第四章平稳时间序列模型的建立

合集下载

平稳时间序列建模步骤

平稳时间序列建模步骤

平稳时间序列建模步骤什么是时间序列建模时间序列建模是一种用于分析和预测时间序列数据的统计方法。

时间序列是按照时间顺序排列的一组连续观测值,例如每日销售额、每月气温、每年股票收益等。

通过建立时间序列模型,我们可以探索时间序列的内在规律和趋势,并做出相应的预测。

平稳时间序列建模是时间序列建模的一种常用方法,它假设时间序列的统计特性在时间上是不变的。

平稳时间序列具有恒定的均值、方差和自协方差,这使得我们可以应用各种经典的时间序列模型进行建模和预测。

以下是平稳时间序列建模的步骤:步骤一:数据收集和观察首先,我们需要收集要建模的时间序列数据。

可以从各种数据源获取时间序列数据,包括经济指标、物理测量、金融数据等等。

收集到数据后,我们需要对数据进行观察,检查数据的特点、趋势、异常值等,并做必要的数据清洗和准备工作。

步骤二:时间序列分解时间序列通常由趋势、季节性和随机因素组成。

为了更好地分析和建模时间序列,我们需要先对时间序列进行分解,将其拆分为这些组成部分。

常用的时间序列分解方法有加法模型和乘法模型。

加法模型假设时间序列是趋势、季节性和随机误差之和,而乘法模型假设时间序列是趋势、季节性和随机误差之积。

选择合适的分解模型可以根据时间序列的特点和趋势来确定。

步骤三:平稳性检验平稳性是时间序列建模的前提之一。

在进行建模之前,我们需要对时间序列的平稳性进行检验。

平稳性检验可以通过统计检验方法来进行,例如单位根检验、ADF检验等。

如果时间序列不平稳,我们需要进行差分处理,使其变成平稳序列。

步骤四:模型选择和拟合在确定时间序列的平稳性后,我们可以选择合适的时间序列模型进行拟合。

常见的时间序列模型包括自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA模型)等。

模型选择可以通过观察自相关图(ACF)和偏自相关图(PACF)来辅助判断。

ACF图可以显示序列之间的相关性,PACF图可以显示去除其他变量的直接相关性。

《时间序列模型 》课件

《时间序列模型 》课件
《时间序列模型》ppt 课件
目录
Contents
• 时间序列模型概述 • 时间序列模型的基础 • 时间序列模型的建立 • 时间序列模型的预测 • 时间序列模型的应用 • 时间序列模型的未来发展
01 时间序列模型概述
时间序列的定义
01 时间序列是指按照时间顺序排列的一系列观测值 。
02 时间序列数据可以是数值型、分类型或混合型。 03 时间序列数据可以用于描述和预测时间变化的现
详细描述
通过分析历史经济数据的时间序列特性,时间序列模型能够预 测未来经济走势,为政策制定者和企业决策者提供重要参考。
举例说明
例如,利用ARIMA模型分析国内生产总值(GDP)的时间 序列数据,可以预测未来一段时间的GDP增长趋势。
股票预测
01
总结词
时间序列模型在股票市场中具有实际应用价值。
02 03
SARIMA、VAR等。
识别模型阶数
02
确定模型的参数,如自回归阶数、差分阶数和移动平均阶数。
考虑季节性和趋势性
03
如果时间序列数据存在季节性和趋势性,需要在模型中加以考
虑。
参数估计
01
使用最小二乘法或最大似然法等统计方法估计模型 的参数。
02
考虑使用软件包或编程语言进行计算,如Python的 statsmodels库或R语言的forecast包。
象。
时间序列的特点
时序性
时间序列数据是按照时间顺序排列的,具有 时间上的连续性。
趋势性
时间序列数据通常具有一定的趋势,如递增 、递减或周期性变化。
季节性
一些时间序列数据呈现季节性变化,如年度 、季度或月度的变化规律。
不确定性
时间序列数据受到多种因素的影响,具有不 确定性,难以精确预测。

《计量经济学》各章主要知识点

《计量经济学》各章主要知识点

第一章:绪论1.计量经济学的学科属性、计量经济学与经济学、数学、统计学的关系;2.计量经济研究的四个基本步骤(1)建立模型(依据经济理论建立模型,通过模型识别、格兰杰因果关系检验、协整关系检验建立模型);(2)估计模型参数(满足基本假设采用最小二乘法,否则采用其他方法:加权最小二乘估计、模型变换、广义差分法等);(3 )模型检验:经济意义检验(普通模型、双对数模型、半对数模型中的经济意义解释,见例1、例2 ),统计检验(T检验,拟合优度检验、F检验,联合检验等);计量经济学检验(异方差、自相关、多重共线性、在时间序列模型中残差的白噪声检验等);(4 )模型应用。

