化工分离工程 第七章__新分离方法
化工分离过程
化工分离过程1. 引言化工分离过程是化学工程中的一个重要环节,用于将混合物中的组分分离出来,以获得纯净的产品。
它在化工生产中起着至关重要的作用,广泛应用于石油、化肥、制药、食品等行业。
本文将介绍化工分离过程的基本原理、常见的分离方法和设备,并探讨其在实际应用中的一些问题和挑战。
2. 分离过程的基本原理化工分离过程基于物质之间的差异性,通过改变条件使得混合物中的组分发生相变或物理/化学反应,从而实现组分之间的分离。
常见的差异性包括沸点、溶解度、密度、挥发性等。
3. 常见的分离方法和设备3.1 蒸馏法蒸馏法是一种基于沸点差异进行分离的方法。
它利用混合物中不同组分的沸点差异,在加热后使其中一个或多个组分汽化,并通过冷凝转变为液体,从而实现组分之间的分离。
常见的蒸馏设备包括塔式蒸馏柱、换热器和冷凝器。
3.2 萃取法萃取法是一种基于溶解度差异进行分离的方法。
它利用两种不同溶剂之间的亲疏性差异,将混合物中的组分分配到不同的溶剂相中,通过提取和分离来实现组分之间的分离。
常见的萃取设备包括萃取塔、搅拌槽和分液漏斗。
3.3 结晶法结晶法是一种基于溶解度差异进行分离的方法。
它利用溶液中某个组分的溶解度随温度变化而改变的特性,通过控制温度使其中一个或多个组分结晶出来,从而实现组分之间的分离。
常见的结晶设备包括结晶器和过滤器。
3.4 吸附法吸附法是一种基于吸附性差异进行分离的方法。
它利用固体吸附剂对混合物中不同组分的选择性吸附能力,通过吸附和解吸来实现组分之间的分离。
常见的吸附设备包括吸附塔和吸附柱。
3.5 膜分离法膜分离法是一种基于分子大小或分子间作用力差异进行分离的方法。
它利用特殊的膜材料将混合物中的组分分离开来,常见的膜分离设备包括膜反应器、膜过滤器和膜渗透器。
4. 实际应用中的问题和挑战化工分离过程在实际应用中面临着一些问题和挑战。
不同组分之间的物理/化学性质差异可能很小,导致难以实现有效的分离。
某些组分可能具有毒性或易燃性,需要采取特殊措施进行处理。
化工分离工程第7章 吸附
FLGC
活性氧化铝和分子筛的脱水性能比较
活性氧化铝:在水蒸气分压高的范围内吸附容量较高 沸石分子筛:在低水蒸气分压下吸附容量较高 因此,若要求水蒸气的脱除程度高,应选用? 若吸附容量更为重要,则应选用? 也可混用,先用氧化铝脱除大部分水,之后用分子筛进 行深度干燥。
FLGC
其他吸附剂
反应性吸附剂:能与气相或液相混合物中多组分进行化学 反应而使之去除。适用于去除微量组分(反应不可逆,不 能现场再生;吸附负荷高时,吸附剂更换过于频繁,不经 济)。 生物吸着剂:利用微生物将吸附的有机物氧化分解成二氧 化碳和水等,如工业废水的生化处理
FLGC
分子筛
分子筛亦称沸石,是一种晶态的金属水合铝硅酸盐晶体。
化学通式:Mex/n[(AlO2)x(SiO2)y]mH2O,其中Me阳离子,n 为原子价数,m为结晶水分子数 每一种分子筛由高度规则的笼和孔组成,它具有高度选择 性吸附性能,是由于其结构形成许多与外部相通的均一微 孔。
FLGC
根据原料配比、组成和制造方法不同可以制成各种孔 径和形状的分子筛。见课本表7-3。 强极性吸附剂,对极性分子如H2O、CO2、H2S等有 很强的亲和力,对氨氮的吸附效果好,而对有机物的 亲和力较弱。 分子筛主要用于气态物的分离和有机溶剂痕量水的去 除。
工业吸附剂可以是球形、圆柱形、片状或粉末状 粒度范围从50μm至1.2cm,比表面积从300至1200m2/g, 颗粒的孔隙度30%—85%, 平均孔径1-20nm 孔径:按纯化学和应用化学国际协会的定义,微孔孔径 小于2nm,中孔为2~50nm,大孔大于50nm
FLGC
1.密度
1)填充密度B(又称体积密度): 是指单位填充体积的吸 附剂质量。通常将烘干的吸附剂装入量筒中,摇实至体积 不变,此时吸附剂的质量与该吸附剂所占的体积比称为填 充密度。
化工分离工程
混合建模
结合机理建模和数据驱动建模 的优势,提高模型的精度和泛 化能力。
优化算法
应用遗传算法、粒子群优化等 智能优化算法,对分离过程进
行参数优化和操作优化。
先进控制技术应用
预测控制
基于模型预测控制(MPC)技术, 实现对分离过程的实时优化和控制。
化工分离工程
汇报人:XX
目 录
• 分离工程概述 • 化工分离原理与方法 • 化工分离设备与技术 • 化工分离过程优化与控制 • 典型案例分析 • 未来展望与挑战
01
分离工程概述
分离工程定义与重要性
分离工程定义
利用物理、化学或物理化学方法 ,将混合物中的各组分进行分离 、提纯或富集的过程。
重要性
膜分离法
01
02
03
原理
利用特定膜材料的选择性 透过性,使混合物中的某 些组分能够透过膜而实现 分离。
分类
微滤、超滤、纳滤、反渗 透等。
应用
海水淡化、废水处理、气 体分离等。
03
化工分离设备与技术
塔设备
蒸馏塔
用于多组分溶液的分离, 通过加热使不同组分在不 同温度下挥发,从而实现 分离。
吸收塔
用于气体吸收操作,将气 体中的某一组分通过液体 吸收剂吸收到液体中。
通过化工分离技术,将废弃物中的有用成分提取 出来,实现废弃物的资源化利用,减少环境污染 。
环保型分离剂的开发
研发环保型的分离剂,如生物可降解的分离剂、 无毒无害的分离剂等,以降低化工分离过程对环 境的污染。
化工行业面临的挑战与机遇
挑战
随着环保法规的日益严格和资源的日益紧缺,化工行业面临着越来越大的环保压力和成本压力。同时,新兴技术 的不断涌现也给传统化工行业带来了竞争压力。
