最大值为6. 答案:B12.解析:∵对任意x 1,x 2∈(-∞,0](x 1≠x 2),都有x 2-x 1f (x 2)-f (x 1)>0,∴对任意x 1,x 2∈(-∞,0],若x 1<x 2,总有f (x 1)<f (x 2),∴f (x )在(-∞,0]上是增函数.∴f (-4)>f (-5)>f (-6).又∵函数f (x )是偶函数,∴f (-6)=f (6), f (-4)=f (4),∴f (6)<f (-5)<f (4). 答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.解析:因为x ∉Q ,所以x ∈∁R Q ,又Q ={x |-12≤x <72}, 故∁R Q ={x |x <-12,或x ≥72},故P -Q ={4}. 答案:{4}14.解析:由x 2+2x -3≥0,得x ≥1或x ≤-3, ∴函数减区间为(-∞,-3]. 答案:(-∞,-3]15.解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 答案:(-∞,0]16.解析:函数y =f (x )的图象如图5所示,则函数y =f (x )与y =12的图象的交点个数是4.图5答案:4三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.解:(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}. ∁U A ={x |x <2或x >8}. ∴(∁U A )∩B ={x |1<x <2}. (2)∵A ∩C ≠∅,∴a <8.18.解:由B ={x |x (x +4)(x -12)=0,x ∈Z },得B ={-4,0}.由A ∩B =A ,得A ⊆B .于是,A 有四种可能,即A =∅,A ={-4},A ={0},A ={-4,0}.以下对A 分类讨论:(1)若A =∅,则Δ=4(a +1)2-4a 2+4=8a +8<0,解得a <-1; (2)若A ={-4},则Δ=8a +8=0,解得a =-1.此时x 2+2(a +1)x +a 2-1=0可化为x 2=0,所以x =0,这与x =-4是矛盾的;(3)若A ={0},则由(2)可知,a =-1; (4)若A ={-4,0},则⎩⎪⎨⎪⎧Δ=8a +8>0,-2(a +1)=-4,a 2-1=0,解得a =1.综上可知,a 的取值范围是{a |a ≤-1,或a =1}.19.解:(1)证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=(-2x 1+m )-(-2x 2+m )=2(x 2-x 1),∵x 1<x 2,∴x 2-x 1>0. ∴f (x 1)>f (x 2).∴函数f (x )在R 上是减函数. (2)∵函数f (x )是奇函数,∴对任意x ∈R ,有f (-x )=-f (x ). ∴2x +m =-(-2x +m ).∴m =0.20.解:(1)设y =kx -0.4,由x =0.65,y =0.8,得k =0.2,所以y =15x -2(0.55≤x ≤0.75).(2)依题意,(1+15x -2)·(x -0.3)=1×(0.8-0.3)×(1+20%),解得x =0.6或x =0.5(舍去),所以水笔销售单价应调至0.6元. 21.解:(1)设f (x )=k 1x ,g (x )=k 2x ,其中k 1k 2≠0. ∵f (1)=1,g (1)=2,∴k 1×1=1,k 21=2. ∴k 1=1,k 2=2.∴f (x )=x ,g (x )=2x . (2)设h (x )=f (x )+g (x ),则h (x )=x +2x , ∴函数h (x )的定义域是(-∞,0)∪(0,+∞). ∵h (-x )=-x +2-x=-(x +2x )=-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数.(3)由(2)知h (x )=x +2x ,设x 1,x 2是(0,2]上的任意两个实数,且x 1<x 2, 则h (x 1)-h (x 2)=(x 1+2x 1)-(x 2+2x 2)=(x 1-x 2)+(2x 1-2x 2)=(x 1-x 2)(1-2x 1x 2)=(x 1-x 2)(x 1x 2-2)x 1x 2,∵x 1,x 2∈(0,2],且x 1<x 2,∴x 1-x 2<0,0<x 1x 2<2. ∴x 1x 2-2<0,(x 1-x 2)(x 1x 2-2)>0. ∴h (x 1)>h (x 2).∴函数h (x )在(0,2]上是减函数,函数h (x )在(0,2]上的最小值是h (2)=2 2.即函数f (x )+g (x )在(0,2]上的最小值是2 2.22.解:(1)由题意得⎩⎨⎧f (0)=0,f (12)=25,解得⎩⎪⎨⎪⎧a =1,b =0.所以f (x )=x 1+x 2. (2)证明:任取两数x 1,x 2,且-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22).因为-1<x 1<x 2<1,所以x 1-x 2<0,x 1x 2<1,故1-x 1x 2>0,所以f (x 1)-f (x 2)<0,故f (x )在(-1,1)上是增函数.(3)因为f (x )是奇函数,所以由f (t -1)+f (t )<0,得f (t -1)<-f (t )=f (-t ).由(2)知, f (x )在(-1,1)上是增函数,所以-1<t -1<-t <1,解得0<t <12,所以原不等式的解集为{t |0<t <12}.。
高中数学新教材必修第一册第一章《集合》综合测试题(附答案)
新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。
其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3题图
高中数学《必修一》第一章教学质量检测卷
时间:120分钟。
总分:150分。
班别: 姓名: 座号:
一、选择题(将选择题的答案填入下面的表格。
本大题共10小题,每小题5分,共50分。
) 题号 1 2 3 4 5 6 7 8 9 10 答案
1、下列各组对象中不能构成集合的是( )
A 、佛冈中学高一(20)班的全体男生
B 、佛冈中学全校学生家长的全体
C 、李明的所有家人
D 、王明的所有好朋友 2、已知集合{}{}
5,1,A x R x B x R x =∈≤=∈>那么A
B 等于
