考研数学高数定理证明的知识点

合集下载

高数考研重点罗列

高数考研重点罗列

考研数学高等数学重难点第一章函数与极限(考研必考章节,其中求极限是本章最重要题型,要掌握求极限的几种经典方法)第一节映射与函数(一般章节)一集合(不用看)二映射(不用看)三函数(了解)第二节数列的极限(一般章节)(本节用极限定义证明极限的题目考纲不作要求,可不看)一数列极限的定义(了解)二收敛数列的性质(了解)第三节函数的极限(一般章节)一函数极限的定义(了解)二函数极限的性质(了解)第四节无穷小与无穷大(重要)一无穷小(重要)二无穷大(了解)第五节极限运算法则(注意运算法则的前提条件是极限存在)第六节极限存在准则(理解)两个重要极限(重要两个重要极限要会证明)第七节无穷小的比较(重要)第八节函数的连续性与间断点(重要基本必考小题)一函数的连续性二函数的间断点第九节连续函数的运算与初等函数的连续性(了解)一连续函数的和、差、积、商的连续性二反函数与复合函数的连续性三初等函数的连续性第十节闭区间上连续函数的性质(重要,不单独考大题,但考大题会用到)一有界性与最大值最小值定理(重要)二零点定理与介值定理(重要)三一致连续性。

(不用看)第二章导数与微分(小题的必考章节)第一节导数概念(重要)一引例(数三可只看切线问题举例)二导数的定义(重难点,考的频率很高)三导数的几何意义(理解)另外:数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四函数可导性与连续性的关系(重要,要会证明)第二节函数的求导法则(考小题)一函数的和、差、积、商求导法则二反函数的求导法则三复合函数的求导法则四基本求导法则与求导公式(要非常熟)第三节高阶导数(重要,考的可能性大)第四节隐函数及由参数方程所确定的函数的导数(考小题)、相关变化率(不用看)一隐函数的导数二由参数方程所确定的函数的导数三相关变化率(不用看)第五节函数的微分(考小题)一微分的定义二微分的几何意义三基本初等函数的微分公式与微分运算法则四微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲俊不作要求)第三章微分中值定理与导数的应用(考大题、难题经典章节)第一节微分中值定理(最重要,与中值定理的应用有关的证明题)一罗尔定理(要会证)二拉格朗日中值定理(要会证)三柯西中值定理(要会证)另外要会证明费马定理第二节洛比达法则(重要,基本上必定要考)第三节泰勒公式(掌握其应用,可以不用证明公式本身)第四节函数的单调性与曲线的凹凸性(考小题)一函数单调性的判定法二曲线的凹凸性与拐点第五节函数的极值与最大值最小值(考小题为主)一函数的极值及其求法二最大值最小值问题第六节函数图形的描绘(重要)第七节曲率(了解,只有数一数二考,数三不用看)一弧微分(不用看)二曲率及其计算公式(了解)三曲率圆与曲率半径(了解)四曲率中心的计算公式渐屈线与渐伸线(不用看)第八节方程的近似解(只要有近似,考研不考,不用看)第四章不定积分(重要)相对于数一、数三,本章数二考大题的可能性更大第一节不定积分的概念与性质一原函数与不定积分的概念(理解)二基本积分表(全背且熟练准确)三不定积分的性质(理解)第二节换元积分法(重要,其中第二类换元积分法更加重要)一第一类换元法二第二类换元法第三节分部积分法(考研必考)第四节有理函数的积分(重要)一有理函数的积分二可化为有理函数积分的习题举例第五节积分表的使用(不用看)第五章定积分(重要,考研必考)第一节定积分的概念与性质(理解)一定积分问题举例(了解)其中“变速直线运动的路程”数三不用看二定积分定义(理解)三定积分的近似计算(不用看)四定积分的性质(理解)第二节微积分基本公式(重要)一变速直线运动中位置函数与速度函数之间的联系(了解)数三不用看二积分上限的函数及其导数(极其重要,要会证明)三牛顿-莱布尼茨公式(重要,要会证明)第三节定积分的换元积分法与分部积分法(重要,分部积分法更重要)一定积分的换元法二定积分的分部积分法第四节反常积分(考小题)一无穷限的反常积分二无界函数的反常积分第五节反常积分的审敛法T函数(不用看)第六章定积分的应用(考小题为主)第一节定积分的元素法(理解)第二节定积分在几何学上的应用(面积最重要)一平面图形的面积二体积(数三只看旋转体的体积)三平面曲线的弧长(数三不用看,数一数二记住公式即可)第三节定积分在物理学上的应用(数三不用看,数一数二了解)一变力引直线所作的功二水压力三引力第七章微分方程(必考章节,本章相对于数学二相对最重要)第一节微分方程的基本概念(了解)第二节可分离变量的微分方程(理解)第三节齐次方程(理解)一齐次方程二可化为齐次的方程(不用看)第四节一阶线性微分方程(重要,熟记公式)一线性方程二伯努利方程(只有数一考,记住公式即可)第五节可降阶的高阶微分方程(只有数一数二考,理解)一型的微分方程二型的微分方程三型的微分方程第六节高阶线性微分方程(理解)一二阶线性微分方程举例(不用看)二线性微分方程的解的结构(重要)三常数变易法(不用看)第七节常系数齐次线性微分方程(最重要,考大题的备选章节)第八节常系数非齐次线性微分方程(最重要,考大题的备选章节)一型二第九节欧拉方程(只有数一考,了解)第九节常系数线性微分方程的解法举例(不用看)第八章空间解析几何与向量代数(只有数一考,考小题,了解)第一节向量及其线性运算一向量概念二向量的线性运算三空间向量坐标系四利用坐标作向量的线性运算五向量的模、方向角、投影第二节数量积、向量积、混合积一两向量的数量积二两向量的向量积三向量的混合积第三节曲面及其方程一曲面方程的概念二旋转曲面三柱面四二次曲面第四节空间曲线及其方程一空间曲线的一般方程二空间曲线的参数方程三空间曲线在坐标面上的投影第五节平面及其方程一平面的点法式方程二平面的一般方程三两平面的夹角第六节空间直线及其方程一空间直线的一般方程二空间直线的对称式方程与参数方程三两直线的夹角四直线与平面的夹角第九章多元函数微分法及其应用(考大题经典章节,但难度不大)第一节多元函数的基本概念(了解)一平面点集 n维空间二多元函数概念三多元函数的极限四多元函数的连续性第二节偏导数(理解)一偏导数的定义及其计算法二高阶偏导数(重要)第三节全微分(理解)一全微分的定义二全微分在近似计算中的应用(不用看)第四节多元复合函数的求导法则第五节隐函数的求导公式(理解小题)一一个方程的情形二方程组的情形(不用看)第六节多元函数微分学的几何应用(只有数一考,考小题)一一元向量值函数及其导数(不用看)二空间曲线的切线与法平面三曲面的切平面与法线第七节方向导数与梯度(只有数一考,考小题)一方向导数二梯度第八节多元函数的极值及其求法(重要,大题的常考题型)一多元函数的极值及最大值最小值二条件极值、拉格朗日乘数法第九节二元函数的泰勒公式(只有数一考,了解)一二元函数的泰勒公式(了解)二极值充分条件的证明(不用看)第十节最小二乘法(不用看)第十章重积分(重要,数二数三相对于数一,本章更加重要.数二数三基本必考大题)第一节二重积分的概念与性质(了解)一二重积分的概念(了解)二二重积分的性质(了解)第二节二重积分的计算法(重要,数二数三极其重要)一利用直角坐标计算二重积分二利用极坐标计算二重积分三二重积分的换元法(不用看)第三节三重积分(只有数一考,理解)一三重积分的概念(了解)二三重积分的计算(重要)第四节重积分的应用(只有数一考,了解)一曲面的面积二质心三转动惯量四引力第五节含参变量的积分(不用看)第十一章曲线积分与曲面积分(只有数一考,数二数三均不考;数一考大题、考难题经典章节)第一节对弧长的曲线积分(重要)一对弧长的曲线积分的概念(理解)与性质(了解)二对弧长的曲线积分的计算法(重要)第二节对坐标的曲线积分(重要)一对坐标的曲线积分的概念(理解)与性质(了解)二对坐标的曲线积分的计算法(重要)第三节格林公式及其应用(重要)一格林公式(重要)二平面上曲线积分与路径无关的条件(重要)三二元函数的全微分求积(理解)四曲线积分的基本定理(不用看)第四节对面积的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对坐标的曲面积分的计算法(重要)三两类曲面积分之间的联系(了解)第五节对坐标的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对面积的曲面积分的计算法(重要)第六节高斯公式(重要)、通量(不用看)与散度(了解)一高斯公式(重要)二沿任意闭曲面的曲面积分为零的条件(不用看)三通量与散度(了解)第七节斯托克斯公式(重要)环流量与旋度(了解)一斯托克斯公式(重要)二空间曲面积分与路径无关的条件(不用看)三环流量与旋度第十二章无穷级数(数学二不考,不用看;数一数三考大题、考难题的经典章节)第一节常数项级数的概念与性质(一般考点)一常数项级数的概念(了解)二收敛级数的基本性质(考选择题章节)三柯西审敛原理(不用看)第二节常数项级数的审敛法(理解)一正项级数及其审敛法二交错级数及其审敛法三绝对收敛与条件收敛四绝对收敛级数的性质(不用看)第三节幂级数(重要)一函数项级数的概念(了解)二幂级数及其收敛性(最重要)三幂级数的运算(乘或除不用看)第四节函数展开为幂级数(数一相对数三本节更重要)第五节函数的幂级数展开式的应用(不用看)一近似计算二微分方程的幂级数解法三欧拉公式第六节函数项级数的一致收敛性及一致收敛级数的基本性质(不用看)一函数项级数的一致收敛性二一致收敛级数的基本性质第七节傅里叶级数(数三不用看,数一了解)一三角函数系的正交性二函数展开为傅里叶级数三正弦级数和余弦级数第八节一般周期函数的傅里叶级数(数三不用看,数一了解)一周期为2l的周期函数的傅里叶级数二傅里叶级数的复数形式(不用看)。

