1第一章第一节数域

合集下载

高等代数知识点总结

高等代数知识点总结
定义(集合的映射) 设 A 、 B 为集合。如果存在法则 f ,使得 A 中任意元素 a 在法则 f 下对应 B 中唯一确定的元素(记做 f (a) ),则称 f 是 A 到 B 的一个映射,记为
f : A B, a f (a).
如果 f (a) b B ,则 b 称为 a 在 f 下的像, a 称为 b 在 f 下的原像。 A 的所有元素
称为矩阵的行(列)初等变换。
定义(齐次线性方程组) 数域 K 上常数项都为零的线性方程组称为数域 K 上的齐次
线性方程组。 这类方程组的一般形式是
a11x1 a12 x2 a1n xn 0, a12 x1 a22 x2 a2n xn 0, ...... am1x1 am2 x2 amn xn 0.
f (x) a0 (x 1 )(x 2 )......(x n ) 证明 利用高等代数基本定理和命题 1.3,对 n 作数学归纳法。
2.高等代数基本定理的另一种表述方式
定义 设 K 是一个数域, x 是一个未知量,则等式
a0 x n a1 x n1 ...... an1 x an 0
命题 变元个数大于方程个数的齐次线性方程组必有非零解; 证明 对变元个数作归纳。 说明 线性方程组的解的存在性与数域的变化无关(这不同于高次代数方程)。事实上, 在(通过矩阵的初等变换)用消元法解线性方程组时,只进行加、减、乘、除的运算。如果
所给的是数域 K 上的线性方程组,那么做初等变换后仍为 K 上的线性方程组,所求出的解 也都是数域 K 中的元素。因此,对 K 上线性方程组的全部讨论都可以限制在数域 K 中进行。
命题 n 次代数方程在复数域C内有且恰有 n 个根(可以重复)。
命题(高等代数基本定理的另一种表述形式)给定C上两个n次、m次多项式

一元多项式——精选推荐

一元多项式——精选推荐

第一章 多项式§1 数域 §2 一元多项式一、数域1、定义:P 是由一些复数组成的集合,包含0和1,如果P 中的任意两个数的和、差、积、商(除数不为零)仍在P 中,则称P 为一个数域。

简单地说:P 是一个含0和1的非空集合,且对四种运算封闭。

2、例1:有理数的集合Q ,实数集合R ,复数集合C 均为数域。

例2:{}()2,2Q Q b a b a P =∈+=是一个数域。

证明:Pd c adcb d c bd ac d c d c d c b a d c b a d c d c P bc ad bd ac d c b a P d b c a d c b a P d b c a d c b a Qd c b a P d c b a P P ∈--+--=-+-+=++≠-≠+∈+++=++∈-+-=+-+∈+++=+++∈∈++∀∈+=∈+=2222)2)(2()2)(2(2202,02)5(2)()2()2)(2)(4(2)()()2()2)(3(2)()()2()2)(2(,,,,2,22011;2000)1(2222有若故P 是一个数域。

练习:证{}Q b a bi a i Q ∈+=,)(是一个数域。

二、一元多项式注:在数域P 上进行讨论,x 是一个符号。

1、定义:0111a x a x a x a n n n n ++++-- ,(-∈Z n )称为数域P 上的一元多项式。

其中P a a a n ∈,,,10 ,用 ),(),(x g x f 表示。

若0≠n a ,则称n a 为首项系数,n 为多项式的次数,用))((x f ∂表示。

0a 为常数项。

2、相等:)()(x g x f =当且仅当次数相同,对应系数相等。

3、运算:设0111)(a x a x a x a x f n n n n ++++=-- ,0111)(b x b x b x b x g m m m m ++++=-- ,m n ≥(1) 加法: )()()()()(00b a x b a x b a x g x f m m m n n n +++++++=+其中:011====+-m n n b b b())(),(max ))()((x g x f x g x f ≤+∂ (2) 乘法:snm s s j i j i m n m n m n m n m n xb a b a x b a b a x b a b a x b a x g x f ∑∑+==+-+--+⎪⎪⎭⎫ ⎝⎛=+++++++=0001001111)()()()()(若:0)(,0)(≠≠x g x f ,则))(())(())()((x g x f x g x f ∂+∂=∂ 4、运算规律:(1))()()()(x f x g x g x f +=+(加法交换律)(2)))()(()()())()((x h x g x f x h x g x f ++=++(加法结合律) (3))()()()(x f x g x g x f =(乘法交换律)(4)))()()(()())()((x h x g x f x h x g x f =(乘法结合律) (5))()()()())()()((x h x f x g x f x h x g x f +=+(分配律) (6)若,0)(),()()()(≠=x f x h x f x g x f 则)()(x h x g =(消去律) 5、多项式环。

