数字信号课设
数字信号处理课程设计

目录一、摘要.................................................................................................................................... - 2 -1、DSP简介 ................................................................................................................... - 2 -2、系统框图...................................................................................................................... - 3 -二、概述.................................................................................................................................... - 4 -1、系统框图描述...................................................................................................................... - 4 -2、设计目的.............................................................................................................................. - 4 -三、系统设计............................................................................................................................ - 4 -1、总体方案设计 ........................................................................................................... - 4 -2、设计原理.................................................................................................................... - 4 -四、硬件设计............................................................................................................................ - 6 -1、系统硬件框图.............................................................................................................. - 6 -2、 TMS320C5402简介....................................................................................................... - 6 -3、电源设计...................................................................................................................... - 7 -4、复位电路设计.............................................................................................................. - 7 -5、时钟电路设计.............................................................................................................. - 8 -6、 D/A数据转换通道....................................................................................................... - 8 -7、独立键盘设计.............................................................................................................. - 9 -五、软件设计.......................................................................................................................... - 10 -1、正弦波形产生原理.................................................................................................... - 10 -2、设计方案.................................................................................................................... - 10 -3、中断程序流程图........................................................................................................ - 11 -4、正弦信号发生器程序清单........................................................................................ - 12 -六、实验结果.......................................................................................................................... - 18 -1、CCS工程项目的调试 ............................................................................................... - 18 -2、仿真结果...................................................................................................................... - 18 -七、总结.................................................................................................................................. - 21 -八、参考文献.......................................................................................................................... - 21 -一、摘要1、DSP简介数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
数字信号处理教程第四版课程设计

数字信号处理教程第四版课程设计作者:未命名一、引言数字信号处理是一种广泛应用于各个领域的技术,例如音频处理、图像处理、通信等。
本文档主要介绍数字信号处理教程第四版的课程设计,着重介绍设计的目的、设计思路以及实现方法。
二、设计目的本次课程设计的目的在于帮助学生通过实际操作加深对数字信号处理的理解,提高对数字信号处理算法实现的掌握能力。
通过该课程设计,学生将能够掌握以下内容:1.数字信号的常见基本概念2.数字滤波器设计与实现3.傅里叶变换理论及其应用三、设计思路为了达到设计目的,本次课程设计将按照以下流程进行:1.熟悉数字信号处理的基本概念及相关算法理论知识2.学习数字信号处理工具箱的使用方法3.实现基于离散傅里叶变换的数字信号滤波器设计与实现四、实现方法1. 数字信号处理基本概念数字信号是现实世界的模拟信号经过模数转换器,重新离散化波形而得到的。
数字信号可以用离散函数的形式表示,具有很多优异的性质,例如可以进行数字滤波、傅里叶变换等操作。
在该部分,学生需要了解数字信号的基本概念,例如采样频率、量化精度等。
2. 数字信号处理工具箱的使用方法MATLAB是一个十分流行的数字信号处理工具,是本次课程设计中的主要工具。
学生需要使用MATLAB进行数字信号处理工具箱相关程序的调用与使用,例如数字滤波器设计与实现。
3. 基于离散傅里叶变换的数字信号滤波器设计与实现在实现数字信号滤波器时,学生需要掌握采样定理、滤波器的设计原理以及滤波器的相关参数(例如滤波器的阶数、采样率等)。
通过这些基本知识的掌握,学生将能够实现基于离散傅里叶变换的数字信号滤波器。
五、结论通过数字信号处理教程第四版的课程设计,学生将能够理解数字信号处理基础的相关算法理论,了解数字信号处理工具箱的使用方法,掌握数字信号滤波器设计与实现的基本知识。
这将有助于学生更深入地理解数字信号处理的应用场景,提高数字信号处理能力,为今后从事相关领域的研究或工作奠定基础。
数字信号处理教程第二版课程设计

数字信号处理教程第二版课程设计1. 项目背景数字信号处理(Digital Signal Processing,简称DSP)是近年来发展最为迅速的学科之一。
在现代通信、控制、音频、视频等领域得到了广泛的应用。
而数字信号处理教程则是DSP学习的入门教材。
本课程设计旨在加深同学们对数字信号处理理论知识的理解,提高同学们的分析及解决数字信号处理问题的能力。
2. 课程内容本课程设计基于数字信号处理教程第二版,其中包括了以下几个方面的内容:2.1 数字信号处理基础本章主要内容包括采样、量化、离散傅里叶变换、数字滤波器设计等基础概念,为后续章节的学习打下基础。
2.2 时域和频域分析时域分析包括了线性时不变系统的时域响应和卷积定理的讲解;频域分析则主要讲解了频谱、功率谱、预测、循环卷积等方面的知识。
2.3 离散傅里叶变换本章主要介绍离散傅里叶变换(Discrete Fourier Transform,简称DFT)的概念及其在数字信号处理领域中的作用,同时还包括了FFT 算法和频域滤波的内容。
2.4 数字滤波器设计及实现本章主要涵盖数字滤波器设计的整个流程,包括了IIR和FIR两类数字滤波器的设计及其在实际应用中的实现。
2.5 DSP处理器及应用本章主要介绍DSP处理器的基本原理和内部构造及其在音频处理、图像处理和通信领域中的应用。
3. 课程要求3.1 课堂讲授老师会通过PPT讲授以上5个章节的内容,讲解完后会留下问答的时间。
同学们应积极思考问题,提出询问,共同讨论解答问题。
3.2 课程设计设计一份数字滤波器,包括其IIR和FIR两个版本,需使用Matlab 或者Python实现。
同学们需要掌握数字滤波器基本概念、对数字信号和滤波器的理解,并能熟练使用Matlab或Python进行数据处理和仿真。
3.3 课程考核课程考核主要分为两部分:•课堂调查问卷满分10分,调查问卷将在整个课程结束后进行,主要考查同学们对数字信号处理知识的掌握和应用能力。
数字信号处理课程设计

数字信号处理课程设计
一、概述
本次信号处理课程设计主要对常见的数字信号处理算法进行实现。
主要内容包括数字信号滤波器、傅立叶变换和数字信号检测算法。
通过实验,学生将学习主要处理手段;同时了解数字信号处理的基本原理和应用。
二、主要内容
(1)数字信号滤波器:实现简单的数字滤波器,同时计算滤波器的频率响应;
(2)傅立叶变换:实现常用的傅立叶变换,并利用变换后的信号图像进行频率分析;
(3)数字信号检测算法:实现基本的一阶和二阶差分算法,并利用此算法进行实时信号检测;
三、实验步骤
(1)准备实验材料:将数字信号的原始信号数据以文件的形式存储,使用MATLAB等软件进行处理;
(2)实现数字滤波器:实现一阶以及多阶低通、高通和带通滤波器,
并计算响应的频谱;
(3)实现傅立叶变换:实现Fourier变换后的信号图像处理,如二维DFT等;
(4)实现数字信号检测算法:实现一阶和二阶差分算法,并利用此算法进行实时信号检测;
(5)数字信号处理综合应用实验:针对实际的数字信号,分析信号的特征,并基于实验结果进行信号处理算法的比较。
四、实验结果
完成本次实验后,可以实现对不同数字信号的处理,掌握其中滤波器、傅立叶变换等数字信号处理理论,并掌握常规的算法,学会运用算法实现实际信号处理工程。
数字信号教案高中生物