考研用到的高数基础知识

考研用到的高数基础知识

考研用到的高数基础知识高等数学是考研数学的重要部分,那些重点难点在下文中均有讲述,复习要掌握好一些基础知识. 考研必备高数基础知识在下文列出.第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)3、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解.2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)考研高数怎样学?考研数学考三个科目,分别为高等数学、线性代数、概率论与数理统计. 但是备考数学的考生们总喜欢从高数开始复习,这是为什么呢?原因有二:其一,高等数学在试卷中所占分值最高,达整张卷面分值的百分之五十六,而且难度也居三科之首. 其二,科目之间的先后联系导致先复习高数.线性代数和概率论与数理统计,尤其是概率论与数理统计是以高数为基础的学科,不学高数难以很明白的学习后继学科,大学数学在课程设置上也是按次顺序进行,可见其科学性.为了更好的了解考研高等数学这一科目,在复习它之前我们应该了解一下它的知识体系是很有必要的. 这样我们可以有一个全局观,能清晰的知道每一章节之间的联系和侧重点.高等数学从大的方面分为一元函数微积分和多元函数微积分.一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学. 另外还有微分方程和级数,这两章内容可看成是微积分的应用.除此之外还有向量代数与空间解析几何. 其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别,下面我们分章去介绍.一、一元微积分1.极限极限是高等数学中非常重要的一章,此概念贯穿整个高等数学始末,导数、定积分、偏导数、多元函数积分、级数等概念都是用极限来定义的.正是有了极限的概念数学才从有限升华到无限,这也是高等数学与初等数学的分水岭. 在考研数学中极限也是每年必考的内容,直接考查的分值高达14-18分.2.倒数有了极限的概念,那么导数的概念就有了理论根基,导数是一元函数微分学的灵魂,在考研中这章是重点,每年必考,而且灵活性和综合性较强. 这一章可从导数微分概念、计算、应用、中值定理三方面学复习.3.不定时积分不定积分本质上是求导的逆运算,本章重点是计算,其重要性怎样描述都不为过. 因为积分是决定高数学习成败的一个关键章节,后继章节如定积分、二重积分、三重积分、曲线曲面积分、微分方程中都会用到.4.定积分定积分是微积分所说的积分,除了掌握基本概念,还要掌握其计算相关内容及定积分的应用,每年必考. 微分方程本质上还是不定积分的计算. 二、多元微积分多元函数的微积分体系上与一元类似,微分学包括基本概念(二重极限、偏导数、可微)、偏导数计算、偏导数应用.多元函数积分学包括二重积分、三重积分、曲线曲面积分,考试重点在计算,属于每年必考题目. 最后一章级数包括三部分常数项级数(主要考查敛散性判别),幂级数(主要考查展开与求和)、傅里叶级数(数一单独考查),本章也属必考内容.►高数该怎样学?虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢.由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸. 同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.考研数学怎样自学成功?(一)抓住主干,突破重点,注重综合虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢. 以高等数学为例,由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸.同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.(二)注重联想记忆,筑起框架体系由于考试时间紧,复习任务重,知识点零散,很多知识都是会了但过了一段时间又忘了,想要做到长效记忆,就必须注重联想记忆,建立知识框架体系. 以线性代数为例,线性代数作为一门全新的学科,知识点分散,概念抽象,性质定理众多,如何快速的掌握所有考试要求的知识,这就需要我们先筑起知识框架,建立知识点间的联系,看到任何一个概念的时候都要多去发散,联想出跟它相关的所有知识点.比如当我们看到实对称矩阵的时候,我们就要想到实对称矩阵的三条重要性质:①实对称矩阵的特征值为实数,它主要应用于已知一个关于方阵A的矩阵方程去求矩阵A的特征值;②实对称矩阵不同特征值对应的特征向量相互正交,它在考试中应用的非常频繁,基本题目出现实对称矩阵八九不离十就是要利用这条性质;③实对称矩阵必能相似对角化,它主要用来判断一个矩阵是否可以相似对角化的问题. 只要这样重复的联想记忆,你就会对所有的知识点形成条件反射,运用起来才会毫无障碍.(三)突出核心考点,加强题型训练根据考研数学考试历年命题规律,有些知识点考查的相当频繁,甚至于每年都考,对于这样的知识点我们应该予以重视,作为我们最后冲刺阶段主攻的地方,通过加强该部分知识点大量题型训练,总结对应的解题技巧和方法,从而实现对该知识点的突破.以概率论与数理统计为例,二维连续型随机变量是历年考试的重点,因此与该知识点相关的所有题型都要掌握,相关题型主要有:①已知联合概率密度求边缘概率密度、条件概率密度,进而求随机变量的数字特征;②已知联合概率密度求二维随机变量落在区域D内的概率;③判断两个随机变量是否独立等,通过对相关题型的大量训练,总结解题套路,我们就能攻克该知识点.考研数学总体复习计划基础阶段基础阶段的主要任务是复习基础知识,掌握基本解题能力. 主要工作是把课本上的重要公式、定理、定义概念等熟练掌握,将课本例题和习题研究透彻. 复习完基础知识之后要做课后习题,进行知识巩固,确保能够准确、深刻地理解每一个知识点.【切忌】1.先做题再看书.2.做难题. 这一阶段不易做难题. 难的题目往往会打击考生基础阶段复习的信心,即使答案弄懂了也达不到复习的效果.【复习建议】1.以教材中的例题和习题为主,不适宜做综合性较强的题目. 做习题时一定要把题目中的考点与对应的基础知识结合起来,达到巩固基础知识的目的,切忌为了做题而做题.2.在考研大纲出来之前,不要轻易放弃任何一个知识点. 在基础复习阶段放弃的知识点,非常有可能成为后期备考的盲点,到最后往往需要花更多的时间来弥补.3.准备一个笔记本,用来整理复习当中遇到过的不懂的知识点. 弄懂后,写上自己的理解,并且将一些易出错、易混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,避免遗忘出错.4.对于基本知识、基本定理和基本方法,关键在理解,并且存在理解程度的问题. 所以不能仅仅停留在“看懂了”的层次上. 对一些易推导的定理,有时间一定要动手推一推;对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写. 这些基本功都很重要,到临场考试时就可以发挥作用了.PS:复习不下去的时候建议看看数学视频.【基础阶段复习教材】高数:同济版,讲解比较细致,例题难度适中,涉及内容广泛,是当前高校中采用比较广泛的教材,配套的辅导教材也很多.线代:同济版,轻薄短小,简明易懂,适合基础不好的学生;清华版,适合基础比较好的学生.概率论与数理统计:浙大版,基本的题型课后习题都有覆盖.强化阶段强化阶段的主要任务是建立完整的知识体系,提高综合解题能力.强化阶段的复习是提高考试成绩的关键,但是,如果没有基础阶段的知识储备,强化阶段的复习是很难取得良好效果的. 所以小伙伴们一定要注意,数学复习是环环相扣、步步承接的. 【强化阶段复习资料】以数学复习全书和历年考研数学真题为主. 要把考研中的题型归类练习,熟练掌握每一类题型的解题方法.(一)强化训练第一轮以题型与常考知识模块复习为主,通过练习测试巩固所学知识.【学习方法】1.使用教材配套的复习指导或习题集,通过做题巩固知识,遇到不会或似懂非懂的题目不要直接看参考答案,应当先温习教材相关章节,弄懂基本知识.2.按要求完成练习测试后,要留有一些时间对教材的内容进行梳理,对重点、难点做好笔记,以便之后的复习. 对于典型性、灵活性、启发性和综合性的题目要特别注重理解思路和技巧的培养.3.试题虽千变万化,知识结构却基本相同,题型也相对固定. 归纳题型与常考知识模块以便提高解题的针对性,进而提高解题速度和准确性.(二)强化训练第二轮通过综合基础题及考研真题来查漏补缺,训练解题速度.【需要做到】1.加大对综合题和应用题解题能力的训练,力求在解题思路上有所突破. 在综合题的解答中,迅速找到解题的切入点是关键,为此需要熟悉规范的解题思路,以便能够对做过的题目进行归纳分类、延伸拓展.2.在复习备考时对所学知识进行重组,搞清有关知识的纵向和横向联系,转化为自己掌握的东西. 应用题的解题步骤是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其转化为某个数学问题求解.【注】基础阶段与强化阶段的终极目标是对考研数学内容建立一个知识网,熟练掌握考研各常见考试题型与解题方法.冲刺阶段强化阶段完成后,实际上考研数学的复习已经基本完成. 这个时候大家应该已经熟悉考研数学中的每一类题型以及对应的解题方法,而且已经具备较强的计算能力. 因此抽时间要做真题、模拟题培养考试状态,进入冲刺阶段的复习.【注意事项】冲刺阶段需要通过真题和模拟题的训练体验实战感觉,找到做题技巧并摸索出题特点,以便更利于临场发挥. 这一阶段要做到:1.要记忆,不要脱离教材. 对考研数学必需掌握的基本概念、公式、定理进行记忆,尤其是平时记忆模糊的公式,都需要重新回到教材找出原型来记忆.2.要总结、思考. 这一阶段不能搞题海战术,需要对上一轮复习中做过的历年真题和模拟题进行总结(包括理清基本的解题思路,对遗忘的知识点查漏补缺)3.要练习考研数学的套题. 坚持练套题到最后,手不能生. 最后阶段一定要做高质量的模拟题,尽量少做难题、偏题、怪题.【冲刺阶段复习资料】这一阶段的主要任务是查漏补缺,培养考试状态. 所以,建议的复习资料是基础阶段和强化阶段总结的复习笔记,历年真题与模拟题.。

