初中数学三角形(二)三角形的角平分线和中垂线

合集下载

中垂线和角平分线

中垂线和角平分线

2、线段垂直平分线性质定理的逆定理
(1)线段垂直平分线的逆定理:
到一条线段两个端点距离相等的点在这条线段的垂直平分线
上.
定理的数学表示:如图 2,已知直线 m 与线段 AB 垂直相交
于点 D,且 AD=BD,若 AC=BC,则点 C 在直线 m 上.
定理的作用:证明一个点在某线段的垂直平分线上.
A
课堂笔记:
段的中垂线.
A.1 个
B.2 个 C.3 个 D.4 个
4.△ABC 中,AB 的垂直平分线交 AC 于 D,如果 AC=5 cm,BC=4cm,那么△DBC 的周
长是( )
A.6 cm
B.7 cm C.8 cm D.9 cm
5.已知如图,在△ABC 中,AB=AC,O 是△ABC 内一点,且 OB=OC,
j 图3
C
点 O,且 OA=OB=OC.
定理的作用:证明三角形内的线段相等.
(2)三角形三边垂直平分线的交点位置与三角形形状的关系:
若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形
是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角
形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交
求证:AO⊥BC.
2
6.如图,在△ABC 中,AB=AC,∠A=120°,AB 的垂直平分线 MN 分别交 BC、AB 于点 M、N. 求证:CM=2BM.
线段的垂直平分线与角平分线(2)
知识要点详解
4、角平分线的性质定理: 角平分线的性质定理:角平分线上的点到这个角
的两边的距离相等. 定理的数学表示:如图 4,已知 OE 是∠AOB 的平
图5 C A

角平分线与垂直平分线知识点

角平分线与垂直平分线知识点

角平分线与垂直平分线知识点一、角平分线1.角平分线可以得到两个相等的角。

(角平分线的定义)∵AD是∠CAB的角平分线1∠CAB∴∠CAD=∠B AD=22.角平分线上的点到角两边的距离相等。

(角平分线的性质)∵AD是∠CAB的角平分线,DC⊥AC ,DB⊥AB∴DC=DB3.三角形的三条角平分线交于一点,称作三角形内心。

三角形的内心到三角形三边的距离相等。

4.到角两边的距离相等的点在角平分线上。

(角平分线的判定)∵DC⊥AC ,DB⊥AB,DC=DB∴点D在∠CAB的角平分线上。

二、角平分线图模(对称性)1、角平分线作垂线角平分线+垂直一边:“图中有角平分线,可向两边作垂线,作完垂线全等必出现”若PA⊥OM于点A,可以过P点作PB⊥ON于点B,则PB=PA。

利用角平分线的性质定理,可以得到∆OAP≌∆OBP(AAS)。

2、角平分线+垂线:“角分垂必延长”垂直角分线,等腰全等现。

若AP⊥OP于点P,可延长AP交ON于点B,构造△AOB是等腰三角形,P是底边AB的中点,三线合一,∆OAP≌∆OBP(ASA)。

3、角平分线+斜线:“截等长构造全等”若点A是射线OM上任意一点,可以在ON上截取OB=OA,连接PB,构造△OPB≌△OPA(SAS)。

4、角平分线+平行线:“角平分线+平行线,等腰三角形必出现”若过P点作PQ∥ON交OM于点Q,利用平行的内错角相等及等角对等边可以得到△POQ是等腰三角形。

5、角平分线+对角互补:“截长补短构造全等”6、夹角模型①双内角角平分线模型:BP、CP分别是∠ABC、∠ACE的角平分线,则:∠P=90°+12∠A.②内角和外交角平分线模型:BP、CP分别是∠ABC、∠ACE的角平分线,则:∠P=12∠A.③双外角角平分线模型:BP、CP分别是∠CBD、∠BCD的角平分线,则:∠D=90°-12∠B.在∠AOB中,画角平分线:1.以点O为圆心,以任意长为半径画弧,两弧交∠AOB两边于点M,N。

初中数学之三角形中线高线角平分线知识点

初中数学之三角形中线高线角平分线知识点

初中数学之三角形中线高线角平分线知识点三角形是初中数学中一个重要的几何图形,它有很多性质与定理,其中三角形的中线、高线和角平分线是十分重要的知识点。

下面将详细介绍一下这三个概念的定义,性质和应用。

一、中线1.定义:三角形的中线是三角形的一个边上的中点与对立顶点连接而成的线段。

2.性质:(1)任意一条中线上的点到两个对立边的距离相等,即中线上各点到两个对立边的距离相等。

(2)三角形中线的三个交点互相连接,可以在三角形的内部形成三条交叉的线段,这三条线段的交点就是三角形的重心。

重心是三角形内部所有中线的交点,它离三个顶点的距离都相等,也就是说重心到三个顶点的距离相等。

(3)三角形的三条中线互相平分对立顶点的内角,即三角形的三条中线互相平分对立顶点的内角。

(4)三角形三条中线的交点离三个顶点等距离,即三角形的中线互相交于一点,且该点到三个顶点的距离相等。

(5)中线的比例定理:在三角形ABC中,如果D、E、F分别是BC、AC、AB上的中点,那么AD∶DF=1∶2,BE∶DE=1∶2,CF∶EF=1∶23.应用:中线在三角形的性质研究和解题中起到重要的作用,特别是在证明几何定理的过程中,常常会用到三角形的中线性质。

同时,中线还可以用来求三角形的面积,当一个三角形ABC的中线EF垂直于BC且EF等于BC的一半时,EF可以作为底边,AC可以作为高,求三角形ABC的面积。

二、高线1.定义:三角形的高线是从三角形的一个顶点引垂线与对立边相交而成的线段。

2.性质:(1)三角形的三条高线交于一点,该点叫做三角形的垂心。

垂心到三角形的三边的距离互不相等。

(2)垂线和对立的边垂直,即垂线和对立的边成为直角。

(3)垂线平分对立的边。

(4)如果三角形的高线重合、重合的部分等于底边长,则该三角形为等腰直角三角形。

(5)如果三角形是等腰三角形,则该三角形的高线也是中线。

3.应用:高线在三角形的研究和解题中有很多应用。

通过高线的性质,可以判断三角形是否是等腰三角形、直角三角形,还可以求解三角形的面积,等等。

初中数学:三角形中的角平分线、中线、高线和中垂线

初中数学:三角形中的角平分线、中线、高线和中垂线

一. 教学内容:三角形中的角平分线、中线、高线和中垂线二. 教学内容1. 三角形的角平分线和中线2. 三角形的高线和中垂线3. 角平分线性质定理、中垂线性质定理三. 教学目标和要求1. 理解三角形角平分线、中线、高线和中垂线的概念,并能画出相应的线。

2. 掌握三角形角平分线、中线、高线及中垂线的一些特征,并能在解题中灵活应用。

四. 教学重点、难点1. 重点:角平分线性质定理及中垂线性质定理的运用2. 难点:三角形中线在面积方面的应用,角平分线性质定理、中垂线性质定理的运用是本周难点。

五. 知识要点1. 角平分线性质定理2. 中垂线性质定理3. 三角形中的三条角平分线4. 三角形中的三条中线5. 三角形中的三条高线6. 三角形中三边上的中垂线【典型例题】例1. 如图,△ABC的两条角平分线AD,CE相交于P,PM⊥BC于M,PN ⊥AB于N,则PN=PM,请说明理由。