中南大学_邱运仁_化工分离工程_复习笔记
第一章.绪论和吸收1.几种物质混合在一起是自发过程,熵增加的过程。
分离是混合的逆过程,熵减过程,需要在分离设备中添加分离剂,(分为能量分离剂和质量分离剂)。
2.分离因子(根据实际产品组成)是表示任一分离过程所达到的分离程度,a s ij =(x i1/x j1)/(x i2/x j2),若其=1表示组分i 和j 之间不能被分离;若>1表示i 富集于1相,j 富集于2相;若<1表示i 富集于2相,j 富集于1相。
固有分离因子(根据气液相平衡组成),a ij =(x i /x j )/(x i /x j )。
气液相物系的最大分离程度又称为理想分离因子。
将实际分离设备所能达到的分离因子和理想分离因子之间的差别用板效率来表示,板效率= a s ij / a ij 。
处于气液相平衡状态的分离程度是固有分离因子。
3.分离过程的分类,按照分离过程中有无物质传递现象发生,分为机械分离过程(非均相混合物)和传质分离过程。
传质分离过程按所依据的物理化学原理不同又分为平衡分离和速率分离;平衡分离利用两相平衡组成不等的原理,包括气液、汽液、液液、液固、气固传质分离,并把其它影响归纳于效率中。
速率分离(同相)利用溶液中不同组分在某种推动力作用下经过某种介质时的传质速率差异而实现分离,包括膜分离、场分离。
平稳分离的过程是(吸收,萃取)。
4.分离工程研究内容:研究和处理传质分离过程的开发和设计中遇到的工程问题,包括适宜的分离方法的选择,分离流程和操作条件的确定和优化。
5.绿色分离工程是指分离过程绿色化的工程实现,通过对传统分离过程进行改进、优化,使过程对环境的影响最小甚至没有等途径,也要利用开发及使用新型的分离技术,如超临界技术、膜分离技术等。
6.分离过程的开发方法有逐级经验放大法、数学模型法等。
7.在计算吸收设备时,需要对吸收组分作气、液两相的物料衡算,所得出在气、液相浓度的关系式称为操作线方程。
另外还须求得两相的相平衡方程式。
制药分离工程 第七章 大孔树脂吸附技术(50张)
3.料液pH ——通常由溶质的酸碱度来判断,如酸性溶质宜偏酸性
第七章 大孔树脂吸附技术
第三节 大孔吸附树脂的分离操作与装置
三、吸附工艺条件的筛选、优化、确定 一切以实际的实验研究结果作为依据!
预处理合格的常用判定标准: ——至加数倍水于乙醇溶液中不显浑浊 ——或:处理液在200-400nm无紫外吸收峰
第七章 大孔树脂吸附技术
第三节 大孔吸附树脂的分离操作与装置
一、基本工艺流程 2.大孔吸附树脂的前处理 前处理工艺流程:
(1)在吸附柱中盛入一半体积的乙醇/丙酮 (2)投入一定量树脂,使液面高出树脂表面约30cm (3)自然浸泡24h以上 (4)用大量乙醇以2BV/h流速洗脱树脂,并浸泡4-6小时 (5)再用大量乙醇以2BV/h流速洗脱树脂 (6)流出液中加入2BV蒸馏水不显白色浑浊、且200-400nm内无乙 醇之外的其他吸收峰为止
作答
第七章 大孔树脂吸附技术
第三节 大孔吸附树脂的分离操作与装置
✓ 多用于从大量样品中浓集微量物质 ✓ 工业脱色、环境保护、药物分析、抗生素等的分离提纯、
中药成分的提取精制等领域
第七章 大孔树脂吸附技术
第三节 大孔吸附树脂的分离操作与装置
一、基本工艺流程 1.大孔吸附树脂的选择
——根据树脂本身的物性、被吸附质本身的物性来预选择 如极性对极性(水溶性)、非极性对非极性(脂溶性)
多选题 1分
此题未设置答案,请点击右侧设置按钮
关于大孔吸附树脂的选用,通常通过实验结果来 选择和确定,一般关注的指标有哪些?
A 有无离子型功能基团 B 有无极性 C 孔大小、多少 D 比表面积
E 吸附容量 F 吸附快慢 G 能否解吸 H 机械强度
化工原理中的分离工程与技术
化工原理中的分离工程与技术分离是化工生产中一个至关重要的步骤,用于将混合物中的成分分离出来,以获取所需的目标产品或净化物质。
化工原理中的分离工程与技术涉及到各种方法和设备,本文将对其中的常见分离方法进行介绍。
一、蒸馏技术蒸馏是一种通过液体混合物在加热作用下将其分离的方法。
它基于混合物中不同组分的挥发性差异,通过加热液体混合物使其中挥发性较高的成分转变为气相,然后再将气相冷凝成液体,从而实现组分的分离。
蒸馏广泛应用于石油化工、酒精生产、精馏塔等领域。
二、吸附和析出技术吸附和析出技术是利用吸附剂与混合物中的成分之间相互作用力的差异来实现分离的方法。
吸附是指混合物中的成分在吸附剂上的吸附程度不同,从而实现分离。
析出则是通过改变温度、压力等条件,使吸附在吸附剂上的物质从吸附剂上析出。
常见的吸附和析出技术包括活性炭吸附、凝胶析出等。
三、离心和沉淀技术离心和沉淀技术通过利用混合物中组分的密度差异实现分离。
离心是将混合物置于离心机中,通过高速旋转的离心力将组分分离出来。
沉淀是指将混合物静置,使密度较大的组分沉淀下来,然后将上清液分离出去。
离心和沉淀技术常用于分离颗粒物、固液混合物等。
四、膜分离技术膜分离技术是一种通过半透膜使物质分离的方法。
根据分离机理的不同,可分为压力驱动膜分离、电场驱动膜分离、渗透驱动膜分离等。
膜分离技术具有操作简单、能耗低、节约资源等优点,广泛应用于水处理、脱盐、气体分离等领域。
五、萃取技术萃取技术是指通过溶剂将混合物中的目标组分从原料中提取出来的方法。
它利用混合物中成分在不同溶剂中的溶解度不同,从而实现组分的分离。
萃取技术在化工领域中应用广泛,如有机合成中的溶剂萃取、金属矿石中的浸出提取等。
除了上述介绍的分离方法外,还有许多其他的分离技术和工艺,如结晶、凝固、过滤等。