高等代数

高等代数
因式分解定理
说明
的标准分解式, ① 若已知两个多项式 f ( x ), g ( x ) 的标准分解式, 则可直接写出
( f ( x ), g( x ) ) .
f ( x ), g ( x ) 的标准
( f ( x ), g( x ) ) 就是那些同时在
分解式中出现的不可约多项式方幂的乘积, 分解式中出现的不可约多项式方幂的乘积,所带 方幂指数等于它在 f ( x ), g ( x ) 中所带的方幂指数 中较小的一个. 中较小的一个.
(
)(
x2 + 2
)
(在有理数域上) 在有理数域上)
= x 2 = x 2
(
)(
x+ 2
)(
x2 + 2
)
(在实数域上) 在实数域上)
(
) ( x + 2 ) ( x 2i ) ( x +
在复数域上) 2i (在复数域上)
)
§1.5 因式分解定理
一,不可约多项式
定义: 定义: 设 p( x ) ∈ P[ x ] ,且 ( p ( x ) ) ≥ 1 ,若 p( x )
f ( x ) = p1 ( x ) p2 ( x ) ps ( x )
= q1 ( x )q2 ( x ) qt ( x )

pi ( x ), q j ( x ) ( i = 1,2, , s ; j = 1,2, , t . ) 都是不可约
多项式. 多项式 作归纳法. 对 s 作归纳法. 若 s = 1, 则必有 s = t = 1, f ( x ) = p1 ( x ) = q1 ( x )
§1.5 因式分解定理
例如, 例如,若 f ( x ), g ( x ) 的标准分解式分别为

1.1 数域与排列

1.1 数域与排列

例 1:计算 (132) 1.取 132 中第一个数 1,后面没有比其小的数(对应 0) 。 2.在 132 中去掉 1,剩下 32。 3.取 32 中第一个数 3,后面有 1 个比其小的数(对应 1) 。 4.在 32 中去掉 3,剩下 2(只有一个数,所以不再存在逆序) 。 5.总结: (132) 0 1 1 。 注:当数列中只剩下一个数时,后面肯定没有更小的数,此时逆序数必为 0。 例 2:类似上述方法,可算出 (4231) 3 1 1 5 。
逆序数:对某排列,其中的逆序个数称为逆序数,记为 (数列) 。
例:对数列 132, (132) 1, (逆序为 32) 。 对数列 321, (321) 3 , (逆序为 32,31,21) 。
四.
奇排列:排列的逆序数是奇数。偶排列:排列的逆序数是偶数。
例:排列 132,321 是奇排列,而排列 123,312 是偶排列。 五. 计算逆序数的步骤
六.
对换:比如,132 变成 123 是一个对换(注意他们的差别只在于后两位
数,分别是 32 与 23。特别来说,2 与 3 的位置调换了) 。 七.通过一次对换,奇排列变成偶排列,而偶排列变成奇排列。 推论: n 阶排列的排列数是 n ! ,其中有 列。
n! n! 个排列为奇排列,有 个排列为偶排 2 2
, n 这 n 个数所组成的排列数共有 n ! 个(这是中学数学中常见的题目) 。
二.
逆序:在某个排列中,任取两个数,靠左边的记为 a ,靠右边的记为 b 。
若 a b ,则称 ab 为一个逆序。 例:在数列 132 中,32 是一个逆序。而在数列 321 中,32,31,21 都是逆序。
三.
a (其中 b 0 )仍是实数,即仍在 R b