例1:在模型中,y某类商品的消费支出,x收入,P商品价格,试对模型进行经济意义检验,并解释A"》的经济学含义。

In X = 0.213 +0.25 In 一0.31£其中参数卩'",都可以通过显著性检验。

经济意义检验可以通过(商品需求与收入正相关、与商品价格负相关\商品消费支出关于收入的弹性为0.25 ( 1心/畑)=0.251】心/仏));价格增加一个单位,商品消费需求将减少31%。

例2 :硏究金融发展与贫富差距的关系,认为金融发展先使贫富差距加大(恶化), 尔后会使贫富差距降<氐(好转),成为倒U型。

贫富差距用GINI系数表示,金融发展用(贷款余额/存款总额)表示。

回归结果G/^VZ r =2.34 + 0.641;-1.29x;/模型参数都可以通过显著性检验。

在X的有意义的变化范围内,GINI系数的值总是大于1 ,细致分析后模型变的毫无意义;同样的模型还有:GINI系数的值总是为负= —13.34 + 7.12 兀一14.31#O3.计量经济学中的一些基本概念数据的三种类型:横截面数据、时间序列数据、面板数据;线性模型的概念;模型的解释变量与被解释变量,被解释变量为随机变量(如果—个变量为随机变量,并与随机扰动项相关,这个变量称为内生变量),被解释变量为内生变量,有些解释变量也为内生变量。

平稳时间序列模型

平稳时间序列模型

(1)一个平稳的时间序列总可以找到生成它
的平稳的随机过程或模型; (2)一个非平稳的随机时间序列通常可以通 过差分的方法将它变换为平稳的,对差分后平稳 的时间序列也可找出对应的平稳随机过程或模型。
(六) 中国GDPP的 ARMA(p,q)模型
ARMA(1,1) ARMA(2,2)
ARIMA(8,2,7)非对称
p阶自回归模型,简记为AR(p):
xt 0 1 xt 1 2 xt 2 p xt p t 2 E ( ) 0 , Var ( ) t t , E ( t s ) 0, s t
0 且 1 1 2 p , Var( x ) t
(二)向量自回归模型定义 VAR(Vector AutoRegression,向量自回归)
•1980年Sims提出向量自回归模型(vector autoregressive model)。 •VAR模型是自回归模型的联立形式,所以称向量自回归 模型。
q 阶移动平均模型,
xt t 1 t 1 2 t 2 q t q q 0 2 E ( t ) 0,Var ( t ) , E ( t s ) 0, s t
特别当
0
时,称为中心化
MA(q) 模型
二、自回归模型
(一) AR模型的定义 1阶自回归模型,记为AR(1): xt=0+1xt-1+t (1) E(t)=0,Var(t)=2, E(ts)=0, st 若序列是弱平稳的,则 E(xt)=, Var(xt)=0, Cov(xt, xt-k)=k 由(1)可得 E(xt)=0+1E(xt-1) 0 因此

时间序列分析第四章ARMA模型的特性王振龙第二版

时间序列分析第四章ARMA模型的特性王振龙第二版

一、自协方差函数
• 理论自协方差函数和自相关函数 对于ARMA系统来说,设序列的均值为零,则自协方差函数
k E Xt Xtk
自相关函数
k

k 0
• 样本自相关函数的计算
在拟合模型之前,我们所有的只是序列的一个有限
样本数据,无法求得理论自相关函数,只能求样本的自
= 1.1
-4.0E+10 X
-6.0E+10
25 50 75 100 125 150 175 200 225 250
X
= -1.1
24
20
20
16 15
12
10
8
5
4
0
0
-5
-10 -4
25 50 75 100 125 150-15175 200 225 250
=1
X -20
25 50 75 100 125 150 175 200 225 250
第四章 ARMA模型的特性
4.1 格林函数和平稳性
一、线性常系数差分方程及其解的一般形式 先回忆线性常系数微分方程及其解的结构:
y(t) a0 y(t) u(t)
可转化为 y(t 1) a0 y(t) u(t) 其中 a0 1 a0
将上述方程中的近似号改为等号,实数t改为自然数k,
MA(m)模型的可逆性条件为其特征方程
V m 1V m1 2V m2 ... m 0 的特征根Vk
满足 Vk 1
• ARMA(n,m)系统格林函数与逆函数的关系
在格林函数的表达式中,用 I j 代替 G,j 代替 ,
代替 ,即可得到相对应的逆函数。
第三节 自协方差函数

第4章平稳时间序列预测

第4章平稳时间序列预测
今年第一季度该超市月销售额分别为:
101,96,97.2万元 请确定该超市第二季度每月销售额的预测值.
解: 预测值计算
X t 10 0.6 X t 1 0.3 X t 2 t , t ~ N (0,36) x1 101, x2 96, x3 97.2

四月份: 五月份: 六月份:

方法


第四章 平稳时间序列预测
预测

平稳时间序列预测的定义 利用平稳时间序列{Xt ,t=0,±1,±2,…}在时刻t及以 前时刻 t-1,t-2,…的所有信息,对 Xt+l(l>0)进行估计, 相应的预测量记为
ˆ l , 称为预测步长,t称为预 X t l
测的原点.
第四章 平稳时间序列预测

ห้องสมุดไป่ตู้
第一节 正交投影预测
统计人数 预测人数
ˆ 2002 104 110 6 2002 x2002 x ˆ 2003 108 100 8 2003 x2003 x ˆ 2004 105 109 4 2004 x2004 x
ˆ2004 (1) 100 0.8 2004 0.6 2003 0.2 2002 109.2 x ˆ2004 (2) 100 0.6 2004 0.2 2003 96 x ˆ2004 (3) 100 0.2 2004 100.8 x ˆ2004 (4) 100 x ˆ2004 (5) 100 x
与预测图(预测1999-2003)
例2:MA(q)模型的预测

已知某地区每年常驻人口数量近似服从MA(3)模型 (单位:万人):
X t 100 t 0.8t 1 0.6 t 2 0.2 t 3 , 25

平稳时间序列模型的特性

平稳时间序列模型的特性

它旳解为
Xt
at
1 1B
(1 1B 12 B 2
13 B3
)at
1j at j
G j at j
j0
j0
11
3.格林函数旳意义
(1) G j是前j个时间单位此迈进入系统旳扰动 at j对系统目前行 为(响应)影响旳权数。
(2)
G
客观地刻画了系统动态响应衰减旳快慢程度。
j
(3)
G
是系统动态旳真实描述。系统旳动态性就是蕴含在时间
3. 系统参数对系统响应旳影响 对此我们用实例加以阐明,对前面旳序列分将别利用 1 0.5 和 1 0.9 成了两个序列,分别描 绘在图3.2和图3.3中,
16
17
1
1
1
经过比较图3.1、图3.2能够懂得: (1) 取负值时,响应波动较大。 (2) 取正值时,响应变得平坦。 (3) 越大,系统响应回到均衡位置旳速度越慢,时
0
1 1 p
29
AR(P)序列中心化变换
称 {yt}为 {xt}旳中心化序列 ,令
0
1 1 p
yt xt
30
自回归系数多项式
引进延迟算子,中心化 AR( p)模型又能够简
记为
(B)xt t
自回归系数多项式
(B) 1 1B 2B2 p B p
31
AR模型平稳性鉴别
鉴别原因
zt (c1 c2t
cd t d 1)1t
c t d 1 d 1
cppt
复根场合
zt rt (c1eit c2eit ) c33t
c
p
t p
26
非齐次线性差分方程旳解
非齐次线性差分方程旳特解

《平稳时间序列》课件

《平稳时间序列》课件
《平稳时间序列》PPT课 件
欢迎来到《平稳时间序列》PPT课件!在这个课程中,我们将深入研究平稳 时间序列的定义、检验和应用,以及常见的模型和实操演练。
定义
平稳性
均值、方差和协方差都不随时间变化而变化。
检验
1 观察法
通过观察时间序列的趋势和波动性来判断是否平稳。
2 自相关Leabharlann 与偏自相关图通过绘制自相关图和偏自相关图来辅助平稳性检验。
常见模型
AR模型
自回归模型,使用过去的观测值来预测未来值。
MA模型
移动平均模型,使用过去滞后项的线性组合来预测 未来值。
ARMA模型
自回归移动平均模型,结合AR和MA模型的特点, 用于拟合时间序列。
ARIMA模型
差分自回归移动平均模型,用于拟合非平稳时间序 列。
实操演练
1
Python实现平稳性检验
3 单位根检验
使用单位根检验方法(如ADF检验)来检验时间序列的平稳性。
应用
时间序列预测
利用平稳时间序列的特性,进 行未来数值的预测和预测不确 定性的评估。
时间序列建模
根据平稳时间序列的规律性, 构建数学模型来解释和预测时 间序列的行为。
数据挖掘
利用时间序列的历史数据,发 现其中的规律和趋势,为决策 提供依据。
使用Python中的统计库,通过ADF检验方法来检验时间序列的平稳性。
2
R实现时间序列预测
利用R语言中的时间序列分析包,对平稳时间序列进行预测和评估。
3
MATLAB实现时间序列建模
利用MATLAB中的时间序列工具箱,构建平稳时间序列的数学模型。

