七年级数学下册同步练习题21---代入法
2018-2019学年人教版七年级下册数学课时同步练习卷:8.2二元一次方程组的解法
8.2二元一次方程组的解法一、填空题1.已知方程2x+3y-8=0,用含x 的式子表示y 为 y=-23x+83 ,用含y 的式子表示x 为 x=-32y+4 .2.方程组{x +y =10,2x +y =16的解是 {x =6y =4 3.若方程组{x +4=y,2x -y =2a中的x 是y 的2倍,则a= -6 . 4.二元一次方程x+3y=4有一组解互为相反数,则此时y 的值是 25. 已知{x =2,y =1是关于x ,y 的二元一次方程组{ax +by =7,ax -by =1的一组解,则a+b= 5 . 6. 若a-3b=2,3a-b=6,则b-a 的值为 -2 .7. 已知x ,y 满足方程组{x -2y =5,x +2y =−3,则x 2-4y 2的值为 -15 . 8.以关于x ,y 的方程2x+5y=-9和5x-6y=33的解为坐标的点P (x ,y )在第 四 象限.9.如果方程组{x +y =1,ax +by =c有唯一的一组解,那么a ,b ,c 的值应当满足a ≠b 10.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,则该组男生有 18 人,女生有 12 人.二、选择题11.二元一次方程组的解是( B )A. B. C. D.12.已知2x+3y=6,用含有y 的式子表示x ,得(A)A .x=3-32yB .y=2-23xC .x=3-3yD .y=2-2x 13.用加减消元法解二元一次方程组时,下列步骤可以消去未知数x 的是(D )A.①×4+②×3B.①×2+②×5C.①×5+②×2D.①×5-②×214.用代入法解二元一次方程组{4x +5y =3,3x -y =7时,比较简便的变形是(D) A .x=3−5y 4B .y=3−4x 5C .x=y+73D .y=3x-715.方程组消去y 后所得的方程是( A )A.3x -4x +10=8B.3x -4x +5=8C.3x -4x -5=8D.3x -4x -10=816.在解方程组{3x +2y =2 ①,2x +2y =−1 ②中,①-②所得的方程是(C) A .x=1B .5x=-1C .x=3D .5x=3 17.由方程组可得出x 与y 的关系是( A )A. B. C. D.18.二元一次方程x+3y=4有一组解互为相反数,则此时y 的值是(D)A.1B.-1C.0D.219. 如果方程组{x +y =1,ax +by =c有唯一的一组解,那么a ,b ,c 的值应当满足(B) A.a=1,c=1 B.a ≠bC.a=b=1,c ≠1D.a=1,c ≠120.若方程组{3x +y =1+3a,x +3y =1−a的解满足x-y=-2,则a 的值为(A) A .-1B .1C .-2D .不能确定 三、解答题21.用代入法解方程组:(1){x -3y =2,y =x.解:方程组的解为{x =−1,y =−1.(2){4x +3y =5,x -2y =4.解:方程组的解为{x =2,y =−1.22.如果{x =3,y =−2是方程组{ax +by =1,ax -by =5的解,求a 2019-2b 2018的值. 解:方程组ax+by=1, ①ax-by=5,② ①+②,得2ax=6,①-②,得2by=-4,把x=3,y=-2分别代入,得a=1,b=1.当a=1,b=1时,a 2019-2b 2018=12019-2×12018=-1.23.利用加减消元法解方程组{3x +4y =16 ①,5x -6y =14 ②,答案略24.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.解:设甲种车每辆一次运土x 立方米,乙种车每辆一次运土y 立方米.由题意得{5x +2y =64,3x +y =36,解得{x =8,y =12. 答:甲种车每辆一次运土8立方米,乙种车每辆一次运土12立方米.25.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,问中、小型汽车各有多少辆?解:设中型汽车有x 辆,小型汽车有y 辆.根据题意,得{x +y =50,12x +8y =480,解得{x =20,y =30. 答:中型汽车有20辆,小型汽车有30辆.26.先阅读材料,然后解方程组.材料:解方程组{x -y =1,①4(x -y)-y =5,②把①代入②,得4×1-y=5,解得y=-1.把y=-1代入①,得x=0.所以方程组的解为{x =0,y =−1.这种方法被称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组{x -3y -8=0,2x -6y+57+2y =9. 解:方程组的解为{x =17,y =3.27.对于任意的有理数a ,b ,c ,d ,我们规定:|a b c d|=ad-bc ,根据这一规定,解答下列问题:若x ,y 同时满足|x (-y)(-6)5|=13,|34(-y)x |=4,求|x (-y)3-2|的值. 解:根据题意,得{5x -6y =13,3x +4y =4,解得x=2,y=-12.∴|x (-y)3-2|=|2123-2|=-2×2-3×12=-112. 28.已知方程组{x -y =5,ax +3y =b -1.分别求:(1)有无数多个解时a ,b 的值;(2)有唯一解时a ,b 的值;(3)无解时a ,b 的值.解:x-y=5, ①ax+3y=b-1, ②由①得x=y+5.③ 将③代入②,得a (y+5)+3y=b-1,即(a+3)y=-5a+b-1.(1)当{a +3=0,-5a +b -1=0,即{a =−3,b =−14时,原方程组转化为{x -y =5,x -y =5,那么满足x-y=5的x ,y 的值有无数对,即当a=-3,b=-14时,原方程组有无数多个解.(2)当a ≠-3时,y 有唯一解y=-5a+b -1a+3,即当a ≠-3,b 为任意实数时,原方程组有唯一解.(3)当{a +3=0,-5a +b -1≠0即{a =−3,b ≠−14时,原方程组转化为{x -y =5,x -y ≠5,因为这两个方程互相矛盾,所以方程组无解,即当a=-3,b ≠-14时,原方程组无解.。
二元一次方程组解法-代入法练习题
二元一次方程组解法(一)—-代入法(基础)巩固练习【巩固练习】一、选择题1.用代入消元法解方程组323211x yx y-=⎧⎨+=⎩①②代入消元法正确的是()。
A .由①②得y =3x+2,代入②,得3x=11—2(3x+2)B.由②得1123yx-=,代入①,得11231123yy-=-C.由①得23yx-=,代入②,得2—y=11—2yD.由②得3x=11-2y,代入①,得11-2y-y=22.用代入法解方程组34225x yx y+=⎧⎨-=⎩①②使得代入后化简比较容易的变形是().A.由①得243yx-=B.由①得234xy-=C.由②得52yx+=D.由②得y=2x-53.对于方程3x—2y—1=0,用含y的代数式表示x,应是()。
A.1(31)2y x=-B.312xy+=C.1(21)3x y=-D.213yx+=4.已知x+3y=0,则3232y xy x+-的值为().A.13B.13-C.3 D.—35.一副三角板按如图摆放,∠1的度数比∠2的度数大50°,若设,,则可得到方程组为().A. B.C。
D.6.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解.则a -b 的值为( )。
A .-1B .1C .2D .3二、填空题7.解方程组523,61,x y x y +=⎧⎨-=⎩①②若用代入法解,最好是对方程________变形,用含_______的代数式表示________.8.如果-x+3y =5,那么7+x -3y =________.9.方程组525x y x y =+⎧⎨-=⎩的解满足方程x+y —a =0,那么a 的值是________. 10。
若方程3x -13y =12的解也是x -3y =2的解,则x =________,y =_______. 11.小刚解出了方程组332x y x y -=⎧⎨+=⎩▲的解为4x y =⎧⎨=⎩▉,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲=________,▇=________。
人教版数学七年级下册8.2.1《代入法》教案
人教版数学七年级下册8.2.1《代入法》教案一. 教材分析《代入法》是人教版数学七年级下册第8.2.1节的内容,主要介绍了代入法在解一元二次方程中的应用。
本节内容是在学生已经掌握了求解一元二次方程的配方法、因式分解法的基础上进行教学的,旨在让学生进一步掌握解一元二次方程的方法,提高他们解决实际问题的能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于求解一元二次方程的配方法、因式分解法有一定的了解。
但他们在解决实际问题时,往往不知道如何运用所学知识。
因此,在教授代入法时,需要注重引导学生将理论知识与实际问题相结合,提高他们的解题能力。
三. 教学目标1.让学生掌握代入法的基本概念及其在解一元二次方程中的应用。
2.培养学生运用代入法解决实际问题的能力。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.重点:代入法的概念及其在解一元二次方程中的应用。
2.难点:如何引导学生将实际问题转化为代入法的形式,并运用代入法解决问题。
五. 教学方法1.采用问题驱动法,引导学生通过解决实际问题来学习代入法。
2.利用多媒体课件,生动展示代入法的应用过程,提高学生的学习兴趣。
3.采用分组讨论法,让学生在合作中思考、交流,提高他们的解题能力。
4.通过课后练习,巩固所学知识,提高学生的实际应用能力。
六. 教学准备1.多媒体课件:制作有关代入法的教学课件,包括图片、动画等素材,以便于生动展示教学内容。
2.教学案例:挑选一些与生活实际相关的一元二次方程问题,作为教学案例。
3.练习题:准备一些关于代入法的练习题,用于课后巩固所学知识。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些与生活实际相关的一元二次方程问题,引导学生思考如何解决这些问题。
2.呈现(10分钟)介绍代入法的概念,并通过具体案例展示代入法在解一元二次方程中的应用。
让学生分组讨论,总结代入法的步骤和注意事项。
3.操练(10分钟)让学生分组解决一些实际问题,运用代入法求解一元二次方程。
用代入法解二元一次方程组 专题练习题 含答案
人教版数学七年级下册 第八章二元一次方程组 8.2 消元——解二元一次方程组用代入法解二元一次方程组 专题练习题1.用代入消元法解方程组⎩⎨⎧x -2y =1,①3x +5y =2,②以下各式正确的是( ) A .3(1-2y)+5y =2 B .3(1+2y)+5y =2C .3-2y +5y =2D .1-3×2y +5y =22.二元一次方程组⎩⎨⎧x +y =5,2x -y =4的解为( ) A.⎩⎨⎧x =1y =4 B.⎩⎨⎧x =2y =3 C.⎩⎨⎧x =3y =2 D.⎩⎨⎧x =4y =13.已知3x -2y =4,用含x 的代数式表示y 为 y =3x -42,用含y 的代数式表示x 为______________________.4.用代入法解方程组:(1)⎩⎨⎧2x +y =4,x +2y =5; (2)⎩⎨⎧x -2y =-1,2x +y =2.5.若x -y +3与|2x +y|互为相反数,则x +y 的值为( )A .-1B .1C .2D .36.以方程组⎩⎨⎧2x -y =4,3x +2y =-1的解为坐标的点(x ,y)在平面直角坐标系中的位置是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,则买甲种票的张数为____,买乙种票的张数为____.8.现有面额100元和50元的人民币共35张,面额合计3000元,求这两种人民币各有多少张?9.如果12a 3x b y 与-a 2y b x +1是同类项,则( )A.⎩⎨⎧x =-2y =3B.⎩⎨⎧x =2y =-3C.⎩⎨⎧x =-2y =-3D.⎩⎨⎧x =2y =310.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A .10 g ,40 gB .15 g ,35 gC .20 g ,30 gD .30 g ,20 g11.