第一节 数域

第一节  数域

§1 数域(number field )教学目的:掌握数域的概念及其性质,了解数环的概念.教学重点:数域概念及其证明.教学难点:数域概念.数的发展过程复数实数有理数整数自然数负数开方正数开方除法减法−−−→−−−−→−−−→−−−→−1.数域的概念关于数的加、减、乘、除等运算的性质通常称为数的代数性质.代数所研究的问题主要涉及数的代数性质,这方面的大部分性质是有理数、实数、复数的全体所共有的.定义1 设P 是由一些复数组成的集合,其中包括0与1.如果P 中任意两个数的和、差、积、商(除数不为零)仍然是P 中的数,那么P 就称为一个数域.如果数的集合P 中任意两个数作某一种运算的结果都仍在P 中,就说数集P 对这个运算是封闭的.因此数域的定义也可以说成,如果一个包含0,1在内的数集P 对于加法、减法、乘法与除法(除数不为零)是封闭的,那么P 就称为一个数域.显然全体有理数(rational number)组成的集合、全体实数(real number)组成的集合、全体复数(complex number)组成的集合都是数域.这三个数域分别用字母Q 、R 、C 来表示.全体整数(integral number)组成的集合就不是数域,整数集关于加减乘运算是封闭的,但除法运算不封闭.类似的自然数集也不是数域.例1 所有具有形式2b a +的数(其中b a ,是任意的有理数),构成一个数域.通常用)2(Q 来表示这个数域.即},2{)2(Q b a b a Q ∈+=.证明:显然)2(2011),2(2000Q Q ∈+=∈+=.)2(,Q y x ∈∀,设Q d c b a d c y b a x ∈+=+=,,,,2,2,则Q c a ∈±, d b ±Q ∈,Q bc ad Q bd ac ∈+∈+,2.因此有)2(2)()(Q d b c a y x ∈±+±=±,)2(2)()2(Q bc ad bd ac y x ∈+++=⋅. 因此)2(Q 对加减乘运算是封闭的.设Q b a ∈,,02≠+=b a x ,则02≠-b a ,若02=-b a ,则0==b a ,因此02=+b a ,与02≠+=b a x 矛盾.而,2222)2)(2()2)(2(222222b a bc ad ba bd acb a b a b a dc b ad c --+--=-+-+=++ 因为Q d c b a ∈,,,,所以Q ba bc ad Qb a bd ac ∈--∈--22222,22.因此)2(Q 关于除法运算也是封闭的.因此)2(Q 是一个数域.把本例中2换成其他的质数p ,)(p Q 也是一个数域.由于质数有无穷多个,因此数域有无穷多个.例2 所有可以表成形式m m n n b b b a a a ππππ++++++ 1010 的数组成一数域,其中m n ,为任意非负整数,),,1,0;,,1,0(,m j n i b a j i ==是整数.例3 所有奇数(odd number)组成的数集,对于乘法是封闭的,但对于加、减法不是封闭的,因此不是数域.例4 设P 是至少含两个数的数集,证明:若P 中任意两个数的差与商(除数≠0)仍属于P ,则P 为一数域.证明 ,,P b a ∈∀有P ba Pb a P b b b P a a ∈∈-∈≠=∈-=,,)0(1,0.因此 P ab b P ba ab b P b a b a ∈==∈=≠∈--=+00/10,)0(时,当,时,当.所以P 为一数域.2.数域的性质性质1:所有的数域都包含有理数域作为它的一部分.若P 是数域,则有P Q ⊆.证明: 设P 是任意一个数域,则有P ∈1,0。

数域_精品文档

数域_精品文档

数域1. 引言数域是数学中一个重要的概念,它在代数学、数论和几何学等多个领域都有广泛的应用。

在本文中,我们将首先介绍数域的定义和基本性质,然后探讨数域的扩张和剖分,最后讨论数域在几何学中的应用。

2. 数域的定义和基本性质数域是一个满足特定性质的集合,它包含了加法、减法、乘法和除法四种基本运算,并且满足一些基本的公理,如交换律、结合律和分配律等。

常见的数域包括有理数域、实数域和复数域。

数域具有以下基本性质:•封闭性:对于数域中的任意两个元素进行基本运算,结果仍然属于该数域。

•存在唯一性:数域中存在一个称为零元的数,它对于加法具有零元素性质,即对于任意数域中的元素a,都有a+0=0+a=a。

•存在唯一逆元:数域中的每个非零元素都存在一个唯一的逆元,它对于乘法具有逆元素性质,即对于任意数域中的非零元素a,都存在一个元素b,使得a\b=b\a=1。

•分配律:数域中的乘法对于加法具有分配律,即对于任意数域中的元素a、b和c,有a\(b+c)=a\b+a\*c。

3. 数域的扩张和剖分在代数学中,对于一个数域K,如果存在一个包含K的数域L,且L中的元素在加法、减法、乘法和除法运算下仍然满足数域的定义和基本性质,则称L为K的扩张数域。