第4章 时间序列平滑预测法

第4章 时间序列平滑预测法

一、一次指数平滑法
时间序列:y1 , y2 ,....., yt 平滑序列:St = αyt + (1 − α )St −1 = α ∑ (1 − α ) j yt − j ) ) 预测模型:yt +1 = αyt + (1 − α ) yt
j =0 ∞
加权系数的选择 α的大小规定了在新预测值中新数据和原预测值所占的比 重。α值越大,新数据所占的比重就愈大,原预测值所占 的比重就愈小,反之亦然。 α值应根据时间序列的具体性 质在0-1之间选择。具体如何选择一般可遵循下列原则: (1)如果时间序列波动不大,比较平稳,则α应取小 一点,如(0.1-0.3)。以减少修正幅度,使预测模型能包 含较长时间序列的信息。 (2)如果时间序列具有迅速且明显的变动倾向,则α 应取大一点,如(0.6-0.8)。使预测模型灵敏度高一些, 以便迅速跟上数据的变化。 在实用上,类似于移动平均法,多取几个α值进行试 算,看哪个预测的均方误差较小,就采用哪个α值作为权 重。
ˆ 预测值 yt α=0.2
219.1 220.82 218.756 216.7248 218.3398 220.4519 223.7015 225.4412 229.073 230.9384 234.9907 236.5726 238.978 240.4424
ˆ 预测值 yt α=0.5
219.1 223.4 216.95 212.775 218.7875 223.8438 230.2719 231.3359 237.468 237.934 244.567 243.7335 246.1667 246.2334
3、循环变动 循环变动一般是指周期不固定的波动变化, 有时是以数年为周期变动,有时是以几个月为 周期变化,并且每次周期一般不完全相同。循 环变动与长期趋势不同,它不是朝单一方向持 续发展,而是涨落相间的波浪式起伏变动。与 季节变动也不同,它的波动时间较长,变动周 期长短不一, 4、不规则变动 不规则变动是指由各种偶然性因素引起的 无周期变动。不规则变动又可分为突然变动和 随机变动。所谓突然变动,是指诸如战争、自 然灾害、地震、意外事故、方针、政策的改变 所引起的变动;随机变动是指由于大量的随机 因素所产生的影响。不规则变动的变动规律不 易掌握,很难预测。

平稳时间序列建模步骤

平稳时间序列建模步骤

平稳时间序列建模步骤一、什么是平稳时间序列平稳时间序列是指在统计意义下具有不变性的时间序列。

具体来说,平稳时间序列的均值、方差和自相关函数都不随时间变化而发生显著的改变。

二、为什么要建立平稳时间序列模型建立平稳时间序列模型可以对数据进行预测和分析,从而更好地理解数据背后的规律和趋势。

此外,平稳时间序列模型还可以用于信号处理、金融分析等领域。

三、建立平稳时间序列模型的步骤1.观察数据并进行预处理首先需要观察数据并进行预处理,包括去除趋势、季节性和异常值等。

这有助于使数据更加平滑,并且减少噪声对模型的影响。

2.确定差分阶数如果原始数据不是平稳的,需要进行差分操作使其变成平稳的。

差分阶数可以通过观察自相关函数(ACF)和偏自相关函数(PACF)来确定。

3.选择合适的模型根据差分后得到的数据,可以选择适合该数据集的ARIMA模型。

ARIMA模型包括AR(p)、MA(q)和ARMA(p,q)三种类型。

4.估计模型参数使用最大似然估计(MLE)或最小二乘法(OLS)等方法来估计模型参数。

5.检验模型的拟合程度对于建立的模型,需要对其进行检验,包括残差的自相关性、正态性等。

如果存在问题,则需要调整模型或重新选择模型。

6.预测未来值使用建立好的模型进行未来值的预测,并对预测结果进行评估和修正。

四、总结建立平稳时间序列模型是一个复杂的过程,需要对数据进行观察和处理,选择合适的模型并估计参数,最后对模型进行检验和预测。

在实际应用中,需要根据具体情况灵活运用这些步骤,并结合领域知识和经验来优化建模过程。

《平稳时间序列》课件

《平稳时间序列》课件
市场波动
通过分析股票市场的波动数据,平稳时间序列方法可以帮助预测未 来市场的波动情况,有助于投资者制定风险管理策略。
行业趋势
通过对不同行业股票数据的平稳时间序列分析,可以预测未来行业 的发展趋势,有助于投资者进行行业配置和投资决策。
06
时间序列分析软件介绍
EViews软件介绍
适用范围
EViews是专门用于时间序列分析的软件,广泛应用于经济学、金 融学等领域。
降水预测
通过对历史降水数据的分析,平稳时间序列方法可以帮助 预测未来降水情况,有助于农业生产和灾害防范。
极端天气事件
通过分析极端天气事件的历史数据,平稳时间序列模型可 以预测未来极端天气事件的频率和强度,有助于防范自然 灾害。
股票市场预测
股票价格
利用历史股票价格数据,平稳时间序列模型可以预测未来股票价 格的走势,有助于投资者制定投资策略和风险控制。
列。
Holt's线性指数平滑
02
结合了趋势和季节性因素,适用于具有线性趋势和季节性变化
的时间序列。
Holt-Winters指数平滑
03
适用于具有非线性趋势和季节性变化的时间序列,能更好地捕
捉数据的季节性变化。
季节性自回归积分滑动平均模型(SARIMA)预测
01
SARIMA模型
结合了季节性和非季节性因素,适用于具有季节性和非季节性变化的时
04
平稳时间序列的预测
线性预测
线性回归模型
通过建立自变量与因变量之间的线性关系,预测时间序列的未来 值。
线性趋势模型
适用于具有线性趋势的时间序列,通过拟合线性方程来预测未来 趋势。
简单移动平均模型
对时间序列进行移动平均处理,根据历史数据预测未来值。