考研高数知识点超强归纳

考研高数知识点超强归纳

(t )
连续,
公 式 2 . lim⎜⎛1 + 1 ⎟⎞n = e ; lim⎜⎛1 + 1 ⎟⎞u = e ;
n→∞⎝ n ⎠
u→∞⎝ u ⎠
lim (1
+
v
)1 v
=
e
v→0
则 dy dx
=
f [ϕ2 (x)]ϕ2′ (x) −
f [ϕ1(x)]ϕ1′(x)
4.用无穷小重要性质和等价无穷小代换 5.用泰勒公式(比用等价无穷小更深刻)(数学一和
2
( )e x ′ = e x
de x = e x dx
考研数学知识点-高等数学
ψ ′(t)存在,且ϕ ′(t) ≠ 0 ,则
(arcsin x)′ = 1
1− x2
d arcsin x = 1 dx 1− x2
(arccos x)′ = − 1
d arccos x = − 1 dx
1− x2
1− x2
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a, ]b 上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
且有
dy = dy du = f ′[ϕ(x)]ϕ ′(x)
dx du dx
对应地 dy = f ′(u)du = f ′[ϕ(x)]ϕ ′(x)dx
由于公式 dy = f ′(u)du 不管 u 是自变量或中间变量
6.隐函数运算法则
设 y = y(x) 是由方程 F (x, y) = 0 所确定,求 y′ 的方

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结引言随着我国研究生教育水平的提高,考研成为越来越多学子追求的目标。

高数是考研数学的重要组成部分,掌握高数知识不仅对考研学子而言至关重要,也是提高数学素养的关键。

本文将从高数的基本概念、常见定理、解题技巧等方面进行总结,帮助考研学子系统地了解高数知识点。

一、导数与微分1.1 基本概念导数是函数在某点处的瞬时变化率,可以用极限的概念来定义。

微分是导数概念的一种应用,代表函数在某点处的局部线性化。

在考研高数中,导数与微分是非常重要的概念,常被用于函数的研究和问题的解决。

1.2 常见导数公式常见的导数公式包括:幂函数的导数、指数函数的导数、对数函数的导数、三角函数的导数等。

考研学子需要掌握这些导数公式,并能熟练地进行推导和运用。

1.3 微分的应用微分在几何、物理等领域都有广泛的应用,如切线方程的求解、极值问题的研究、函数图像的描绘等。

在考研高数中,学子需理解微分的应用,掌握相关的解题技巧。

二、定积分2.1 定积分的概念定积分是对函数在一定区间上的积分,可以看作是曲线下面积的一种衡量。

在考研高数中,定积分是解决面积、体积、物理问题等的重要工具,学子需要深刻理解定积分的概念和性质。

2.2 定积分的计算定积分的计算方法包括:牛顿-莱布尼茨公式、定积分的性质、换元积分法、分部积分法等。

通过对这些计算方法的掌握,考研学子能够灵活地解决各种定积分计算题目。

2.3 定积分的应用定积分在几何、物理、经济等领域都有广泛的应用,如求曲线下面积、求旋转体的体积、求物体的质量和重心等。

考研学子需要理解定积分的应用,并掌握相关的解题技巧。

三、无穷级数3.1 级数的概念与性质级数是指一列数的和,无穷级数是指该列数的和在n趋于无穷时的性质。

在考研高数中,学子需要理解级数的概念、收敛与发散性质,以及级数收敛的判别法则等。

3.2 常见级数常见的级数包括:等比级数、调和级数、幂级数、泰勒级数等。

考研学子需要掌握这些常见级数的性质和收敛条件,以便能够快速判断级数的收敛性。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是研究数与其变化规律的一门基础课程,是理工科学生学习的重要课程之一。

在考研数学中,高等数学是必考科目之一,占有较大比重。

下面就考研高等数学知识点进行总结,希望对考生们有所帮助。

一、函数与极限1. 基本概念:函数、反函数、复合函数、有界函数、周期函数等。

2. 极限的定义:数列极限的定义、函数极限的定义等。

3. 极限的性质:极限的唯一性、有界性、局部有界原理等。

4. 极限运算法则:加减乘除、复合函数的极限等相关运算法则。

5. 无穷大与无穷小:无穷大和无穷小的概念、性质及相关推论。

二、导数与微分1. 导数的定义:函数在某一点的导数、导数的几何意义、物理意义等。

2. 基本导数公式:多项式函数、三角函数、指数函数、对数函数等基本函数的导数。

3. 高阶导数:二阶导数、高阶导数及其相关概念。

4. 微分中值定理:拉格朗日中值定理、柯西中值定理等。

5. 隐函数与参数方程的导数:隐函数的导数、参数方程的导数等相关内容。

三、微分中的应用1. 函数的极值与最值:函数的极值点的判定、极值、最值等相关概念。

2. 函数的单调性与凹凸性:函数的单调区间、凹凸区间等相关概念。

3. 泰勒公式与泰勒展开:泰勒公式的表达形式、泰勒展开的求解方法及应用。

4. 微分的应用:函数的近似计算、误差估计、最优化问题等。

四、不定积分1. 不定积分的概念:定义、性质及运算法则。

2. 基本不定积分公式:多项式函数、三角函数、指数函数、对数函数等基本函数的不定积分公式。

3. 换元积分法:第一类换元法、第二类换元法及其应用。

4. 分部积分法:分部积分法的原理、应用条件及相关例题。

5. 有理函数积分法:有理函数积分的基本思路及方法。

五、定积分及其应用1. 定积分的定义:定积分的严格定义及其几何意义。

2. 定积分的性质:定积分的线性性、定积分的区间可加性等性质。

3. 定积分的基本定理:牛顿-莱布尼茨公式及其几何意义。

4. 定积分的应用:面积、定积分表示的物理量、定积分的几何应用等。

考研高数定理:柯西中值定理

考研高数定理:柯西中值定理

凯程考研集训营,为学生引路,为学员服务!
第 1 页 共 1 页 考研高数定理:柯西中值定理 考研数学考察的中值定理有:罗尔中值定理、拉格朗日中值定理(即微分中值定理)、柯西中值定理和泰勒中值定理。

这四个定理之间的联系和区别要弄清楚,罗尔定理是拉格朗日中值定理的特殊情况。

除泰勒定理外的三个定理都要求已知函数在某个闭区间上连续,对应开区间内可导。

柯西中值定理涉及到两个函数,在分母上的那个函数的一阶导在定义域上要求不为零,柯西中值定理还有一个重要应用——洛必达法则,在求极限时会经常用到。

泰勒公式中的x0=0时为泰勒公式的特殊情况,为麦克劳林公式,常见函数的麦克劳林展开式要熟记,在求极限和级数一章中有很重要的应用。

证明题中辅助函数的构造方法:
一、结论中只含ξ,不含其它字母,且导数之间的差距为一阶。

二、结论中只含ξ,不含其它字母,且导数之间相差超过一阶。

三、结论中除含ξ,还含有端点a,b 。

四、结论中含两个或两个以上的中值。

小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。

2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。

加油!。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。

下面是对高等数学知识点的总结,希望对考研学生有所帮助。

一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点数学高等数学(高数)是考研数学中的一个重要部分,其中涉及了许多重要的定理及其证明。