对于一个有理数域Q,我们可以通过引入一个无理数如根号2来扩张成实数域R,而实数域又可以通过引入一个复数单位i来扩张成复数域C。

这样的扩张数域关系被称为代数扩张。

相反地,对于一个数域L,如果存在一个包含L的子集K,且K在加法、减法、乘法和除法运算下仍然满足数域的定义和基本性质,则称K为L的剖分数域。

剖分数域是扩张数域的逆过程。

4. 数域在几何学中的应用数域在几何学中有广泛的应用。

以复数域为例,复数可以表示平面上的点,并且复数的加法和乘法可以对应于平面上的向量的加法和旋转。

通过将平面上的点与复数建立一一对应关系,我们可以将平面上的几何问题转化为复数域中的运算问题,并可以通过数学方法进行解析和计算。

高等代数第二版课件§1[1].1_数环和数域

高等代数第二版课件§1[1].1_数环和数域
第一章 代数学的经典课题
根据数对运算的封闭情况,我们把数集分为两类: 数环和数域。 一、数环 定义1: 设S是由一些复数组成的一个非空集合, 如果对 a, b S ,总有 a b, a b, a b S 则称S是一个数环。 例如: 整数集Z,有理数集Q,实数集R,复数集 C都是数环。 问题: 1、除了Z 、Q、R、C外是否还有其他数环? 2、有没有最小的数环? 例1:设a是一个确定的整数。令 S na n Z
在R与C之间不可能有别的数域。 设有数域F,使 R F C ,故
x F , x R, x C, 设x=a+bi,且 b 0
第一章 代数学的经典课题
(若b=0,则 x a R,矛盾)。
a, b R, a, b F , bi F , bi b i F 可见F=C。



两个数域的并,不一定是数域,能不能找出两 个数域的并是一个数域的充要条件并证明之。 ( F1 , F2 是数域,则F1 F2 是数域的充要条件是 F1 F2 或 F2 F1 )。
第一章 代数学的经典课题
第一章 代数学的经典课题
定理1.1.1:设S是一个非空数集,S是数环的充 要条件是S中任两个数的差和积仍在S中。 二、数域 定义2:
设F是由一些复数组成的集合,其中包括0和1,如果F 中任两个数的和、差、积、商(除数不为0)仍在F中, 则称F是一个数域。 例如: 有理数集Q,实数集R,复数集C都是数域, 且是三个最重要的数域。
问题: 11、设 S1 和 S 2 是数环,试问 S1 S2 , S1 S2 是不是数环?若是,给出证明, 若不是举出反例。 若 S1 和 S 2 是数域情况又如何?
S1 S 2不是数域,反例:S1 a b 2 a, b Q , S 2 a b 3 a, b Q

1.1 数域~1.2 矩阵和运算1(13秋季,林鹭)

1.1 数域~1.2 矩阵和运算1(13秋季,林鹭)

展开和式
4
4
(1) a2i (2) 2i
i 1
i 1
22
(3) aij i1 j1
(4)
aij
1i j3
特殊矩阵及其元素表示_4
• 基础矩阵Eij
0



0
1
Eij



0



j列
i行 0 mn
1 k i且l j ekl 0 其他
A (aij )mn
m i 1
a E n
j1 ij ij
小结
✓ 数域的定义 ✓ 矩阵的概念
– 特殊矩阵
✓ 矩阵的相等、加法和数乘
下节
• 矩阵的乘法(难点、重点) • 矩阵的转置
• 作业 §1.1 Ex. 1, 2; §1.2 Ex. 1
补充: 用 表示下列式子
(1) a1b2 a3b4 ... a b 2n1 2n2 (2) a1bn a2bn1 ... anb1 (3) a1b1 a1b2 a1b3 a2b2 a2b3 a3b3
• n阶方阵A: A的行数=列数= n
矩阵的相等
• A = (aij)m×n,B = (bij)s×t 则A = B 必须同 时满足如下两个条件
✓ m = s, n = t ✓ aij = bij i=1, 2, …, m; j = 1, 2, …, n
特别提示 具有不同行列数的零矩阵代表不同 的矩阵。如 O2×3≠O1×6 ≠O3×2
第一章 矩阵 Matrix
§1.1-1.2 目的要求
• 掌握数域的定义, 正确判断数域;
• 熟练掌握矩阵的定义、两矩阵的相 等概念;

数环和数域

数环和数域

零数; ② 对
a,b F, 且
则称F是一个数域。
① F内含有一个非
b 0 ,则 a b F
例如:
有理数集Q,实数集R,复数集C都是数域,
且是三个最重要的数域。
问题:
6、数域与数环之间有什么关系?例2中的数
集是不是数域?
7、除了Q、R、C外,是否还有其他的数域?
例3:证明
Q 2 a b 2 a,b Q 是一个数域。
第一章 多项式
§1.1 数环和数域 研究数学问题常常需要明确规定所考虑的数的范围,学习数学也是如此。
比如,先学习自然数,然后整数,再正有理数、有理数、实数、复数。再比如讨论多项式的因式分 解、方程的根的情况,都跟数的范围有关。
例如
x 2 2
在有理数范围内不能分解,在实数范围内
就可以分解。
x 1 0 2
在实数范围内没有根,在复数范围内就
有根。等等。
我们目前学习的解析几何,数学分析都是在实数范围内来讨论问题的。但在高等代数中,通常不做这 样的限制。
在代数中,我们主要考虑一个集合中元素的加减乘除运算(即代数运算)是否还在这个集合之中
(即代运数算是运否封算闭):。设A是一个非空集合,定义在A上的一个代数运算 运乘同样三算例,种如实运封两数算个集封闭整、闭:数复,的数但这是都如和集对、对除个指有果差加法集存A集、、并积减不中合在合仍、封一是乘闭中一中整、;个数除,而个任,四有元则法两但种理两运数素称则个个算集与整都对该,元数封加之集的闭它素、商。减对合使做就、应不乘对A某一、。中定除这一是(任个运整除数数意运算,不两这为算后证0个)明封的四整元种闭结数运集素。果算对都A加仍封、闭在减A。、
( F1, F2 是数域,则