数字信号教案高中生物
教学目标:
1. 了解数字信号的定义和特点。
2. 能够区分模拟信号和数字信号。
3. 掌握数字信号的传输方式和原理。
4. 能够应用数字信号在生活中的具体示例。
教学重点和难点:
重点:数字信号的特点和传输方式。
难点:区分模拟信号和数字信号的差异。
教学准备:
1. 准备幻灯片和课件。
2. 准备数字信号和模拟信号的示例。
3. 准备实物展示数字信号的设备。
4. 检查教室的设备是否齐全。
教学步骤:
一、导入新课
1. 利用实物展示数字信号的设备,引起学生的兴趣和好奇心。
2. 提出问题:你知道数字信号和模拟信号有什么区别吗?
二、讲解数字信号的概念和特点
1. 通过幻灯片介绍数字信号的定义和特点。
2. 分析数字信号和模拟信号的区别,包括精确度、传输方式等方面。
三、讲解数字信号的传输方式和原理
1. 通过实例说明数字信号的传输方式和传输原理。
2. 解释数字信号的编码和解码过程。
四、数字信号在生活中的应用
1. 展示数字信号在通讯、计算机等领域的应用案例。
2. 与学生一起讨论数字信号在生活中的重要性和作用。
五、巩固与拓展
1. 组织学生讨论数字信号和模拟信号的应用场景。
2. 布置作业:寻找生活中的数字信号和模拟信号的例子,并总结它们的特点。
教学反思:
通过本节课的学习,学生应该对数字信号有较为清晰的认识,并能够应用这些知识解决实际问题。
同时,教师需要引导学生积极思考和探索数字信号在生活中的广泛应用,以激发学生对科技的兴趣和热情。
数字信号处理-基于计算机的方法第三版下册课程设计

数字信号处理-基于计算机的方法第三版下册课程设计1. 课程设计描述本次数字信号处理课程设计主题为基于计算机的方法第三版下册。
该课程设计旨在使学生掌握信号处理基础、数字滤波器、功率谱估计和信号模拟等方面的知识,强化学生的理论与实践能力。
课程设计内容包括以下方面:•熟悉数字信号处理的基本知识和基础概念;•掌握数字信号的采样与量化方法;•研究离散时间信号的表示方法;•学习离散时间信号的线性时间不变系统和差分方程;•掌握数字信号的离散时间傅立叶变换;•研究数字滤波器及其设计方法;•掌握数字信号的功率谱估计方法;•学习信号模拟以及在MATLAB和Python平台下的实现。
本次课程设计采用MATLAB和Python语言完成。
学生需完成课程设计中的实验实践部分,并提交实验报告。
2. 课程设计流程本课程设计共分为三个阶段,每个阶段的任务如下:阶段一:任务一:学习数字信号处理和离散时间信号的表示方法。
学生需实现离散时间信号及其线性时间不变系统,并用MATLAB和Python对其进行模拟,掌握信号模拟的基本方法。
任务二:学习离散时间傅立叶变换及其实现方法,掌握离散时间傅立叶变换的理论知识和编程实现。
学生需用MATLAB和Python分别实现离散时间傅立叶变换,并对其进行分析比较,加深对该变换的理解。
阶段二:任务一:学习数字滤波器的基础知识和设计方法,学生需实现IIR数字滤波器和FIR数字滤波器,并分析两种滤波器的性能指标。
采用MATLAB和Python实现该任务。
任务二:学习数字信号的功率谱估计方法,掌握各种估计方法的原理和实现步骤,采用MATLAB和Python对某一信号的功率谱进行估计和分析。
阶段三:任务一:实现数字信号处理的实际应用。
学生根据所学的知识,选择一个实际应用场景进行信号处理实践,并完成报告展示。
实践内容可以涉及语音处理、图像处理、雷达信号处理等。
3. 课程设计要求•学生需按时完成各个阶段的任务,并提交实验报告;•实验报告格式为Markdown文本格式,严格遵循实验报告模板,包括实验目的、实验原理、实验步骤、实验结果以及思考问题等内容;•实验报告需在规定时间内提交;•实验成绩占本科总成绩的20%。
中南大学数字信号处理课程设计

中南大学数字信号处理课程设计报告专业班级: 电信1303指导老师:姓名:学号:目录一、课程设计要求二、设计过程(1)设计题目(2)设计源代码(3)设计结果(4)结果分析三、设计总结与心得体会四、课程设计指导书一、课程设计要求1、课程设计指导书①《数字信号处理(第二版)》,丁玉美等,西安电子科技大学出版社;②《MATLAB 及在电子信息课程中的应用》,陈怀琛等,电子工业出版社。
2、课程设计题目⑴、信号发生器用户根据测试需要,可任选以下两种方式之一生成测试信号:①、直接输入(或从文件读取)测试序列;②、输入由多个不同频率正弦信号叠加组合而成的模拟信号公式(如式1-1 所示)、采样频率(Hz)、采样点数,动态生成该信号的采样序列,作为测试信号。
⑵、频谱分析使用FFT 对产生的测试信号进行频谱分析并展示其幅频特性与相频特性,指定需要滤除的频带,通过选择滤波器类型(IIR / FIR),确定对应的滤波器(低通、高通)技术指标。
⑶、滤波器设计根据以上技术指标(通带截止频率、通带最大衰减、阻带截止频率、阻带最小衰减),设计数字滤波器,生成相应的滤波器系数,并画出对应的滤波器幅频特性与相频特性。
①IIR DF 设计:可选择滤波器基型(巴特沃斯或切比雪夫型);②FIR DF 设计:使用窗口法(可选择窗口类型,并比较分析基于不同窗口、不同阶数所设计数字滤波器的特点)。
⑷、数字滤波根据设计的滤波器系数,对测试信号进行数字滤波,展示滤波后信号的幅频特性与相频特性,分析是否满足滤波要求(对同一滤波要求,对比分析各类滤波器的差异)。
①IIR DF:要求通过差分方程迭代实现滤波(未知初值置零处理);②FIR DF:要求通过快速卷积实现滤波(对于长序列,可以选择使用重叠相加或重叠保留法进行卷积运算)。
⑸、选做内容将一段语音作为测试信号,通过频谱展示和语音播放,对比分析滤波前后语音信号的变化,进一步加深对数字信号处理的理解。
3、具体要求⑴、使用MATLAB(或其它开发工具)编程实现上述内容,写出课程设计报告。
数字信号处理-基于计算机的方法课程设计