以下是一些常见的高数定理及其证明的知识点:1.邻域性原理:如果一个函数在一些点的一些邻域内恒大于(或小于)另一个函数,而两个函数在该点处相等,则这两个函数在该邻域内恒大于(或小于)。

证明:假设函数f(x)和g(x)在点x0处连续且f(x)>g(x),且f(x0)=g(x0)。

因为f(x)和g(x)在x0处连续,所以存在一个邻域N(x0)使得f(x)>g(x)在该邻域内成立。

因此,f(x)>g(x)在N(x0)内恒成立。

2.极限的一致性:如果两个函数在一个有限闭区间内的一致性极限或一致性趋于无穷大的极限都存在,则它们的差的(绝对值的)极限是0。

证明:假设函数f(x)和g(x)在闭区间[a,b]内一致趋于函数h(x)和0,即对任意的ε>0,存在N,当n>N时,有,f(x)-h(x),<ε以及,g(x)-0,<ε成立。

由于,h(x),≤,f(x)-h(x),+,g(x)-0,所以当n>N时,有,h(x),≤2ε成立。

因此,极限,h(x),=0。

3.导数的基本性质:导数具有线性性、乘积法则、商法则和链式法则等基本性质。

证明:以线性性为例,假设函数f(x)和g(x)在点x0处可导。

根据导数的定义,有lim_(x→x0) (f(x)-f(x0))/(x-x0)=lim_(x→x0) (g(x)-g(x0))/(x-x0)=f'(x0)和g'(x0)。

我们可以得到lim_(x→x0) (f(x)+g(x)-[f(x0)+g(x0)])/(x-x0)=lim_(x→x0)[(f(x)-f(x0))/(x-x0)+(g(x)-g(x0))/(x-x0)]=f'(x0)+g'(x0)。

因此,函数f(x)+g(x)在点x0处可导,且(f+g)'(x0)=f'(x0)+g'(x0)。

考研数学:必考的定理证明整理(2)

考研数学:必考的定理证明整理(2)

2017考研数学:必考的定理证明整理(2)考研数学的定理证明是一直考生普遍感觉不太有把握的内容,而2016年考研数学真题释放出一个明确信号考生需重视教材中重要定理的证明。