第一章 多项式

第一章 多项式
为零次多项式。即 ( f ( x)) 0
3)当 a0 a1 an 0 时,称 f (x) 为零多项式, 零多项式是唯一不定义次数的多项式。 3. 多项式环 数域P上一切多项式全体所成集合称作多项式环, 记为 Px ,数域P上一切次数小于n的多项式全体 记为 Px n P7 定义4
推广:如果 ( f1 ( x), f 2 ( x),, f s ( x)) 1 那么多项式
f1 ( x), f 2 ( x),, f s ( x)
就称为互素的.
注:①如果
f1 ( x), f 2 ( x),, f s ( x) 互素,不一定两两互素。
②互素关系不因为数域改变而改变。
2.互素的判定条件
f ( x) | (u1 ( x) g1 ( x) u2 ( x) g 2 ( x) ur ( x) g r ( x))
其中 u i (x) 是数域P上任意的多项式。
(8)若 f ( x) | g ( x), f ( x) | h( x) 则 f ( x) | g ( x) h( x)
其中, (r ( x)) ( g ( x)) 或者 r ( x) 0
P8带余除法定理
2.综合除法 (略)
用途: (1)求 f ( x) 在
x c 点的值。
(2)判断多项式 f ( x) 是否有一次因式。 (3)判断多项式 f ( x) 是否有根 x=c。 (4)把多项式 f ( x) 表示成x-c的方幂和。即
3. 定理:任何一个数域都包含有理数域,即有理数域 是最小的数域。 P3 4. 会验证一个数集是否为数域或者数环。 二、一元多项式 1. 数域P上一元多项式定义
n n1 定义:形式表达式 f ( x) an x an1 x a1 x a0

高等代数1-数域讲解

高等代数1-数域讲解


ad bc a2 2b2
2 Q 2.
Q( 2)为数域.
Gauss数域
类似可证 Q(i) a bi a,b Q, i 1 是数域.
5/9
例2.设P是至少含两个数的数集,若P中任意两个 数的差与商(除数≠0)仍属于P,则P为一个数域。
证:由题设任取 a,b P, 有
证明: 设P为任意一个数域.由定义可知, 0 P, 1 P.
于是有 m Z , m 1 1 L 1 P
7/9
进而 有
m,n Z , m P, n
m 0 m P.
n
n
而任意一个有理数可表成两个整数的商,
Q P.
8/9
练习 判断数集 P1, P2 是否为数域?为什么? P1 {2n 1 | n Z }, P2 {n 2 | n Z } Z( 2).
0 a a P, a P (b 0), b
1 b P (b 0), b
a b P,
a b a (0 b) P,
b 0 时,
ab
a 1

P,
b 0 时, ab 0 P.
b
所以,P是一个数域.
6/9
二、数域的性质定理
任意数域P都包括有理数域Q. 即,有理数域为最小数域.
一、数域的概念 二、数域性质定理
1/9
一、数域
定义 设P是由一些复数组成的集合,其中包括
0与1,如果P中任意两个数的和、差、积、商(除 数不为0)仍是P中的数,则称P为一个数域. 常见数域: 复数域C;实数域R;有理数域Q; (注意:自然数集N及整数集Z都不若数集P中任意两个数作某一运算的结果仍在P