这些方法和技术在化工生产中起到了至关重要的作用,帮助我们实现对混合物中不同组分的有效分离和纯化。
通过不断地研究和创新,化工原理中的分离工程与技术也在不断进步,为化工生产提供了更多高效、环保和经济的分离解决方案。
武汉大学 《化学工程基础》第7章新分离方法
半透膜 P1 渗透压 Π P2
cs1
NaCl,H2O
cs2
H2O
溶解-扩散机理:
水 Nw=kw(△P-∏) 盐 Ns=ks(Cs1-Cs2) 2 Nw,Ns 流率 (mol/m h) Kw,Ks 常数 Cs1,Cs2 膜两侧盐的浓度(mol/L) ∏ 渗透压(Mpa)
非对称性膜
由一层0.1~10μm极薄的致密均匀
的皮层和另一层20μm~1mm厚的海绵状支撑层 组成。
复合膜 由微孔膜加一层致密膜组成。
离子交换膜
阳膜二种。
由离子交换树脂制成由阴膜和
非对称膜的结构
对称膜
a.均质膜 b.柱形孔膜 c.海绵状孔膜
不对称膜
d.多孔膜 e.叠合膜 f.复合膜
非对称膜
在过程中起表面过滤作 用,被截留的颗粒沉积在膜 表面上,只要进料液流与膜 表面呈平行流动,就能很容 易把膜表面的颗粒除去。
萃取物迅速成为两相(气液分离)而立即分开,
不仅萃取效率高而且能耗较少,节约成本。
CO2是一种不活泼的气体,萃取过程不发生化学
反应,且属于不燃性气体,无味、无臭、无毒,
故安全性好;
CO2价格便宜,纯度高,容易取得,且在生产
过程中循环使用,从而降低成本;
CO2是一种不活泼的气体,萃取过程不发生化学反应, 且属于不燃性气体,无味、无臭、无毒,故安全性好; CO2价格便宜,纯度高,容易取得,且在生产过程 中循环使用,从而降低成本;
压力差 浓度差 电位差
渗透蒸发
挥发性液体混合 物分离
气体、气体与蒸 汽分离
压力差 浓度关
浓度差
膜内易溶解组 分或易挥发组 分
易透过气体
化工分离工程复习题答案
化工分离工程复习题答案一、选择题1. 化工分离工程中,哪种分离方法是基于物质的沸点差异?A. 离心分离B. 蒸馏C. 膜分离D. 萃取答案:B2. 以下哪项不是蒸馏分离的类型?A. 简单蒸馏B. 精馏C. 反渗透D. 真空蒸馏答案:C3. 萃取过程中,通常使用哪种物质作为萃取剂?A. 惰性气体B. 溶剂C. 催化剂D. 反应物答案:B4. 膜分离技术中,根据膜孔径的大小,可以进行哪种分离?A. 微滤B. 超滤C. 反渗透D. 所有以上答案:D5. 以下哪种分离方法不涉及相变?A. 蒸发B. 吸附C. 结晶D. 液-液萃取答案:B二、填空题6. 在精馏过程中,为了提高分离效率,通常使用_________来实现连续分离。
答案:塔板或填料7. 萃取分离中,萃取剂的选择原则是与原溶剂_________,且与被萃取物_________。
答案:不相溶,相溶8. 膜分离技术中,根据膜孔径大小的不同,可以实现_________、_________和_________等分离过程。
答案:微滤、超滤、反渗透9. 结晶分离过程中,温度的控制对于_________的形成至关重要。
答案:晶体10. 吸附分离中,常用的吸附剂包括活性炭、_________和_________等。
答案:沸石、硅胶三、简答题11. 简述蒸馏分离的原理。
答案:蒸馏分离是一种基于不同物质沸点差异的分离方法。
通过加热混合物至沸点,使沸点较低的物质先蒸发,然后通过冷凝回收,实现分离。
12. 描述萃取分离的一般过程。
答案:萃取分离通常涉及将混合物与萃取剂混合,萃取剂与被萃取物相溶而不与原溶剂相溶,从而将被萃取物从原溶剂中转移到萃取剂中。
之后,通过分相将萃取剂与原溶剂分离,实现目标物质的提取。
13. 解释膜分离技术中的反渗透过程。
答案:反渗透是一种利用半透膜的分离过程,该膜只允许溶剂通过而不允许溶质通过。
在压力作用下,溶剂从高浓度侧向低浓度侧渗透,从而实现分离。
化工分离工程知识汇总
化工分离工程知识汇总化工分离工程是化学工程领域中的一个重要分支,其主要目的是通过物理或化学方法将混合物中的组成分离出来,从而获得纯净的产品或者将有害物质去除。
本文将从分离方法、设备、操作技术等方面对化工分离工程的知识进行汇总。
一、分离方法常见的化工分离方法包括蒸馏、萃取、吸附、结晶、离子交换等。
蒸馏是利用不同物质的沸点差异将混合物中的不同组分分离出来的方法。
它分为常压蒸馏、减压蒸馏和气体液体平衡蒸馏等。
萃取是利用溶剂选择亲和性不同的物质将其从混合物中提取出来的方法。
吸附是利用固体吸附材料选择性吸附混合物中的一些成份的方法。
结晶是通过溶解、结晶和分离过程将溶液中的物质从混合物中分离出来的方法。
离子交换是利用固体材料上的活性基团与混合液中的离子发生交换反应,实现离子的分离的方法。
二、分离设备常见的化工分离设备包括蒸馏塔、吸附塔、萃取塔、结晶器等。
蒸馏塔是进行蒸馏过程的关键设备,其结构和工作原理根据分离目标的不同而异。
吸附塔是用于吸附分离的设备,通常包括填料塔和板塔两种类型。
萃取塔主要用于液液萃取过程,其中常用的设备有萃取塔、倾斜板塔和浮球塔等。
结晶器是用于结晶分离的设备,常见的有搅拌式结晶器和冷却结晶器。
三、操作技术化工分离工程中的操作技术包括物料平衡、热平衡、动力学分析和能耗分析等。
物料平衡是指在分离过程中对物料流量、物料浓度等的平衡计算和控制。
热平衡是指在蒸馏、萃取等过程中对热量的平衡计算和控制。
动力学分析是指对分离过程中反应速率和平衡的研究和分析。
能耗分析是对分离过程中能量转化和损失情况进行评估和分析,以寻找能耗较低的操作条件和改进措施。