时间序列分析方法智慧树知到课后章节答案2023年下哈尔滨工业大学

时间序列分析方法智慧树知到课后章节答案2023年下哈尔滨工业大学

时间序列分析方法智慧树知到课后章节答案2023年下哈尔滨工业大学哈尔滨工业大学第一章测试1.英国的工业革命所进行的时间是()。

A:18世纪70年代到19世纪中期 B:18世纪60年代到19世纪上半期 C:18世纪60年代到18世纪末 D:18世纪30年代到18世纪末答案:18世纪60年代到19世纪上半期2.时间序列通常会受到哪些因素的影响()。

A:长期趋势 B:循环波动 C:季节变化 D:随机波动答案:长期趋势;循环波动;季节变化;随机波动3.时间序列分析有助于比较两个或多个序列。

()A:错 B:对答案:错4.可以应用时间序列模型准确地通过对历史数据分析预测未来发生的结果。

()A:错 B:对答案:错5.时间序列往往呈现某种趋势性或出现周期性变化的现象。

()A:错 B:对答案:对6.平稳时间序列差分后还是平稳时间序列。

()A:错 B:对答案:对7.时间序列分析有助于了解企业的行为。

()A:对 B:错答案:对8.一个时间序列的年度数据包含长期和周期性变化。

()A:错 B:对答案:对9.在计算年度数据的季节性指数时,删除最高和最低的实际滑动平均,减少了季节性变化。

()A:错 B:对答案:错10.一个时间序列的变化模式每年都会重复出现,这叫做季节性变化。

()A:错 B:对答案:对11.时间序列数据中的连续观测是独立且同分布的。

()A:错 B:对答案:错第二章测试1.纯随机序列的均值是零,方差是定值。

()A:错 B:对答案:错2.对于各种时间序列的ADF平稳性检验,其拟合方程式应该都相同。

()A:错 B:对答案:错3.由于观察值序列的有限性,纯随机序列的样本自相关系数可能不为零。

()A:对 B:错答案:对4.严平稳序列一定是宽平稳序列。

()A:错 B:对答案:错5.宽平稳序列一定是严平稳序列。

()A:错 B:对答案:错6.宽平稳序列的二阶矩一定存在。

()A:对 B:错答案:错7.当序列服从正态分布时,宽平稳和严平稳等价。

平稳时间序列预测法

平稳时间序列预测法
0 c 为一常数。
试证明:
X t 宽平稳。
回总目录 回本章目录
证明:
E Xt E Acosct B sin ct 0 r s,t E Acos ct B sin ct Acos cs B sin cs E[A2 coscs cosct AB cosct sin cs AB sin ct cos cs B2 sin ct sin cs] coscs cos ct sin ct sin cs cos c(t s)
设平稳时间序列 yTt 是一个ARMA(p,q)
过程,则其最小二乘预测为:
yˆTt l E yT 1 yT ,..., y1
AR(p)模型预测
yˆTt l 1 yˆT l 1 ... p yˆT l p l 1,2,...
回总目录 回本章目录
ARMA(p,q)模型预测
p
q
yˆTt l j yˆT l j jˆT l j
7.3 单位根检验和协整检验
一、单位根检验
利用迪基—福勒检验( Dickey-Fuller Test)和 菲利普斯—佩荣检验(Philips-Perron Test),也可 以测定时间序列的随机性,这是在计量经济学中非 常重要的两种单位根检验方法,与前者不同的是, 后一个检验方法主要应用于一阶自回归模型的残差 不是白噪声,而且存在自相关的情况。
回总目录 回本章目录
解答:
Yule-Walker方程为:
0 1 1 1 1 2 2 2
即:
0.3 0 0.41 1 0.31 0.4 0 2
回总目录 回本章目录
且:
0 0.31 0.4 2 2 1
联合上面三个方程,解出:
0 100 / 63
1 50 / 63