《高等代数》第一章 多项式

《高等代数》第一章  多项式

§1 数域关于数的加、减、乘、除等运算的性质通常称为数的代数性质.代数所研究的问题主要涉及数的代数性质,这方面的大部分性质是有理数、实数、复数的全体所共有的.定义1 设P 是由一些复数组成的集合,其中包括0与1.如果P 中任意两个数的和、差、积、商(除数不为零)仍然是中的数,那么P 就称为一个数域.显然全体有理数组成的集合、全体实数组成的集合、全体复数组成的集合都是数域.这三个数域分别用字母Q 、R 、C 来代表.全体整数组成的集合就不是数域.如果数的集合P 中任意两个数作某一种运算的结果都仍在P 中,就说数集P 对这个运算是封闭的.因此数域的定义也可以说成,如果一个包含0,1在内的数集P 对于加法、减法、乘法与除法(除数不为零)是封闭的,那么P 就称为一个数域.例1 所有具有形式2b a +的数(其中b a ,是任何有理数),构成一个数域.通常用)2(Q 来表示这个数域.例2 所有可以表成形式m m nn b b b a a a ππππ++++++ 1010 的数组成一数域,其中m n ,为任意非负整数,),,1,0;,,1,0(,m j n i b a j i ==是整数.例 3 所有奇数组成的数集,对于乘法是封闭的,但对于加、减法不是封闭的.性质:所有的数域都包含有理数域作为它的一部分.一、一元多项式定义2 设n 是一非负整数,形式表达式111a x a x a x a n n n n ++++-- ,(1) 其中n a a a ,,,10 全属于数域P ,称为系数在数域P 中的一元多项式,或者简称为数域P 上的一元多项式.在多项式(1)以后用 ),(),(x g x f 或 ,,g f 等来表示多项式.注意:这里定义的多项式是符号或文字的形式表达式.定义3 如果在多项式)(x f 与)(x g 中,除去系数为零的项外,同次项的系数全相等)()(x g x f =.系数全为零的多项式称为零多项式,记为0.在(1)中,如果0≠n a n a 称为首项系数,n 称为多项式(1)的次数.零多项式是唯一不定义次数的多项式.多项式)(x f二、多项式的运算设0111)(a x a x a x a x f n n n n ++++=--0111)(b x b x b x b x g m m m m ++++=--是数域P 上两个多项式,那么可以写成∑==ni i i x a x f 0)(∑==mj j j x b x g 0)(在表示多项式)(x f 与)(x g 的和时,如m n ≥,为了方便起见,在)(x g 中令011====+-m n n b b b ,那么)(x f 与)(x g 的和为∑=---+=++++++++=+n i i i i n n n n n n xb a b a x b a x b a x b a x g x f 00011111)()()()()()()(而)(x f 与)(x g 的乘积为其中s 次项的系数是∑=+--=++++s j i j i s s s sb a b a b a b a b a 011110所以)(x f )(x g 可表成显然,数域P 上的两个多项式经过加、减、乘运算后,所得结果仍然是数域P 上的多项式.对于多项式的加减法,不难看出对于多项式的乘法,可以证明,若0)(,0)(≠≠x g x f ,则0)()(≠x g x f ,并且由以上证明看出,多项式乘积的首项系数就等于因子首项系数的乘积.显然上面的结果都可以推广到多个多项式的情形.多项式的运算满足以下的一些规律:1. 加法交换律:)()()()(x f x g x g x f +=+.2. 加法结合律:))()(()()())()((x h x g x f x h x g x f ++=++3. 乘法交换律:. )()()()(x f x g x g x f =4. 乘法结合律:))()()(()())()((x h x g x f x h x g x f =5. 乘法对加法的分配律:)()()()())()()((x h x f x g x f x h x g x f +=+6. 乘法消去律:若)()()()(x h x f x g x f =且0)(≠x f ,则)()(x h x g =.定义4 所有系数在数域P 中的一元多项式的全体,称为数域P 上的一元多项式环,记为][x P ,P 称为][x P 的系数域.§3 整除的概念在一元多项式环中,可以作加、减、乘三种运算,但是乘法的逆运算—除法—并不是普遍可以做的.因之整除就成了两个多项式之间的一种特殊的关系.一、整除的概念带余除法 对于][x P 中任意两个多项式)(x f 与)(x g ,其中0)(≠x g ,一定有][x P 中的多项式)(),(x r x q 存在,使(1))(),(x r x q 是唯一决定的.带余除法中所得的)(x q 通常称为)(x g 除)(x f 的商,)(x r 称为)(x g 除)(x f 的余式.定义5 数域P 上的多项式)(x g 称为整除)(x f ,如果有数域P 上的多项式)(x h 使等式成立.用表示)(x g 整除)(x f ,用“)(|)(x f x g /”表示)(x g 不能整除)(x f .当)(|)(x f x g 时,)(x g 就称为)(x f 的因式,)(x f 称为)(x g 的倍式.当0)(≠x g 时,带余除法给出了整除性的一个判别条件.定理1 对于数域P 上的任意两个多项式)(x f ,)(x g ,其中0)(≠x g ,)(|)(x f x g 的充要条件是)(x g 除)(x f 的余式为零.