四、应用领域化工分离工程在许多化学工业中都有广泛的应用。
例如,在石油化工行业中,蒸馏塔和吸附塔常被用于石油精制和气体分离过程中;在化学制药行业中,结晶器常被用于药物的提纯和分离;在环保领域中,离子交换器常被用于水处理和污水处理过程中的离子去除和分离等。
总结起来,化工分离工程是化学工程中的重要分支,通过不同的分离方法和设备,实现将混合物中的组成分离出来的目的。
化工传质分离工程课后习题答案
目录第一章绪论 (1)第二章单级平衡过程 (6)第三章多组分精馏和特殊精馏 (19)第四章气体吸收 (24)第五章液液萃取 (27)第六章多组分多级分离的严格计算 (28)第七章吸附 (34)第八章结晶 (35)第九章膜分离 (36)第十章分离过程与设备的选择与放大 (37)第一章绪论1.列出5种使用ESA和5种使用MSA的分离操作。
答:属于ESA分离操作的有精馏、萃取精馏、吸收蒸出、再沸蒸出、共沸精馏。
属于MSA分离操作的有萃取精馏、液-液萃取、液-液萃取(双溶剂)、吸收、吸附。
2.比较使用ESA与MSA分离方法的优缺点。
答:当被分离组分间相对挥发度很小,必须采用具有大量塔板数的精馏塔才能分离时,就要考虑采用萃取精馏(MSA),但萃取精馏需要加入大量萃取剂,萃取剂的分离比较困难,需要消耗较多能量,因此,分离混合物优先选择能量媒介(ESA)方法。
3.气体分离与渗透蒸发这两种膜分离过程有何区别?答:气体分离与渗透蒸发式两种正在开发应用中的膜技术。
气体分离更成熟些,渗透蒸发是有相变的膜分离过程,利用混合液体中不同组分在膜中溶解与扩散性能的差别而实现分离。
4. 海水的渗透压由下式近似计算:π=RTC/M ,式中C 为溶解盐的浓度,g/cm 3;M 为离子状态的各种溶剂的平均分子量。
若从含盐0.035 g/cm 3的海水中制取纯水,M=31.5,操作温度为298K 。
问反渗透膜两侧的最小压差应为多少kPa? 答:渗透压π=RTC/M =8.314×298×0.035/31.5=2.753kPa 。
所以反渗透膜两侧的最小压差应为2.753kPa 。
5. 假定有一绝热平衡闪蒸过程,所有变量表示在所附简图中。
求: (1) 总变更量数Nv;(2) 有关变更量的独立方程数Nc ; (3) 设计变量数Ni;(4) 固定和可调设计变量数Nx ,Na ;(5) 对典型的绝热闪蒸过程,你将推荐规定哪些变量?思路1:3股物流均视为单相物流, 总变量数Nv=3(C+2)=3c+6 独立方程数Nc 物料衡算式 C 个热量衡算式1个 相平衡组成关系式C 个 1个平衡温度等式1个平衡压力等式 共2C+3个 故设计变量Ni=Nv-Ni=3C+6-(2C+3)=C+3固定设计变量Nx =C+2,加上节流后的压力,共C+3个 可调设计变量Na =0 解:(1) Nv = 3 ( c+2 )(2) Nc 物 c 能 1 相 cF ziT F P FV , yi ,T v , P vL , x i , T L , P L习题5附图内在(P ,T) 2 Nc = 2c+3 (3) Ni = Nv – Nc = c+3 (4) Nxu = ( c+2 )+1 = c+3 (5) Nau = c+3 – ( c+3 ) = 0 思路2:输出的两股物流看成是相平衡物流,所以总变量数Nv=2(C+2) 独立方程数Nc :物料衡算式 C 个 ,热量衡算式1个 ,共 C+1个 设计变量数 Ni=Nv-Ni=2C+4-(C+1)=C+3固定设计变量Nx:有 C+2个加上节流后的压力共C+3个 可调设计变量Na :有06. 满足下列要求而设计再沸汽提塔见附图,求: (1) 设计变更量数是多少? (2) 如果有,请指出哪些附加变量需要规定?解: N x u 进料 c+2压力 9 c+11=7+11=18N a u 串级单元 1 传热 1 合计 2 N V U = N x u +N a u = 20 附加变量:总理论板数。
分离工程题库
第一章绪论填空题:1. 分离技术的特性表现为其(重要性)、(复杂性)和(多样性)2、分离过程是(混合过程)的逆过程,因此需加入(分离剂)来达成分离目的3.分离过程分为(机械分离)和(传质分离)两大类4.分离剂可以是(能量)或(物质)有时也可两种同时应用5.若分离过程使组分i及j之间并没有被分离,则(asij= 1 )6、可运用分离因子与1的偏离限度,拟定不同分离过程分离的(难易限度)兀平衡分离的分离基础是运用两相平衡(组成不相等)的原理,常采用(平衡级)作为解决手段并把其它影响归纳千(级效率)中8、传质分离过程分为(平衡分离)和(速率分离)两类。
9、速率分离的机理是运用溶液中不同组分在某种(推动力)作用下通过某种介质时的(传质速率)差异而实现分离10、分离过程是将一混合物转变为组成(互不相等)的两种或几种产品的哪些操作。