解:过P作PF⊥AC,垂足为F∵AD平分∠BAC,PN⊥AB,PF⊥AC∴PN=PF (为什么)∵CE平分∠ACB,PM⊥BC,PF⊥AC∴PM=PF∴PM=PN (为什么)例2. 如图,BP、CP分别为△ABC的两个外角的平分线,则点P到△ABC三边的距离相等吗?若相等,请说明理由。

解析:略例3. 已知△ABC ,要把它分成面积相等的6块,且只能画三条线,应怎样分?并说明分法的正确性。

解:分法:分别画△ABC 的三条中线AD 、BE 、CF ,交于P 点,所分得的6块面积相等。

理由:∵AD 为中线∴BD =CD ∴S △PBD =S △PCD 设S △PBD =S △PCD =a同理:可设S △PCE =S △PEA =b ;S △PAF =S △PBF =c ∵AD 为△ABC 的中线 ∴S △ABD =S △ACD 即a+2c =a+2b ∴c =b同理可得a =b ∴a =b =c∴△ABC 三条中线分得的6块三角形面积相等。

角平分线与中垂线的基本性质

角平分线与中垂线的基本性质
-1-

相同的角度。 3. 了解中垂線將該線段垂直平分,中垂線上 任一點到線段兩端點的距離皆相等。 4. 會正確地使用符號 ∠ABC 、 AB …來代表所 要表示的角度或線段。 5. 正確地使用符號 ∠ABC 、 AB 來解題。 6. 能正確運用角平分線及中垂線的性質來解 題。
教學時間配當
(2 堂課, 90 分鐘) 複習點、直線、線段…等概念。 直線能被平分嗎?線段能被平分嗎?如 何做? 如何將一個角度平分?(活動四) 角平分線的性質與應用。(講解例題 2、3) 提醒上節課線段找中點的方式。 發現中垂線的意義與性質。(活動五)
2 分鐘
專心聽講並思 考。
8-s-02
和今天要用到的色紙有何關係 呢? 2. 直線可以平分嗎? 板書、教科 3 分鐘 書
仔細思考並回 答教師的問題。 討論、並專心聆 聽、操作色紙並 寫下記錄。 配合 課本
8-s-02
3. 線段可以平分嗎?如何做?對 色紙(紙卡) 10 分鐘 於平分後的線段,有何發現? 童軍繩、直 釐清無法將一直線平分 但可以平 尺 , 分一線段 在探討如何平分一線段 , 時,引入平分角度的概念。 4. 角度可以平分嗎?如何做?對 海 報 、 紙 15 分鐘 於平分後的角度,有何發現? 卡 、 量 角 器、教科書 5. 應用角平分線的定義及性質來 板書、教科 10 分鐘 解決問題。 書、直尺 6. 歸納並總結本節課授課內容。 學 習 單 ( 回 2 分鐘 三、綜合活動 家作業) 1. 指定回家作業。 3 分鐘 2. 提問問題。 3. 課後回答學生疑問並提供課後 輔導。 (第一節課結束)












三角形的中位线角平分线和垂线

三角形的中位线角平分线和垂线

三角形的中位线角平分线和垂线三角形的中位线、角平分线和垂线三角形是初中数学中一个重要的图形,它由三条边和三个顶点组成。

在三角形中,中位线、角平分线和垂线是三条与三角形内部相关的特殊线段。

本文将介绍中位线、角平分线和垂线在三角形中的性质和应用。

一、中位线中位线是连接一个三角形的两个顶点和对边中点的线段。

对于三角形ABC,三条中位线分别为AD,BE和CF(D、E和F分别为边BC、AC和AB的中点)。

中位线具有以下性质:性质1:三角形中的三条中位线互相平分。

性质2:三角形中的三条中位线交于一个点,该点被称为中心。

性质3:中心到各顶点的距离等于中心到对边中点的距离,而且中心是中位线的重心。

应用:中位线的应用较多,最常见的是利用中位线求三角形重心。

重心是以三角形三条中位线的交点为顶点的新三角形的重心。

我们可以根据中位线的性质计算重心的坐标。

二、角平分线角平分线是从一个角的顶点出发,平分这个角的角度的线段。

对于三角形ABC,角BAC的角平分线为AD(D在BC上)。

角平分线具有以下性质:性质1:角平分线把原来的角分成两个相等的角。

性质2:三角形的三条角平分线交于一点,该点被称为内角平分点。

性质3:内角平分点到三个顶点的距离相等。

应用:角平分线的应用较多,最常见的是利用角平分线求三角形内心。

内心是以三角形的三条角平分线的交点为顶点的新三角形的内心。

我们可以根据角平分线的性质计算内心的坐标。

三、垂线垂线是从一个顶点引出,与对边垂直相交的线段。

对于三角形ABC,从顶点A引出的垂线为AD(D在BC上)。

垂线具有以下性质:性质1:垂线与对边垂直相交,交点为垂足。

性质2:三角形的三条垂线交于一点,该点被称为垂心。

应用:垂线的应用较多,可以用于求解三角形的垂心。

垂心是以三角形的三条垂线的交点为顶点的新三角形的垂心。

我们可以根据垂线的性质计算垂心的坐标。

综上所述,三角形的中位线、角平分线和垂线在几何学中具有重要的地位和应用。

三角形及其角平分线、中线和高线

三角形及其角平分线、中线和高线

三角形及其角平分线、中线和高线知识导引1、三角形的有关概念:定义:由不在通一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

外角:三角形一条边的延长线和另一条相邻的边组成的角。

三角形的中线:连结三角形的一个顶点与该顶点的对边中点的线段,叫做三角形的中线。

三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线。

三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

注意:三角形的中线、高线、角平分线都是线段。

2、三角形的边角关系:边与边的关系:三角形的任意一边大于另外两边之差,并小于另外两边之和。

角与角的关系:三角形的内角和等于180°,外角和等于360°;三角形的一个外角等于和它不相邻的两个内角的和,且大于任何一个和它不相邻的内角。

边与角的关系:在一个三角形中,等角对等边,等边对等角,大角对大边,大边对大角。

3三角形的分类:按角分:三角形可分为锐角三角形、直角三角形、钝角三角形。

按边分:三角形可分为不等边三角形、等腰三角形。

典例精析例1:现有2cm,4cm,5cm,8cm长的四根木棒,任意选取三根组成一个三角形,那么可以组成三角形的个数为()A、1个B、2个C、3个D、4个例2:如图,AD是△ABC的角平分线,AE是BC边上的高线,∠B=20°,∠C=40°,求∠DAE 的度数。

例3:如图所示,平面上的六个点A、B、C、D、E、F构成一个封闭的折线图形。

求∠A+∠B +∠C+∠D+∠E+∠F的值。

例3—1:求如图1所示图形中∠A+∠B+∠C+∠D+∠E 的大小。

例3—2:如图所示,(∠1+∠2-∠3)+(∠4+∠5-∠6)+(∠7+∠8-∠9)=例4:如图所示,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于点D ,且∠D=30°,求∠A 的度数。