数字信号处理 - 基于计算机的方法课程设计介绍数字信号处理是一门计算机科学与电子工程的交叉学科,关注数字信号的获取、处理和分析。
数字信号处理可以应用于音频、图像处理和通信系统等领域。
在数字信号处理中,我们可以使用基于计算机的方法来实现一些常见的信号处理技术。
在本课程设计中,我们将探索数字信号处理的基础知识和实践应用。
我们将使用MATLAB作为主要工具来完成本次课程设计。
设计目标本课程设计的目的是帮助学生理解数字信号处理的基本原理,并学习如何使用MATLAB进行数字信号处理。
具体的设计目标如下:1.理解数字信号和离散时间信号的概念2.学习使用MATLAB实现数字信号的采样、量化、编码和解码3.学习使用MATLAB实现数字滤波器和数字信号处理算法4.能够分析数字信号处理系统的性能和稳定性准备工作为了完成本课程设计,你需要以下工具和知识:1.一台装有MATLAB的计算机2.数字信号处理的基础知识,包括采样、量化、编码、解码和数字滤波器等实验内容实验一:数字信号的采样、量化、编码和解码实验目的本实验的目的是帮助你理解数字信号的采样、量化、编码和解码原理,并学习如何使用MATLAB实现。
实验步骤1.使用MATLAB生成一个正弦波信号,并通过声卡采样获得一个模拟信号。
2.使用MATLAB对模拟信号进行采样,设置不同的采样率,并记录每种采样率对应的采样点数。
3.使用MATLAB对采样得到的信号进行量化,并记录量化位数和量化噪声。
4.将量化后的数字信号编码成二进制码,并将二进制码解码还原为数字信号。
5.对比原始信号和编码解码后的信号,分析编码解码误差和量化噪声。
实验结果实验结果如下所示:采样率采样点数量化位数量化噪声1000 Hz 1000 8 bit 0.785000 Hz 5000 8 bit 0.2510000 Hz 10000 8 bit 0.13实验结论根据实验结果分析得出,采样率越高,采样点数越多,量化位数越高,量化噪声越小。
数字信号处理课设

数字信号处理及应用课程设计一、设计目的1、掌握数字滤波器的设计过程;2、了解IIR的原理和特性;3、熟悉设计IIR数字滤波器的原理和方法;4、学习II R滤波器的DSP实现原理;5、通过CCS的图形显示工具观察输入/输出信号波形以及频谱的变化。
二、设计内容用DSP汇编语言编程,实现IIR运算,对产生的合成信号,滤除信号中高频成分,观察滤波前后的波形变化。
三、设计原理(1)IIR滤波器的基本结构IIR滤波器广泛应用于数字信号处理中。
IIR滤波器差分方程的一般表达式为:式中x(n)为输入序列;y(n)为输出序列;和为滤波器系数.若所有系数等于0,则为FIR 滤波器.IIR滤波器具有无限长的单位脉冲响应,在结构上存在反馈回路,具有递归性,即IIR滤波器的输出不仅与输入有关,而且与过去的输出有关.将上式展开得出y(n)表达式为:在零初始条件下,对上式进行z变换,得到:设N=M,则传递函数为:上式可写成:该传输函数既有极点又有零点。
输出既依赖于输入又依赖于过去输出。
IIR所需计算比FIR少。
但是IIR具有稳定性问题。
对滤波系数的量化特别敏感。
上式具有N个零点和N个极点.若有极点位于单位圆外将导致系统不稳定.由于FIR滤波器所有的系数均为0,不存在极点,不会造成系数的不稳定.对于IIR滤波器,系统稳定的条件如下: 若|pi|<1,当n→时,h(n)→0,系统稳定;若|pi|>1,当n→时,h(n)→,系统不稳定.IIR滤波器具有多种形式,主要有:直接型(也称直接I型)、标准型(也称直接II型)、变换型、级联型和并联型.二阶IIR滤波器,又称为二阶基本节,分为直接型、标准型和变换型.对于一个二阶IIR滤波器,其输出可以写成:直接型(直接I型)根据上式可以得到直接二型IIR滤波器的结构图.如图1所示.共使用了4个延迟单元().图1 直接I型二阶IIR滤波器直接型二阶IIR滤波器还可以用图2的结构实现.图2 直接I型二阶IIR滤波器此时,延时变量变成了w(n).可以证明上图的结构仍满足二阶IIR滤波器输出方程.前向通道:反馈通道:将1.2式代入1.1式可得:标准型(直接II型)从图2可以看出,左右两组延迟单元可以重叠,从而得到标准二阶IIR滤波器的结构图,如图3所示.由于这种结构所使用的延迟单元最少(只有2个),得到了广泛地应用,因此称之为标准型IIR滤波器.图3 标准型二阶IIR滤波器(2)二阶IIR滤波器的DSP实现标准型二阶IIR滤波器的实现在二阶IIR滤波器结构中,标准型结构是最常见的滤波器结构,其结构如图4所示:图4 标准型二阶IIR滤波器由结构图可以写出反馈通道和前向通道的差分方程:反馈通道:前向通道:由以上两式对二阶IIR滤波器进行编程,其中乘法-累加运算可采用单操作数指令或双操作数指令,数据和系数可存放在DARAM中,如图5所示:直接型二阶IIR滤波器的实现二阶IIR滤波器可以用直接型结构来实现.在迭代运算中,先衰减后增益,系统的动态范围和鲁棒性要好些.直接型二阶IIR滤波器的结构如图6所示:图6 直接型二阶IIR滤波器直接型二阶IIR滤波器的脉冲传递函数为:差分方程为:为了实现直接型滤波,可在DARAM中开辟4个循环缓冲区,用来存放变量和系数,并采用循环缓冲区方式寻址.这4个循环缓冲区的结构如图7所示:四、源程序1、链接命令文件(.cmd文件):-stack 0x0500-sysstack 0x0500-heap 0x1000-c-u _Reset-l rts55.libMEMORY{PAGE 0:RAM(RWIX): origin=0x000100, length=0x01ff00ROM(RIX): origin=0x020100, length=0x01ff00VECS(RIX): origin=0xffff00, length=0x000200PAGE 2:IOPORT(RWI):origin=0x000000, length=0x020000}SECTIONS{.text >ROM PAGE 0.data >ROM PAGE 0.bss>RAM PAGE 0.const>RAM PAGE 0.sysmem>RAM PAGE 0.stack >RAM PAGE 0.cio>RAM PAGE 0.sysstack>RAM PAGE 0.switch >RAM PAGE 0.cinit>RAM PAGE 0.pinit>RAM PAGE 0.vectors >VECS PAGE 0.ioport>IOPORT PAGE 2}2、C程序#include "math.h"#define signal_1_f 500#define signal_2_f 10000#define signal_sample_f 25000#define pi 3.1415926#define IIRNUMBER_L 2#define bufer_L 256int N_L=IIRNUMBER_L;intdata_in[bufer_L];int out[bufer_L] ;int x[IIRNUMBER_L+1];int y[IIRNUMBER_L+1];int k=0;intbufer=bufer_L;intfBn[IIRNUMBER_L]={0,0x634a};intfAn[IIRNUMBER_L]={0xe5c,0xe5c};externintiir(int *x,int *y,int *fAn,int *fBn,int N_L);externintinit(int *,int *,int);externintoutdata(int *,int,int);voidinputwave();void main(){intiirout;inputwave();init(x,y,N_L);while(1){x[0]=data_in[k];iirout=iir(x,y,fAn,fBn,N_L);outdata(out,iirout,bufer);k++;if(k>=bufer_L){k=0;}voidinputwave(){float wt1;float wt2;inti;for(i=0;i<=bufer_L;i++){wt1=2*pi*i*signal_1_f;wt1=wt1/signal_sample_f;wt2=2*pi*i*signal_2_f;wt2=wt2/signal_sample_f;data_in[i]=(cos(wt1)+cos(wt2))/2*32768;}}在CCS内编写以上程序通过加载运行等操作得到输入,输出的时域与频域波形图。
数字信号教案高中数学