11.工业上常用(分离因子)表达特定物系的分离限度,汽液相物系的最大分离限度又称为(固有分离因子)12、速率分离的机理是运用传质速率差异,其传质速率的形式为(透过率)、(迁移率)和(迁移速率)13.绿色分离工程是指分离过程(绿色化的工程)实现14.常用千分离过程的开发方法有(逐级经验放大法)、(数学模型法)选择题:1.分离过程是一个(A)a. 墒减少的过程;b. 墒增长的过.; C. 墒不变化的过程;d. 自发过程2.组分i、j之间不能分离的条件是(C)a. 分离因子大千1b. 分离因子小千l C. 分离因子等千l3.平衡分离的分离基础是运用两相平衡时(A)实现分离a. 组成不等;b. 速率不等;c. 温度不等4.当分离因子(C)表达组分i及j之间能实现一定限度的分离. ... a. ai. .. b. asi. .. c. ai. <15.下述操作中,不属千平衡传质分离过程的是(C)a. 结晶;b. 吸取;c. 加热;d. 浸取6.下列分离过程中属机械分离过程的是(D)a. 蒸馆;b. 吸取;c. 膜分离;d. 离心分离7、当分离过程规模比较大,且可以运用热能时,通常在以下条件选择精馆法(B)a. 相对挥发度<L05;b. 相对挥发度)1.05.c. 相对挥发度<L5;d. 相对挥发度)1.58、以下分离方法中技术成熟度和应用成熟度最高的是C C)a. 超临界萃取;b. 吸取;c. 精馆;d. 结晶9、工业上为提高分离或反映效果,常把不同的过程进行组合,以下不属于反映过程与分离过程的耦合的是(C)a. 化学吸取;b. 在精馆塔里进行的由甲醇和醋酸制备醋酸甲酷的过程;c. 分离沸点相近的混合物的萃取结晶过程;d. 催化精馆过程第二章多组分分离基础填空题:1.分离过程涉及的变量数减去描述该过程的方程数即为该过程的(设计变量数)2.设计变量是指在计算前,必须由设计者(制定)的变量3. 一个具有4个组分的相平衡物流独立变量数有6)个4、一个装置的设计变量的拟定是将装置分解为若干进行(简朴过程的单元)由(单元的设计变量数)计算出装置的设计变量数。
生物分离工程 第7章-萃取1
浸取的影响因素
1.相平衡 浸取过程中的相平衡用分配系数KD表示 KD =y / x
y——达到平衡时溶质在液相中的浓度 x——平衡时溶质在固相中的浓度 2.溶剂的选择
KD大且对目的物质的选择性高,溶剂的价格应低廉,无腐蚀性, 无毒,闪点高,无爆炸性,产品中易去除,容易回收。 3.增溶作用
原先不溶或难溶性的生物大分子物质向可溶性的、分子量较小的 生物物质转变,但不能过度。也有向不溶性转变的。 4.固体原料的预处理: 如粉碎、干燥等。
适用于脂肪酸、植物碱、醚类、 酮类、甘油酯、芳香成分等物质 的萃取分离。
第一节 液-固萃取
液-固萃取又叫浸取或浸出,是将固相物质萃 取到溶剂相中,在许多行业中得到应用。
产物
咖啡 果汁 药酒 大豆蛋白表2 浸取的应用举例 Nhomakorabea固体
溶质
粗烤咖啡 水果
中药材 豆粉
咖啡溶质 果汁
药用成分 蛋白质
溶剂
水 水 酒 NaOH溶液
萃取洗涤反萃取萃取剂稀释剂料液待分离物质杂质萃取液待分离物质少量杂质洗涤剂萃残液杂质杂质少量待萃物质产物待萃物质待返回使用萃取剂稀释剂反萃剂待萃物质溶剂萃取的操作流程废水溶剂溶质水溶质溶剂溶质溶剂废水蒸汽液液萃取过程图萃取器溶剂溶质塔汽提塔冷凝器分离器热交换器萃取过程具有选择性
第七章 萃取 (Extraction)
11、可加入机介面触控书面,直接在中央控制室操控。 12、配合振动过滤,液渣分离及过滤效果非常好。 13、自动排液(第一次萃取)排料(第二次萃取)。 14、排出的药渣可经过挤压机,将残留的萃取液在挤出。 15、挤压后的药渣可经输送带输送至室外。 16、工作环境,温度较低及干净。 17、完全密闭合乎安全卫生要求。 18、附冷凝器,可在大气压力下完全密闭操作,使香气及酒
分离工程各章知识点总结
分离工程各章知识点总结分离工程是指对混合物中不同组分进行分离和提纯的工艺过程。
在化工生产中,分离工程是非常重要的一部分,它涉及到原料的提取、产品的纯化、废物的处理等诸多方面。
分离工程的核心是通过不同的分离方法,将混合物中的各种组分分离出来,以获得纯度较高的单一物质。
分离工程主要包括以下几个方面:1、分离原理:分离工程的基础是分离原理,它包括各种分离方法的基本原理,如溶剂抽提、蒸馏、结晶、萃取、吸附、色谱等。
2、分离设备:分离工程中常用的设备包括离心机、蒸馏塔、萃取塔、结晶器、过滤器、冷凝器等。
3、分离过程:分离过程包括前处理、分离操作、后处理等环节,其中前处理包括混合物的预处理和预分离,分离操作包括各种分离方法的应用,后处理包括得到的产品的进一步提纯和废物的处理。
在分离工程中,要充分考虑原料的性质、产品的要求、成本的限制等因素,综合考虑各种因素,选择合适的分离方法和设备,设计出合理的分离工艺流程。
第二章:溶剂抽提溶剂抽提是一种常用的分离方法,它适用于多种情况下,如萃取有机物质、提取植物精华、分离金属离子等。
溶剂抽提的基本原理是通过合适的溶剂,溶解目标组分,并将其与底物分离。
在实际操作中,通常是将混合物和溶剂加热混合,再通过过滤或离心等操作将底物和溶液分离开来,接着通过蒸馏等方法将溶剂去除,得到目标组分。
溶剂抽提的优点包括操作简单、效率高、选择的溶剂可以回收利用等。
但也有其缺点,如溶剂的选择和回收比较麻烦,产生的有机废物处理也相对复杂。
第三章:蒸馏蒸馏是一种基本的分离方法,适用于分离挥发性组分的情况。
它的基本原理是利用不同组分的沸点差异,通过加热混合物,使其中某些组分蒸发,再通过冷凝,将蒸气凝结收集下来,从而实现不同组分的分离。
蒸馏可以分为简单蒸馏、分馏、连续蒸馏等多种类型,根据实际需要选择合适的蒸馏方法。
蒸馏的优点包括分离效果好、操作相对简单、适用范围广等。
但它也有缺点,如耗能大、设备成本高、不适用于非挥发性组分的分离等。
《化工分离工程》教案
@@@@大学
《化工分离工程》
教案
~学年第学期
课程学时65
学院化学工程
课程名称化工分离工程专业化工工艺
主讲教师
③反应增加了溶质在液相中的溶解度,吸收剂用量少;
④反应降低了溶质在气相中的平衡分压,可较彻底地除去气相中很少量的有害气体.
缺点:解吸困难,解吸能耗。
若反应为不可逆,反应剂不能循环使用,用途大受限制.