三角形的垂线角平分线和中线的关系

三角形的垂线角平分线和中线的关系

三角形的垂线角平分线和中线的关系在几何学中,三角形是指由三个边连接而成的多边形。

三角形具有很多有趣的性质和特点,其中包括垂线、角平分线和中线。

本文将探讨三角形的垂线、角平分线和中线之间的关系。

一、垂线与角平分线的关系1. 垂线的定义与特点垂线是指从一个点到一条线段或直线所作的垂直线。

在三角形中,我们可以通过一个顶点作一条垂线,与对边相交,形成一个直角。

这条垂线被称为该顶点对边的垂线。

2. 角平分线的定义与特点角平分线是指把一个角平分为两个相等角的线段或射线。

在三角形中,我们可以通过一个顶点作一条角平分线,将对边对应的两个角平分为相等的两个角。

3. 垂线与角平分线的关系在三角形中,垂线和角平分线可以有以下关系:(1)垂线和角平分线可以是同一条线段或射线。

当一个顶点上的垂线同时是该顶点角的角平分线时,这条线段或射线既是垂线,又是角平分线。

(2)垂线和角平分线可以相交于一点。

当一个顶点上的垂线和角平分线不是同一条线段或射线时,它们将相交于一点,该点同时是垂线和角平分线的交点。

二、垂线与中线的关系1. 中线的定义与特点中线是指连接一个三角形的一个顶点和中点的线段。

在三角形中,我们可以通过一个顶点作一条中线,将对边对应的两个中点连接起来。

2. 垂线与中线的关系在三角形中,垂线和中线可以有以下关系:(1)垂线和中线可以是同一条线段。

当一个顶点上的垂线同时经过对边的中点时,这条线段既是垂线,又是中线。

(2)垂线和中线可以相交于一点。

当一个顶点上的垂线不经过对边的中点时,它们将相交于一点,该点同时是垂线和中线的交点。

三、角平分线与中线的关系1. 角平分线的定义与特点角平分线是指把一个角平分为两个相等角的线段或射线。

在三角形中,我们可以通过一个顶点作一条角平分线,将对边对应的两个角平分为相等的两个角。

2. 角平分线与中线的关系在三角形中,角平分线和中线可以有以下关系:(1)角平分线和中线可以是同一条线段或射线。

当一个顶点上的角平分线同时经过对边的中点时,这条线段既是角平分线,又是中线。

2022年数学精品初中教学设计《三角形的高、中线与角平分线》特色教案

2022年数学精品初中教学设计《三角形的高、中线与角平分线》特色教案

三角形的高、中线与角平分线一、新课导入1.导入课题:在与三角形有关的线段中, 除了它的三边外, 还有它的高、中线和角平分线, 这节课我们来学习三角形的高, 中线和角平分线的意义、作法和发现的规律性结论.2.学习目标:(1)了解三角形的高、中线和角平分线的意义.(2)会画出三角形的高、中线和角平分线.(3)结合图形写出三种线段分别得到的相应结论.3.学习重、难点:重点:三角形的高、中线和角平分线的意义和画法.难点:结合三角形高、中线和角平分线的定义探索相应的规律结论.二、分层学习1.自学指导:〔1〕自学内容:教材第4页《11.1.2 三角形的高、中线与角平分线》的第1自然段.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本的内容, 划出你认为是重点的语句.〔4〕自学参考提纲:①表述出什么是三角形的高?从三角形的一个顶点向它的对边作垂线, 所得线段叫做三角形的高.②如图1, ∵AD是△ABC的高,∴AD⊥BC于点D〔或∠ADB=∠ADC=90°〕.反之, ∵AD⊥BC于点D〔或∠ADB=∠ADC=90°〕,∴AD是△ABC中BC边上的高.③请画出以下三角形三边上的高, 并说说你有什么发现?发现:三角形的高可以在三角形内, 也可以在三角形边上, 还可以在三角形外.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:三角形的高, 这局部知识实际上是探讨线与线之间的位置关系, 学生会作锐角三角形的高, 但直角三角形、钝角三角形三边上的高线, 学生容易混淆, 所以应跟踪学情点拨引导.②差异指导:引导学生找准要作哪条边上的高, 及掌握直角三角板的两条直角边的用法.〔2〕生助生:学生互助交流不同类别三角形的高的画法.4.强化:〔1〕强调三角形的高线是一条线段.〔2〕作三角形高的方法.〔3〕练习:如图, 写出以AE为高的三角形.解:△ABE, △ABD,△ABC,△AED,△AEC,△ADC.1.自学指导:〔1〕自学内容:教材第4页《11.1.2 三角形的高、中线与角平分线》的第2自然段到第5页的第1自然段.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本的内容, 结合图形划出你认为是重点的语句及存有疑点之处.〔4〕自学参考提纲:①连接三角形一个顶点和它对边中点的线段, 叫做三角形的中线.②结合右图填空:∵AD是△ABC的中线,∴BD=CD=1BC.2S△ABC.∴S△ABD=S△ADC=12反之:∵BD=DC, ∴AD是△ABC的中线.③画出以下三角形三边的中线, 说说你的发现.发现:它们的中线都在三角形内部且相交于一点.④要找到一块质地均匀的三角形钢板的平衡点, 你应怎样做?作它的三条中线, 交点即为平衡点〔即重心〕.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:重点了解学生对画中线的根本步骤, 及三条中线交于一点即重心的掌握.②差异指导:引导学生寻找画中线的方法:a.先要找准边的中点;b.连接该中点与这边所对的顶点的线段.〔2〕生助生:学生相互讨论交流学习疑难点.4.强化:〔1〕强调三角形的中线是一条线段.〔2〕三角形的中线的概念和中线的画法.〔3〕练习:如下图, AM是△ABC的中线, 假设△ABM的面积是20平方厘米, 求△ABC的面积.S△ABC=2S△ABM=40平方厘米1.自学指导:〔1〕自学内容:教材第5页图11.1-5到“练习〞前的内容.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本的内容, 结合图形完成参考提纲.划出你认为重点的语句和学习疑点.〔4〕自学参考提纲:①定义:三角形一个内角的平分线与它的对边相交, 这个角的顶点与对边上的交点之间的线段, 叫做三角形的角平分线.②结合右图填空:∵AD是△ABC的角平分线,∴∠1=∠2=1∠BAC.2反之, ∵∠1=∠2, ∴AD是△ABC的角平分线.③如右图, △ABC中, ∠B、∠C的平分线相交于O, ∠A=70°, 那么∠BOC=125°.④画出以下三角形的三条角平分线, 你有什么发现?发现:三角形的角平分线都在三角形内部且相交于一点.⑤你怎样来区别三角形的高线、中线、角平分线?三角形的高线垂直于三角形的边;三角形的中线平分三角形的边;三角形的角平分线平分三角形的角.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:三角形的角平分线是探究角之间的数量关系, 学生已经掌握了量角器的用法, 能很快地画出一个角的角平分线.②差异指导:引导学生从概念、画法等方面区别高线、中线、角平分线.〔2〕生助生:学生之间相互交流帮助解决学习中的疑惑.4.强化:(1)三角形的角平分线的概念及其画法.(2)练习:①, AD是△ABC的中线, AE是∠BAC的平分线, 那么BD=DC=12BC,∠BAE=∠CAE=12∠BAC.②, BD是△ABC的角平分线, DE∥BC, ∠DBC=20°, 求∠AED.解:∵BD是△ABC的角平分线, ∴∠DBC=12∠ABC.∵DE∥BC,∠DBC=20°,∴∠AED=∠ABC=2∠DBC=40°.三、评价1.学生自我评价〔围绕三维目标〕:学生交流自己的学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法、学习成果及存在的缺乏进行点评.(2)纸笔评价:课堂评价检测.3.教师自我评价〔教学反思〕:本课时教学以“自主探究——合作交流〞为主体形式, 先给学生独立思考的时间, 提供学生创新的空间与可能, 再给不同层次的学生提供一个交流合作的时机, 培养学生独立探究, 合作学习的能力.一、根底稳固〔每题10分, 共50分〕1.三角形的高、中线和角平分线都是〔C〕2.如图,在△ABC中, AD是角平分线, AE是中线, AF是高, 那么:(1)BE=EC=12BC;(2)∠BAD=∠DAC=12∠BAC;(3)∠AFB=∠AFC=90°;(4)△ABC的面积=12BC·AF.3.如图, 在△ABC中, AD平分∠BAC且与BC相交于点D, ∠B=40°, ∠BAD=30°, 那么∠C的度数是80°.4.以下说法错误的选项是〔A〕D.一个三角形的三条高、中线、角平分线分别交于同一个点5.