数字信号教案高中数学
【教学目标】
1. 了解数字信号的概念和特点;
2. 掌握数字信号的表示方法;
3. 学会数字信号的采样、量化和编码方法;
4. 了解数字信号在通信领域的应用。
【教学重点】
1. 数字信号的概念和特点;
2. 数字信号的表示方法;
3. 数字信号的采样、量化和编码方法。
【教学难点】
1. 数字信号的采样、量化和编码方法;
2. 数字信号在通信领域的应用。
【教学过程】
一、导入新课
老师介绍数字信号的概念和特点,引导学生思考数字信号与模拟信号的区别和联系。
二、数字信号表示方法
1. 二进制表示法:介绍二进制数的表示方法,并讲解二进制数与信号之间的关系;
2. 信号的采样、量化和编码:分别介绍信号的采样、量化和编码方法,并进行示范操作。
三、数字信号应用领域
1. 通信领域:介绍数字信号在通信领域的应用,如数字通信技术和数字电视等;
2. 其他领域:讨论数字信号在其他领域的应用,如数字信号处理和数字音乐等。
四、课堂练习
老师出示几道与数字信号相关的练习题,让学生巩固所学知识。
五、总结归纳
老师对本节课的重点知识进行总结,并鼓励学生对数字信号的学习继续深入思考。
【教学反思】
通过本节课的教学,学生能够初步了解数字信号的基本概念和特点,掌握数字信号的表示方法,以及了解数字信号在通信领域的应用。
在教学过程中,老师应该注重引导学生思考和独立思考能力的培养,激发学生学习数字信号知识的兴趣。
数字信号处理课程设计

-40 -60 -80 -100 -120 -140
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
等波纹滤波器法设计FIR数字滤波器
Matlab应用的函数
[M,fo,ao,w]=remezord(f,a,dev) 与remez 配合使用,用于算出适合要求的滤波器阶次M ,fo和ao为有 2B个元素的向量,fo是频率轴分点,ao是在这些频率分点上理想的幅 频响应,w是有B个元素的向量,表示各频带的加权值。由于 remezord给出的阶次M有可能偏低,这时需要适当增加M。 f是具有2B个元素的向量,由通带边缘频率和阻带边缘频率构成,dev 若是两个值则为高通或低通,三个值为带通或带阻,由通带和阻带上 的偏差决定 Remez 设计出等波纹滤波器 freqz(B,A,N):离散系统频响特性 B和A分别为离散系统的系统函数分 子、分母多项式的系数向量,N为正整数 (频率等分点的值 )
60
70
0.5
0
-0.5
0
10
20
30
40
50
60
70
小结
(1)在时域求系统响应的方法有两种,第一种是通过解差分 方程求得系统输出;第二种是已知系统的单位脉冲响应,通 过求输入信号和系统单位脉冲响应的线性卷积求得系统输 出。 (2)检验系统的稳定性,其方法是在输入端加入单位阶跃 序列, 观察输出波形,如果波形稳定在一个常数值上,系 统稳定,否则不稳定。
数字信号的课程设计

数字信号的课程设计一、教学目标本节课的教学目标是使学生掌握数字信号的基本概念、特点和应用,能够理解并区分模拟信号和数字信号,掌握数字信号的采样、量化、编码和调制等基本过程,了解数字信号处理的基本方法,提高学生的科学素养和应用能力。
具体来说,知识目标包括:1.掌握数字信号的基本概念、特点和应用。
2.理解并区分模拟信号和数字信号。
3.掌握数字信号的采样、量化、编码和调制等基本过程。
4.了解数字信号处理的基本方法。
技能目标包括:1.能够运用数字信号的基本概念和原理分析实际问题。
2.能够进行数字信号的采样、量化、编码和调制等基本操作。
3.能够运用数字信号处理的方法解决实际问题。
情感态度价值观目标包括:1.培养学生对数字信号的兴趣和好奇心,激发学生的学习热情。
2.培养学生团队合作精神,提高学生的问题解决能力。
3.使学生认识到数字信号在现代科技中的重要地位和作用,培养学生的社会责任感和使命感。
二、教学内容本节课的教学内容主要包括数字信号的基本概念、特点和应用,模拟信号与数字信号的比较,数字信号的采样、量化、编码和调制等基本过程,以及数字信号处理的基本方法。
具体来说,教学内容的安排如下:1.引入数字信号的基本概念,介绍数字信号与模拟信号的区别,引出数字信号的特点和应用。
2.讲解数字信号的采样过程,包括采样定理和采样频率的选择,让学生理解采样的基本原理和方法。
3.讲解数字信号的量化过程,包括量化的基本概念、量化误差和量化等级,让学生掌握量化的基本方法和注意事项。
4.讲解数字信号的编码过程,包括编码的基本概念和常用的编码方法,让学生了解编码的目的和常用技术。
5.讲解数字信号的调制过程,包括调制的基本概念和常用的调制方法,让学生掌握调制的原理和应用。
6.介绍数字信号处理的基本方法,包括滤波、编码解码、信号合成等,让学生了解数字信号处理的方法和应用。
三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
数字信号处理实验课课程设计