化学吸收(Chemical absorption)
溶质与吸收剂之间的化学反应对吸收过程具有显著影响。
主要特点:吸收过程中溶质进入液相后在扩散路径上不断被化学反应所消耗。
双膜理论
由W.K.Lewis 和W。
G。
Whitman 在上世纪二十年代提出,是最早出现的传质理论。
双膜理论基本论点
(1) 相互接触的两流体间存在着稳定的相界面,界面两侧各存在着一个很薄(等效厚度分别为 1 和2 )的流体膜层。
溶质以分子扩散方式通过此两膜层。
(2) 相界面没有传质阻力,即溶质在相界面处的浓度处于相平衡状态。
(3) 在膜层以外的两相主流区由于流体湍动剧烈,传质速率高,传质阻力可以忽略不计,相际的传质阻力集中在两个膜层内。
教学方式、手段、媒介:以多媒体为主
黑板设计:左边幻灯,右边板书。
化工分离工程第七章__新分离方法
化工分离工程第七章__新分离方法在化工分离工程中,分离过程是非常重要的环节。
传统的分离方法包括蒸馏、萃取、吸附、结晶等。
然而,随着科学技术的不断进步和发展,新的分离方法也逐渐被应用于化工分离工程中。
本章将介绍几种目前最新的分离方法。
一、离子交换膜技术离子交换膜技术是一种通过离子交换作用实现离子分离的方法。
它利用具有选择性离子渗透性的膜,通过对电渗透效应和离子交换效应的结合实现对溶液中离子的分离。
离子交换膜技术具有高选择性、高透过率和稳定性好等优点,已广泛应用于水处理、电力工业、化工领域等。
二、超临界流体萃取技术超临界流体萃取技术是利用超临界流体具有可调节性、高扩散系数和低表面张力等特点,用于有效分离和提取化合物。
在超临界条件下,流体的物理和化学性质发生了很大的改变,使得溶液和非溶质之间的传质和传热效果得到了提高。
超临界流体萃取技术已广泛应用于天然药物提取、废水处理等领域。
三、薄膜分离技术薄膜分离技术是指利用薄膜具有选择透过性,通过物质在薄膜表面的扩散和渗透,实现对混合物的分离。
薄膜分离技术具有结构简单、成本低、操作方便等优点,广泛应用于分离纯化、浓缩、脱水等领域。
薄膜分离技术包括微滤、超滤、纳滤、反渗透等多个方法。
四、离子液体分离技术离子液体是一类具有独特性质的新型溶剂,由有机阳离子和无机阴离子组成。
离子液体分离技术是指利用离子液体的溶解性、热稳定性和反应性等特点,实现对混合物的分离和提纯。
离子液体分离技术已广泛应用于化学、生物、环境等领域,具有非常广阔的应用前景。
以上介绍的是目前化工分离工程中的一些新分离方法,它们在分离效率、能耗、环保性等方面都具有优势。
随着科技的不断进步,新的分离方法也将不断涌现,为化工分离工程提供更多的选择和可能性。
作为化工工程师,需要不断学习和掌握新的分离技术,以提高分离工程的效率和质量。
分离工程第七章
4.3 色谱分离度
分离度也称分辨度。它是指相邻两色谱保留值之差与两峰底 宽平均值之比,即
一般来说,当Rs < 1时,两峰总有部分重叠;当Rs =1时,两 峰能明显分离;Rs >1.5时,两峰才能完全分离。当然,更 大的Rs值,分度效果会更好,但会延长分析时间。 利用上式,可以直接从色谱图上计算分离度。但该式没有体 现影响分离度的诸因素。而下式清楚地指出了,分离度受 柱效n、选择性x和容量因子k三个参数的控制:
5)、按原理分类
2
国际通用色谱法分类及其缩写
色谱分类
3
分配系数m:
m cs cm
色谱的名词术语
式中, cs 和 cm 分别为组份在固定相 和流动相中的浓度。 m类型:A、B型曲线是一条典型的 吸附等温线,吸附色谱法属于这 类曲线。 C 和 D 型吸附等温线很 少遇到。 C 曲线为线性分配等温 线。 线性色谱:溶质浓度低时, m 为常 数时的色谱 意义:容易理解,溶质流过色谱柱 时,m大的组份通过色谱柱所需 要的时间长,m小的组份需要的 时间短;当样品中各组份在两相 的m不同时,就能实现差速迁移, 达到分离的目的。 Why?
4.4 定性分析
制备性色谱定性分析
特异性检测
4.4 定性分析
分析性色谱定性分析
1st 在色谱条件一定时,任何 一种物质都有确定的保留 时间。
ti , m
L1 mi u0
2nd 相对保留值2,1:
.
4.5 定量分析
定量依据
在一定色谱条件下,组份i的质量(mi) 或其在流动 相中的浓度,与检测器响应讯号(峰面积Ai或峰高 hi )成正比: 式中fiA和fih是绝对校正因子。
色谱分类
A)、洗脱法:料液中的溶质根据其在固定相和流动相 中的分配行为的不同,在柱出口处被展开形成相互分 离的色谱峰。 B)、顶替法:与A相似, 不同在于:采用的洗脱液中 含有与固定相的亲和力比料 液中各个组分都大的物质 (称顶替剂),它将料液中 所有溶质按其与固定相的亲 和力的大小不同从柱中按次序出来。适于大量处理稀溶液。 C)、迎头法:与一般的固定床吸附操作相同,大量料液连续输入到层析 柱中,直到在出口处发生溶质穿透,只有最先穿透的(分配系数大 OR小?)组分能以纯粹的状态得到部分回收,之后的流出液均为双 组分或多组分的混合物。 最常见的是A,本章主要讨论的内容。
天津大学 化工分离工程 教案 习题和解答
7.1.1 最小分离功分离的最小功表示了分离过程耗能的最低限。
最小分离功的大小标志着物质分离的难易程度,实际分离过程能耗应尽量接近最小功。
图 7-1 连续稳定分离系统由热力学第一定律:(7-1)和热力学第二定律(对于等温可逆过程):(7-2)得到等温下稳定流动的分离过程所需最小功的表达式:( 7-3 )即或表示为自由能的形式:( 7-4 )或表示为逸度的形式:( 7-7 )一、分离理想气体混合物对于理想气体混合物:(7-8) 对于由混合物分离成纯组分的情况:( 7-9 )在等摩尔进料下,无因次最小功的最大值是 0.6931 。
对于分离产品不是纯组分的情况:过程的最小分离功等于原料分离成纯组分的最小分离功减去产品分离成纯组分所需的分离功。