带余除法中)(x g 必须不为零.但)(|)(x f x g 中,)(x g 可以为零.这时0)(0)()()(=⋅=⋅=x h x h x g x f .当)(|)(x f x g 时,如0)(≠x g ,)(x g 除)(x f 的商)(x q 有时也用)()(x g x f 来表示.二、整除的性质1. 任一多项式)(x f 一定整除它自身.2. 任一多项式)(x f 都能整除零多项式.3. 零次多项式,即非零常数,能整除任一个多项式.4. 若)(|)(),(|)(x f x g x g x f ,则)()(x cg x f =,其中c 为非零常数.5. 若)(|)(),(|)(x h x g x g x f ,则)(|)(x h x f (整除的传递性).6. 若r i x g x f i ,,2,1),(|)( =,则))()()()()()((|)(2211x g x u x g x u x g x u x f r r +++ ,其中)(x u i 是数域P 上任意的多项式.通常,)()()()()()(2211x g x u x g x u x g x u r r +++ 称为)(,),(),(21x g x g x g r 的最后,两个多项式之间的整除关系不因系数域的扩大而改变.即若)(x f ,)(x g 是][x P 中两个多项式,P 是包含P 的一个较大的数域.当然,)(x f ,)(x g 也可以看成是][x P 中的多项式.从带余除法可以看出,不论把)(x f ,)(x g 看成是][x P 中或者是][x P 中的多项式,用)(x g 去除)(x f 所得的商式及余式都是一样的.因此,若在][x P 中)(x g 不能整除)(x f ,则在][x P 中,)(x g 也不能整除)(x f .例1 证明若)()(|)(),()(|)(2121x f x f x g x f x f x g -+,则)(|)(),(|)(21x f x g x f x g例2 求l k ,,使1|32++++kx x l x x .例3 若)(|)(),(|)(x h x g x f x g /,则)()(|)(x h x f x g +/.§4 多项式的最大公因式一 、多项式的最大公因式如果多项式)(x ϕ既是)(x f 的因式,又是)(x g 的因式,那么)(x ϕ就称为)(x f 与)(x g 的一个公因式.定义 6 设)(x f 与)(x g 是][x P 中两个多项式. ][x P 中多项式)(x d 称为)(x f ,)(x g 的一个公因式,如果它满足下面两个条件:1))(x d 是)(x f 与)(x g 的公因式;2))(x f ,)(x g 的公因式全是)(x d 的因式.例如,对于任意多项式)(x f ,)(x f 就是)(x f 与0的一个最大公因式.特别地,根据定义,两个零多项式的最大公因式就是0.引理 如果有等式)()()()(x r x g x q x f += (1)成立,那么)(x f ,)(x g 和)(x g ,)(x r 有相同的公因式.定理2 对于][x P 的任意两个多项式)(x f ,)(x g ,在][x P 中存在一个最大公因式)(x d ,且)(x d 可以表成)(x f ,)(x g 的一个组合,即有][x P 中多项式)(),(x v x u 使由最大公因式的定义不难看出,如果)(),(21x d x d 是)(x f ,)(x g 的两个最大公因式,那么一定有)(|)(21x d x d 与)(|)(12x d x d ,也就是说0),()(21≠=c x cd x d .这就是说,两个多项式的最大公因式在可以相差一个非零常数倍的意义下是唯一确定的.两个不全为零的多项式的最大公因式总是一个非零多项式.在这个情形,我们约定,用来表示首项系数是1的那个最大公因式.定理证明中用来求最大公因式的方法通常称为辗转相除法(division algorithm).例 设343)(234---+=x x x x x f32103)(23-++=x x x x g求()(x f ,)(x g ),并求)(),(x v x u 使)()()()()(x g x v x f x u x d +=.注:定理2的逆不成立.例如令1)(,)(+==x x g x x f ,则122)1)(1()2(2-+=-+++x x x x x x .但1222-+x x 显然不是)(x f 与)(x g 的最大公因式.但是当(2)式成立,而)(x d 是)(x f 与)(x g 的一个公因式,则)(x d 一定是)(x f 与)(x g 的一个最大公因式.二、多项式互素定义7 ][x P 中两个多项式)(x f ,)(x g 称为互素(也称为互质)的,如果显然,两个多项式互素,那么它们除去零次多项式外没有其他的公因式,反之亦然.定理3 ][x P 中两个多项式)(x f ,)(x g 互素的充要条件是有][x P 中多项式)(),(x v x u 使推论2 如果1))(),((1=x g x f ,1))(),((2=x g x f ,那么1))(),()((21=x g x f x f 推广:对于任意多个多项式)2)((,),(),(21≥s x f x f x f s ,)(x d 称为)2)((,),(),(21≥s x f x f x f s 的一个最大公因式,如果)(x d 具有下面的性质:1)s i x f x d i ,,2,1),(|)( =;2)如果s i x f x i ,,2,1),(|)( =ϕ,那么)(|)(x d x ϕ.