1温情提示各位同学:数字信号处理课程设计分基础实验、综合实验和提高实验三部分。
基础实验、综合实验是必做内容,提高实验也为必做内容,但是为六选一,根据你的兴趣选择一个实验完成即可。
由于课程设计内容涉及大量的编程,希望各位同学提前做好实验准备。
在进实验室之前对实验中涉及的原理进行复习,并且,编制好实验程序。
进入实验室后进行程序的调试。
4课程设计准备与检查在进实验室之前完成程序的编制,在实验室完成编制程序的调试。
在进行综合实验的过程中,检查基础实验结果;在做提高实验的过程中,检查综合实验结果;提高实验结果在课程设计最后四个学时中检查。
检查实验结果的过程中随机提问,回答问题计入考核成绩。
5实验报告格式一、实验目的和要求二、实验原理三、实验方法与内容(需求分析、算法设计思路、流程图等)四、实验原始纪录(源程序等)五、实验结果及分析(计算过程与结果、数据曲线、图表等)六、实验总结与思考6课程设计实验报告要求一、实验报告格式如前,ppt 第5页。
二、实验报告质量计10分。
实验报告中涉及的原理性的图表要自己动手画,不可以拷贝;涉及的公式要用公式编辑器编辑。
MATLAB 仿真结果以及编制的程序可以拷贝。
三、如果发现实验报告有明显拷贝现象,拷贝者与被拷贝者课程设计成绩均为零分。
四、实验报告电子版在课程设计结束一周内发送到指导教师的邮箱。
李莉:***************赵晓晖:*****************王本平:**************叶茵:****************梁辉:*******************7基础实验篇实验一离散时间系统及离散卷积实验二离散傅立叶变换与快速傅立叶变换实验三IIR 数字滤波器设计实验四FIR数字滤波器设计8实验一离散时间系统及离散卷积一、实验目的(1)熟悉MATLAB 软件的使用方法。
(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。
(3)利用MATLAB 绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。
数字信号课程设计冯美军

数字信号课程设计冯美军一、教学目标本课程的教学目标是让学生掌握数字信号的基本概念、原理和应用,培养学生对数字信号处理技术的兴趣和热情,提高学生在实际工程中的应用能力。
知识目标:使学生了解数字信号的基本概念、特点和分类,掌握数字信号处理的基本原理和方法,了解数字信号处理技术在工程中的应用。
技能目标:通过理论学习和实践操作,使学生能够熟练使用数字信号处理软件,具备分析和处理数字信号的能力。
情感态度价值观目标:培养学生对科学探索的兴趣,提高学生的问题解决能力和创新意识,使学生认识到数字信号处理技术在现代社会中的重要性,培养学生的社会责任感和使命感。
二、教学内容本课程的教学内容主要包括数字信号的基本概念、数字信号处理的基本原理和方法、数字信号处理技术的应用。
1.数字信号的基本概念:数字信号的定义、特点和分类。
2.数字信号处理的基本原理和方法:离散时间信号处理、离散傅里叶变换、快速傅里叶变换、数字滤波器设计等。
3.数字信号处理技术的应用:语音信号处理、图像信号处理、通信系统中的应用等。
三、教学方法为了实现本课程的教学目标,将采用多种教学方法相结合的方式进行教学,包括:1.讲授法:通过讲解和演示,使学生掌握数字信号处理的基本原理和方法。
2.讨论法:通过分组讨论和课堂讨论,培养学生的思考能力和团队合作精神。
3.案例分析法:通过分析实际案例,使学生了解数字信号处理技术在工程中的应用。
4.实验法:通过实验操作,使学生熟练掌握数字信号处理软件,提高学生的实践能力。
四、教学资源为了保证本课程的顺利进行,将准备以下教学资源:1.教材:《数字信号处理》2.参考书:《数字信号处理教程》、《数字信号处理实践》3.多媒体资料:课件、教学视频、实验数据等4.实验设备:计算机、数字信号处理软件、信号发生器、示波器等五、教学评估为了全面、客观地评估学生的学习成果,将采用多种评估方式相结合的方法,包括平时表现、作业、考试等。
1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估学生的学习态度和理解能力。
数字信号处理课程设计

数字信号处理 课程设计一、课程目标知识目标:1. 理解数字信号处理的基本概念、原理和方法,掌握其数学表达和物理意义;2. 掌握数字信号处理中的关键算法,如傅里叶变换、快速傅里叶变换、滤波器设计等;3. 了解数字信号处理技术在通信、语音、图像等领域的应用。
技能目标:1. 能够运用所学知识分析数字信号处理问题,提出合理的解决方案;2. 能够运用编程工具(如MATLAB)实现基本的数字信号处理算法,解决实际问题;3. 能够对数字信号处理系统的性能进行分析和优化。
情感态度价值观目标:1. 培养学生对数字信号处理学科的兴趣,激发其探索精神和创新意识;2. 培养学生严谨的科学态度和良好的团队协作精神,提高沟通与表达能力;3. 增强学生对我国在数字信号处理领域取得成就的自豪感,树立为国家和民族发展贡献力量的信心。
课程性质:本课程为专业选修课,旨在使学生掌握数字信号处理的基本理论和方法,培养其解决实际问题的能力。
学生特点:学生具备一定的数学基础和编程能力,对数字信号处理有一定了解,但缺乏系统学习和实践经验。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,采用案例教学、互动讨论等教学方法,提高学生的参与度和实践能力。
通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程和实际工作打下坚实基础。
二、教学内容1. 数字信号处理基础:包括数字信号、离散时间信号与系统、信号的采样与恢复等基本概念,使学生建立数字信号处理的基本理论框架。
教材章节:第一章 数字信号处理概述2. 傅里叶变换及其应用:介绍傅里叶变换的原理、性质和应用,以及快速傅里叶变换算法。
教材章节:第二章 傅里叶变换及其应用3. 数字滤波器设计:讲解数字滤波器的基本原理、设计方法和性能评价,包括IIR和FIR滤波器。
教材章节:第三章 数字滤波器设计4. 数字信号处理应用案例分析:通过通信、语音、图像等领域的实际案例,使学生了解数字信号处理技术的应用。
数字信号处理课程设计——调制与解调