下面为考生梳理一下教材中那些要求会证的重要定理。

三、微积分基本定理的证明该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。

变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。

注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。

花开两朵,各表一枝。

我们先考虑变上限积分函数在开区间上任意点x处的导数。

一点的导数仍用导数定义考虑。

至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。

单侧导数类似考虑。

牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。

它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。

这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。

而多数考生能熟练运用该公式计算定积分。

不过,提起该公式的证明,熟悉的考生并不多。

该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。

该公式的证明要用到变限积分求导定理。

若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。

注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。

根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。

高数中需要掌握证明过程的定理

高数中需要掌握证明过程的定理

高数中的重要定理与公式及其证明一考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明;如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的;但考研数学毕竟不是数学系的考试,很多时候要求没有那么高;而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水;因此,在这方面可以有所取舍;应深受大家敬佩的静水深流力邀,也为了方便各位师弟师妹复习,不才凭借自己对考研数学的一点了解,总结了高数上册中需要掌握证明过程的公式定理;这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,从长远来看都是应当熟练掌握的;由于水平有限,总结不是很全面,但大家在复习之初,先掌握这些公式定理证明过程是必要的; 1常用的极限0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1lim a x x a x →+-=,201cos 1lim 2x x x →-=点评:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想过它们的由来呢事实上,这几个公式都是两个重要极限1lim(1)xx x e →+=与0sin lim1x xx→=的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技巧;证明:0ln(1)lim 1x x x →+=:由极限10lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x→+=;01lim 1x x e x →-=:在等式0ln(1)lim 1x x x→+=中,令ln(1)x t +=,则1t x e =-;由于极限过程是0x →,此时也有0t →,因此有0lim11tt te →=-;极限的值与取极限的符号是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01lim1x x e x→-=;01lim ln x x a a x →-=:利用对数恒等式得ln 0011lim lim x x a x x a e x x →→--=,再利用第二个极限可得ln ln 0011limln lim ln ln x a x a x x e e a a x x a →→--==;因此有01lim ln x x a a x→-=;0(1)1lim a x x a x→+-=:利用对数恒等式得 ln(1)ln(1)ln(1)00000(1)111ln(1)1ln(1)lim lim lim lim lim ln(1)ln(1)a a x a x a x x x x x x x e e x e x a a a x x a x x a x x+++→→→→→+---+-+====++上式中同时用到了第一个和第二个极限;201cos 1lim 2x x x →-=:利用倍角公式得22220002sin sin1cos 1122lim lim lim 222x x x x x x x x x →→→⎛⎫ ⎪-=== ⎪ ⎪⎝⎭;2导数与微分的四则运算法则'''''''''22(), d()(), d()(), d()(0)u v u v u v du dv uv u v uv uv vdu udvu vu uv u vdu udv v v v v v ±=±±=±=+=+--==≠点评:这几个求导公式大家用得也很多,它们的证明需要用到导数的定义;而导数的证明也恰恰是很多考生的薄弱点,通过这几个公式可以强化相关的概念,避免到复习后期成为自己的知识漏洞;具体的证明过程教材上有,这里就不赘述了; 3链式法则设(),()y f u u x ϕ==,如果()x ϕ在x 处可导,且()f u 在对应的()u x ϕ=处可导,则复合函数(())y f x ϕ=在x 处可导可导,且有:[]'''(())()()dy dy duf x f u x dx du dxϕϕ==或点评:同上;4反函数求导法则设函数()y f x =在点x 的某领域内连续,在点0x 处可导且'()0f x ≠,并令其反函数为()x g y =,且0x 所对应的y 的值为0y ,则有:'0''00111()()(())dx g y dyf x fg y dy dx===或 点评:同上;5常见函数的导数()'1x xααα-=,()'sin cos x x =,()'cos sin x x =-, ()'1ln x x =,()'1log ln a x x a=, ()'x xe e =,()'ln x xa ea =点评:这些求导公式大家都很熟悉,但很少有人想过它们的由来;实际上,掌握这几个公式的证明过程,不但可以帮助我们强化导数的定义这个薄弱点,对极限的计算也是很好的练习;现选取其中典型予以证明; 证明:()'1x x ααα-=:导数的定义是'0()()()lim x f x x f x f x x∆→+∆-=∆,代入该公式得 ()'1100(1)1(1)1()lim lim x x x x x x x x x x x x x x x xxααααααααα--∆→∆→∆∆+-+-+∆-====∆∆∆;最后一步用到了极限0(1)1lima x x a x→+-=;注意,这里的推导过程仅适用于0x ≠的情形;0x =的情形需要另行推导,这种情况很简单,留给大家;()'sin cos x x =:利用导数定义()'0sin()sin sin lim x x x x x x ∆→+∆-=∆,由和差化积公式得002cos()sinsin()sin 22lim lim