方程组⎩⎨⎧x =y +5,2x -y =7的解满足方程x +y +a =0,那么a 的值是( ) A .0 B .-2 C .1 D .-112.方程组⎩⎨⎧4x -3y =k ,2x +3y =5的解x 与y 的值相等,则k 的值为( ) A .1或-1 B .1 C .-1 D .5或-513.关于x ,y 的方程组⎩⎨⎧x +m =6,y -3=m中,x +y =____. 14.若关于x ,y 的方程组⎩⎨⎧x +y =3,mx -ny =0与⎩⎨⎧x -y =1,nx +my =5有相同的解,则m =____,n =____. 15.解下列方程组:(1)⎩⎨⎧x =3y -5,3y =8-2x ;(2)⎩⎨⎧3x -y =7,x +3y =-1;16. 如图是一个正方体的展开图,标注了字母a 的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求a ,x ,y 的值.17. 某班将举行“数学知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?18.甲、乙两人共同解方程组⎩⎨⎧Ax +By =2,Cx -3y =-2,甲正确解得⎩⎨⎧x =1,y =-1,乙抄错C ,解得⎩⎨⎧x =2,y =-6,求A ,B ,C 的值.答案:1. B2. C3. x =2y +434. (1) 解:⎩⎨⎧x =1y =2 (2) 解:⎩⎨⎧x =0.6y =0.85. B6. D7. 20 158. 解:设面额100元与50元的人民币分别有x 张与y 张,由题意可得⎩⎨⎧x +y =35,100x +50y =3000,解得⎩⎨⎧x =25,y =10,则面额100元的人民币有25张,面额50元的人民币有10张 9. D10. C11. C12. B13. 914. 1 215. (1) 解:⎩⎨⎧x =1y =2(2) 解:⎩⎨⎧x =2y =-116. 解:由题意得a =3,5-x =y +1,y =2x -5,解方程组⎩⎨⎧y =2x -5,5-x =y +1,得⎩⎨⎧x =3y =117. 解:(1)设5元、8元的笔记本分别买了x 本、y 本,依题意得⎩⎨⎧x +y =40,5x +8y =300-68+13,解得⎩⎨⎧x =25,y =15,则5元笔记本买了25本,8元笔记本买了15本 (2)假设小明找回68元,设5元、8元的笔记本分别买a 本、b 本,依题意得⎩⎨⎧a +b =40,5a +8b =300-68,解得⎩⎪⎨⎪⎧a =883,b =323,因为a ,b 不是整数,所以不可能找回68元18. 解:将⎩⎨⎧x =1,y =-1代入方程组⎩⎨⎧Ax +By =2,Cx -3y =-2,得⎩⎨⎧A -B =2,C +3=-2,解得C =-5,把⎩⎨⎧x =2,y =-6代入Ax +By =2,得2A -6B =2,解方程组⎩⎨⎧A -B =2,2A -6B =2,得⎩⎪⎨⎪⎧A =52B =12。
人教版七年级数学下册第八章二元一次方程组课时分层练习题及答案(每课时2-3套)
8.1 二元一次方程组基础题知识点1 认识二元一次方程(组)1.下列方程中,是二元一次方程的是(D )A .3x -2y =4zB .6xy +9=0C .1x +4y =6D .4x =y -242.下列方程组中,是二元一次方程组的是(A )A .⎩⎪⎨⎪⎧x +y =42x +3y =7 B .⎩⎪⎨⎪⎧2a -3b =115b -4c =6C .⎩⎪⎨⎪⎧x 2=9y =2x D .⎩⎪⎨⎪⎧x +y =8x 2-y =4 3.(龙口市期中)在方程(k -2)x 2+(2-3k)x +(k +1)y +3k =0中,若此方程为关于x ,y 的二元一次方程,则k 值为(C )A .-2B .2或-2C .2D .以上答案都不对4.写出一个未知数为a ,b 的二元一次方程组:答案不唯一,如⎩⎪⎨⎪⎧2a +b =1,a -b =2等.5.已知方程x m -3+y2-n=6是二元一次方程,则m -n =3.6.已知xm +n y 2与xym -n的和是单项式,则可列得二元一次方程组⎩⎪⎨⎪⎧m +n =1m -n =2.知识点2 二元一次方程(组)的解7.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是(B )A .⎩⎪⎨⎪⎧x =0y =-12 B .⎩⎪⎨⎪⎧x =1y =1 C .⎩⎪⎨⎪⎧x =1y =0 D .⎩⎪⎨⎪⎧x =-1y =-1 8.(丹东中考)二元一次方程组⎩⎪⎨⎪⎧x +y =5,2x -y =4的解为(C )A .⎩⎪⎨⎪⎧x =1y =4B .⎩⎪⎨⎪⎧x =2y =3C .⎩⎪⎨⎪⎧x =3y =2D .⎩⎪⎨⎪⎧x =4y =1 9.若⎩⎪⎨⎪⎧x =1,y =2是关于x ,y 的二元一次方程ax ―3y =1的解,则a 的值为(D )A .-5B .-1C .2D .7知识点3 建立方程组模型解实际问题10.(温州中考)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意,列方程组正确的是(A )A .⎩⎪⎨⎪⎧x +y =7x =2y B .⎩⎪⎨⎪⎧x +y =7y =2xC .⎩⎪⎨⎪⎧x +2y =7x =2yD .⎩⎪⎨⎪⎧2x +y =7y =2x 11.(盘锦中考)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x 吨,一辆小货车一次可以运货y 吨,根据题意所列方程组正确的是(A )A .⎩⎪⎨⎪⎧2x +3y =15.55x +6y =35B .⎩⎪⎨⎪⎧2x +3y =355x +6y =15.5C .⎩⎪⎨⎪⎧3x +2y =15.55x +6y =35D .⎩⎪⎨⎪⎧2x +3y =15.56x +5y =35 中档题12.(大名县期末)若方程x |a|-1+(a -2)y =3是二元一次方程,则a 的取值范围是(C ) A .a >2 B .a =2 C .a =-2 D .a <-213.(萧山区期中)方程y =1-x 与3x +2y =5的公共解是(B )A .⎩⎪⎨⎪⎧x =-3y =-2B .⎩⎪⎨⎪⎧x =3y =-2C .⎩⎪⎨⎪⎧x =-3y =4D .⎩⎪⎨⎪⎧x =3y =2 14.(内江中考)植树节这天有20名同学种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y 人,根据题意,下列方程组正确的是(D )A .⎩⎪⎨⎪⎧x +y =523x +2y =20B .⎩⎪⎨⎪⎧x +y =522x +3y =20C .⎩⎪⎨⎪⎧x +y =202x +3y =52D .⎩⎪⎨⎪⎧x +y =203x +2y =52 15.(齐齐哈尔中考)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(B )A .1种B .2种C .3种D .4种16.(滨州模拟)若⎩⎪⎨⎪⎧x =a ,y =b 是方程2x +y =0的解,则6a +3b +2=2.17.已知两个二元一次方程:①3x -y =0,②7x -2y =2.(1)对于给出x 的值,在下表中分别写出对应的y 的值; x -2 -1 0 1 2 3 4 y ① -6 -3 0 3 6 9 12 y ②-8-4.5-12.569.513(2)请你写出方程组⎩⎪⎨⎪⎧3x -y =0,7x -2y =2的解.解:⎩⎪⎨⎪⎧x =2,y =6.18.已知甲种物品每个重4 kg ,乙种物品每个重7 kg ,现有甲种物品x 个,乙种物品y 个,共重76 kg .(1)列出关于x ,y 的二元一次方程; (2)若x =12,则y =4;(3)若乙种物品有8个,则甲种物品有5个; (4)写出满足条件的x ,y 的全部整数解. 解:(1)4x +7y =76.(4)由4x +7y =76,得x =76-7y4.又由题意得y 为正整数,当y =0时,x =19; 当y =1时,x =76-74=694,不合题意;当y =2时,x =76-2×74=312,不合题意;当y =3时,x =76-3×74=554,不合题意;当y =4时,x =76-4×74=12;当y =5时,x =76-5×74=414,不合题意;当y =6时,x =76-6×74=172,不合题意;当y =7时,x =76-7×74=274,不合题意;当y =8时,x =76-8×74=5;当y =9时,x =76-9×74=134,不合题意;当y =10时,x =76-10×74=32,不合题意;当y =11时,x =76-11×74<0,不合题意.∴满足x ,y 的全部整数解是⎩⎪⎨⎪⎧x =5,y =8,⎩⎪⎨⎪⎧x =12,y =4,⎩⎪⎨⎪⎧x =19,y =0.19.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼中放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?解:(1)设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得⎩⎪⎨⎪⎧x +y =13,0.8x +2y =20.(2)设有x 只鸡,y 个笼,根据题意得⎩⎪⎨⎪⎧4y +1=x ,5(y -1)=x.综合题20.甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2 016+(-110b)2 017.解:把⎩⎪⎨⎪⎧x =-3,y =-1代入方程②中,得4×(-3)-b ×(-1)=-2,解得b =10.把⎩⎪⎨⎪⎧x =5,y =4代入方程①中,得5a+5×4=15,解得a=-1.∴a2 016+(-110b)2 017=(-1)2 016+(-110×10)2 017=1+(-1)=0. 不用注册,免费下载!【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
七年级数学(下)第八章《消元——解二元一次方程组》练习题含答案
七年级数学(下)第八章《消元——解二元一次方程组》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.用加减消元法解方程组23537x y x y -=⎧⎨=+⎩①②正确的方法是A .①+②得2x =5B .①+②得3x =12C .①+②得3x +7=5D .先将②变为x -3y =7③,再①-③得x =-2【答案】D【解析】先将②变为x -3y =7③,再①-③得x =-2.故选D . 2.用代入法解方程组2503510x y x y -=⎧⎨+-=⎩①②时,最简单的方法是A .先将①变形为x =52y ,再代入② B .先将①变形为y =25x ,再代入②C .先将②变形为x =153y-,再代入①D .先将①变形为5y =2x ,再代入② 【答案】D【解析】由①得:5y =2x ,把5y =2x 代入②即可.故选D . 3.解方程组35237x y x y +=⎧⎨+=⎩①②,错误的解法是A .先将①变形为53x y =+,再代入②B .先将①变形为53x y =-,再代入②C .将-②①,消去yD .将2⨯-①②,消去x 【答案】A【解析】用代入法解二元一次方程组时先将①变形为53x y =-,移项要变号,选项A 错误.故选A .4.解方程组:(1)4273210x y x y -=⎧⎨+=⎩;(2)2359x y x y =⎧⎨-=⎩;(3)459237x y x y +=⎧⎨-=⎩;(4)7341x y x y +=⎧⎨-=⎩比较适宜的方法是A .(1)(2)用代入法,(3)(4)用加减法B .(1)(3)用代入法,(2)(4)用加减法C .(2)(3)用代入法,(1)(4)用加减法D .(2)(4)用代入法,(1)(3)用加减法 【答案】D(4)第一个方程转化为x =7-y ,代入第二个方程即可消去未知数x ,用代入法比较适宜.故选D .5.二元一次方程组320x y x y -=-⎧⎨+=⎩的解是A .12x y =-⎧⎨=⎩B . 12x y =⎧⎨=-⎩C .12x y =-⎧⎨=-⎩D .21x y =-⎧⎨=⎩【答案】A【解析】将方程组中的两个方程相加得3x =-3,解得x =-1,将x =-1代入方程组中得任意一个方程可得y =2,所以12x y =-⎧⎨=⎩.故选A .6.已知方程组323()11x y y x y -=⎧⎨+-=⎩,那么代数式3x -4y 的值为A .1B .8C .-1D .-8【答案】B【解析】将x -y =3代入方程2y +3(x -y )=11得2y +9=11,解得y =1,将y =1代入x -y =3得x =4, 所以3x -4y =3×4-4×1=8.