数字信号处理课程设计——调制与解调调制和解调是数字信号处理中的重要概念和技术,广泛应用于无线通信、数据传输、图像处理等领域。
调制是将数字信号转换为模拟信号,以便在模拟传输介质中传输,而解调则是将模拟信号转化为数字信号,以便在数字系统中处理和分析。
调制的基本原理是通过改变信号的某种特性,将数字信号转换为模拟信号。
最常见的调制方式包括频移键控(FSK)、相移键控(PSK)、振幅调制(AM)和频率调制(FM)等。
其中,FSK调制是通过改变信号的频率来表示数字信号的0和1;PSK调制是通过改变信号的相位来表示数字信号的0和1;AM调制则是通过改变信号的振幅来表示数字信号的0和1;FM调制则是通过改变信号的频率来表示数字信号的0和1。
调制技术的主要目标是将数字信号变换为适合模拟传输的信号,以便在传输过程中能够有效地传输和保持信号的完整性。
在调制过程中,需要考虑信号的带宽、抗干扰能力、传输距离和功耗等因素。
因此,选择合适的调制方式对系统性能至关重要。
不同的调制方式具有不同的特点和应用范围,需要根据具体情况进行选择。
解调是调制的逆过程,即将模拟信号转换为数字信号。
解调技术的主要目标是恢复数字信号的原始信息,并进行后续的处理和分析。
常见的解调方式包括包络检测、相位检测和频率检测等。
其中,包络检测是通过监测信号的振幅变化来恢复数字信号的0和1;相位检测是通过监测信号的相位变化来恢复数字信号的0和1;频率检测则是通过监测信号的频率变化来恢复数字信号的0和1。
解调技术的选择和设计主要取决于调制方式和传输环境。
在实际应用中,解调技术通常与调制技术相匹配,以实现信号的准确解码和信息的可靠传输。
解调过程中需要考虑信号的噪声、干扰、衰减和失真等因素,以提高解调精度和系统性能。
总之,调制和解调是数字信号处理中的重要环节。
通过合适的调制和解调技术,可以实现数字信号在模拟传输介质和数字系统中的可靠传输和处理。
对于不同的应用场景和要求,需要综合考虑信号特性、传输环境和系统性能等因素,选择合适的调制和解调方式,以实现更好的信号传输和处理效果。
数字信号处理课程设计

数字信号处理课程设计(综合实验)班级:电子信息工程1202X姓名:X X学号:1207050227指导教师:XXX设计时间:2014.12.22—2015.1。
4成绩:评实验一时域采样与频域采样定理的验证实验一、设计目的1。
时域采样理论与频域采样理论是数字信号处理中的重要理论.要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;2. 要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、程序运行结果1。
时域采样定理验证结果:2。
频域采样定理验证结果:三、参数与结果分析1。
时域采样参数与结果分析:对模拟信号()ax t以T进行时域等间隔理想采样,形成的采样信号的频谱会以采样角频率Ωs(Ωs=2π/T)为周期进行周期延拓。
采样频率Ωs必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
() ax t的最高截止频率为500HZ,而因为采样频率不同,得到的x1(n)、x2(n)、x3(n)的长度不同。
频谱分布也就不同。
x1(n)、x2(n)、x3(n)分别为采样频率为1000HZ、300HZ、200HZ 时候的采样序列,而进行64点DFT之后通过DFT分析频谱后得实验图中的图,可见在采样频率大于等于1000时采样后的频谱无混叠,采样频率小于1000时频谱出现混叠且在Fs/2处最为严重。
2.频域采样参数与结果分析:对信号x(n)的频谱函数进行N点等间隔采样,进行N 点IDFT[()NXk]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列。
对于给定的x(n)三角波序列其长度为27点则由频率域采样定理可知当进行32点采样后进应该无混叠而16点采样后进行IFFT得到的x(n)有混叠,由实验的图形可知频域采样定理的正确性.四、思考题如果序列x(n)的长度为M,希望得到其频谱在[0, 2π]上的N点等间隔采样,当N<M 时,如何用一次最少点数的DFT得到该频谱采样?答:通过实验结果可知,可以先对原序列x(n)以N为周期进行周期延拓后取主值区序列,再计算N点DFT则得到N点频域采样。
数字信号处理课程设计

4实训程序
2.
01
n=0:40;
02
a=2;b=-3;
03
x1=cos(2*pi*0.12*n);
04
x2=cos(2*pi*0.45*n);
05
x=a*x1+b*x2;
06
num=[1 1 1]/3;
07
den=1;
08
ic=[0 1];
09
clf;
10
4实训程序
y1=filter(num,den,x1,ic);
4实训程序
num=[1 1 1]/3;
ic=[0 0];
y1=filter(num,den,x1,ic);
y2=filter(num,den,x2,ic);
yt=[0 0 y1];
d=y2-yt;
n=[n 41 42];
subplot(3,1,1)
stem(n,y2,"filled");
den=1;
9
4实训程序
subplot(3,1,2)
stem(n,yt,"filled");
ylabel('Amplitude');
title('输出的线性组合:a*y_{1}(n)+b*y_{2}(n)');
subplot(3,1,3)
stem(n,d,"filled");
xlabel('Time index n');
stem(n1,x1,"filled")
axis([-3 4 -1 13])
n2=[0 1 2];
(1)
x2=0.5.^n2;
数字信号处理课程设计报告_4