如下图, 在△ABC中, ∠1=∠2, G为AD的中点, 连接BG并延长, 交AC于点E, CF⊥AD于点H, 交AB于点F.以下说法中, 正确的有〔A〕①AD是△ABE的角平分线②BE是△ABD的边AD上的中线③CH是△ACD的边AD上的高.二、综合应用〔每题10分, 共20分〕6.直角三角形两锐角的平分线所夹的钝角为多少度?解:如图, △ABC中, ∠B=90°,AD、CE是△ABC的角平分线, 那么∠DAC+∠ECA=12〔∠BAC+∠BCA〕=45°,∴∠AFC=180°-(∠ECA+∠DAC)=135°.所以直角三角形两锐角的平分线所夹的钝角为135°.7.如图, AD是△ABC的边BC上的中线, AB=5cm,AC=3cm.△ABD的面积为acm 2,(1)S △ABC=2acm 2;(2)△ABD 与△ACD 的周长之差为2cm.三、拓展延伸〔每题15分, 共30分〕△ABC 中, AD 是∠A 的平分线, DE ∥AC 交AB 于E, EF ∥AD 交BC 于F, 试问EF 是△BED 的角平分线吗?说说你的理由.解:EF 是△BED 的角平分线, 理由如下:∵AD 是∠BAC 的平分线, ∴∠1=∠2.∴DE ∥AC,∴∠5=∠2=∠1. ∵EF ∥AD,∴∠3=∠5,∠4=∠1,∴∠3=∠4,∴EF 是△BED 的角平分线.△ABC 中, ∠ACB=90°,CD ⊥AB 于D, AB=13,CD=6,BC=10, 求AC 的长.解:∵S △ABC=12AB·CD=12AC·BC, AB=13,CD=6,BC=10, ∴AC=AB CD BC •=13610⨯=7.8. 三角形全等的判定一、教学目标知识技能1掌握三角形全等的“ASA 和AAS 〞条件.2.能初步应用ASA 和AAS 〞条件判定两个三角形全等.数学思考1.使学生经历探索三角形全等条件的过程, 体会利用操作、归纳获得数学结论的过程.2.在探索三角形全等条件及其运用过程中, 能够进行有条理的思考并进行简单的推理.解决问题会用ASA 和AAS 〞条件证明两个三角形全等.情感态度1.通过探索和实际的过程体会数学思维的乐趣,激发应用数学的意识.2.通过合作交流,培养合作意识,体验成功的喜悦.二、教学方法探究式、讨论式三、教学手段多媒体辅助教学.四、教学过程Ⅰ、创设情境, 引入新课一天, 小明的妈妈叫他去玻璃店画一块三角形玻璃,小明不小心把画的三角形玻璃打碎成了三块,他为了省事,他从打碎的三块玻璃中选一块去,小明想法能办得到吗? 假设能,你认为小明应该拿哪块玻璃去呢? 为什么?【师生行为】教师通过〔Flash课件〕展示视频内容, 提出情境问题.学生独立思考, 发表自己的见解.【设计意图】创设性的设计问题, 变“教教材〞为“用教材〞.①使学生快速集中精力, 调整听课状态.②知识的呈现过程与学生已有的生活密切联系起来, 学有用的数学, 激发学生的学习兴趣. ③使学生产生认知上的冲突, 从而引入本课课题, 明确本节课的探究方向, 激发学习欲望.Ⅱ、实践操作、探索新知问题1、如图, △ABC是任意一个三角形, 画△A1B1C1,使A1B1=AB,∠A1=∠A,∠B1=∠B把画得△A1B1C1剪下来放在△ABC进行比拟, 它们是否重合?问题2、如图,△ABC是任意一个三角形, 画△A1B1C1,使A1C1=AC, ∠A1=∠A,∠B1=∠B, 请你猜想△A1B1C1与△ABC是否全等? 假设它们全等,你能用"ASA"来证明你猜想结论成立吗?【师生行为】教师提出问题, 学生思考问题, 动手实践、小组讨论、交流.学生在探索过程中, 难免有困难, 教师要鼓励学生争论和启发引导下及时作出正确的结论. 教师通过动画演示作图过程. 得出结论:有两角和它们的夹边对应相等的两个三角形全等〔可以简写成“角边角〞或“ASA〞〕用数学语言表示为:在△ABC与△A1B1C1中∠A=∠A1AB=A1B1∠B=∠B1∴△ABC≌△A1B1C1(ASA)【设计意图】对于问题1, 因为学生已经在学习“SSS〞条件有了一定的作图和探究图形的根底. 所以这里就直接提出问题让学生动手操作, 教师适时引导. 对于问题2, 学生在问题1的根底上通过类比思想可以得出结论. 〔即:可以通过"角边角"(ASA)来证明在△ABC和△A1B1C1中因为∠A1=∠A,∠B1=∠B所以∠C1=∠C在△ABC与△A1B1C1中∠A=∠A1AC=A1C1∠C=∠C1∴△ABC≌△A1B1C1(ASA)〕让学生在合作学习中共同解决问题, 使学生主动探究三角形全等的条件,培养学生分析、探究问题的能力. 培养学生的合作意识和竞争意识. 体会合作交流的重要性.Ⅲ、例题讲解、应用新知例1、如图,点D在AB上, 点E在AC上, BE和CD相交于点O, AB=AC,∠B=∠C,求证:BE=CD例2、例2、如图, 海岸上有A、B两个观测点, 点B在点A的正东方, 海岛C在观测点A的正北方, 海岛D在观测点B的正北方, 从观测点A看C, D的视角∠CAD与从观测点B看海岛C, D的视角∠CBD相等, 那么点A到海岛C的距离与点B到海岛D的距离相等, 为什么?【师生行为】先让学生独立思考, 在互相讨论、交流.然后引导学生分析题设中的条件, 以及两个三角形全等还需要的条件, 判断两个三角形全等的过程.证明:〔1〕在△ADC和△AEB中,∠A=∠A 〔公共角〕AC=AB∠C=∠B∴△ACD≌△ABE (ASA)∴AD=AE 〔全等三角形的对应边相等〕又AB=AC∴BE=CD证明:〔2〕∵∠CAD=∠CBD, ∠1=∠2∴∠C=∠D.在△ABC与△BAD∠CAB=∠ABD〔〕∠C=∠D 〔已证〕AB=BA 〔公共边〕∴△ABC≌△BAD〔AAS〕∴AC=BD即点A到海岛C的距离与点B到海岛D的距离相等【设计意图】培养学生的逻辑推理能力、独立思考能力, 会用“ASA或AAS“判断三角形全等, 标准地书写证明过程. 培养学生合情合理的逻辑推理能力, 语言表达能力, 标准地书写证明过程.培养学生的符号感, 体会数学知识的严谨性. Ⅳ、课堂练习、稳固新知1、如图1,小明把一块三角形的玻璃打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃, 那么最省事的方法〔〕A、选①去,B、选②C、选③去2、如图2, O是AB的中点, 要使通过角边角〔ASA〕来判定△OAC≌△OBD, 需要添加一个条件,以下条件正确的选项是(〕A、∠A=∠BB、AC=BDC、∠C=∠D3、如图, 要测量河两岸相对的两点A、B的距离, 可以在AB的垂线BF上取两点C、D, 使BC=CD, 再定出BF 的垂线DE, 使A, C, E在一条直线上, 这时测得DE的长度就是AB的长度, 为什么?4、如图, AB⊥BC, AD⊥DC, ∠BAC=∠CAD, 求证:AB=AD【师生行为】教师提出问题. 学生思考、交流, 解答问题. 教师正确引导学生正确运用〞ASA/AAS条件来解决实际问题. 针对练习可以通过让学生来演示结果, 形成共识.【设计意图】使学生正确地理解定理, 并能用它来解决实际问题. 稳固知识, 及时了解学生掌握定理的情况.Ⅴ、反思小结、布置作业1、通过本节课你学到了哪些内容?你有何收获?2、判断两个三角形全等有哪些方法呢?【师生行为】教师以问题的形式提出, 让学生归纳、总结所学知识, 进行自我评价, 自我总结.学生把作业做在作业本上, 教师检查、批改.【设计意图】通过回忆本节课的所学内容, 从知识、技能、数学思考等方面加以归纳, 有利于学生掌握、运用知识.教学反思《数学课程标准》明确指出:“有效的数学活动不能单纯地依赖于模仿与记忆, 学生学习数学的重要方式是动手实践、自主探索与合作交流, 以促进学生自主、全面、可持续开展〞.数学教学是数学活动的教学, 是师生之间、学生之间相互交往、积极互动、共同开展的过程, 是“沟通〞与“合作〞的过程.本节课我结合情景问题自然地引入课题, 让学生亲身体验到数学知识来源于实践, 从而激发学生的学习积极性.为学生提供了大量的操作、思考和交流的学习时机,通过“画图〞——“观察“——“操作〞——“交流〞发现“ASA/AAS〞定理. 在信息社会, 信息技术与课程的整合必将带来教育者的深刻变化.我充分地利用多媒体教学, 为学生创设了生动、直观的现实情景, 具有强列的吸引力, 能激发学生的学习欲望.本节课, 通过情景引入问题, 让学生亲身体验、动手操作来探究三角形全等的条件. 整个探索过程, 不仅教师引导学生的过程, 同时也是教师从学生的角度考虑问题, 顾及全面、充分准备好自己的心理提升.缺乏之处:本节课安排学生的活动较多, 教师必须准备到位, 操作有序、收放自如. 教学中出现学生有自己的语言描述时、语言不够准确简练, 描述不够完整等等, 都需要教师及时纠正.。