故选B . 7.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为 A .21x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩【答案】D【解析】由同类项的定义可得24325y xx y-=⎧⎨=+⎩,整理得34225x yy x+=⎧⎨=-⎩①②,将②代入①得3x+4(2x-5)=2,解得x=2,将x=2代入②得y=-1,所以21xy=⎧⎨=-⎩.故选D.8.已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m-n的算术平方根为A.±2 B.2C.2 D.4 【答案】C9.已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,给出下列结论:①51xy=⎧⎨=-⎩是方程组的一个解;②当2a=时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④x,y间的数量关系是x+y=4-a,其中正确的是A.②③B.①②③C.①③D.①③④【答案】C【解析】①中将51xy=⎧⎨=-⎩代入方程组得534513aa-=-⎧⎨+=⎩,解得:a=2,所以①正确;②中将a=2代入方程组中得326x yx y+=⎧⎨-=⎩①②,①+②得x+y=4,所以②错误;③中将a=1代入方程组得333x yx y+=⎧⎨-=⎩,解得3xy=⎧⎨=⎩,将其代入x-2y=3-2×0=3,所以③正确;④中,将方程组中的两个方程相加得x+y=2+a,所以④错误.故选C.二、填空题:请将答案填在题中横线上.10.已知23523x yx y+=⎧⎨+=-⎩,则3x+3y的值为__________.【答案】32【解析】23523x y x y +=⎧⎨+=-⎩①②,①+②得:442x y +=,即12x y +=,13333()322x y x y +=+=⨯=.故答案为:32. 11.方程组221x y x y +=-=⎧⎨⎩的解是__________.【答案】11x y ==⎧⎨⎩【解析】221x y x y +=⎧⎨-=⎩①②,①+②,得:3x =3,解得x =1,把x =1代入①得,y =1.故方程组的解为:11x y ==⎧⎨⎩,故答案为:11x y ==⎧⎨⎩.12.若关于x 、y 的二元一次方程组59x y kx y k+=-=⎧⎨⎩的解也是二元一次方程2x +3y =6的解,则k 的值为__________.【答案】3413.已知|2x -3y +4|与(x -2y +5)2互为相反数,则(x -y )2019=__________.【答案】1【解析】由题意,得2|234|(25)0x y x y -++-+=,∴2x −3y +4=0,x −2y +5=0,∴x =7,y =6,∴20192019()(76)1x y -=-=,故答案为:1.14.若方程组42ax by ax by -=⎧⎨+=⎩与方程组234456x y x y +=⎧⎨-=⎩的解相同,则a =__________,b =__________.【答案】3319;112-【解析】解方程组234456x y x y +=⎧⎨-=⎩得1911211x y ⎧=⎪⎪⎨⎪=⎪⎩,将1911211x y ⎧=⎪⎪⎨⎪=⎪⎩代入第一个方程组中得1924111119221111a b a b ⎧-=⎪⎪⎨⎪+=⎪⎩,解得3319112a b ⎧=⎪⎪⎨⎪=-⎪⎩,故答案为:3319;112-.三、解答题:解答应写出文字说明、证明过程或演算步骤. 15.用合适的方法解下列方程组:(1)4023222y x x y =-⎧⎨+=⎩①②;(2)235421x y x y +=⎧⎨-=⎩①②;(3)651533x y x y +=⎧⎨-=-⎩①②.【解析】(1)将①代入②得,32(402)22x x +-=, 解得x =58,故原方程组的解为:131698x y ⎧=⎪⎪⎨⎪=⎪⎩.(3)②×5得:15x -5y =-15③, ①+③得:21x =0, 解得:x =0,将x =0代入②,得y =3, 故原方程组的解为:03x y =⎧⎨=⎩.16.已知关于x ,y 的方程组54522x y ax by +=⎧⎨+=-⎩与2180x y ax by -=⎧⎨--=⎩有相同的解,求a ,b 的值.【解析】由题意可将x +y =5与2x -y =1组成方程组521x y x y +=⎧⎨-=⎩,解得23x y =⎧⎨=⎩,把23x y =⎧⎨=⎩代入4ax +5by =-22,得8a +15b =-22①,把23x y =⎧⎨=⎩代入ax -by -8=0,得2a -3b -8=0②,与②组成方程组,得815222380a b a b +=-⎧⎨--=⎩,解得12a b =⎧⎨=-⎩.17.已知关于,x y 的方程组212x y x y m +=⎧⎨-=⎩①②.(1)若用代入法求解,可由①得:x =__________③,把③代入②解得y =__________,将其代入③解得x =__________,∴原方程组的解为__________;(2)若此方程组的解x y ,互为相反数,求这个方程组的解及m 的值. 【解析】(1)若用代入法求解,可由①得12x y =-③,把③代入②解得14m y -=, 将其代入③解得12m x +=,∴原方程组的解为1214m x m y +⎧=⎪⎪⎨-⎪=⎪⎩.故答案为:12y -;14m -;12m +;1214m x m y +⎧=⎪⎪⎨-⎪=⎪⎩.(2)∵方程组的解x y ,互为相反数, ∴x y =-③,将③代入①得21y y -+=, ∴1y =, ∴1x =-,∴2123m x y =-=--=-,∴方程组的解是11x y =-⎧⎨=⎩,3m =-.18.小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染325x y x y -=+=⎩∆⎧⎨,“口”和“△”表示被污染的内容,他着急,翻开书后面的答案,这道题的解是21x y ==-⎧⎨⎩,你能帮助他补上“口”和“△”的内容吗?说出你的方法.【解析】把x =2,y =-1代入两方程,得3×2-2×(-1)=8,5×2-1=9. ∴被污染的内容是8和9.。
人教版数学七年级下册8.2.1《代入法》教学设计
人教版数学七年级下册8.2.1《代入法》教学设计一. 教材分析人教版数学七年级下册8.2.1《代入法》是初中数学的重要内容,主要让学生了解代入法的概念,学会运用代入法解方程组。
本节课的内容是在学生已经掌握了二元一次方程组的基础上进行学习的,通过代入法的学习,可以培养学生解决问题的能力,提高学生的逻辑思维能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于二元一次方程组已经有了一定的了解。
但是,对于代入法这一概念,学生可能还比较陌生,需要通过实例来引导学生理解和掌握。
同时,学生对于新的学习方法和解题策略的接受程度不同,需要教师在教学中进行引导和鼓励。
三. 教学目标1.让学生了解代入法的概念,理解代入法的原理。
2.培养学生运用代入法解方程组的能力。
3.培养学生的逻辑思维能力,提高学生解决问题的能力。
四. 教学重难点1.代入法的概念和原理的理解。
2.如何运用代入法解方程组。
五. 教学方法1.采用实例教学法,通过具体的例子让学生理解和掌握代入法。
2.采用小组合作学习法,让学生在合作中思考,在思考中学习。
3.采用问题驱动法,引导学生主动探究,主动解决问题。
六. 教学准备1.准备相关的教学实例。
2.准备教学PPT。
3.准备小组合作学习的材料。
七. 教学过程1.导入(5分钟)通过一个具体的例子,让学生感受代入法的魅力,激发学生的学习兴趣。
2.呈现(10分钟)讲解代入法的概念和原理,让学生理解代入法是如何运作的。
3.操练(10分钟)让学生通过解决具体的问题,运用代入法解方程组,加深学生对代入法的理解。
4.巩固(10分钟)通过一些练习题,让学生巩固所学的知识,提高学生运用代入法解题的能力。
5.拓展(10分钟)让学生思考,代入法是否只适用于解方程组,还可以用在其他的数学问题中吗?引导学生主动探究。
6.小结(5分钟)对本节课的内容进行小结,让学生明确所学的内容,强化记忆。
7.家庭作业(5分钟)布置一些相关的家庭作业,让学生在家里巩固所学的内容。
七年级数学下册练习题及答案
1. 用一副三角板不能画出A.75°角B.135°角C.160°角D.105°角2. 如图,直线a ,b 相交于点O ,若∠1=40°,则∠2等于 A.50° B.60° C.140° D.160°3. 在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是4. 下面正确的是A.三条直线中一定有两条直线平行B.两条直线同时与第三条直线相交,那么它们一定平行C.若直线∥22,l l ∥3l ,…1-n l ∥n l ,那么1l ∥n lD.直线13221,,l l l l l 则⊥⊥∥3l5. 下列命题正确的是A.若∠MON+∠NOP=90º则∠MOP 是直角B.若α与β互为补角,则α与β中必有一个为锐角.另一个为钝角C.两锐角之和是直角D.若α与β互为余角,则α与β均为锐角6. 如图,已知直线AB 、CD 相交于点O ,OE 平分∠COB ,若∠EOB =55º,则∠BOD 的度数是 A.35º B.55º C.70º D.110º1 2 a bA B C A B C D B E C O DA7. 已知:如图,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是 A.相等 B.互余 C.互补 D.互为对顶角8. 已知∠α=35°19′,则∠α的余角等于A.144°41′B. 144°81′C. 54°41′D. 54°81′9. 如图,直线l 1与l 2相交于点O ,1OM l ⊥,若44α∠=︒,则β∠等于 A.56︒ B.46︒ C.45︒ D.44︒10. 如图,已知∠1=∠2,∠3=80O,则∠4=A.80OB. 70OC. 60OD. 50O11. 如图,AB ∥CD ,AC ⊥BC ,∠BAC =65°,则∠BCD =______________度。
人教版七年级下册数学计算题300道
七年级数学下册复习试卷——计算题姓名__________ 班别___________ 座号___________1、)2()9()3(32422ab b a b a -⋅-÷2、 ()()733222x x x ÷⋅-3、)2()(b a b a -++-4、22(1)3(2)x x x ---+5、,4)12(332312++--x x x6、)346(21)21(3223223ab b a a ab b a a ++-+-7、(x+2)(y+3)-(x+1)(y-2) 8、22)2)(2(y y x y x ++-9、x(x -2)-(x+5)(x -5) 10、⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x 22411、)94)(32)(23(22x y x y y x +--- 12、()()3`122122++-+a a13、()()()2112+--+x x x 14、(x -3y)(x+3y)-(x -3y)215、23(1)(1)(21)x x x +--- 16、22)23()23(y x y x --+17、22)()(y x y x -+ 18、x y y x ÷-+])3[(2219、0.125100×8100 20、()xy xy xy y x 18361085422÷--21、3022)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛ 22、(1211200622332141)()()()-⨯+----用乘法公式计算下列各题:23、999×1001 24、1992-25、298 26、2010200820092⨯-27、化简求值:)4)(12()12(2+-+-a a a ,其中2-=a 。
28、化简求值2(2)2()()2(3)x y x y x y y x y +--++-,其中12,2x y =-=。
人教版七年级下册数学全册课时练习
1 3 1 1 1 3 1 1 + − − = + − − 3 4 6 4 4 4 3 6 1 − 2 + 3 − 4 = 2 −1 + 4 − 3 D、 4.5 −1.7 − 2.5 + 1.8 = 4.5 − 2.5 + 1.8 −1.7
)