( )
A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}
15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,
则图中的阴影部分表示的集合为( )
A .{}2
B .{}4,6
C .{}1,3,5
D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( )
A.x x f =)(,2())g x x =
B.()2
2
1)(,)(+==x x g x x f
C.2()f x x =
()g x x = D.()0f x =,()11g x x x
=--
5、函数2
()
21f x x ,(0,3)x。
()
7,f a 若则a 的值是 ( )
A 、1
B 、1-
C 、2
D 、2±
6、2,
0()[(1)]1 0x x f x f f x ()设,则 ,()+≥⎧=-=⎨
<⎩
( ) A 、3 B 、1 C. 0 D.-1
7、()
3f x x 函数的值域为( )
题号 一 二 15 16 17 18 19 20 总分 得分
A、[3,)
B、(,3]
C、[0)
,D、R
8、下列四个图像中,不可能是函数图像的是( )
9、设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:()
A、f(-π)>f(3)>f(-2)
B、f(-π) >f(-2)>f(3)
C、f(-2)>f(3)> f(-π)
D、f(3)>f(-2)> f(-π)
10、在集合{a,b,c,d}上定义两种运算⊕和⊗如下:
那么b⊗()
a c
⊕=( )
A.a B.b C.c D.d
二、填空题(本大题共4小题,每小题5分,共20分)
11、函数0
(3)
2
y x
x
=+-
-
的定义域为
12、函数2
()610
f x x x
=-+-在区间[0,4]的最大值是
13、若}4,3,2,2
{-
=
A,}
,
|
{2A
t
t
x
x
B∈
=
=,用列举法表示B是 . 14、下列命题:①集合{}
,,,
a b c d的子集个数有16个;②定义在R上的奇函数()
f x必满足
(0)0
f=;③()()
2
()21221
f x x x
=+--既不是奇函数又不是偶函数;④偶函数的图像一定与
y轴相交;⑤1
()
f x
x
=在()()
,00,
-∞+∞上是减函数。
其中真命题的序号是
(把你认为正确的命题的序号都填上).
三、解答题(本大题6小题,共80分.解答时应写出文字说明、证明过程或演算步骤).
15、(本题满分12分)已知集合A={x| 7
3<
≤x}, B={x| 2<x<10}, C={x|x<a} (1)求;B
A⋃(2)求()
R
C A B; (3)若A C
⊆,求a的取值范围.
x
O
y
x
y y y
O
O
O
A B C D
16、(本题满分12分)已知函数31
()
f x x
x ,判断()
f x的奇偶性并且证明。
17、(本题满分14分)已知函数
3
()
1
x
f x
x
,求()
f x在区间[2,5]上的最大值和最小值
18、(本题满分14分)已知函()11
f x x
(1)用分段函数的形式表示该函数;
(2)画出该函数的图象;
(3)写出该函数的值域。
19、(本题满分14分)已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7,
(I )求()f x 的解析式;
(II )求函数[]()f f x 的解析式并确定其定义域。
20、 (本题满分14分)已知二次函数()f x 的最小值为1,且(0)(2)3f f ==。
(1)求()f x 的解析式;
(2)若()f x 在区间[2,1]a a +上不单调...
,求实数a 的取值范围; (3)在区间[1,1]-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围。
高中数学《必修一》第一章教学质量检测卷
参考答案
11、|2,3x
R x
x
且 12、-1 13、4,9,16 14、 ① ②
三、解答题
15、解:(1)A ∪B={x ∣2<x<10}……………..4分 (2)|37R C A
x x
x
或
(C R A)∩B={ x ∣2<x<3或7≤x<10}.........................8分
(3)a≥7........................12分 16.解: ()f x 是奇函数…………….2分
证明: ()f x 的定义域是(-,0)(0,+)
,定义域关于原点对称…………….4分 在()f x 的定义域内任取一个x,则有 3
3
3
3
1
1()
()()()()f x x x f x x x …………….10分
所以, ()f x 是奇函数…………….12分
17.解:在[2,5]上任取两个数1
2x x ,则有…………….2分
1212121212333()()
()
011(1)(1)
x x x x f x f x x x x x …………….8分
所以,()f x 在[2,5]上是增函数。
…………….10分 所以,当2x 时,min ()(2)2f x f …………….12分
当5x
时,max
5
()(5)
2
f x f …………….14分 18、
解: (1)
,(1)x x y
…………….6分
(2)画图(略)…………….10分
(3)值域[]1,+∞ ……………14分
19、解:(1)设()(0)f x kx b k =+>…………….2分
由题意有:3227
k b k b -+=⎧⎨+=⎩ …………….6分
1
5k b =⎧∴⎨=⎩
…………….8分 ()5f x x ∴=+,[]3,2x ∈-………….10分
(2)(())(5)10f f x f x x =+=+ {}3x ∈-…………….14分 20、.解:(1)由已知,设2()(1)1f x a x =-+,…………….2分
由(0)3f =,得2a =,故2
()243f x x x =-+。
…………………4分 (2)要使函数不单调,则211a a <<+,则1
02
a <<。
……………8分 (3)由已知,即2
243221x x x m -+>++,化简得2
310x x m -+->…………10分 设2
()31g x x x m =-+-,则只要min ()0g x >,……………12分 而min ()(1)1g x g m ==--,得1m <-。
……………14分。