平稳时间序列模型的建立概述

平稳时间序列模型的建立概述

平稳时间序列模型的建立概述第一步是数据的预处理。

在建立平稳时间序列模型之前,需要对原始时间序列数据进行一些预处理,包括去除趋势、季节性和周期性等。

去趋势可以采用差分方法,即对时间序列数据进行一阶差分,得到的差分序列不再具有明显的趋势性。

去除季节性和周期性可以使用季节性差分或移动平均方法。

第二步是对预处理后的序列进行统计特性分析。

这包括计算序列的均值、方差、自相关函数和偏自相关函数等统计指标。

通过分析这些指标,可以了解序列的平稳性、周期性和相关性等统计特性。

第三步是根据统计分析结果选择适合的时间序列模型。

常用的平稳时间序列模型包括自回归移动平均模型(ARMA)、自回归模型(AR)、移动平均模型(MA)和季节性自回归移动平均模型(SARIMA)等。

选择模型的原则是使模型具有较好的拟合效果并具有良好的预测性能。

第四步是模型参数的估计与诊断。

对于选定的时间序列模型,需要估计模型的参数。

这可以通过最大似然估计或最小二乘估计等方法进行。

估计得到模型参数之后,需要对模型进行诊断检验,判断模型是否合理。

常用的诊断方法包括残差平稳性检验、残差序列的白噪声检验和残差的自相关函数和偏自相关函数检验等。

第五步是模型预测与评估。

通过已建立的平稳时间序列模型,可以对未来的序列数据进行预测。

预测的准确性可以通过计算预测误差和拟合优度等指标进行评估。

若模型的预测效果较好,则可应用该模型进行实际预测。

总之,平稳时间序列模型的建立过程包括数据的预处理、统计特性分析、模型选择、参数估计与诊断以及模型预测与评估等步骤。

通过这些步骤的实施,可以建立一个合理且具有较好预测效果的平稳时间序列模型。

平稳时间序列模型的建立概述(续)第一步是数据的预处理。

在建立平稳时间序列模型之前,需要对原始时间序列数据进行一些预处理,包括去除趋势、季节性和周期性等。

去趋势可以采用差分方法,即对时间序列数据进行一阶差分,得到的差分序列不再具有明显的趋势性。

去除季节性和周期性可以使用季节性差分或移动平均方法。

平稳序列建模过程

平稳序列建模过程

平稳序列建模过程
平稳序列建模是一种常用的时间序列建模方法,用于根据已获得的数据来归纳研究和预测随时间变化的趋势。

它在经济、财务、商业和管理研究中都有广泛的应用。

第一步,分析时间序列数据。

在分析之前,首先要确定所要研究的时间序列数据,然后收集、整理所需的数据,并对其进行分析。

必要时,也可以进行转换,如对数据进行标准化或加权计算。

第二步,检验序列的平稳性。

在建模之前,必须先检验序列的平稳性,即序列的历史平均值和方差是否一致,以及序列中是否存在显著变化。

第三步,建模。

建模方法是非常广泛的,包括线性模型、非线性模型、Box-Jenkins 模型、ARMA模型和Transfer Function模型等,其中最常用的是ARMA模型。

使用这些模型,可以通过最小二乘法估计模型参数,并用模拟结果验证模型的可靠性。

第四步,测试模型的有效性和强度。

为了确定建模的有效性和强度,可以使用检验方法对建模结果进行检验,具体检验方法有均方根误差、标准误差和R2等效。

第五步,进行预测。

模型的预测结果主要是通过模拟过程得出的,可以根据虚拟系统中的状态变量来预测序列的未来趋势或通过更新参数模型来做出预测,从而获得预测值。

最后,对预测结果进行评估。

即对模型的准确性作出评价,以某种均衡方式来确定模型的有效性,因为预测结果不可能是完美的,最终需要根据预测结果做出实质性的调整和相应的决策。

平稳时序建模

平稳时序建模
(1 2 q ) 2 E ( t2 )
参数估计
待估参数

p q 2个未知参数
1, , p ,1, ,q , ,
常用估计方法 矩估计 极大似然估计 最小二乘估计
2
一、模型参数的矩方法估计
(一)基本思路
矩方法估计就是利用样本自协方差函数或样本自
1
根据自协方差公式有:
0 E ( xt2 ) E ( xt (1 xt 1 2 xt 2 p xt p at ))
1 1 2 2 p p 2
2 于是可得到 的矩估计:
ˆ1 ˆ 2 ˆp) ˆ ˆ0 (1 ˆ1 ˆ2 ˆp
2. 样本偏自相关函数截尾性的判断方法 可以证明:若序列xt为AR(p)序列,则k>p后,
序列的样本偏自相关函数 服从渐近正态分 ˆ kk 布,即近似的有: 1 ˆ kk ~ N (0, ) n 此处n表示样本容量。于是可得:
1 ˆ P( kk ) 31.7% n 2 ˆ P( kk ) 4.5% n
1 1 2 1 2 1 1 2 矩估计(Yule-Walker方程的解)
n
ˆ D k ˆ kk ˆ D
模型识别
基本原则
ˆ k
拖尾
ˆ kk
P阶截尾
选择模型 AR(P)
q阶截尾
拖尾
拖尾
拖尾
MA(q)
ARMA(p,q)
模型定阶的困难
因为由于样本的随机性,样本的相关系数不会呈现出
ˆ 仍会呈现出 ˆk 或 理论截尾的完美情况,本应截尾的 kk 小值振荡的情况 由于平稳时间序列通常都具有短期相关性,随着延迟 ˆ ˆ 阶数 k , k与 kk都会衰减至零值附近作小值波动? ˆ 在延迟若干阶之后衰减为小值波动时,什么 ˆ k 或 当 kk 情况下该看作为相关系数截尾,什么情况下该看作为 相关系数在延迟若干阶之后正常衰减到零值附近作拖 尾波动呢?