C. B.
9. 下列计算结果中等于 3 的是(
A.
−7 + +4
1.2 有理数 同步练习
一、判断 1、自然数是整数。 ﹝ ﹞ 2、有理数包括正数和负数。 ﹝ ﹞ 3、有理数只有正数和负数。 ﹝ ﹞ 4、零是自然数。 ﹝ ﹞ 5、正整数包括零和自然数。 ﹝ ﹞ 6、正整数是自然数, ﹝ ﹞ 7、任何分数都是有理数。 ﹝ ﹞ 8、没有最大的有理数。 ﹝ ﹞ 9、有最小的有理数。 ﹝ ﹞ 二、填空 1、某日,泰山的气温中午 12 点为 5℃,到晚上 8 点下降了 6℃.那么这天晚上 8 点的气温 为 。 0 2、如果零上 28 度记作 28 C,那么零下 5 度记作 3、若上升 10m 记作 10m,那么-3m 表示 4、比海平面 低 20m 的地方,它的高度记作海拔 三、选择题 5、在-3,-1
周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌 情况如下表: 单位:元 日期 开盘 收盘 当日收盘价 试在表中填写周二到周五该股票的收盘价. 周二 +0.16 -0.23 周三 +0.25 -1.32 周四 +0.78 -0.67 周五 +2.12 -0.65
3、 春季某河流的河水因春雨先上涨了 15cm,随后又下降了 15cm.请你用合适的方法 来表示这条河流河水的变化情况. 六、探究创新 1、一种零件的直径尺寸在图纸上是 30
七年级下册数学 第七章二元一次方程组同步练习题及答案
7.1 谁的包裹多(1)如果设这个班有x 名女同学,y 名男同学.由女生人数的一半比男生人数少15人,可得什么方程?答:______.由再来4名女同学,男女生人数就相等了,你能得怎样的方程?答:______. (2)如果设小华买了x 张80分的邮票,y 张2元的邮票,你能得到怎样的方程? 答:______.测验评价等级:A B C ,我对测验结果(满意、一般、不满意)参考答案 (1)x +15=y ,x +4=y (2)x +y =16,0.8x +2y =18.87.1 谁的包裹多班级:________ 姓名:________一、选择题(1)以下方程中,是二元一次方程的是( ) A.8x -y =y B.xy =3 C.3x +2y D.y =21x1(2)以下的各组数值是方程组的解的是( )A.B .C.D.(3)若是方程组的解,则m +n 的值是( )A.1B.-1C.2D.-2(4)二元一次方程3a +b =9在正整数范围内的解的个数是( ) A.0 B.1 C.2 D.3 二、填空题(1)若方程(2m -6)x |n|-1+(n +2)y=1是二元一次方程,则m =_________,n =__________.(2)若是二元一次方程ax +by =2的一个解,则2a -b -6的值是__________.(3)图1表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n>1)盆花,每个图案花盆的总数是S .图1按此规律推断,以S 、n 为未知数的二元一次方程是________.(4)请写出解为的一个二元一次方程组________.三、根据题意列二元一次方程组:(1)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?(2)某校课外小组的学生准备外出活动;若每组7人,则余下3人;若每组8人,则有一组只有3人;求这个课外小组分成几组?共有多少人?四、现有布料25米,需裁成大人和小孩的两种服装.已知大人每套用布2.4米,小孩每套用布1米,问各裁多少套恰好把布用完?⎩⎨⎧-=+=+2222y x y x ⎩⎨⎧-==22y x ⎩⎨⎧=-=22y x ⎩⎨⎧==20y x ⎩⎨⎧==02y x ⎩⎨⎧==12y x ⎩⎨⎧=+=-+12)1(2y nx y m x 82-m ⎩⎨⎧-==12yx ⎩⎨⎧==11y x测验评价结果:________;对自己想说的一句话是:__________________。
赤峰市七年级数学下册第八章【二元一次方程组】经典练习题(培优)
1.若方程组a 2b 43a 2b 8+=⎧⎨+=⎩,则a+b 等于( )A .3B .4C .2D .12.如果方程组54356x y kx y -=⎧⎨+=⎩的解中的x 与y 互为相反数,则k 的值为( )A . 1B .1或1-C .27-D .5-3.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何? ”译成白话文: “现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x 尺,绳子的长度为y 尺.则可列出方程组为( )A . 4.512x y yx -=⎧⎪⎨-=⎪⎩ B . 4.512y x yy -=⎧⎪⎨-=⎪⎩ C . 4.512y x yx -=⎧⎪⎨-=⎪⎩ D . 4.512x y yy -=⎧⎪⎨-=⎪⎩4.两位同学在解方程组时,甲同学由278ax by xcx y +=⎧⎨-=⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把C写错了解得22x y =-⎧⎨=⎩,那么a 、b 、c 的正确的值应为A .452a b c ===-,,B .451a b c ===-,,C .450a b c =-=-=,,D .452a b c =-=-=,,5.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )1 121165161186.解方程组229229232x yy zz x+=⎧⎪+=⎨⎪+=⎩得x等于( )A.18 B.11 C.10 D.97.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,根据题意列方程组正确的是()A.4.512x yyxB .4.512x yyxC .4.512x yxyD .4.512x yyx8.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4,若x⊗(﹣y)=2018,且2y⊗x=﹣2019,则x+y的值是()A.﹣1 B.1 C.13D.﹣139.方程组2824x yx y⎧+=⎪⎨+=⎪⎩的解的个数为()A.1 B.2 C.3 D.410.二元一次方程组7317x yx y+=⎧⎨+=⎩的解是()A.52xy=⎧⎨=⎩B.25xy=⎧⎨=⎩C.61xy=⎧⎨=⎩D.16xy=⎧⎨=⎩11.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x岁,小红今年y岁”,根据题意可列方程为()A.449x y yx y x-=+⎧⎨-=+⎩B.449x y yx y x-=+⎧⎨-=-⎩C.449x y yx y x-=-⎧⎨-=+⎩D.449x y yx y x-=-⎧⎨-=-⎩二、填空题12.在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE为____________cm.13.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % .14.二元一次方程组31x y x y +=⎧⎨-=-⎩的解是__________ .15.已知关于x 、y 的方程组2326324x y k x y k +=+⎧⎨+=+⎩的解满足2x y +=,则k 的值为__.16.如图,用大小、形状完全相同的长方形纸片在平面直角坐标系中摆成如图所示的图案,已知(2,6)A -,则点B 的坐标为_________.17.若方程2x 2a +b -4+4y 3a -2b -3=1是关于x ,y 的二元一次方程,则a =________,b =________.18.甲、乙两人共同解方程组51542+=⎧⎨-=-⎩ax y x by ,由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=⎩,乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩,则a 2020+(10b )2021=________. 19.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________ 20.某风景区有4个相同的出口、4个相同的入口,假设在任何情况下每个入口的人数均是匀速出入,每个出口的人数均是匀速出入,当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数.受疫情影响,2020年五一期间,该风景区游览人数32 21.已知一个两位数,它的十位上的数字与个位上的数字和是3,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数是_____.三、解答题22.某水果店有甲,乙两种水果,它们的单价分别为a 元/千克,b 元/千克.若购买甲种水果5千克,乙种水果2千克,共花费25元,购买甲种水果3千克,乙种水果4千克,共花费29元.(1)求a 和b 的值;(2)甲种水果涨价m 元/千克(02)m <<,乙种水果单价不变,小明花了45元购买了两种水果10千克,那么购买甲种水果多少千克?(用含m 的代数式表示). 23.解方程组: (1)2328x yx y =⎧⎨-=⎩(2)3224()5()2x y x y x y +=⎧⎨+--=⎩24.列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?25.列二元一次方程组解应用题:某大型超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示: (1)该大型超市购进A 、B 品牌矿泉水各多少箱? (2)全部销售完600箱矿泉水,该超市共获得多少利润?1.若12x y =⎧⎨=-⎩是方程3x+by =1的解,则b 的值为( )A .1B .﹣1C .﹣2D .22.对于任意实数,规定新运算:x y ax by xy =+-※,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知211=※,()322-=-※,则a b ※的值为( ) A .3B .4C .6D .73.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319ad ,则b c +的值为( )A .3-B .2-C .1-D .04.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( )A .2,3B .3,2C .2,4D .3,45.下列方程组的解为31x y =⎧⎨=⎩的是( ) A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩6.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( ) A .1种B .2种C .3种D .4种7.由方程组71x m y m +⎧⎨-⎩==可得出x 与y 的关系式是( )A .x+y=8B .x+y=1C .x+y=-1D .x+y=-88.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=-9.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( )1 1 1 1 1433143310.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为()A.19分B.20分C.21分D.22分11.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a”的数是()y a2y4x-92x-11A.6 B.7 C.8 D.9二、填空题12.