目录一、课程设计的目的 (2)二、数字滤波器的设计步骤 (2)2.2、IIR数字滤波器与FIR数字滤波器的区别 (2)三、IIR数字滤波器 (3)3.1、IIR数字滤波器的特点 (3)3.1.2、IIR数字滤波器采用递归型结构 (3)3.1.3、借助成熟的模拟滤波器的成果 (3)3.1.4、需加相位校准网络 (3)3.2、用双线性法设计IIR数字滤波器 (3)3.3、巴特沃斯低通滤波器的设计 (4)3.4、巴特沃斯高通滤波器的设计 (5)3.4.1、巴特沃斯高通滤波器各参数图形 (5)3.4.2、巴特沃斯高通滤波器滤波效果图 (5)四、FIR数字滤波器 (5)4.1、FIR滤波器的特点 (5)4.2、窗函数法设计FIR数字滤波器 (6)五、程序实例源码 (8)六、问题分析 (12)七、心得体会 (13)八、参考文献 (13)一、课程设计的目的数字滤波是数字信号分析中最重要的组成部分之一,与模拟滤波相比,它具有精度和稳定性高、系统函数容易改变、灵活性强、便于大规模集成和可实现多维滤波等优点。
在信号的过滤、检测和参数的估计等方面,经典数字滤波器是使用最广泛的一种线性系统。
本次课程设计是通过对常用数字滤波器的设计和实现,掌握数字信号处理的工作原理及设计方法;熟悉用双线性变换法设计 IIR 数字滤波器和用窗函数法设计FIR数字滤波器的原理与方法,掌握利用数字滤波器对信号进行滤波的方法,掌握数字滤波器的计算机仿真方法,并能够对设计结果加以分析。
二、数字滤波器的设计步骤2.1、不论是IIR滤波器还是FIR滤波器的设计都包括三个步骤:(1)按照实际任务的要求,确定滤波器的性能指标。
(2)用一个因果、稳定的离散线性时不变系统的系统函数去逼近这一性能指标。
根据不同的要求可以用IIR系统函数,也可以用FIR系统函数去逼近。
(3)利用有限精度算法实现系统函数,包括结构选择,字长选择等。
2.2、IIR数字滤波器与FIR数字滤波器的区别2.2.1、单位响应IIR数字滤波器单位响应为无限脉冲序列,而FIR数字滤波器单位响应为有限的;FIR滤波器,也就是“非递归滤波器”,没有引入反馈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛阳理工学院课程设计报告课程名称数字信号处理课程设计设计题目空气柱主频率模型测定专业通信工程班级B110508学号B11050805姓名朱照霞完成日期2014.6.20课程设计任务书设计题目:空气柱主频率模型测定_________________________________________________________ 设计内容与要求:题目3:空气柱主频率测定当我们向暖水瓶倒水时,暖水瓶中的空气柱会发生振动。
随着水位的升高,空气柱越来越短,空气柱振动的频率越来越大,音调就越来越高,所以根据声音音调的高低就能知道水是否灌满。
甚至我们可以量化这个过程,根据倒水声音音调的高低来反算水位的高低。
笔者对倒水的过程进行了采集试验,选用标准暖水瓶一个,用近似匀速的水流在43秒时间内将水瓶贮满,声音文件的STFT频谱图如下图所示:题目的基本要求如下:(1)建立水位高度H和振动频率f的数学模型;(2)自行设计一个倒水的过程,采集倒水过程的音频信号;(3)用试验五的STFT程序对倒水声音进行分析;(4)分离信号基本频率和水位高度的函数曲线;(5)用函数曲线来验证数学模型的正确性。
指导教师:年月日课程设计评语成绩:指导教师:年月日摘要《数字信号处理》课程是通信专业的一门重要专业基础课,是信息的数字化处理、存储和应用的基础。
数字信号处理的主要研究对象是数字信号,且是采用运算的方法达到处理的目的的,因此,其实现方法,基本上分成两种实现方法,即软件和硬件实现方法。
软件实现方法指的是按照原理和算法,自己编写程序或者采用现成的程序在通用计算机上实现,硬件实现指的是按照具体的要求和算法,设计硬件结构图,用乘法器加法器延时器、控制器、存储器以及输入输出接口部件实现的一种方法。
Matlab语言是一种广泛应用于工程计算及数值分析领域的新型高级语言,Matlab功能强大、简单易学、编程效率高,深受广大科技工作者的喜爱。
特别是Matlab还具有信号分析工具箱,不需具备很强的编程能力,就可以很方便地进行语音信号分析、处理和设计。
语音信号的处理与滤波是数字信号处理课程中常出现的课题,也是现代科学中值得深入究研的一个课题。
语音信号的处理与滤波的设计主要是用Matlab作为工具平台,设计中涉及到声音的录制、播放、存储和读取,语音信号的抽样、频谱分析,滤波器的设计及语音信号的滤波,通过数字信号处理课程的理论知识的综合运用。
从实践上初步实现对数字信号的处理。
数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。
关键词:滤波器;采样率;频谱分析;数学建模目录摘要 (1)第1章课程设计的目的 (3)第2章系统运行环境及理论基础 (3)2.1 系统运行的软件环境 (3)2.2 数字滤波器的简介及发展 (4)2.3 FIR数字滤波器的特点 (4)2.4 FIR滤波器具有的优点 (4)第3章课程设计报告内容 (5)3.1总体设计方案 (5)3.2 原始信号时域波形 (5)3.2.1.时域波形显示源代码清单: (5)3.2.2.时域波形效果 (6)3.3.原始信号频域波形 (7)3.3.1.频域波形显示源代码清单: (7)3.3.2.频域波形效果 (7)3.4 原始信号时频谱显示 (8)3.4.1.时频谱显示源代码清单 (8)3.4.2.时频谱显示效果 (9)3.4.3 ShowSound函数 (10)3.5 原始信号进行切割 (11)3.6 对切割后信号分别进行滤波 (11)3.6.1 对切割后声音信号分别进行滤波源代码 (11)3.6.2.滤波器幅频特性和相频特性 (13)3.7 对滤波后的信号进行合成 (15)3.7.1 对滤波后声音信号进行合成源代码 (15)3.7.2.对滤波后声音信号进行合成后显示效果 (15)3.8 对图像进行处理 (16)第4章课程设计总结 (18)参考文献 (19)第1章课程设计的目的1 学会MATLAB的使用,掌握MATLAB的程序设计方法;2 掌握在Windows环境下语音信号采集的方法;3 掌握数字信号处理的基本概念、基本理论和基本方法;4 掌握MATLAB设计FIR滤波器;5 学会用MATLAB对信号进行分析和处理。
6学会用MATLAB的工具箱进行数学建模,解决一些实际问题。
第2章系统运行环境及理论基础2.1 系统运行的软件环境MATLAB是矩阵实验室(Matrix Laboratory)之意。
除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多,工具包又可以分为功能性工具包和学科工具包。
功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能。
学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类。
MATLAB具有许多的优点比如:语言简洁紧凑,使用方便灵活,库函数极其丰富;MATLAB既具有结构化的控制语句(如for循环,while循环,break语句和if语句),又有面向对象编程的特性;程序的可移植性很好,基本上不做修改就可以在各种型号的计算机和操作系统上运行,等等优点。
MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。
附加的工具箱(单独提供的专用MATLAB 函数集)扩展了MATLAB 环境,以解决这些应用领域内特定类型的问题。
2.2 数字滤波器的简介及发展数字滤波器是指完成信号滤波处理功能的,用有限精度算法实现的离散时间线性非时变系统,其输入是一组数字量,其输出是经过变换的另一组数字量。
因此,数字滤波器本身既可以是用数字硬件装配成的一台完成给定运算的专用的数字计算机,也可以将所需要的运算编成程序,让通用计算机来执行。
从数字滤波器的单位冲击响应来看,可以分为两大类:有限冲击响应(FIR)数字滤波器和无限冲击响应(IIR)数字滤波器。
滤波器按功能上分可以分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BSF)。
相对于模拟滤波器,数字滤波器没有漂移,能够处理低频信号,频率响应特性可做成非常接近于理想的特性,且精度可以达到很高,容易集成等,这些优势决定了数字滤波器的应用将会越来越广泛。
同时DSP处理器的出现和FPGA的迅速发展也促进了数字滤波器的发展,并为数字滤波器的硬件实现提供了更多的选择。
2.3 FIR数字滤波器的特点在数字信号处理应用中往往需要设计线性相位的滤波器,FIR滤波器在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性。
FIR滤波器不断地对输入样本x(n)延时后,再作乘法累加算法,将滤波结果y(n)输出,因此,FIR实际上是一种乘法累加运算。