时间序列分析及应用R语言第二版教学设计 (2)

时间序列分析及应用R语言第二版教学设计 (2)

时间序列分析及应用R语言第二版教学设计一、前言时间序列数据已经在各个领域得到了广泛的应用,例如金融领域的股票预测、气象领域的天气预测等等。

R语言是一种功能强大且易于使用的编程语言,在时间序列分析中具有很大的优势。

本教学设计旨在向学生介绍时间序列分析的基本知识和R语言的应用。

二、教材及参考书目教材•Brockwell, P. J., & Davis, R. A. (2002). Introduction to Time Series and Forecasting (2nd ed.). Springer.参考书目•Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice (2nd ed.). OTexts.•Cowpertwt, P. S. P., & Metcalfe, A. V. (2009). Introductory Time Series with R (1st ed.). Springer.•Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R Examples (4th ed.). Springer.三、教学目标•理解时间序列的基本概念和性质,能够进行时间序列的可视化和数据处理。

•掌握时间序列模型的建立和评估方法,能够应用ARIMA、季节性ARIMA和指数平滑等方法进行时间序列预测。

•熟悉R语言在时间序列分析中的应用,能够进行时间序列建模和预测。

四、教学内容第一章:时间序列预备知识1.1 时间序列概述1.2 常见时间序列模型1.3 时间序列的可视化和数据处理第二章:时间序列分析基本方法2.1 平稳时间序列模型2.2 自回归模型2.3 移动平均模型第三章:ARIMA模型3.1 ARIMA模型介绍3.2 ARIMA模型求解方法3.3 ARIMA模型的评估和预测第四章:季节性ARIMA模型4.1 季节性ARIMA模型介绍4.2 季节性ARIMA模型求解方法4.3 季节性ARIMA模型的评估和预测第五章:指数平滑法5.1 简单指数平滑法5.2 带趋势的指数平滑法5.3 季节性指数平滑法第六章:R语言在时间序列分析中的应用6.1 R语言基础知识6.2 时间序列数据的导入和可视化6.3 时间序列模型的建立和预测五、教学方法本教学设计主要采用理论授课和实例演示相结合的教学方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将上式展开得:
xt 1xt1 p xtp 0 at 1at1 2at2 qatq
此时,所要估计的未知参数有p+q+1个.
第二节 模型识别与定阶
一、模型识别 二、模型定阶
一、模型识别
• 基本原则
ˆk
拖尾 q阶截尾
拖尾
ˆkk
P阶截尾 拖尾
拖尾
选择模型 AR(P) MA(q)
ARMA(p,q)
• 序列的非平稳包括均值非平稳和方差非 平稳.
• 均值非平稳序列平稳化的方法:差分变 换.
• 方差非平稳序列平稳化的方法:对数变 换、平方根变换等.
• 序列平稳性的检验方法和手段主要有: 序列趋势图、自相关图、单位根检验、 非参数检验方法等等.
一、平稳性检验—图检验方法
(一)时序图检验
–根据平稳时间序列均值、方差为常数的性 质,平稳序列的时序图应该显示出该序列 始终在一个常数值附近随机波动,而且波 动的范围有界、无明显趋势及周期特征.
–检验1949年——1998年北京市每年最高气温 序列的平稳性
例1 时序图
例1 自相关图
例2 时序图
例2 自相关图
例3 时序图
例3 自相关图
二、纯随机性检验
(一)纯随机序列的定义
• 纯随机序列也称为白噪声序列,它 满足如下两条性质
(1)EX t , t T
(2)
(t,
s)
2,t
s
,
例5、对1950年—1998年北京市城乡居民定期储
蓄所占比例序列的平稳性与纯随机性进行检验
自相关图
白噪声检验结果
延迟阶数 6 12
LB统计量检验
LB检验统计 量的值
75.46
P值 <0.0001
82.57
<0.0001
三、计算样本相关函数
• 样本自相关函数 • 样本偏自相关函数
nk
(xt x)(xtk x)
稳序列后再进行模型识别.
二、模型定阶
模型定阶的困难
• 因为由于样本的随机性,样本的相关系数不会 呈现出理论截尾的完美情况,本应截尾的 ˆk 或 ˆkk 仍会呈现出小值振荡的情况
ˆk t1 n
(xt x)2
t 1
ˆkk
Dˆ k Dˆ
四、关于非零均值的平稳序列
非零均值的平稳序列有两种处理方法: 设xt为一非零均值的平稳序列,且有E(xt)=μ
• 方法一: 用样本均值 x 作为序列均值μ的估
计,建模前先对序列作如下处理:
令 wt xt x
然后对零均值平稳序列wt建模.
k>q 时,k 0,而且它的偏自相关函数
尾,则可判断此序列是MA(q)序列.
kk拖
• 若序列xt的自相关函数、偏相关函数都呈拖 尾形态,则可断言此序列是ARMA序列.
• 若序列的自相关函数和偏自相关函数不但都 不截尾,而且至少有一个下降趋势势缓慢或
呈周期性衰减,则可认为它也不是拖尾的,
此时序列是非平稳序列,应先将其转化为平
(二)自相关图检验
– 平稳序列通常具有短期相关性.该性质用自 相关函数来描述就是随着延迟期数的增加, 平稳序列的自相关函数会很快地衰减向零.
例题
• 例1
– 检验1964年——1999年中国纱年产量序列的 平稳性
• 例2
–检验1962年1月——1975年12月平均每头奶牛 月产奶量序列的平稳性
• 例3
• 方法二 在模型识别阶段对序列均值是否为零不予考 虑,而在参数估计阶段,将序列均值作为一 个参数加以估计.
以一般的ARMA(p,q)为例说明如下:
设平稳序列xt的均值为, 其适应性模型为ARMA( p, q),即 : (xt ) 1 (xt1 ) p (xt p ) at 1at1 2 at2 q atq
第四章 平稳时间序列模型 的建立
第一节 第二节 第三节 第四节
第五节
时间序列的预处理 模型识别与定阶 模型参数估计 模型检验与优化
其它建模方法
建模步骤
1、建模流程
(有限长度)时序样本→模型识别与 定阶→模型参数估计→模型适用性检验→ 模型优化
2、基本前提
⑴平稳序列{Xt} ⑵零均值序列EXt=0