渝北区某学校将开启“阅读节”活动,为了充实学校书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去7690元;语文组购买了A、B两种文学书籍若干本,用去8330元,已知A、B两种书的数量分别与甲、乙两种书的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同,若甲种书的单价比乙种书的单价多8元,则乙种书籍比甲种书籍多买了______本.13.某果蔬饮料由果汁、蔬菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了12.5%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为______.14.如图,已知∠AOE=100°,∠DOF=80°,OE平分∠DOC,OF平分∠AOC,求∠EOF的度数.15.某商店准备用每千克19元的A 糖果和每千克10元的B 糖果混合成什锦糖果出售,混合后糖果的价格是每千克16元.现在要配制这种什锦糖果150千克,需要两种糖果各多少千克?设A 糖果x 千克,B 糖果y 千克,根据题意可列二元一次方程组:_____. 16.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______.17.已知关于x 、y 二元一次方程组31630mx y x ny -=⎧⎨-=⎩的解为53x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组(1)3(1)163(1)(1)0m x y x n y +--=⎧⎨+--=⎩的解是___.18.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________. 19.已知方程组 2629x y x y +=⎧⎨+=⎩,则x-y=_________.20.若3x b +5y 2a 和﹣3x 2y 2﹣4b 是同类项,则a =_____.21.商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是_______cm .三、解答题22.杭州某电器超市夏季销售,B 两种型号的电风扇,如表所示是近2周的销售情况: 销售时销售数量销售收(1)求A 、B 两种型号的电风扇的销售单价; 填空:完成下列的分析过程:设A 种型号的电风扇的销售单价为x 元/台,设B 种型号的电风扇的销售单价为y 元/台,则第一周销售A 种型号销售收入为________元;第一周B 种型号销售收入为________元(用含x 或y 的代数式表示),根据题意可列出第一个方程:________+________2200= 同理得到,列出另一个方程:________+________3200= 可以求出:x =________;y =________;(2)该电器超市销售A 每台进价为120元、B 每台进价170元.超市再采购这两种型号的电风扇共130台,并且全部销售完,该超市能否实现这两批的总利润恰好为8010元的目标?若能,请给出相应的采购方案;若不能,请说明理由.(进价、售价均保持不变,利润=销售收入-进货成本)23.对于平面直角坐标系xoy 中的点(),P a b ,若点P'的坐标为(),a kb ka b ++(其中k 为常数,0k ≠)则称点P'为点P 的“k 属派生点”,例如:()1,4P 的“2属派生点”为()'124,214P +⨯⨯+,即()'9,6P .(1)点()2,3P -的“3属派生点”的坐标为________; (2)若点P 的“5属派生点”的坐标为()3,9-,求点P 的坐标. 24.解方程组. (1)32923x y x y -=⎧⎨+=⎩;(2)1343(1)41x y x y ⎧-=⎪⎨⎪-=-⎩.25.解二元一次方程组(1)73217x y x y +=⎧⎨+=⎩57 2311.已知二元一次方程组2513377x y x y +=⎧⎨-=-⎩①②,用加减消元法解方程组正确的( ) A .①×5-②×7 B .①×2+②×3C .①×7-②×5D .①×3-②×22.若方程组a 2b 43a 2b 8+=⎧⎨+=⎩,则a+b 等于( )A .3B .4C .2D .13.如图,天平上放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的( )A .23倍 B .32倍 C .2倍D .3倍4.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩5.若关于x ,y 的二元一次方程组432x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2310x y +=的解,则x y -的值为( ) A .2B .10C .2-D .46.若a 为方程250x x +-=的解,则22015a a ++的值为( ) A .2010B .2020C .2025D .20197229229232z x ⎪+=⎩A .18B .11C .10D .98.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )A .1种B .2种C .3种D .4种9.下列四组数值中,方程组02534a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A .011a b c =⎧⎪=⎨⎪=-⎩B .121a b c =-⎧⎪=⎨⎪=-⎩C .112a b c =-⎧⎪=⎨⎪=-⎩D .123a b c =⎧⎪=-⎨⎪=⎩10.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩ B .32x y =⎧⎨=⎩ C .52x y =⎧⎨=⎩ D .51x y =⎧⎨=⎩11.方程组320x y x y +=⎧⎨-=⎩的解是( ) A .11x y =⎧⎨=⎩ B .12x y =⎧⎨=⎩ C .21x y =⎧⎨=⎩ D .30x y =⎧⎨=⎩二、填空题12.若2(321)4330x y x y -++--=,则x y -=_____. 13.一天,小明从家出发匀速步行去学校上学,几分钟后,在家休假的爸爸发现小明忘带数学作业,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路回家(爸爸追上小明时交流时间忽略不计).小明拿到书后立即提速14赶往学校,并在从家出发后23分钟到校,两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为______米.14.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______. 15.甲、乙两人共同解方程组51542+=⎧⎨-=-⎩ax y x by ,由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=⎩,乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩,则a 2020+ (10b )2021=________. 16.已知方程组 2629x y x y +=⎧⎨+=⎩,则x-y=_________. 17.若3x b +5y 2a 和﹣3x 2y 2﹣4b 是同类项,则a =_____.18.若方程组ax y c x by d -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩,则方程组y ax c by x d-=⎧⎨-=⎩的解为______. 19.甲、乙二人分别从A 、B 两地同时出发,匀速沿同一平直公路相向而行.甲骑的共享电车,乙步行,两人在出发2.5h 时相遇,相遇后0.5h 甲到达B 地,若相遇后乙又走了20千米才到达A 、B 两地的中点,那么乙的速度为______千米/时.20.2017年复兴号的成功研制生产,标志着我国高速动车组走在了世界先进前列.2019年全世界最长的高速动车组复兴号CR 400A ﹣B 正式运营,全长约440米,如图,将笔直轨道看成1个单位长度为1米的数轴,CR 400A ﹣B 停站时首尾对应的数分别为a ,b ,向右行驶一段距离后,首尾对应的数分别为c ,d ,若c ﹣d =2(|a |﹣|b |),则b 的值为__.21.已知x ,y ,z 都不为0,且4330230x y z x y z --=⎧⎨-+=⎩,则式子346x y z x y z -+++的值为_____.2242原料,生产每件乙产品需要3吨A 种原料和1吨B 种原料,该厂现有A 种原料120吨,B 种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)去年每件甲产品售价为3万元,每件乙产品售价为5万元,根据市场调研情况,今年每件乙产品售价比去年下降10%,问每件甲产品应涨价多少万元,才能使甲乙产品全部出售后的总销售额达到144万元?23.我市新建植物园以其优美独特的自然植物景观,现已成为我市市民春游踏青、赏四季花卉、观景的重要旅游景区.若该植物园中现有A 、B 两个园区,已知A 园区为长方形,长为()x y +米,宽为()x y -米;B 园区为正方形,边长为(3)x y +米.(1)请用代数式表示A 、B 两园区的面积之和并化简:(2)现根据实际需要对A 园区进行整改,长增加(11)x y -米,宽减少(2)x y -米,整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米,求此时x 、y 的值.(3)在(2)的条件下,若整改后A 园区全部种植C 种花,B 园区全部种植D 种花,且C 、D 两种花投入的费用与吸引游客的收益如下表:求整改后A 、B 两园区旅游的净收益之和.(净收益=收益-投入)24.解方程:(1)代入法:23328y x x y =-⎧⎨+=⎩(2)加减法:25324x y x y -=⎧⎨+=⎩25.解方程组:(1)1367x y x y -=⎧⎨=-⎩; (2)414531x y x y -=⎧⎨+=⎩.。
七年级数学下册练习题及答案
1.用一副三角板不能画出A.75°角B.135°角C.160°角D.105°角2.如图,直线a ,b 相交于点O ,若∠1=40°,则∠2等于 A.50° B.60° C.140° D.160°3.在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是4.下面正确的是A.三条直线中一定有两条直线平行B.两条直线同时与第三条直线相交,那么它们一定平行C.若直线∥22,l l ∥3l ,…1-n l ∥n l ,那么1l ∥n lD.直线13221,,l l l l l 则⊥⊥∥3l 5.下列命题正确的是A.若∠MON+∠NOP=90o 则∠MOP 是直角B.若α与β互为补角,则α与βC.两锐角之和是直角D.若α与β均为锐角6.如图,已知直线AB 、CD 相交于点O ,OE 平分∠=55o ,则∠BOD 的度数是A.35oB.55oC.70oD.110o7.已知:如图,AB CD ⊥,垂足为O ,EF 线,则1∠与2∠的关系一定成立的是A.相等 8.已知∠°81′9.44α=︒,则β∠等于 A.56︒B.10.如图,A.80O B.7011.BCD =12.出平移后的扇形. 13.如图,都写出来:___________________________________________.14.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,nA 平分1n AA -,则n AA =_______________cm.20GEF =∠,那么15.如图,直线AB CD ∥,EF CD ⊥,F 为垂足.如果1∠的度数是°.16.线段AB=8cm,C 是AB 的中点,D 是BC 的中点,A 、D 两点间的距离是_____cm.12 ab A B C A B C O l 2l 1βαE AD BCA B C D 1 E F G17.