cos x x x xx x x x x x x ∆→∆→∆∆++∆-==∆∆;()'cos sin x x =-的证明类似;()'1ln x x=:利用导数定义()'00ln(1)ln()ln 1ln lim lim x x x x x x x x x x x∆→∆→∆++∆-===∆∆;()'1log ln a x x a =的证明类似利用换底公式ln log ln a xx a=;()'x xe e=:利用导数定义()()'001lim lim x x x xx x x x x e e e ee e x x+∆∆∆→∆→--===∆∆;()'ln x x a e a =的证明类似利用对数恒等式ln x x a a e =;6定积分比较定理如果在区间[,]a b 上恒有()0f x ≥,则有()0ba f x dx ≥⎰推论:ⅰ如果在区间[,]a b 上恒有()()f x g x ≥,则有()()b baaf x dxg x dx ≥⎰⎰;ⅱ设M m 和是函数()f x 在区间[,]a b 上的最大值与最小值,则有:()()()ba mb a f x dx M b a -≤≤-⎰点评:定积分比较定理在解题时应用比较广,定积分中值定理也是它的推论;掌握其证明过程,对理解及应用该定理很有帮助;具体的证明过程教材上有; 7定积分中值定理设函数()f x 在区间[,]a b 上连续,则在积分区间[,]a b 上至少存在一点ξ使得下式成立:()()()baf x dx f b a ξ=-⎰点评:微积分的两大中值定理之一,定积分比较定理和闭区间上连续函数的推论,在证明题中有重要的作用;考研真题中更是有直接用到该定理证明方法的题目,重要性不严而喻;具体证明过程见教材;8变上限积分求导定理如果函数()f x 在区间[,]a b 上连续,则积分上限的函数()()xa x f x dx Φ=⎰在[,]ab 上可导,并且它的导数是'()()(),xa d x f x dx f x a xb dx Φ==≤≤⎰设函数()()()()u x v x F x f t dt =⎰,则有'''()(())()(())()F x f u x u x f v x v x =-;点评:不说了,考试直接就考过该定理的证明;具体证明过程见教材; 9牛顿-莱布尼兹公式如果函数()f x 在区间[,]a b 上连续,则有()()()ba f x dx Fb F a =-⎰,其中()F x 是()f x 的原函数;点评:微积分中最核心的定理,计算定积分的基础,变上限积分求导定理的推论;具体证明过程见教材;10费马引理:设函数()f x 在点0x 的某领域0()U x 内有定义,并且在0x 处可导,如果对任意的0()x U x ∈,有00()()()()f x f x f x f x ≤≥或,那么'0()0f x =点评:费马引理是罗尔定理的基础,其证明过程中用到了极限的保号性,是很重要的思想方法;具体证明过程见教材; 11罗尔定理: 如果函数()f x 满足 1在闭区间[,]a b 上连续; 2在开区间(,)a b 上可导3在区间端点处的函数值相等,即()()f a f b =那么在(,)a b 内至少存在一点()a b ξξ<<,使得'()0f ξ=;点评:罗尔定理,拉格朗日中值定理,柯西中值定理是一脉相承的三大定理;它们从形式上看是由特殊到一般,后面的定理包含前面的定理,但实际上却是相互蕴含,可以相互推导的;这几个定理的证明方法也就是与中值有关的证明题主要的证明方法;中值定理的证明是高数中的难点,一定要多加注意;具体证明过程见教材; 12拉格朗日中值定理: 如果函数()f x 满足 1在闭区间[,]a b 上连续; 2在开区间(,)a b 上可导那么在(,)a b 内至少存在一点()a b ξξ<<,使得'()()()f b f a f b aξ-=-;点评:同上;13柯西中值定理: 如果函数()f x 和()g x 满足 1在闭区间[,]a b 上连续; 2在开区间(,)a b 上可导那么在(,)a b 内至少存在一点()a b ξξ<<,使得''()()()()()()f f b f ag g b g a ξξ-=-; 点评:同上; 14单调性定理:设函数()f x 在[,]a b 上连续,在(,)a b 上可导;如果在(,)a b 上有'()0f x >,那么函数()f x 在[,]a b 上单调递增; 如果在(,)a b 上有'()0f x <,那么函数()f x 在[,]a b 上单调递减;点评:这个定理利用导数与切线斜率的关系很容易理解,但实际证明中却不能用图形来解释,需要更严密的证明过程; 证明:仅证明'()0f x >的情形,'()0f x <的情形类似;12,(,)x x a b ∀∈,假定12x x >则利用拉个朗日中值定理可得,()22,x x ξ∃∈使得()'1212()()()f x f x f x x ξ-=-; 由于()'0f ξ>,因此12()()0f x f x ->;由12,x x 的任意性,可知函数()f x 在[,]a b 上单调递增;14极值第一充分条件设函数()f x 在0x 处连续,并在0x 的某去心邻域0(,)U x δ内可导;ⅰ若00(,)x x x δ∈-时,'()0,f x >而00(,)x x x δ∈+时,'()0,f x <则()f x 在0x 处取得极大值ⅱ若00(,)x x x δ∈-时,'()0,f x <而00(,)x x x δ∈+时,'()0,f x >则()f x 在0x 处取得极小值;ⅲ若0(,)x U x δ∈时,'()f x 符号保持不变,则()f x 在0x 处没有极值; 点评:单调性定理的推论,具体证明过程见教材;15极值第二充分条件设函数()f x 在0x 处存在二阶导数且'0()0f x =,那么 ⅰ若''0()0,f x >则()f x 在0x 处取得极小值; ⅱ若''0()0,f x <则()f x 在0x 处取得极大值;点评:这个定理是判断极值点最常用的方法,证明过程需要用到泰勒公式; 证明:仅证明''0()0,f x >的情形,''0()0,f x <的情形类似;由于()f x 在0x 处存在二阶导数,由带皮亚诺余项的泰勒公式得;在0x 的某领域内成立()()()()()()220'''00000()2x x f x f x f x x x f x o x x -⎡⎤=+-++-⎣⎦由于'0()0f x =,因此()()()()()()()()()220''0002''0200020()22x x f x f x f x o x x o x x f x f x x x x x -⎡⎤=++-⎣⎦⎧⎫⎡⎤-⎪⎪⎣⎦=+-+⎨⎬-⎪⎪⎩⎭由高阶无穷小的定义可知,当0x x →时,有()()20200o x x x x ⎡⎤-⎣⎦→-,又由于()''002f x >,因此在0x 的某领域内成立()()()2''002002o x x f x x x ⎡⎤-⎣⎦+>-; 进一步,我们有()()()()()()2''020000202o x x f x f x x x f x x x ⎧⎫⎡⎤-⎪⎪⎣⎦+-+>⎨⎬-⎪⎪⎩⎭; 也即,在0x 的某领域内成立()0()f x f x >; 由极值点的定义可知()f x 在0x 处取得极小值;16洛必达法则设函数(),()f x g x 在x a =的空心邻域内可导,'()0g x ≠,且''()lim ()x a f x A g x →= 则有()lim()x af x Ag x →=,其中A 可以是有限数,也可以是,+∞-∞; 点评:洛必达法则是计算极限时最常用的方法,但它的证明却很少有人关注;洛必达法则是拉格朗日中值定理的推论,证明过程比较简单,也是一个潜在的考点,需要引起注意;具体证明过程见教材;。