在数字滤波器中,FIR滤波器的最主要的特点是没有反馈回路,故不存在不稳定的问题,同时,可以在幅度特性是随意设置的同时,保证精确的线性相位。
稳定和线性相位特性是FIR滤波器的突出优点。
另外,它还有以下特点:设计方式是线性的;硬件容易实现;滤波器过渡过程具有有限区间;相对IIR滤波器而言,阶次较高,其延迟也要比同样性能的IIR滤波器大得多。
2.4 FIR滤波器具有的优点可在幅度特性随意设计的同时,保证精确、严格的线性相位;由于FIR滤波器的单位脉冲h(n)是有限长序列,因此FIR滤波器没有不稳定的问题;由于FIR滤波器一般为非递归结构,因此,在有限运算下不会出现递归型结构中的极限振荡等不稳定现象误差较小;FIR滤波器可以采用FFT算法实现,从而提高了运算效率。
第3章课程设计报告内容3.1总体设计方案图3- 1 总体设计方案3.2 原始信号时域波形3.2.1.时域波形显示源代码清单:close allclear allclcfigure% 显示声音信号时域波形I1=wavread('C:\Documents and Settings\Administrator\桌面\keshe\daoshui.wav')plot(I1);%添加网格,标题和坐标轴grid on;box on;title('倒水声音信号的时域波形');xlabel('时间(s)');ylabel('幅度');3.2.2.时域波形效果图3-2时域波形3.3.原始信号频域波形3.3.1.频域波形显示源代码清单:fs=8000;I1=wavread('daoshui.wav');%对信号进行谱分析spectrum=abs(fftshift(fft(I1)));%频率轴ww=linspace(-fs/2,fs/2,length(spectrum));%绘制声音信号的频谱figureplot(ww,20*log10(spectrum),'b');%添加网络、标题、坐标轴grid on;box on;title('频谱');xlabel('频率(Hz)');ylabel('幅度(dB)')3.3.2.频域波形效果图3- 3 频域波形3.4 原始信号时频谱显示3.4.1.时频谱显示源代码清单[y,fs]=wavread('daoshui.wav');%信号持续时间T=length(y)/8000;%频谱宽度MF=4000;%对信号进行时频分析[I t f]=ShowSound(y,8000,1.6);%构造时间频率轴和时频谱缓冲区t=linspace(0,T,size(I,2));f=linspace(0,MF,size(I,1));II=zeros(size(I));%显示频谱轴II(end:-1:1,:)=I(:,:);figure%mesh(t,f,II);mesh(t,f,20*log10(II));title('时频谱(原始信号)');xlabel('时间(s)');ylabel('频谱(Hz)')zlabel('幅度(dB)');axis tight%时频谱view(0,90);3.4.2.时频谱显示效果图3- 4 时频谱显示效果3.4.3 ShowSound函数function [Y,T,F] = ShowSound(s,fs,lamda)%用矩形窗的FFT将采样率为fs的一段声音s进行时频分析%Y为输出的时频图样,T是时间轴,F频率轴;%由于显示设备的限制,时间轴只能显示750个点,频率轴能显示500个点%lamda是矩形窗的交叠系数,即交叠的部分占总窗体的百分比%作者:王新新时间:2005.8.2%统一为行向量[r,c] = size(s);if(r > c)s = s';end;LS=length(s);%加750次窗,每次增加的点数SubLen = floor(LS / 750);%将序列化为750的整倍数s = s(1 : 750 * SubLen);LS = length(s);%油参数lamda计算出真实窗体的长度TrueSubLen = floor(SubLen./ (1 - lamda./ 2));%将序列扩展以便于连续加窗offset = TrueSubLen - SubLen;s = [zeros(1,offset),s];%将加窗后的全部序列暂存于tmp,用for循环生成tmptmp = zeros(TrueSubLen,750);for i = 2 : 750index = floor((i - 1) * SubLen - (TrueSubLen * (lamda./ 2)))+offset;tmp(:,i) = (s(index : (index+TrueSubLen-1)))';end;%计算FFT并将颠倒的谱倒过来,只取频谱的正半边Y = fft(tmp , 1000);Y = Y(500:end , :);Y = (real(Y).^ 2 + imag(Y).^ 2).^0.5;%计算T和FT = 0 : 1 / fs : (length(s) - 1)./ fs;F = 0 : 499;3.5 原始信号进行切割对原始声音信号进行切割源代码:% 观察时频谱,将信号分离为两个部分:% 0-18s:voice0_18% 19-30s:voice19_30% 后续信号舍弃% voice0_18经过700—1100Hz的滤波器% voice19_30经过1250_1700Hz的滤波器voice0_18 = zeros(144000,1); % 生成144000x1的全零矩阵voice19_30 = zeros(96000,1); % 生成96000x1的全零矩阵% 信号分离for i=1:240000if(i<144000||i==144000)voice0_18(i)=voice(i);elseif(i>144000&&i<(144000+96000))voice19_30(i-144000)=voice(i);elsevoice(i)=0;endend3.6 对切割后信号分别进行滤波3.6.1 对切割后声音信号分别进行滤波源代码[voice, fs]=wavread('daoshui.wav');fw = fs/2;%设计带通滤波器(700Hz-1100Hz)[B1,A1]=butter(4,[700/(fw),1100/(fw)],'bandpass'); %绘制滤波器的幅频特性和相频特性figurefreqz(B1,A1,512);%前半部分滤波voice0_18 = voice(1:18*fs);voice0_18=filter(B1,A1,voice0_18);% y = y - mean(y);[I t f] = ShowSound(voice0_18,fs,1.6);t = linspace(0,18,size(I,2));f = linspace(0,fw,size(I,1));II = zeros(size(I));II(end:-1:1,:) = I(:,:);mesh(t,f,log2(II));view(0,90)voice19_30 = voice(18*fs+1:end);%设计带通滤波器(1250Hz-1700Hz)[B2,A2]=butter(4,[1250/(fw),1700/(fw)],'bandpass'); %绘制滤波器的幅频特性和相频特性figurefreqz(B2,A2,512);%后半部分滤波voice19_30=filter(B2,A2,voice19_30);% y = y - mean(y);[I t f] = ShowSound(voice19_30,fs,1.6);t = linspace(19,30,size(I,2));f = linspace(0,fw,size(I,1));II = zeros(size(I));II(end:-1:1,:) = I(:,:);mesh(t,f,log2(II));view(0,90)3.6.2.滤波器幅频特性和相频特性图3- 5 滤波器1的幅频特性和相频特性图3- 6 滤波器2的幅频特性和相频特性图3.7 经过滤波器1的波形图3.8 经滤波器2的波形3.7 对滤波后的信号进行合成3.7.1 对滤波后声音信号进行合成源代码%新的信号缓冲区voice_new=zeros(240000,1);for i=1:240000if(i<144001)voice_new(i)=voice0_18(i);elsevoice_new(i)=voice19_30(i-144000);endend[I t f] = ShowSound(voice_new,fs,1.6);t=linspace(0,30,size(I,2));f = linspace(0,fw,size(I,1));II = zeros(size(I));II(end:-1:1,:) = I(:,:);mesh(t,f,log2(II));view(0,90)3.7.2.对滤波后声音信号进行合成后显示效果图3- 9 滤波合成后显示效果3.8 对图像进行处理图3-10 时频谱建立模型:f=b/(43-hb) a+fhb=43f选取十个点:MATLAB运算结果如下:令a=[1 fh],b=[43f]图3-11 运算结果所以f=0.0001/(43+3.3291h)。