小宁和婷婷在一起做拼图游戏,他们用“、△△、=”构思出了独特而有意义的图形并根据图形还用简洁的语言进行了表述:观察以上图案(1)这个图案有什么特点?(2)它可以通过一个“基本图案”经过怎样的平移而形成?(3)在平移的过程中,“基本图案”的大小、形状、位置是否发生了变化?你能解释其中的道理吗?18.如图,在△ABC 中,DE ∥BC,EF ∥AB,则∠B 个. 19.如图,不添加辅助线,请写出一个能判定EB . 20.如下图中,AO ⊥BO,CO ⊥DO,∠AOC=55o,则∠BOD=______. 21.如图,设DE ∥BC,∠1=∠2,CD ⊥AB,请说明(1)FG ⊥AB.(2)若把题设中的“DE ∥BC ”与结论中的“FG (3)若把题设中的“∠1=∠2”与结论中的“FG 22.已知线段AB=10cm,直线AB 上有一点C,且的长.23.一个角的补角与它的余角的度数之比是3:1, 24.如图,已知AB ∥CD ∥EF,GC ⊥CF,∠ABC=65o,∠∠BCG 的度数. (1)(4)、EG 、FG;?∠EFG 、∠EGF 、∠GEF 有什么关系?°,OE 平分∠BOC,OF 为OE 的反向延长线.3的度数.吗?为什么?________,整数解有________. (2)不等式组,⎩⎨⎧<->+-483212x x 的解集是________.(3)不等式组⎩⎨⎧≤-->+422x x x 的解集是_______. (4)不等式组⎩⎨⎧+≤-->+-94754)1(2x x x 的解集是________.A B C D E(1)不等式组⎪⎩⎪⎨⎧-≤-->xx x 28432的最小整数解为_________.[] A .-1B .0C .1D .4(2)不等式⎩⎨⎧->≤23x x 的解集,在数轴上表示正确的是_________.[] (3)满足不等式-1<312-x ≤2的非负整数解的个数是_________.[] A C .3(4)如果不等式组⎩⎨⎧<+>-00b x a x 的解集是[] A .a =3b C .a =-3b 已知5x -2y =6,当x 满足6≤7-四十分之前追上弟弟,问哥哥的速度至少是多少?.由方程可得到用x 表示y 的式子是. 31==-是方程38x ay -=的一个解,那么a =. 350m n y -+=是二元一次方程,则m =,n =..已知22)互为相反数,则x =,y =.5.已知甲数、乙数的和为50,甲数的2倍比乙数的3倍大4,设甲数为x ,乙数为y ,由题意,可得方程组.6.下列方程中是二元一次方程的是().A .35a a b -=B .245x y -=C .37mn -=D .10.5y x+=7.二元一次方程3215x y +=在自然数范围内的解的个数是().A .1个B .2个C .3个D .无数个8.如果二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,那么k 的值是(). A .34B .34-C .43D .43- 9.某船顺流航行的速度为a ,逆流航行的速度为b ,则水流速度为().A .2a b +B .2a b -C .a b -D .以上都不正确 10.甲、乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各结余400元,若设甲的年收入为x A .2734x y x y -=⎧⎪⎨+=⎪⎩C .4002437x y x y -=⎧⎪⎨-=⎪⎩D .解方程组1225 1.715108x y x y +=⎧⎨-=⎩134人住不下;若每间宿舍住7人,则有一1435元,利润率是20%,乙种商278元.问甲、乙两种商品各购进了多少件?1.方程在正整数范围内的解有()A .无数个??????B .2个??????C .3个?????D .4个2.若是方程组的一个解,则a 、b 的值分别是(???)A.1,2???????B.4,0???????C.?????D.0,43.若方程组的解x和y的值相等,则k的值等于(???)A.4?????????B.10??????????C.11??????????D.124.代数式,当时,其值是3,当时,其值是4,则代数式的值是(???)A.?????B.??????C.1.在①②③是方程的解,是方程是方程组的解.2.把方程变形,用含,则__________.3.在方程中,当时,.4.若是方程的解,那么a=__________.5.若是方程组,则m=__________,n=__________.6.若二元一次方程的解也满足,则代数式__________.1.用代入法解下列方程组(1)?????????????? (2)(3)?????????????(4)(1)??????????????(3)?????????????? (4)(1)?(2)????(3)(4)??(5)??(6)(7???????????)(9)????????????(10)4.关于x、y的二元一次方程组的解是互为相反数的两个数,求m的值.1、关于线段,下列判断正确的是()(A)只有一个端点;(B)有两个以上的端点;(C)有两个端点;(D)没有端点。
(人教版)七年级下册数学配套教学设计:8.2 第1课时 《代入法》
(人教版)七年级下册数学配套教学设计:8.2 第1课时《代入法》一. 教材分析《代入法》是人教版七年级下册数学的一个重要内容,主要让学生掌握代入法的基本概念和运用方法。
通过代入法的学习,可以帮助学生更好地理解和解决方程和不等式的问题。
本节课的内容主要包括代入法的定义、代入法的运用和代入法的拓展应用。
二. 学情分析学生在学习本节课之前,已经掌握了方程和不等式的基本概念和运算方法,具备一定的数学基础。
但是,对于代入法的理解和运用还比较陌生,需要通过本节课的学习来掌握。
同时,学生对于新的学习方法和学习策略的接受能力也有一定的差异,需要教师在教学过程中进行针对性的引导和指导。
三. 教学目标1.知识与技能:使学生理解代入法的概念,掌握代入法的运用方法,能够独立解决简单的方程和不等式问题。
2.过程与方法:通过自主学习、合作交流和探究发现,培养学生的数学思维能力和问题解决能力。
3.情感态度价值观:激发学生对数学的兴趣和自信心,培养学生的自主学习意识和团队合作精神。
四. 教学重难点1.重点:代入法的概念和运用方法。
2.难点:代入法的拓展应用和解决实际问题。
五. 教学方法1.自主学习:引导学生自主探究代入法的概念和运用方法,培养学生的自主学习能力。
2.合作交流:学生进行小组讨论和合作交流,共同解决问题,培养学生的团队合作精神。
3.探究发现:引导学生通过探究发现代入法的规律和拓展应用,培养学生的数学思维能力。
六. 教学准备1.教学素材:准备相关的方程和不等式问题,用于引导学生进行代入法的实践操作。
2.教学工具:准备黑板、粉笔等教学工具,用于板书和演示。
七. 教学过程1.导入(5分钟)教师通过引入一个实际问题,引发学生对于代入法的思考,激发学生的学习兴趣。
2.呈现(10分钟)教师通过讲解和示例,向学生介绍代入法的概念和运用方法,让学生初步理解代入法的原理和步骤。
3.操练(10分钟)学生分组进行代入法的实践操作,解决给定的方程和不等式问题。
(90页)七年级下册数学(全册)教案附全册练习题
(90页)七年级下册数学(全册)教案附全册练习题(下册)第一章一元一次不等式组1.1 一元一次不等式组第1教案教学目标1.能结合实例,了解一元一次不等式组的相关概念。
2.让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3.提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点1..不等式组的解集的概念。
2.根据实际问题列不等式组。
教学方法探索方法,合作交流。
教学过程一、引入课题:1.估计自己的体重不低于多少千克?不超过多少千克?若没体重为x 千克,列出两个不等式。
2.由许多问题受到多种条件的限制引入本章。
二、探索新知:自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、抽象:教师举例说出什么是一元一次不等式组。
什么是一元一次不等式组的解集。
(渗透交集思想)四、拓展:合作解决第4页“动脑筋”1.分组合作:每人先自己读题填空,然后与同组内同学交流。
2.讨论交流,求出这个不等式的解集。
五、练习:P5练习题。
六、小结:通过体课学习,你有什么收获?七、作业:第5页习题1.1A组。
选作B组题。
后记:1.2 一元一次不等式组的解法第2教案教学目标1. 会解由两个一元一次不等式组成的不等式组,会用数轴确定解决。
2. 让学生进一步感受数形结合的作用,逐步熟悉和掌握这一重要思想方法。
3. 培养勇于开拓创新的精神。
教学重点解决由两个不等式组成的不等式组。
教学难点学生归纳解一元一次不等式组的步骤。
教学方法合作交流,自己探究。
教学过程一、做一做。
1.分别解不等式x+4>3。
0221>-x 。
2.将1中各不等式解集在同一数轴上表示出来。
3.说一说不等式组⎪⎩⎪⎨⎧>->+022134x x 的解集是什么? 4.讨论交流,怎样解一元一次不等式组?二、新课1.解不等式组的概念。
2.例1:解不等式组:⎩⎨⎧≤-<-0123105x x 教师讲解,提醒学生注意防止出现符号错误和运算错误。
(人教版)七年级下册数学配套教案:8.2 第1课时 《代入法》
(人教版)七年级下册数学配套教案:8.2 第1课时《代入法》一. 教材分析《代入法》是人教版七年级下册数学的一节重要内容。
本节课主要让学生掌握代入法的概念、方法以及应用。
通过代入法的学习,使学生能够更好地解决二元一次方程组问题,提高他们的数学解题能力。
二. 学情分析学生在学习本节课之前,已经掌握了二元一次方程组的基本概念和求解方法。
但他们在解决实际问题时,还不太会运用代入法。
因此,教师在教学中要引导学生了解代入法的优点,激发他们学习代入法的兴趣,并帮助他们掌握代入法的应用。
三. 教学目标1.让学生了解代入法的概念和意义。
2.使学生掌握代入法的解题步骤。
3.培养学生运用代入法解决实际问题的能力。
四. 教学重难点1.代入法的概念和意义。
2.代入法的解题步骤。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置问题情境,引导学生自主探究;以具体案例讲解代入法的应用,让学生在实践中掌握方法;小组讨论,促进学生互动交流。
六. 教学准备1.准备相关案例和练习题。
2.制作课件,展示代入法的解题步骤。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,引导学生思考如何解决这个问题。
例如:已知一个二元一次方程组,其中一个方程已知解,如何求另一个方程的解?2.呈现(10分钟)教师呈现代入法的概念和意义,讲解代入法的解题步骤。
以一个具体案例为例,演示如何运用代入法解决问题。
3.操练(10分钟)教师布置一些练习题,让学生独立完成。
题目要求运用代入法解决问题。
教师在过程中给予个别辅导,确保学生能够掌握代入法的应用。
4.巩固(10分钟)教师学生进行小组讨论,分享各自解决问题的过程和心得。
每个小组选一名代表进行汇报,其他小组成员可进行评价和补充。
5.拓展(10分钟)教师引导学生思考:代入法在解决其他类型的问题中的应用。
让学生举例说明,进一步巩固代入法的应用。
6.小结(5分钟)教师对本节课的内容进行总结,强调代入法的概念、意义和应用。
初中数学人教新版七年级下册培优:专题21-从不同的方向看试题(含答案)