[例7-1]二、分离低压下的液体混合物( 7-10 )对于二元液体混合物分离成纯组分液体产品的情况:( 7-11 )可见,除温度以外,最小功仅决定于进料组成和性质,活度系数大于 1 的混合物比活度系数小于 1 的混合物需较小的分离功。
当进料中两组分不互溶时,—W min,T =0 。
[例7-2][例7-3]7.1.2 非等温分离和有效能当分离过程的产品温度和进料温度不同时,不能用自由能增量计算最小功,而应根据有效能来计算。
有效能定义:有效能是温度、压力和组成的函数。
稳态下的有效能平衡方程:( 7-18 )等当功:( 7-19 )系统的净功(总功):( 7-20 )过程可逆时,可得最小分离功:( 7-21a )该式表明,稳态过程最小分离功等于物流的有效能增量。
7.1.3 热力学效率和净功消耗分离过程的热力学效率:系统有效能的改变与过程所消耗的净功之比。
(7-22)普通精馏操作(图 7-2)过程所消耗的净功:图 7-2 普通精馏塔(7-23)实际分离过程,热力学效率必定小于 1 。
试求20 ℃ 、 101.3kPa 条件下,将 lkmol 含苯 44% (摩尔)的苯-甲苯溶液分离成纯组分产品所需的最小分离功。
化工分离技术蒸馏萃取吸附等分离方法与原理
化工分离技术蒸馏萃取吸附等分离方法与原理化工分离技术——蒸馏、萃取、吸附等分离方法与原理化工分离技术是化学工程中的重要组成部分,通过不同的物理和化学分离方法,将混合物中的不同组分分离出来,达到提纯、回收或制备目标物质的目的。
本文将介绍三种常用的分离方法——蒸馏、萃取和吸附,及其应用原理和工业实践中的一些经典案例。
一、蒸馏法蒸馏法是一种广泛应用于分离液体混合物的方法。
它基于混合物中不同组分的不同沸点,通过加热使液体蒸发,然后在冷凝器中冷凝回液体,从而分离出目标组分。
蒸馏法根据其操作方式分为常压蒸馏和减压蒸馏。
常压蒸馏适用于沸点较低的物质,如水和酒精的分离。
而减压蒸馏则适用于沸点较高的组分,通过减小系统的压力,降低沸点以实现分离。
二、萃取法萃取法是一种基于不同物质在溶剂中溶解度差异的分离方法。
在萃取过程中,将混合物与适当的溶剂接触,使其中一种或多种组分在溶剂中溶解,从而达到分离目的。
常用的萃取方法包括液液萃取、固液萃取和气液萃取等。
液液萃取适用于分离有机物或溶解度差异较大的物质;固液萃取则常用于从固体中提取目标物质;而气液萃取常用于分离气体混合物中的组分。
三、吸附法吸附法是一种基于吸附剂对混合物中不同组分吸附能力差异的分离方法。
通过将混合物经过吸附剂床层,使其中一种或多种组分在吸附剂上吸附,而其他组分则通过床层。
常见的吸附剂有活性炭、沸石和分子筛等。
吸附法通常应用于气体和液体的分离。
在工业上,吸附法广泛应用于废气处理、溶剂回收以及分离混合气体中的有价组分等领域。
在化工生产中,蒸馏、萃取和吸附等分离方法经过长期的实践和优化,广泛应用于各个行业。
例如,炼油工业中的精馏塔蒸馏、食品工业中的香精提取、环保领域中的废气净化等。
通过合理选择和组合这些分离方法,可以实现更高效、经济和环保的工业生产。
总结:化工分离技术中的蒸馏、萃取和吸附是重要的分离方法,在工业生产中广泛应用。
蒸馏法通过不同组分的沸点差异实现分离,萃取法通过溶解度差异实现分离,而吸附法则通过吸附性能的差异实现分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
再生剂 亲和剂 再生器 产品蛋白 超滤器 洗脱器 洗脱剂
亲 和 剂 蛋白质混合液
吸附池 超滤器
杂质蛋白
END
膜或复合膜,分离对象可以是液体或气体。
固膜分离技术广泛用于石油、化工、生化、制药、 食品、环保等领域。
TSHY
7.3.1 膜分离技术的分类
TSHY
7.3.1 膜分离技术的分类
TSHY
7.3.2 膜分离的基本工作原理
1. 反渗透
TSHY
7.3.2 膜分离的基本工作原理
2. 超过滤
稀相
分离膜
浓相
TSHY
7 新分离方法
7.1 泡末吸附分离技术 7.2 液膜分离技术 7.3 固膜分离技术 7.4 耦和技术
7.5 分离过程的选择
TSHY
7.1 泡沫吸附分离技术
基本概念
泡沫分离技术就是根据表面吸附原理,籍鼓泡使溶液内的表面活性
物质聚集在气液界面(气泡表面),上浮至溶液主体上方形成泡沫层, 将泡沫层与液相主体分开,就可达到浓缩表面活性物质和净化液相
吸附完成后,分离出包裹
内相的乳化层,破乳后,所 吸附的物质就转移到内相溶
液中实现分离。
TSHY
7.2.3 液膜分离操作过程
成膜相
原 料 液 反萃剂
萃取液
破 乳 器
反萃液
萃取剂 乳化器 萃取器 萃余液
TSHY
7.3 固膜分离技术
基本概念
固膜分离技术简称为膜分离技术,就是以固体膜
为分离介质、借助膜两侧的能量差 ( 如压力差、浓度 差、电位差等 ) 为推动力,将待分离组分从流体主题 中分离出来的过程。 起分离作用的固体膜可以是有机膜、无机膜、生物
TSHY
二、利用反应促进精馏的反应精馏
例:分离近沸点的混合物
产物1
1+2组分 产物2
3与2反应生成 难挥发产物
反应添加剂3
添加剂3
实现该反应精馏过程的基本条件: 1.反应是快速可逆的,反应产物仅仅存在于塔内; 2.添加剂必须选择性地与异构体之一反应; 3.添加剂、异构体和反应产物沸点之间的关系符合精 馏要求。
2. 膜的结构
(1)对称性膜
膜层内部结构均匀一致。 (2)非对称性膜 膜层内部具有层次性结构,各层的孔径和空隙率不相同。
TSHY
7.3.3 膜的特性和构件
3. 膜构件
(1)板框式
TSHY
7.3.3 膜的特性和构件
3. 膜构件 (2)管式
TSHY
7.3.3 膜的特性和构件
3. 膜构件
(3)螺旋板式
TSHY
反应精馏
目的: 1.提高分离效率而将反应与分 离结合的一种分离操作。 2.提高反应收率而借助于精馏 分离手段的一种反应过程。
TSHY
反应精馏的应用 两种类型:一种——利用精馏促进反应
二种——通过反应促进精馏分离
一、利用精馏促进反应的反应精馏 例:酯化 酸醋与乙醇生成酸醋乙酯 酯交换 醋醋丁酯与乙醇反应 皂化 氯丙醇皂化生成环氧丙烷