2023考研数学高数重要定理:函数与极限

2023考研数学高数重要定理:函数与极限

2023考研数学高数重要定理:函数与极限2023考研数学高数重要定理:函数与极限函数与极限1、函数的有界性在定义域内有f〔x〕-geK1那么函数f 〔x〕在定义域上有下界,K1为下界假如有f〔x〕-leK2,那么有上界,K2称为上界。

函数f〔x〕在定义域内有界的充分要条件是在定义域内既有上界又有下界。

2、数列的极限定理〔极限的性〕数列xn不能同时收敛于两个不同的极限。

定理〔收敛数列的有界性〕假如数列xn收敛,那么数列xn一定有界。

假如数列xn无界,那么数列xn一定发散但假如数列xn 有界,却不能断定数列xn一定收敛,例如数列1,-1,1,-1,〔-1〕n+1…该数列有界但是发散,所以数列有界是数列收敛的要条件而不是充分条件。

定理〔收敛数列与其子数列的关系〕假如数列xn收敛于a,那么它的任一子数列也收敛于a.假如数列xn有两个子数列收敛于不同的极限,那么数列xn是发散的,如数列1,-1,1,-1,〔-1〕n+1…中子数列x2k-1收敛于1,xnk收敛于-1,xn却是发散的同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中定理〔极限的部分保号性〕假如lim〔x-rarrx0〕时f 〔x〕=A,而且A》0〔或A0〔或f〔x〕》0〕,反之也成立。

函数f〔x〕当x-rarrx0时极限存在的充分要条件是左极限右极限各自存在并且相等,即f〔x0-0〕=f〔x0+0〕,假设不相等那么limf〔x〕不存在。

一般的说,假如lim〔x-rarr-infin〕f〔x〕=c,那么直线y=c是函数y=f〔x〕的图形程度渐近线。

假如lim〔x-rarrx0〕f〔x〕=-infin,那么直线x=x0是函数y=f〔x〕图形的铅直渐近线。

4、极限运算法那么定理:有限个无穷小之和也是无穷小有界函数与无穷小的乘积是无穷小常数与无穷小的乘积是无穷小有限个无穷小的乘积也是无穷小定理假如F1〔x〕-geF2〔x〕,而limF1〔x〕=a,limF2〔x〕=b,那么a-geb.5、极限存在准那么:两个重要极限lim〔x-rarr0〕〔sinx/x〕=1lim〔x-rarr-infin〕〔1+1/x〕x=1.夹逼准那么假如数列xn、yn、zn满足以下条件:yn-lexn-lezn且limyn=a,limzn=a,那么limxn=a,对于函数该准那么也成立。

考研高数:函数与极限部分定理定义汇总

考研高数:函数与极限部分定理定义汇总

考研高数:函数与极限部分定理定义汇总[摘要]下面是凯程考研对高等数学中函数与极限部分定理定义的整理总结,分享给各位考生,希望对考生们的复习有所帮助。

进入秋季强化阶段已经有一段时间了,考研的小伙伴们,加油啊!1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。

定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。

函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。

一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。

考研数学高数中值定理的详解

考研数学高数中值定理的详解

考研数学高数中值定理的详解考研数学高数中值定理的详解我们在准备考研数学高数的复习手,面对中值定理,我们应该掌握好它的方法。

店铺为大家精心准备了考研数学高数中值定理的解析,欢迎大家前来阅读。

考研数学高数7大中值定理详解七大定理的归属。

零点定理与介值定理属于闭区间上连续函数的性质。

三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。

积分中值定理属于积分范畴,但其实也是微分中值定理的推广。

对使用每个定理的体会学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。

关键在于是对哪个函数在哪个区间上使用哪个中值定理。

1、使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。

从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。

应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。

2、介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。

3、用微分中值定理说明的问题中,有两个主要特征:含有某个函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。

应用微分中值定理主要难点在于构造适当的函数。

在微分中值定理证明问题时,需要注意下面几点:(1)当问题的结论中出现一个函数的一阶导数与一个中值时,肯定是对某个函数在某个区间内使用罗尔定理或者拉格朗日中值定理;(2)当出现多个函数的一阶导数与一个中值时,使用柯西中值定理,此时找到函数是最主要的;(3)当出现高阶导数时,通常归结为两种方法,对低一阶的导函数使用三大微分中值定理、或者使用泰勒定理说明;(4)当出现多个中值点时,应当使用多次中值定理,在更多情况下,由于要求中值点不一样,需要注意区间的选择,两次使用中值定理的区间应当不同;(5)使用微分中值定理的难点在于如何构造函数,如何选择区间。

考研数学高数38个必会知识点

考研数学高数38个必会知识点

考研数学高数38个必会知识点摘要:每一个需要考数学的考研er应该都知道,高数部分占了56%(约84分)的分数,而且高数基础不好的话,概率论可能也会有一点影响(数二不考概率,那么高数的分值更高),所以我们都知道学好高数多么重要,那么复习这么久,高数的必会知识点是哪些呢?一、函数极限连续1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。

2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。

掌握利用两个重要极限求极限的方法。

理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限。

3、理解函数连续性的概念,会判别函数间断点的类型。

了解初等函数的连续性和闭区间上连续函数的性质(最.大值、最小值定理和介值定理),并会应用这些性质。

重点是数列极限与函数极限的概念,两个重要的极限:lim(sinx/x)=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。

难点是分段函,复合函数,极限的概念及用定义证明极限的等式。

二、一元函数微分学1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。

2、掌握导数的四则运算法则和一阶微分的形式不变性。

了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。

会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。

3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。

4、理解函数极值的概念,掌握函数最.大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平铅直和斜渐近线。

5、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。

6、掌握用罗必塔法则求未定式极限的方法,重点是导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数。

考研必看考研数学基础知识点梳理(高数篇)

考研必看考研数学基础知识点梳理(高数篇)