相似三角形的角平分线和中垂线的关系

相似三角形的角平分线和中垂线的关系

相似三角形的角平分线和中垂线的关系相似三角形是几何学中重要的概念之一,它们具有相似的形状但尺寸不同。

在研究相似三角形的性质时,角平分线和中垂线是两个重要的概念。

本文将探讨相似三角形的角平分线和中垂线之间的关系。

一、角平分线和中垂线的定义在开始深入了解两者关系之前,首先需要明确角平分线和中垂线的定义。

1. 角平分线:对于三角形ABC,如果有一条线段AD从角A的顶点出发并且将角A分成两个相等的角,则称线段AD为角A的角平分线。

2. 中垂线:对于三角形ABC,通过三角形的某一边的中点M,和该边的垂直平分线,将与该边垂直的线段MN称为该三角形对边BC的中垂线。

二、相似三角形的性质在继续讨论两者关系之前,需要了解相似三角形的一些基本性质。

1. 边比例:如果两个三角形ABC和DEF相似,那么它们的对应边的长度比例相等,即AB/DE = AC/DF = BC/EF。

2. 角等价:相似三角形的对应角度相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。

3. 高比例:如果两个三角形ABC和DEF相似,那么它们的对应高的长度比例相等,即hA/hD = hB/hE = hC/hF。

现在我们来探讨角平分线和中垂线的关系。

三、角平分线和中垂线的关系在已知一个三角形ABC的角平分线和中垂线的情况下,我们可以得到以下的关系:1. 角平分线和中垂线的交点如果角ABC的角平分线AD和角BAC的角平分线BE相交于点O,则点O是三角形ABC的内心。

内心是三角形内部的一个点,到三边的距离相等,并且角平分线经过该点。

2. 角平分线和中垂线的关系在相似三角形ABC和DEF中,当角ABC的角平分线AD与角DEF的角平分线DG相交于点O时,点O也是相似三角形ABC和DEF的内心。

这意味着角平分线和中垂线同时也是相似三角形的内心连线。

3. 角平分线和中垂线的长度比例如果三角形ABC和DEF相似,并且角ABC的角平分线AD与角DEF的角平分线DG交于点O,则线段AD与线段DG的长度比等于线段AB与线段DE的长度比。

八年级数学《尺规作图(2)角平分线、垂线和中垂线》课件

八年级数学《尺规作图(2)角平分线、垂线和中垂线》课件
(第 2 题)
❖什么垂直平分线?
(过线段的中点,垂直这条线段的 直线)
❖线段垂直平分线有哪些特征?
(线段的垂直平分线上的点到线段 两端点的距离相等;反过来,到线 段两端点距离相等的点在线段的垂 直平分线上)
❖已知线段AB,画出它的垂直平分线.
说出你的 作图思路
议一议;能否说出这 种画法的依据,小组 讨论交流一下。
2、试把一个钝角四等分。
3、任意画一个三角形,画出三个内角的角 平分线.(不写画法,保留作图痕迹)
4、已知:角∠α,线段m。 求作:等腰三角形△ABC,使其顶角
∠BAC=∠α, ∠BAC的平分线为m。
2、经过一点作已知直线的垂线
1、如图,点C在直线上,试过点C画出直线的 垂线。
2、如图,如果点C不在直线上,试和同学讨论, 应采取怎样的步骤,过点C画出直线的垂线?
挑战自我
1、已知:角∠α,线段m。 求作:等腰三角形△ABC,使其顶角
∠BAC=∠α, ∠BAC的平分线为m。
2、AB、AC分别是菱形ABCD的一条边和对 角线,请你用尺规把这个菱形补充完整。
C
A
B
3、A、B是两个村庄,要从灌溉总渠引两 条水渠便于灌溉,请你选择最佳方案。
B A
灌溉总渠
4、如图,已知线段a,h, 求作:△ABC,使AB=AC,且BC=a,高为h
第19章 全等三角形 19.3 尺规作图
基本作图
❖在几何里,把限定用直尺和圆规来画 图,称为尺规作图.最基本,最常用的尺 规作图,通常称基本作图.
❖ 其中,直尺是没有刻度的;
❖ 一些复杂的尺规作图都是由基本作图组成的. 以前学过的”作一条线段等于已知线段”,就 是一种基本作图.
❖ 下面介绍几种基本作图:

三角形中的角平分线与垂直平分线

三角形中的角平分线与垂直平分线

三角形中的角平分线与垂直平分线在几何学中,三角形是最基础且常见的几何图形之一。

而角平分线和垂直平分线是三角形内部的两个重要概念。

它们在解决三角形性质和计算题中起着关键的作用。

本文将详细探讨三角形中的角平分线和垂直平分线的性质及其应用。

一、角平分线角平分线是指从一个角的顶点出发,将该角等分成两个相等的角的线段。

在任意三角形中,都存在三条角平分线。

我们给出以下两个性质:1.1 角平分线的性质性质一:三角形中的角平分线与对边上的点连线相等。

证明:设三角形ABC的角A的平分线为AD,与对边BC相交于点D。

则有∠BAD = ∠DAC(角平分线定义)。

因此,∠BAC = ∠BAD+ ∠DAC = ∠DAC + ∠DAC = 2∠DAC。

同理,可证明∠CED = 2∠DCE。

因此,∠BAC = 2∠DAC =2∠DCE。

于是,三角形ABC中的角平分线AD也等于对边BC。

性质二:三角形中的角平分线互相垂直。

证明:设三角形ABC的角A的平分线为AD,角B的平分线为BE,两条平分线相交于点D。

则有∠DAB = ∠DAC,∠DBE = ∠EBC(角平分线定义)。

又因为∠ADB = ∠BED = 90°(直角),所以∠BDA = ∠BEA = 180° - ∠ADB - ∠DBE = 180° - 90° - 90° = 0°。

因此,∠BDA = ∠BEA = 0°,即角ADB和角BEA为直角。

所以,角平分线AD垂直于角BAC的角平分线BE。

通过以上两个性质,我们可以看出角平分线在三角形中有着重要的几何意义和运用价值。

二、垂直平分线垂直平分线是指从一个线段的中点出发,与该线段垂直且等分该线段的直线。

在三角形中,任意一条边的中垂线可以称为该边的垂直平分线。

我们来介绍两个垂直平分线的性质:2.1 垂直平分线的性质性质一:三角形中的垂直平分线互相交于圆心。

初中数学 三角形的中线,角平分线,高线,垂直平分线

初中数学 三角形的中线,角平分线,高线,垂直平分线

三角形的中线,角平分线,高线,垂直平分线•三角形的中线:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

由于三角形有三条边,所以一个三角形有三条中线。

且三条中线交于一点。

这点称为三角形的重心。

每条三角形中线分得的两个三角形面积相等。

角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

三角形的角平分线不是角的平分线,是线段。

角的平分线是射线。

高线:从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

线段的垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明巧计方法:点到线段两端距离相等。

•三角形中线性质定理:1、三角形的三条中线都在三角形内。

2、三角形的三条中线长:ma=(1/2)√2b2+2c2 -a2 ;mb=(1/2)√2c2 +2a2 -b2 ;mc=(1/2)√2a2 +2b2 -c2 。

(ma,mb,mc分别为角A,B,C所对的中线长)3、三角形的三条中线交于一点,该点叫做三角形的重心。

4、直角三角形斜边上的中线等于斜边的一半。

5.三角形中线组成的三角形面积等于这个三角形面积的3/4.定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

垂直平分线的性质:1.垂直平分线垂直且平分其所在线段。

2.垂直平分线上任意一点,到线段两端点的距离相等。

3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。

垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

•垂直平分线的尺规作法:方法一:1、取线段的中点。

2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。

三角形的角平分线和垂直平分线

三角形的角平分线和垂直平分线

三角形的角平分线和垂直平分线角平分线和垂直平分线是三角形中的两种特殊线段,它们对于三角形的性质和结构具有重要的作用。

本文将从定义、性质和应用三个方面来探讨三角形的角平分线和垂直平分线。

一、角平分线角平分线是指从一个角的顶点出发,将这个角平分成两个相等的角的线段。

具体来说,假设ABC是一个三角形,∠BAC是这个三角形的一个内角,如果从∠BAC的顶点A出发,以平分∠BAC的直线切分∠BAC,那么这条直线就是∠BAC的角平分线。