TSHY
渗透蒸发耦合分离
冷凝器 不凝气
含水乙醇的精制
载气
冷凝水 渗透膜 真空泵
膜蒸发器 加热器 乙醇-水 乙醇
其能耗和 操作费用 是共沸精 馏的三分 之二
物料泵
TSHY
渗透蒸发耦合技术适合分离沸点相近的混 合物,特别适合分离共沸物的分离。
TSHY
亲和超滤(affinity ultrafiltration)耦合分离技术
质推动力。
TSHY
7.2.2 液膜分离机理
3. 膜相化学反应
在膜相中包含能与外相被
分离组分反应的物质,内相
中包含更强的反应物质。这 样膜相生成的产物在内相中
再被反应,同时还原出膜相
中原来的反应物,从而实现 连续的反应传质过程。
TSHY
7.2.2 液膜分离机理
4. 膜相吸附
在膜相中包含能吸附外相 被分离组分的物质,外相中 的被分离组分被吸附在膜相 的外表层。
稀相
分离膜
浓相
渗透型膜分离原理图
过滤型膜分离原理图
TSHY
7.3.3 膜的特性和构件
1. 膜的特性指标
(1)高渗透流率
衡量膜处理能力的重要指标。 (2)明显的截留率 衡量膜分离能力的重要指标。 (3)稳定性和耐用性 衡量膜质量的重要指标。 (4)抗堵性 衡量膜适应性的重要指标。
TSHY
7.3.3 膜的特性和构件
精馏段 反应段
1.保证反应物与催化剂充分 接触;
2.保证一定的反应停留时间; 3.保证达到预期的产物分离。
提馏段
TSHY
对于催化精馏塔: 催化剂填充段应放在反应物含量最大的区域 ——反应段 ①异戊烯醚脱醚 ②异丙苯生产
异 戊 烯 醚
异戊烯
丙 烯
苯
醇
异丙苯
TSHY
发酵与分离耦合过程
问题:高浓度发酵产物抑制效应,限制了 产量和原料转化率的提高。 解决途径:将部分发酵产物不断分离除去, 既可消除抑制反应,又可简化产物的分离 提取过程。
④系统中的返混会严重影响分离效率,使泡末分离的
设计计算比较困难。
TSHY
7.2 液膜分离技术
基本概念
液膜分离技术就是以液膜为分离介质、以浓度差
为推动力的液 - 液萃取与反萃过程结合为一体的分离 过程。 起分离作用的液膜通常为添加了表面活性剂的溶剂 相,液膜两边的被萃相和反萃相通常都是可互溶相。
液膜分离技术常用于湿法冶金工业、石油与化学工
TSHY
优点 2 :可移出产物中产生的对催化剂污染 物,延长催化剂的寿命。
反应段催化剂的装填要求: 1. 使反应段的催化剂床层有足够的自由空间, 提供汽液相的流动通道,以进行液相反应; 2.具有足够的表面积; 3.允许催化剂颗粒的膨胀和收缩; 4.结构简单、便于更换。
返回
TSHY
确定进料位置的原则:
TSHY
适用于:①可逆反应 反应产物相对挥发度大于或小于反应物时,由于 精馏原因,产物一生成立刻离开反应区。 ②连串反应:A→R→S
两种类型:1.S为目的产物
将生成R和生成S二个反应器合并在一起,利用 精馏提供不同的条件,缩短反应时间,提高收率和 产品纯度。 2.R为目的产物
利用精馏把产物 R 尽快移出反应区,避免副反 应进行。
业、生化工业、制药工业、环境保护等领域。
TSHY
7.2.1 液膜的结构与分类
1. 液膜的定义及组成
液膜是一层很薄的液体,它阻隔在两个可互
溶但组成不同的液相之间,一个液相中的待 分离组分通过液膜的渗透作用传递到另一个
液相中,从而实现分离的目的。
液膜通常由溶剂(水或有机溶剂)、表面活
性剂和添加剂组成。溶剂是构成液膜的基体;
TSHY
7.3.5 电渗析简介
2. 电渗析工艺过程
1-料液
2-阴极
3-阳极 4-阴极废水
5-阳极废水
6-稀产品水 7-浓产品水
A-阴极膜
C-阳极膜
TSHY
热扩散简介
原理:
先建立稳定的温度梯度, 气体或液体中较轻的组分 向热线方向飘移,直至最 后建立稳定的浓度梯度
TSHY
一、热扩散分离方法的发现 1、饱和硫酸钠结晶 2 、 1938 年, Chesius 和 Dickel 的实验,利 用稳定的温度场和对流现象引起溶液中两 种不同质量的分子分离的串联效应。
TSHY
三、催化精馏
非均相催化精馏 优点 1 :既起加速反应的催化作用,又作为填料起 分离作用。 适用于: 可逆反应、连串反应 例:甲醇与C4反应生成甲基叔丁基醚(MTBE)
—— 美 国 CR﹠L 公 司 开发
催化剂:强酸性阳离子交换树脂 反应特点: MTBE 和甲醇、异丁烯和甲醇均形成最 低共沸物。
TSHY
顶瓶
其一,冷管壁和热轴线 间建立了温度场 热线 其二,温度梯度的存在 又造成物流密度的不同
冷壁
温度 梯度
底瓶
TSHY
热扩散分离技术的特点: 无需加入任何反应剂,不存在相变化,但 分离因子小。 应用领域: 精细化工、药物化工、在工业上,高粘度 润滑油的分离、同位素的分离等。
TSHY
TSHY
7.3.3 膜的特性和构件
3. 膜构件 (4)中空纤维式
TSHY
7.3.4 膜的分离流程
1. 多级海水淡化流程——反渗透膜分离
TSHY
7.3.4 膜的分离流程
2. 膜分离的完全级联流程
TSHY
7.3.5 电渗析简介
1. 电渗析使用的膜
电渗析使用的分离膜为离子交换膜。离子交换膜分阴 离子交换膜和阳离子交换膜,两种膜通常需配套使用。
7.4 耦合分离技术
基本概念
耦合分离技术是针对一些难分离体系采取
的一类组合分离技术。不同性质分离过程的耦
合或分离过程与反应过程的耦合。
由于耦合分离技术采用了组合分离技术,
因而具有所组合的分离技术的优势,可突破单
一分离技术选择性分离上存在的不足。
TSHY
耦合蒸馏
反应精馏(与化学反应) 催化精馏(与催化反应) 吸附精馏(与吸附分离) 膜蒸馏(与固膜分离)
③全塔充满稳定泡末时,可用回流方式增加单塔分离 能力。
④设备简单,操作方便,能耗低。
TSHY
7.1.4 泡末分离的优点与局限
2. 泡末分离的局限
①溶液中表面活性剂浓度高于临界胶束浓度时,泡末 稳定,但分离效率会降低。 ②在临界胶束浓度以下能维持稳定泡末的表面活性剂 种类较少。 ③分离出的泡末中夹带的表面活性剂难以返回利用。