考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

高数考研知识点归纳

高数考研知识点归纳

高数考研知识点归纳高等数学是考研数学的重要组成部分,其知识点广泛且深入,以下是对高数考研知识点的归纳总结:一、极限与连续性- 极限的定义与性质- 无穷小的比较- 函数的连续性与间断点- 连续函数的性质二、导数与微分- 导数的定义与几何意义- 基本导数公式- 高阶导数- 隐函数与参数方程的导数- 微分的概念与应用三、中值定理与导数的应用- 罗尔定理- 拉格朗日中值定理- 柯西中值定理- 泰勒公式- 导数在几何、物理等领域的应用四、不定积分与定积分- 不定积分的概念与性质- 基本积分公式- 换元积分法- 分部积分法- 定积分的定义与性质- 定积分的计算方法五、级数- 级数的概念与性质- 正项级数的收敛性判别- 幂级数与泰勒级数- 函数项级数的一致收敛性六、多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 方向导数与梯度- 多元函数的泰勒展开七、重积分与曲线积分、曲面积分- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 格林公式、高斯公式与斯托克斯定理八、常微分方程- 一阶微分方程的解法- 高阶微分方程- 线性微分方程的解法- 微分方程的应用结束语:考研高等数学的知识点繁多,要求考生不仅要掌握基本的概念和公式,还要能够灵活运用这些知识点解决实际问题。

通过系统地复习和大量的练习,可以提高解题速度和准确率,为考研数学取得高分打下坚实的基础。

希望以上的知识点归纳能够帮助考生更好地复习和准备考研高等数学。

考研数学高数常见的出证明题有哪些

考研数学高数常见的出证明题有哪些

考研数学高数常见的出证明题有哪些考研数学高数常见出证明题的6个地方考试难题一般出现在高等数学,对高等数学一定要抓住重难点进行复习。

高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下:一、数列极限的证明数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

二、微分中值定理的相关证明微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:1.零点定理和介质定理;2.微分中值定理;包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

3.微分中值定理积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

三、方程根的问题包括方程根唯一和方程根的个数的讨论。

四、不等式的证明五、定积分等式和不等式的证明主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。

六、积分与路径无关的五个等价条件这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。

以上是容易出证明题的地方,同学们在复习的时候重点归纳这类题目的解法。

考研数学做题练习需遵循5大原则1.思考着去做题,去总结很多学生都有这样的困惑,做了很多题但不会的题还是很多,最可气的就是很多题明明做过,但是再遇到还是不会做!这就是很多同学存在的通病,不求甚解。

总以为不会做了,看看答案就会了,并不会认真的思考为什么不会,解题技巧是什么,和它同类型的题我能不能会做等等。

其实,这些都是很重要的,提醒大家要学着思考,学着“记忆”,最重要是要会举一反三,这样,我们才能脱离题海的浮沉,能够做到有效做题,高效提升!2.侧重基础,培养逆向思维很多时候,备考者会陷入盲目的题海中,这也是很多考生对数学感到头痛的原因所在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学高数定理证明的知识点考研数学高数定理证明的知识点
这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。

除泰勒中值定理外,其它定理要求
会证。

费马引理中的“引理”包含着引出其它定理之意。

那么它引出的定理就是我们下面要讨论的罗尔定理。

若在微分中值定理这部分推
举一个考频最高的,那罗尔定理当之无愧。

该定理的条件和结论想
必各位都比较熟悉。

条件有三:“闭区间连续”、“开区间可导”
和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得
函数在该点的导数为0。

前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直
接得到。

那么我们看看哪个条件可能和极值产生联系。

注意到罗尔
定理的第一个条件是函数在闭区间上连续。

我们知道闭区间上的连
续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。

那么最值和极值是什么关系?这个点需要想清楚,因为直接影响
下面推理的走向。

结论是:若最值取在区间内部,则最值为极值;若
最值均取在区间端点,则最值不为极值。

那么接下来,分两种情况
讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条
告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值
和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在
开区间上任取一点都能使结论成立。

拉格朗日定理和柯西定理是用罗尔定理证出来的。

掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,
若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过
程中体现出来的基本思路,适用于证其它结论。

以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。

罗尔定理的结论等号右侧为零。

我们可以考虑
在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。

接下来,要从变形后的式子读出是对哪个函数用罗
尔定理的结果。

这就是构造辅助函数的过程——看等号左侧的式子
是哪个函数求导后,把x换成中值的结果。

这个过程有点像犯罪现
场调查:根据这个犯罪现场,反推嫌疑人是谁。

当然,构造辅助函
数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值
换成x,再对得到的函数求不定积分。

2015年真题考了一个证明题:证明两个函数乘积的导数公式。

几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的.较为
陌生。

实际上,从授课的角度,这种在2015年前从未考过的基本公
式的证明,一般只会在基础阶段讲到。

如果这个阶段的考生带着急
功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可
能从未认真思考过该公式的证明过程,进而在考场上变得很被动。

这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中
未考过的重要结论的证明,有可能考到,不要放过。

当然,该公式的证明并不难。

先考虑f(x)*g(x)在点x0处的导数。

函数在一点的导数自然用导数定义考察,可以按照导数定义写
出一个极限式子。

该极限为“0分之0”型,但不能用洛必达法则,
因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。

利用数学上常用的拼凑之法,加一项,减一项。

这个“无中生有”
的项要和前后都有联系,便于提公因子。

之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。

再由x0的任意性,便得到了
f(x)*g(x)在任意点的导数公式。

类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。

该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把
积分变量x换成中值。

如何证明?可能有同学想到用微分中值定理,
理由是微分相关定理的结论中含有中值。

可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值
而且不含导数,而待证的积分中值定理的结论也是含有中值但不含
导数。

若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?
这里有个小的技巧——看中值是位于闭区间还是开区间。

介值定理
和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证
的积分中值定理的结论中的中值位于闭区间。

那么何去何从,已经
不言自明了。

若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一
下介值定理和积分中值定理的结论:介值定理的结论的等式一边为
某点处的函数值,而等号另一边为常数A。

我们自然想到把积分中
值定理的结论朝以上的形式变形。

等式两边同时除以区间长度,就
能达到我们的要求。

当然,变形后等号一侧含有积分的式子的长相
还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。

这个数就相当于介值
定理结论中的A。

接下来如何推理,这就考察各位对介值定理的熟悉程度了。

该定理条件有二:1.函数在闭区间连续,2.实数A位于函数在闭区间上
的最大值和最小值之间,结论是该实数能被取到(即A为闭区间上某
点的函数值)。

再看若积分中值定理的条件成立否能推出介值定理的
条件成立。

函数的连续性不难判断,仅需说明定积分除以区间长度
这个实数位于函数的最大值和最小值之间即可。

而要考察一个定积
分的值的范围,不难想到比较定理(或估值定理)。

相关文档
最新文档