,k 0
2、假设条件
• 原假设:延迟期数小于或等于 m期的序列 值之间相互独立
H 0:1 2 m 0, m 1
• 备择假设:延迟期数小于或等于 m 期的 序列值之间有相关性
H1:至少存在某个k 0,m 1,k m
3、检验统计量
• Q统计量
m
Q n
ˆ
2 k
~
2 (m)
k 1
平下无法拒绝原假设,即不能显著拒绝序列 为纯随机序列的假定
5、应用举例
例4、标准正态白噪声序列纯随机性检验
样本自相关图
检验结果
延迟
延迟6期 延迟12期
QLB 统计量检验
QLB 统计量值
2.36
5.35
P值 0.8838 0.9454
由于P值显著大于显著性水平 ,所以该序列
不能拒绝纯随机的原假设.
t,
s
T
0,t s
(二)纯随机性检验
检验原理 假设条件 检验统计量 判别原则 应用举例
1、检验原理
Barlett定理
• 如果一个时间序列是纯随机的,得到一 个观察期数为n的观察序列,那么该序列 的延迟非零期的样本自相关系数将近似 服从均值为零,方差为序列观察期数倒 数的正态分布
ˆ k
~
N (0, 1 ) n
• LB统计量
m
LB n(n 2)
(
ˆ
2 k
) ~ 2 (m)
k1 n k
4、判别原则
• 拒绝原假设
–当检验统计量大于12 (m) 分位点,或该统计
量的P值小于 时,则可以以 1 的置信水
平拒绝原假设,认为该序列为非白噪声序列
• 接受原假设
–当检验统计量小于12 (m) 分位点,或该统计
量的P值大于 时,则认为在 1的置信水















流程图
模型 识别
参数 估计


N
模型
Y型

检验
优预化测第一节 时间序列的预处理
一、平稳性检验 二、纯随机性检验 三、计算样本自相关函数 四、关于非零均值的平稳序列
• 本章所介绍的是对零均值平稳序列建 立ARMA模型,因此,在对实际的序 列进行模型识别之前,应首先检验序 列是否平稳,若序列非平稳,应先通 过适当变换将其化为平稳序列,然后 再进行模型识别.
• 零均值平稳序列模型识别的主要根据是 序列的自相关函数(ACF)和偏自相关函数 (PACF)的特征.
• 若序列xt的偏自相关函数kk 在k>p以后截 尾,即k>p 时,kk 0,而且它的自相关 函数k 拖尾,则可判断此序列是AR(p)序
列.
• 若序列xt的自相关函数 k在k>q以后截尾,即
相关文档
最新文档