初中数学人教新版七年级下册实用资料21 从不同的方向看阅读与思考20世纪初,伟大的法国建筑家列·柯尔伯齐曾说:“我想,到目前为止,我们从没有生活在这样的几何时期,周围的一切都是几何学.”生活中蕴含着丰富的几何图形,圆的月亮,平的湖面,直的树干,造型奇特的建筑,不断移动、反转、放大缩小的电视画面……图形有的是立体的,有的是平面的,立体图形与平面图形之间的联系,从以下方面得以体现:1.立体图形的展开与折叠; 2.从各个角度观察立体图形; 3.用平面去截立体图形.观察归纳、操作实验、展开想象、推理论证是探索图形世界的基本方法. 例题与求解【例1】如图是一个正方体表面展开图,如果正方体相对的面上标注的值相等,那么x y =____.(四川省中考试题)解题思路:展开与折叠是两个步骤相反的过程,从折叠还原成正方体入手.【例2】如图,是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A .5个B .6个C .7个D .8个(四川省成都中考试题)888102x y 主视图左视图 俯视图解题思路:根据三视图和几何体的关系,分别确定该几何体的列数和每一列的层数. 【例3】由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图. (1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n ,求n 的值.(贵州省贵阳市课改实验区中考试题)解题思路:本例可以在“脑子”中想象完成,也可以用实物摆一摆.从操作实验入手,从俯视图可推断左视图只能有两列,由主视图分析出俯视图每一列小正方形的块数情况是解本例的关键,而有序思考、分类讨论,则可避免重复与遗漏.【例4】如图是由若干个正方体形状木块堆成的,平放于桌面上.其中,上面正方体的下底面四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1,且这些正方体露在外面的面积和超过8,那么正方体的个数至少是多少?按此规律堆下去,这些正方体露在外面的面积和的最大值是多少?(江苏省常州市中考试题)解题思路:所有正方体侧面面积和再加上所有正方体上面露出的面积和,就是所求的面积.从简单入手,归纳规律.【例5】把一个正方体分割成49个小正方体(小正方体大小可以不等),请画图表示.(江城国际数学竞赛试题)解题思路:本例是一道图形分割问题,解答本例需要较强的空间想象能力和推理论证能力,需俯视图 主视图要把图形性质与计算恰当结合.【例6】建立模型18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题.(1)根据上面的多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4长方体8 6 12正八面体8 12正十二面体20 12 30 你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是____.(2)—个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是___.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x y的值.解题思路:对于(1),通过观察、归纳发现V,F,E之间的关系,并迁移应用于解决(2),(3).模型应用如图,有一种足球是由数块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长都相等,求正五边形、正六边形个数.(浙江省宁波市中考试题改编)能力训练A级1.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是___.(山东省菏泽市中考试题)第3题图2.由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是____.(湖北省武汉市中考试题)3.—个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为____.(山东省烟台市中考试题)4.如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面涂色的小立方体共有__(山东省青岛市中考试题)5.一个画家有14个边长为1m 的正方体,他在地面上把它们摆成如图的形式,然后他把露出的表面都涂上颜色,那么被涂颜色的总面积为( )A .19m 2B .41m 2C .33m 2D .34m 2(山东省烟台市中考试题)6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为( )A .3B .4C .5D .64左视图32左视图 图① 图② 图③654321第1题主视图 左视图 俯视图第2题(河北省中考试题)7.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是( )A .20B .22C .24D .26(河北省中考试题)8.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( )(2012年温州市中考试题)9.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是____(立方单位),表面积是____(平方单位); (2)画出该几何体的主视图和左视图.(广州市中考试题)正面A B C D牟合方盖甲主视方向 乙主视图俯视图10.用同样大小的正方体木块搭建的几何体,从正面看到的平面图形如图①所示,从上面看到的平面图形如图②所示.(1)如果搭建的几何体由9个小正方体木块构成,试画出从左面看这个几何体所得到的所有可能的平面图形.(2)这样的几何体最多可由几块小正方体构成?并在所用木块最多的情况下,画出从左面看到的所有可能的平面图形.(“创新杯”邀请赛试题)B 级1.如图,是一个正方体表面展开图,请在图中空格内填上适当的数,使这个正方体相对两个面上标注的数值相等.(《时代学习报》数学文化节试题)2.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n ,则n 的所有可能的取值之和为____.(江苏省江阴市中考试题)3.如图是一个立方体的主视图、左视图和俯视图,图中单位为厘米,则立体图形的体积为____立方厘米.主视图俯视图 aa -2-1a-图① 图②(“华罗庚金杯赛”试题)4.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A .2B .3C .4D .5(江苏省常州市中考试题)5.由若干个单位立方体组成一个较大的立方体,然后把这个大立方体的某些面涂上油漆,油漆干后,把大立方体拆开成单位立方体,发现有45个单位立方体上任何一面都没有漆,那么大立方体被涂过油漆的面数是( )A .1B .2C .3D .4(“创新杯”邀请赛试题)6.小明把棱长为4的正方体分割成了29个棱长为整数的小正方体,则其中棱长为1的小正方体的个数是( )A .22B .23C .24D .25(浙江省竞赛试题)7.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走多少个小正方体?221主视图2左视图左视图(江苏省竞赛试题)8.一个长方体纸盒的长、宽、高分别是a ,b ,c (a >b >c )厘米.如图,将它展开成平面图,那么这个平面图的周长最小是多少厘米?最大是多少厘米?(江苏省竞赛试题)9.王老师将底面半径为20厘米、高为35厘米的圆柱形容器中的果汁全部倒入如图所示的杯子中,若杯口直径为20厘米,杯底直径为10厘米,杯高为12厘米,杯身长13厘米,问果汁可以倒满多少杯?(世界数学团体锦标赛试题)10.一个边长为5厘米的正方体,它是由125个边长为1厘米的小正方体组成的..P 为上底面ABCD 的中心,如果挖去(如图)的阴影部分为四棱锥,剩下的部分还包括多少个完整的棱长是1厘米的小正方体?(深圳市“启智杯”数学思维能力竞赛试题)上面右面 (水平线)正面① ② ⑦ ⑥ ④⑤③ a bc 10121320BD FPH专题21 从不同的方向看例1 14 提示:2x =8,y =10,x +y =14. 例2 D例3 (1)左视图有以下5种情形:(2)n =8,9,10,11.例4正方体个数至少为4个.正方体露在外面的面积和的最大值为9. 提示:最下面正方体1个面的面积是1,侧面露出的面积和是4,每相邻两个正方体中上面的1个正方体每个面的面积都正好是其下面正方体1个面面积的12,所有正方体侧面面积之和加上所有正方体的上面露出的面积和(正好是最下面正方体上底面的面积1)即是这些正方体露在外面的面积和.如:2个正方体露出的面积和是4+42+1=7,3个正方体露出的面积和是4+42+44+1=8,4个正方体露出的面积和是4+42+44+48+1=812,5个正方体露出的面积和是4+42+44+48+416+1=834,6个正方体露出的面积和是4+42+44+48+416+432+1=878,…… 故随着小正方体木块的增加,其外露的面积之和都不会超过9.例5为方便起见,设正方体的棱长为6个单位,首先不能切出棱长为5的立方体,否则不可能分割成49个小正方体.设切出棱长为1的正方体有a 个,棱长为2的正方体有b 个,如果能切出1个棱长为4的正方体,则有⎩⎨⎧a +8b +64=216a +b =49-1,解之得b =1467.不合题意,所以切不出棱长为4的正方体.设切出棱长为1的正方体有a 个,棱长为2的正方体有b 个,棱长为3的正方体有c 个, 则⎩⎨⎧a +8b +27c =216a +b +c =49,解得a =36,b =9,c =4,故可分割棱长分别为1,2,3的正方体各有36个,9个,4个,分法如图所示.例6(1)6 6 V +F -E =2 (2)20 (3)这个多面体的面数为x +y ,棱数为24×32=36条.根据V +F -E =2,可得24+(x +y )-36=2,∴x +y =24. 模型应用设足球表面的正五边形有x 个,正六边形有y 个,总面数F 为x +y 个.因为一条棱连着两个面,所以球表面的棱数E 为12(5x +6y ),又因为一个顶点上有三条棱,一条棱上有两个顶点,所以顶点数V =12(5x +6y )·23=13(5x +6y ).由欧拉公式V +F -E =2得(x +y )+13(5x +6y )-12×(5x +6y )=2,解得x =12.所以正五边形只要12个.又根据每个正五边形周围连着5个正六边形,每个正六边形又连着3个正五边形,所以六边形个数5x3=20,即需20个正六边形. A 级1.6 2.5 3.8 4.4(2n -1) 5.C 6.B 7.C 8.B 9(1)5 22 (2)略 10.(1)(2)11块.B 级1.上空格填12,下空格填2 2.38 3.2π 4.B5.D 提示:设大立方体的棱长为n ,n >3,若n =6,即使6个面都油漆过,未油漆的单位立方体也有43=64个>45,故n =4或5.除掉已漆的单位立方体后,剩下未漆的构成一个长方体,设其长、宽、高分别为a ,b ,c ,abc =45,只能是3×3×5=45,故n =5.6.C 提示:若分割出棱长为3的正方体,则棱长为3的正方体只能有1个,余下的均是棱长为1的正方体,共37个不满足要求.设棱长为2的正方体有x 个,棱长为1的正方体有y 个,则⎩⎨⎧x +y =298x +y =64,得⎩⎨⎧x =5y =24.7.有不同的搬法.为保证“影子不变”,可依如下原则操作:在每一行和每一列中,除保留一摞最高的不动以外,该行(列)的其余各摞都搬成只剩最下面的一个小正方体.如图所示,20个方格中的数字,表示5行6列共20摞中在搬完以后最终留下的正方体个数.照这样,各行可搬个数累计为27,即最多可搬走27个小正方体.8.要使平面展开图的周长最小,剪开的七条棱长就要尽量小,因此要先剪开四条髙(因为c 最小),再剪开一条长a 厘米的棱(否则,不能展开成平面图),最后再剪开两条宽b 厘米的棱(如图中所表示的①〜⑦这七条棱).由此可得图甲,这时最小周长是c ×8+b ×4+a ×2=2a +4b +8c 厘米.图甲 图乙要使平面展开图的周长最大,剪开的七条棱长就要尽量大,因此要先剪开四条最长的棱(长a ),再剪开两条次长的棱(宽b ),最后剪开一条最短的棱(高c ),即得图乙,这时最大周长是a ×8+b ×4+c ×2=8a +4b +2c 厘米.9.如图,由题意知AB =12,CD =13,AC =12,BD =13,过点D 作DE 垂直于AB 于点E ,则DE =12,于是Rt △BDE 中BE =5.延长AC ,BD 交于F ,则由CD :AB =5:10=1:2知CF =12,AF =24于是一个杯子的容积等于两个圆锥的体积之差,即22311102451270033V cm p p p =贩-贩= 而大容器内果汁的体积是23512700cm p p 创=所以果汁可以倒满1400070020p p ?杯。