角平分线具有以下性质:1. 角平分线将对边分成两个相等的线段。

即,如果从∠BAC的顶点A引一条角平分线,与边BC交于点D,那么AD=CD。

2. 角平分线是三角形内一条重要的对称轴线。

即,如果有一条角平分线,它将三角形分成两个具有对称关系的部分。

角平分线的应用:1. 寻找三角形的内心:三角形的内心是三条角平分线的交点,可以通过角平分线求解三角形的内心坐标。

2. 探索三角形的相似性:角平分线切分三角形的两边,可以得到边长的比例关系,从而推导出三角形的相似性质。

二、垂直平分线垂直平分线是指从一个线段的中点出发,垂直于这条线段的线段。

具体来说,假设AB是一个线段,M是AB的中点,如果从M出发,以垂直于AB的直线切分AB,那么这条直线就是AB的垂直平分线。

垂直平分线具有以下性质:1. 垂直平分线将线段分成两个相等的部分。

即,如果从线段AB的中点M引一条垂直平分线,与AB的交点为N,那么AM=MN=NB。

2. 垂直平分线是线段的中垂线。

即,如果一个点在垂直平分线上,那么它到线段两端点的距离相等。

垂直平分线的应用:1. 构造等腰三角形:垂直平分线可以将一个线段平分成两个相等的线段,从而构造出等腰三角形的两条等腰边。

2. 寻找三角形的外心:三角形的外心是三条垂直平分线的交点,可以通过垂直平分线求解三角形的外心坐标。

综上所述,三角形的角平分线和垂直平分线具有重要的性质和应用。

它们能够帮助我们研究三角形的性质,解决一些与三角形相关的问题。

初中数学知识归纳三角形的中线高线角平分线

初中数学知识归纳三角形的中线高线角平分线

初中数学知识归纳三角形的中线高线角平分线三角形是初中数学中的基础知识之一,而了解它的特性和性质对于解题和理解其他几何概念都至关重要。

本文将对三角形的中线、高线和角平分线进行归纳总结,帮助同学们更好地理解和运用这些概念。

一、三角形的中线中线是指连接三角形两个顶点和对边中点的线段。

对于任意三角形ABC,连接顶点A和边BC的中点D所得的线段AD就是三角形ABC的中线。

1.1 中线的性质:(1)中线的长度相等:对于任意三角形ABC,三条中线AD、BE、CF的长度相等,即AD = BE = CF。

(2)中线互相平分:三条中线相交于同一个点G,且点G将每条中线分成两等分,即AG = GD,BG = GE,CG = GF。

(3)中线平行于对边:在三角形ABC中,若DE为BC的中线,则DE∥AC,EF为AC的中线,则EF∥BC,FD为AB的中线,则FD∥BC。

二、三角形的高线高线是指从三角形的顶点向对边的垂线段。

对于任意三角形ABC,连接顶点A和边BC的垂线段AH就是三角形ABC的高线。

2.1 高线的性质:(1)高线相交于同一点:对于任意三角形ABC,三条高线AH、BH、CH交于同一个点O,也称为垂心。

(2)高线与对边垂直:在三角形ABC中,高线AH垂直于边BC,高线BH垂直于边AC,高线CH垂直于边AB。

(3)高线长度关系:对于任意三角形ABC,三条高线AH、BH、CH的长度满足关系:AH=2R(这里的R表示三角形的外接圆半径),BH=2R,CH=2R。

三、三角形的角平分线角平分线是指将一个角平分为两个相等的角的线段。

对于任意三角形ABC,若角A的平分线AD,则称线段AD为三角形ABC的角A的平分线。

3.1 角平分线的性质:(1)角平分线的性质:“角的平分线上的点与角的两边垂直,而且与角的两边所夹的两个小角相等。

”(2)角平分线交于同一点:对于任意三角形ABC,三条角平分线AD、BE、CF交于同一个点I,也被称为内心。

证明二---等腰、直角三角形及角平分线、中垂线的典型例题

证明二---等腰、直角三角形及角平分线、中垂线的典型例题

第 10 页 共 10 页
六、新课探究---<5>角平分线的应用 经典例题 ( 1 ) 如 图 , AB // CD , DE EA , CE 平 分 DCB , 求 证 : CD AB BC ;
C 60 , ABC 中, (2) 如图, 内角平分线 AD、BE 相交于点 P ,
求证: PD PE ;

举一反三 ① 如图,已知线段 AB // CD ,连接 AD、BC ,若 BP 平分 ABC , 且 AP PD ,猜想线段 AB、BC、CD 三者之间有怎样的等量关系? 请写出你的结论并予以证明
第 6 页 共 10 页
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的 一切。 ——F.Klein
(2)如图, ABC 中, AB AC , A 36 , D 是 AC 上一点, 且 BD BC ,过点 D 分别作 DE AB 、 DF BC ,垂足分别是 E、F .给出以下四个结论:① DE DF ;②点 D 是 AC 的中点; ③ DE 垂直平分 AB ;④ AB BC CD .其中正确结论的序号是 _______________;

举一反三 ①如图, AD 是 ABC 的角平分线, EF 是 AD 的垂直平分线. 求证: (1) EAD EDA ; (2) DF // AC ; (3) EAC B .
第 7 页 共 10 页
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的 一切。 ——F.Klein
第 4 页 共 10 页
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的 一切。 ——F.Klein

初中数学知识归纳角平分线和垂直平分线的性质和应用

初中数学知识归纳角平分线和垂直平分线的性质和应用

初中数学知识归纳角平分线和垂直平分线的性质和应用初中数学知识归纳:角平分线和垂直平分线的性质和应用角平分线和垂直平分线是初中数学中两个重要的概念。

它们具有各自独特的性质和应用。

本文将对这两个概念进行归纳总结,并分析它们在数学问题中的实际应用。

一、角平分线的性质和应用角平分线是指把一个角平分成两个相等的角的线段。

下面我们来归纳角平分线的性质和应用。

1. 性质:(1)角平分线把一个角分成两个相等的角。

(2)角平分线上的点到角的两边距离相等。

(3)角平分线是角的内切线。

2. 应用:(1)角平分线的性质可以用于解决角度相等或相似的证明问题,例如证明两条线段的夹角相等,证明两个三角形相似等。

(2)利用角平分线的性质,可以快速求解角平分线在三角形中的位置,从而解决与三角形相关的计算问题。

以上是角平分线的性质和应用的简要介绍。

二、垂直平分线的性质和应用垂直平分线是指垂直于线段并将其平分的线段。

下面我们来归纳垂直平分线的性质和应用。

1. 性质:(1)垂直平分线将线段分成两个相等的部分。

(2)垂直平分线与线段的两个端点和中点连线垂直。

(3)垂直平分线是线段的中垂线。

2. 应用:(1)垂直平分线的性质可用于证明线段的平分线与垂直平分线相交于线段的中点。

(2)利用垂直平分线的性质,我们可以求解线段的中点坐标,从而解决与平面几何相关的计算问题。

以上是垂直平分线的性质和应用的简要介绍。

三、角平分线和垂直平分线的实际应用举例角平分线和垂直平分线不仅在数学问题中有重要的应用,也在实际生活中有着广泛的应用。

以下是两个实际问题的举例:1. 实际问题1:假设我们要设计一个广告牌,使其以某个角度正好对准太阳光的照射方向。

根据角平分线的性质,我们可以确定广告牌的角度,并根据此角度来安装广告牌,以获取最佳的阳光照射效果。

2. 实际问题2:在制作家具的过程中,如果要确保家具的一条边是水平的,可以利用垂直平分线的性质,通过测量线段两个端点到垂直平分线的距离来调整线段的位置,以保证家具制作的精准度。

25、中垂线和角平分线

25、中垂线和角平分线

证现二--- 垂直年今钱和角年今钱【考向聚建】1、垂宜平分线性质及判左泄理判泄左理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.性质立理:线段垂直平分线上的点到这条线段两个端点的距离相等.左理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.2、角平分线性质及判述左理判泄定理:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.性质立理:角平分线上的点到这个角的两边距离相等.泄理:三角形的三条内角平分线相交于一点,并且这一点到三条边距离相等.3、用尺规作图画线段垂宜平分线,已知角的平分线.AC CD【例飆求解】【例1】如图所示,在AABC中,AD是ZBAC的平分线.求证:—=—【例2】已知,如图,等腰AABC中,AB=AC, ZA=108° , BD平分ZABC。

求证:BC二AB+DC.A【例3】如图,在AABC中,ZB = 22.5°,边AB的垂直平分线交BC于D, QF丄AC于F,并与BC边上的髙AE交于G,求证:EG二EC A 【例4】如图,在Rt AABC中,AACB = 90° , D是AB上一点,BD二BC,过D作AB的垂线交AC于点E, CD交BE于点F,求证:【随堂條习】1、如图AABC中,AB>AC, AD是角平分线.P是AD上任意一点,在AB-AC与PB-PC二式中,较大的一个是 _________和9cm,则三角2•如图,在三角形ABC 中,AB 二AC, AB 的垂直平分线MN 交AC 于E,若AABC 与ABEC 的周长分别为13cm3、如图,在Rt^ABC 中,ZACB = 90(\ZA<ZB, CM 是斜边AB 的中线,将AACM 沿直线CM 折叠,点5•如图所示.在AABC 中,ZACB=90° , CD 丄AB 于 D, AE 平分ZCAB, CF 平分ZBCD.求证:EF//BC.4•在 AABC 中,AB 二AC, ZBAC 二90° , BD 为边 AC 上的中线,且 AF 丄BD.求证:ZADB 二ZCDF 。