《用代入消元法解二元一次方程组》同步练习1(北京课改七年级下)
用代入消元法解二元一次方程组同步练习【主干知识】认真预习教材,尝试完成下列各题:1.我们把________,从而求出方程组的解的方法,叫做代入消元法,简称代入法.2.用代入法解二元一次方程组的步骤是:(1)把方程组中的一个方程变形,写出_________的形式;(2)把它_________中,得到一个一元一次方程;(3)解这个__________;(4)把求得的值代入到_________,从而得到原方程组的解.3.在方程2x+3y-6=0中,用含x的代数式表示y,则y=_______,用含y的代数式表示x,则x=_______.4.•用代入法解方程组最好是先把方程______•变形为________,•再代入方程_______求得_______的值,最后再求______的值,最后写出方程组的解.5.用代入法解方程组.【点击思维】1.用代入法解二元一次方程组时,•要把一个未知数用含另一个未知数的代数式来表示,你认为应该选择哪一个方程来变形?2.检验方程组的解时,必须将求得的未知数的值代入________方程,看左右两边的值是否相等.3.方程4(3x-y)=x-3y,用含x的代数式表示,则y=________.【典例分析】例1解方程组思路分析:本例这两个方程中①较简单,且x、y的系数均为1,故可把①变形,•把x 用y表示,或把y用x来表示皆可,然后将其代入②,消去一个未知数,化成一元一次方程,进而再求出方程组的解.解:把①变形为y=4-x ③把③代入②得:-=1即-=1,=-1,=∴x=把x=代入③得y=4-=3所以原方程的解是.若想知道解的是否正确,可作如下检验:检验:把x=,y=3代入①得,左边=x+y=+3=4,右边=4.所以左边=右边.再把x=,y=3代入②得左边=-=1,右边=1.所以左边=右边.所以是原方程组的解.【基础能力训练】1.方程-x+4y=-15用含y的代数式表示,x是()A.-x=4y-15 B.x=-15+4y C.x=4y+15 D.x=-4y+152.将y=-2x-4代入3x-y=5可得()A.3x-2x+4=5 B.3x+2x+4=5 C.3x+2x-4=5 D.3x-2x-4=53.判断正误:(1)方程x+2y=2变形得y=1-3x ()(2)方程x-3y=写成含y的代数式表示x的形式是x=3y+ ()4.将y=x+3代入2x+4y=-1后,化简的结果是________,从而求得x的值是_____.5.当a=3时,方程组的解是_________.6.把方程7x-2y=15写成用含x的代数式表示y的形式,得()A.x=7.用代入法解方程组较为简便的方法是()A.先把①变形 B.先把②变形C.可先把①变形,也可先把②变形 D.把①、②同时变形8.已知方程2x+3y=2,当x与y互为相反数时,x=______,y=_______.9.若方程组的解x和y的值相等,则k=________.10.已知x=-1,y=2是方程组的解,则ab=________.11.把下列方程写成用含x的代数式表示y的形式:①3x+5y=21 ②2x-3y=-11; ③4x+3y=x-y+1 ④2(x+y)=3(x-y)-112.如果是方程2mx-7y=10的解,则m=_______.13.下面方程组的解法对不对?为什么?解方程组解:把①代入②得3x+2x=5,5x=5,所以x=1是方程组的解.14.已知方程组(1)求出方程①的5个解,其中x=0,,1,3,4;(2)求出方程②的5个解,其中x=0,,1,3,4;(3)求出这个方程组的解.15.若x-3y=2x+y-15=1,则x=______,y=_______.16.用代入法解下列方程组:(1)【综合创新训练】17.在y=kx+b中,当x=1时,y=2;当x=2时,y=4,那么k=_______,b=_______.18.已知的解,求a、b的值.19.若│x+y-2│+(x-y)2=0,那么x=________,y=________.20.请思考:方程组的解是不是方程8x-10y=6的一个解.21.已知二元一次方程组的解为x=a,y=b,则│a-b│=()A.1 B.11 C.13 D.1622.已知x=5-t,y-3=2t,则x与y之间的关系式是_______.【探究学习】苏步青巧解数学趣题的启示我国著名数学家苏步青在访问德国时,德国一位数学家给他出了这样一道题目:甲、乙二人相对而行,他们相距10千米,甲每小时走3千米,乙每小时走2千米,甲带着一条狗,狗每小时跑5千米,狗跑得快,它同甲一起出发,碰到乙的时候向甲跑去,碰到甲的时候又向乙跑去,问当甲、乙两人相遇时,这条狗一共跑了多少千米?苏步青教授很快就解出了这道题目.同学们,你知道他是怎么解的吗?这道题最让人迷惑不解的是甲身边的那条狗.•如果我们先计算狗从甲的身边跑到乙的身边的路程s,再计算狗从乙的身边跑到甲的身边的路程s,……,•显然把狗跑的路程相加,这样很繁琐,笨拙且不易计算.苏教授从整体着眼,根据甲、乙出发到相遇经历的时间与狗所走的时间相等,即10÷(3+2)=2(小时),•这样就不难求出狗一共跑的路程是:5×2=10(千米).苏步青教授在解题时,把注意力和着眼点放在问题的整体结构上,从而能触及问题的实质:狗从出发到甲、乙两相遇所用的时间,恰好是甲、乙二人相遇所用的时间,从而使问题得到巧妙的解决.苏教授这种解决问题的思想方法实际上就是数学中的整体思想的应用.对于某些数学问题,灵活运用整体思想,常可化难为易,捷足先登.•在解二元一次方程组时,也要注意这种思想方法的应用.比如解方程组解:把②代入①得x+2×1=4,所以x=2把x=2代入②得2+2y=1,解之,得y=所以方程组的解为同学们,你会用同样的方法解下面两个方程吗?试试看!(1)答案:【主干知识】1.通过“代入”消去一个未知数2.(1)用一个未知数表示另一个未知数的代数式.(2)代入到另一个方程中(3)一元一次方程(4)变形的的方程中,求得另一个未知数的值3.或y=2-x 或3-y4.② x=4+2y ① y x 5.【点击思维】1.选一个较简单的方程.最好该方程中有一个未知数的系数为1或-1,比如是3x-y=4,应把y变成用含x的代数式来表示,即y=3x-4,若未知数的系数不是1或-1,•将会出现分数,例如3x-y=4,若把x变出为用含y的代数式来表示,是x=,将会给解题带来很大的麻烦.2.方程组中的每一个解析:只有方程组中每个方程左、右两边的值相等了,•它才是各个方程的解,即它们的公共解,从而是原方程组的解.3.y=11x 解析:去括号,得12x-4y=x-3y,移项得12x-x=4y-3y,•合并同类项,•得11x=y 即y=11x.【基础能力训练】1.C 2.B 3.(1)×(2)×4.4x=-13 - 5.6.C 7.B 8.-2 2 9.11 10.-1511.①y=或y=(x-1)12.1213.不对,方程组的解应是一对未知数的值,不能求出一个就完了,还得求出y•的值,并且把这一对x、y的值用大括号括起来.14.(1)x=0,,1,3,4时,y=-1,-,1,5,7;(2)x=0,,1,3,4时,y=-,-,-,-,-;(3)方程组的解是15.7 216.(1)【综合创新训练】17.2 0 解析:把x=1,y=2及x=2,y=4分别代入到y=kx+b中,•得到一个方程组.18.把代入到方程组中得19.-1 -1 解析:由│x+y+2│+(x-y)2=0得│x+y+2│=0及(x-y)=0 即得方程组所以,x=-1,y=-1.20.是解析:先求出的解为,把代入到方程8x-10y=6中,左边=8×2-10×1=6,•右边=6,所以方程组的解是方程8x-10y=6的解.21.B 解析:先求出方程组,根据题意得a=5,b=16,所以│a-b│=│5-•16│=11.选B.22.y=13-2x 解析:需把t消去,由x=5-t得t=5-x把它代入到y-3=2t中得y-3=•2(5-x),变形得y=13-2x或2x+y=13.【探究学习】(1)。
代入法解方程练习题
代入法解方程练习题在代数学中,解方程是一个重要的概念,它指的是找到一个或多个使方程成立的未知数的值。
解方程的方法有很多种,其中一种常用的方法就是代入法。
代入法利用已知方程中的某些值,将它们代入方程中,从而求解未知数的值。
下面我们通过一些练习题来熟悉代入法的应用。
1. 解方程 2x + 3 = 11,其中 x 是整数。
解:将 x 代入方程中,有:2x + 3 = 112x = 11 - 32x = 8x = 4所以,方程的解是 x = 4。
2. 解方程 3(x - 5) = 12,其中 x 是实数。
解:将 x 代入方程中,有:3(x - 5) = 123x - 15 = 123x = 12 + 153x = 27x = 9所以,方程的解是 x = 9。
3. 解方程 a^2 - 4a + 4 = 0,其中 a 是实数。
解:将 a 代入方程中,有:a^2 - 4a + 4 = 0(a - 2)(a - 2) = 0(a - 2)^2 = 0根据零乘法则,方程成立当且仅当 (a - 2) = 0,即 a = 2。
所以,方程的解是 a = 2。
4. 解方程 (x + 1)^2 = 9,其中 x 是实数。
解:将 x 代入方程中,有:(x + 1)^2 = 9对方程两边开平方根,得到:x + 1 = ±√9化简,得到:x + 1 = ±3分别解得 x = 2 和 x = -4。
所以,方程的解是 x = 2 和 x = -4。
通过以上的练习题,我们可以看到代入法在解方程中的灵活应用。
无论是简单的一元一次方程还是复杂的二次方程,代入法都能起到简化计算、找到解的作用。
总结起来,代入法解方程的步骤如下:1. 根据题目给出的方程,确定未知数的类型和范围;2. 将已知的值代入方程中,求解未知数的值;3. 验证求得的解是否满足原方程。
需要注意的是,在使用代入法解方程时,我们要确保代入的值是符合题目要求的,并且求得的解也要进行验证,以确保结果的正确性。
解方程代入法的练习题
解方程代入法的练习题解方程是数学中常见的问题,而解方程代入法则是一种常用的解题方法。
通过代入已知的数值来求解方程,可以帮助我们更好地理解和应用代数方程。
在本文中,我们将介绍几个解方程代入法的练习题,以帮助读者加深对该方法的理解和运用。
练习题一:已知方程 x - 3 = 2,求解 x 的值。
解题思路:将已知的数值代入方程,即将 x - 3 中的 x 替换成 2,得到 2 - 3 = 2。
计算这个等式,可得 -1 = 2,显然这个等式是不正确的。
因此,无法通过代入 2 来解得方程 x - 3 = 2 的解。
练习题二:已知方程 2x + 5 = 13,求解 x 的值。
解题思路:将已知的数值代入方程,即将 2x + 5 中的 x 替换成 13,得到 2 * 13 + 5 = 13。
计算这个等式,可得 26 + 5 = 13,显然这个等式也是不正确的。
因此,无法通过代入 13 来解得方程 2x + 5 = 13 的解。
练习题三:已知方程 3y + 7 = 16,求解 y 的值。
解题思路:将已知的数值代入方程,即将 3y + 7 中的 y 替换成 16,得到 3 * 16 + 7 = 16。
计算这个等式,可得 48 + 7 = 16,显然这个等式也是不正确的。
因此,无法通过代入 16 来解得方程 3y + 7 = 16 的解。
通过以上三个练习题,我们可以看出,解方程代入法并不是一种通用的解题方法。
有时候代入数值会生成一个错误的等式,从而无法得到正确的解。
在实际运用中,我们往往需要结合其他解方程的方法来解决问题。
总结:解方程代入法是一种常用的解题方法,通过代入已知数值来求解方程,可以帮助我们更好地理解和应用代数方程。
然而,我们也要意识到,代入法并不是一种通用的解决方案,有时候会导致错误的结果。
因此,在实际运用中,我们需要结合其他解方程的方法来综合考虑问题,确保得到正确的解。