八年级数学角平分线和中垂线复习

八年级数学角平分线和中垂线复习

角平分线知识回顾1、定义:在三角形中,一个内角的角平分线与它的对边相交, 这个角的顶点与交点之间的线段叫做三角形的角平分线。

图1 图2如图1,画∠BAC 的平分线AD ,交对边BC 于点D ,则线段AD 是△ABC 的角平分线。

2、特征:任意一个三角形都有三条角平分线,这三条角平分线交三角形内于一点,这点成为三角形的内心。

如图2,线段AD ,BE ,CF 是△ABC 的三条角平分线,则有∠1=∠2,∠3=21∠ABC ,∠ACB =2∠4。

3、提示:三角形的角平分线与一般角的平分线不同,三角形的角平分线是线段,而一般角的平分线是一条射线。

4、角平分线的两个性质:(1)角平分线上的点到角的两边的距离相等;(2)到角的两边距离相等的点在角的平分线上。

(它们具有互逆性)精练精讲1、如图,OB 、OC 是∠AOD 的任意两条射线,OM 平分∠AOB ,ON 平分∠COD ,若∠MON =α,∠BOC =β,则表示∠AOD 的代数式为( )A.2α-βB.α-βC.α+βD.2α2、如图(1),AD 平分∠BAC ,点P 在AD 上,若PE ⊥AB ,PF ⊥AC ,则PE __________PF 。

3、如图(2),PD ⊥AB ,PE ⊥AC ,且PD =PE ,连接AP ,则∠BAP __________∠CAP 。

4、如图(3),∠BAC =60°,AP 平分∠BAC ,PD ⊥AB ,PE ⊥AC ,若AD =3,则PE =__________。

(1) (2) (3)5、如下图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( ) A.2 cm B.3 cm C.4 cm D.5 cm(第5题) (第6题)6、如图,已知在四边形ABCD 中,180B D ∠+∠=,AC 平分BAD ∠,CE AD ⊥,E 为垂足。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的角平分线和中垂线
姓名时间
【教学目标】
1.要求学生掌握角平分线和中垂线的性质定理及其逆定理——判定定理,会用这四个定理解决一些简单问题。

2.理解角平分线和中垂线的性质定理和判定定理的证明
3.能够作已知角的角平分线,和已知线段的中垂线,并会熟练地写出已知、求作和作法.
【教学重点】
角平分线和中垂线的性质定理及其逆定理。

【教学难点】
掌握角平分线和中垂线的性质定理及其逆定理并进行证明。

【本节知识点】
1、垂直平分线性质及判定定理
判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.
定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.
2、角平分线性质及判定定理
判定定理:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.
性质定理:角平分线上的点到这个角的两边距离相等.
定理:三角形的三条内角平分线相交于一点,并且这一点到三条边距离相等.
3、用尺规作图画线段垂直平分线,已知角的平分线.
【经典练习】
三角形的角平分线的性质及定理
一、判断题
1.角的平分线上的点到角的两边的距离相等
2.到角的两边距离相等的点在角的平分线上
3.角的平分线是到角两边距离相等的点的集合
4.角平分线是角的对称轴
二、填空题
1.如图(1),AD平分∠BAC,点P在AD上,若PE⊥AB,PF⊥AC,则PE__________PF.
2.如图(2),PD⊥AB,PE⊥AC,且PD=PE,连接AP,则∠BAP__________∠CAP.
3.如图(3),∠BAC=60°,AP平分∠BAC,PD⊥AB,PE⊥AC,若AD=3,则PE=__________.
4.已知,如图(4),∠AOB=60°,CD⊥OA于D,CE⊥OB于E,若CD=CE,则∠COD+∠AOB=___度.
5.如图(5),已知MP⊥OP于P,MQ⊥OQ于Q,S△DOM=6 cm2,OP=3 cm,则MQ=__________cm.
(4)(5)
三、选择题
1.下列各语句中,不是真命题的是
A.直角都相等
B.等角的补角相等
C.点P在角的平分线上
D.对顶角相等
2.下列命题中是真命题的是
A.有两角及其中一角的平分线对应相等的两个三角形全等
B.相等的角是对顶角
C.余角相等的角互余
D.两直线被第三条直线所截,截得的同位角相等
3.如左下图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3 cm,那么AE+DE等于
A.2 cm
B.3 cm
C.4 cm
D.5 cm
4.如右上图,已知AB=AC,AE=AF,BE与CF交于点D,则①△ABE≌△ACF ②△BDF≌△CDE ③D在∠BAC
的平分线上,以上结论中,正确的是
A.只有①
B.只有②
C.只有①和②
D.①,②与③
四、解答题
1.如右图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BD=CD.求证:AD平分∠BAC.
2.已知,如左下图,△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,AE=6,
求四边形AFDE的周长
.
三角形的中垂线的性质及定理
一、判断题
1.如图(1),OC=OD直线AB是线段CD的垂直平分线
2.如图(1),射成OE为线段CD的垂直平分线
3.如图(2),直线AB的垂直平分线是直线CD
4.如图(3),PA=PB,P′A=P′B,则直线PP′是线段AB的垂直平分线
(1)(2)(3)
二、填空题
1.如右上图,已知直线MN是线段AB的垂直平分线,垂足为D,点P是MN上一点,若AB=10 cm,则
BD=__________cm;若PA=10 cm,则PB=__________cm;此时,PD=__________cm.
2.如左下图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长是12 cm,AC=5cm,则
AB+BD+AD=________cm;AB+BD+DC=__________cm;△ABC的周长是__________cm.
图6
E
D
C
A
3.如右上图,在Rt△ABC中,∠C=90°,∠B=15°,DE是AB的中垂线,垂足为D,交BC于E,BE=5,则
AE=__________,∠AEC=__________,AC=__________ .
4.已知线段AB及一点P,PA=PB=3cm,则点P在__________上.
5.如果P是线段AB的垂直平分线上一点,且PB=6cm,则PA=__________cm.
6.如图(1),P是线段AB垂直平分线上一点,M为线段AB上异于A,B的点,则PA,PB,PM的大小关系
是PA__________PB__________PM.
7.如图(2),在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交BC于D,则点D在_____上.
(1)(2)(3)
8.如图(3),BC是等腰△ABC和等腰△DBC的公共底,则直线AD必是_________的垂直平分线.
三、选择题
1.下列各图形中,是轴对称图形的有多少个
①等腰三角形②等边三角形③点④角⑤两个全等三角形
A.1个
B.2个
C.3个
D.4个
2.如左下图,AC=AD,BC=BD,则
A.CD垂直平分AD
B.AB垂直平分CD
C.CD平分∠ACB
D.以上结论均不对
3.如右上图,△ABC中,AB的垂直平分线交AC于D,如果AC=5 cm,BC=4cm,那么△DBC的周长是
A.6 cm
B.7 cm
C.8 cm
D.9 cm
四、解答题
如右图,P 是∠AOB 的平分线OM 上任意一点,PE ⊥CA 于E ,PF ⊥OB 于F ,连结EF.求证:OP 垂直平分EF. 一题多变
例1:如图1,在△ABC 中,已知AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长.
变式1:如图1,在△ABC 中, AB 的垂直平分线交AB 于点D ,交AC 于点E ,若∠BEC=70°,则∠A=?
变式2:如图3,在Rt △ABC 中,AB 的垂直平分线交BC 边于点E 。

若BE=2,∠B =15°求:AC 的长。

例2: 如图5,在△ABC 中,AB=AC, BC=12,∠BAC =120°,AB 的垂直平分线交BC 边于点E, AC 的垂直平分线交BC 边于点N. (1) 求△AEN 的周长. (2) 求∠EAN 的度数. (3) 判断△AEN 的形状.
B
C
A
E
D

A
E
D C B

A
B
C
D
E M
N
图5
B
C
A
E
D
图。

相关文档
最新文档