我们仍用))(,),(),((21x f x f x f s 符号来表示首项系数为1的最大公因式.不难证明)(,),(),(21x f x f x f s 的最大公因式存在,而且当)(,),(),(21x f x f x f s 全不为零时,))()),(,),(),(((121x f x f x f x f s s -就是)(,),(),(21x f x f x f s 的最大公因式,即))(,),(),((21x f x f x f s =))()),(,),(),(((121x f x f x f x f s s -同样,利用以上这个关系可以证明,存在多项式s i x u i ,,2,1),( =,使))(,),(),(()()()()()()(212211x f x f x f x f x u x f x u x f x u s s s =+++如果1))(,),(),((21=x f x f x f s ,那么)(,),(),(21x f x f x f s 就称为互素的.同样有类似定理3的结论.注意 1)当一个多项式整除两个多项式之积时,若没有互素的条件,这个多项式一般不能整除积的因式之一.例如222)1()1(|1-+-x x x ,但22)1(|1+/-x x ,且22)1(|1-/-x x .2) 推论1中没有互素的条件,则不成立.如1)(2-=x x g ,1)(1+=x x f , )1)(1()(2-+=x x x f ,则)(|)(),(|)(21x g x f x g x f ,但)(|)()(21x g x f x f .注意:s )2(≥s 个多项式)(,),(),(21x f x f x f s 互素时,它们并不一定两两互素.例如,多项式34)(,65)(,23)(232221+-=+-=+-=x x x f x x x f x x x f是互素的,但2))(),((21-=x x f x f . 令P 是含P 的一个数域, )(x d 是][x P 的多项式)(x f 与)(x g 在][x P 中的首项系数为1的最大公因式,而)(x d 是)(x f 与)(x g 在][X P 中首项系数为1的最大公因式,那么)()(x d x d =.即从数域P 过渡到数域P 时, )(x f 与)(x g 的最大公因式本质上没有改变. 互素多项式的性质可以推广到多个多项式的情形:1)若多项式),()()(|)(21x f x f x f x h s )(x h 与)(,),(),(,),(111x f x f x f x f s i i +- 互素,则)1)((|)(s i x f x h i ≤≤.2) 若多项式)(,),(),(21x f x f x f s 都整除)(x h ,且)(,),(),(21x f x f x f s 两两互素,则)(|)()()(21x h x f x f x f s .3) 若多项式)(,),(),(21x f x f x f s 都与)(x h 互素,则1))(),()()((21=x h x f x f x f s .§5 因式分解定理一、不可约多项式Con i x i x x x R on x x x Q on x x x )2)(2)(2)(2()2)(2)(2()2)(2(42224+-+-=++-=+-=-. 定义8 数域P 上次数1≥的多项式)(x p 称为域P 上的不可约多项式(irreducible polynomical),如果它不能表成数域P 上的两个次数比)(x p 的次数低的多项式的乘积.根据定义,一次多项式总是不可约多项式.一个多项式是否可约是依赖于系数域的.显然,不可约多项式)(x p 的因式只有非零常数与它自身的非零常数倍)0)((≠c x cp 这两种,此外就没有了.反过来,具有这个性质的次数1≥的多项式一定是不可约的.推广:如果不可约多项式)(x p 整除一些多项式)(,),(),(21x f x f x f s 的乘积)()()(21x f x f x f s ,那么)(x p 一定整除这些多项式之中的一个.二、因式分解定理因式分解及唯一性定理 数域P 上次数1≥的多项式)(x f 都可以唯一地分解成数域P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式)()()()()()()(2121x q x q x q x p x p x p x f t s ==,那么必有t s =,并且适当排列因式的次序后有s i x q c x p i i i ,,2,1,)()( ==.其中),,2,1(s i c i =是一些非零常数.应该指出,因式分解定理虽然在理论上有其基本重要性,但是它并没有给出一个具体的分解多项式的方法.实际上,对于一般的情形,普遍可行的分解多项式的方法是不存在的.在多项式)(x f 的分解式中,可以把每一个不可约因式的首项系数提出来,使它们成为首项系数为1的多项式,再把相同的不可约因式合并.于是)(x f 的分解式成为)()()()(2121x p x p x cp x f s r s r r =,其中c 是)(x f 的首项系数,)(,),(),(21x p x p x p s 是不同的首项系数为1的不可约多项式,而s r r r ,,,21 是正整数.这种分解式称为标准分解式.如果已经有了两个多项式的标准分解,就可以直接写出两个多项式的最大公因式.多项式)(x f 与)(x g 的最大公因式)(x d 就是那些同时在)(x f 与)(x g 的标准分解式中出现的不可约多项式方幂的乘积,所带的方幂的指数等于它在)(x f 与)(x g 中所带的方幂中较小的一个.由以上讨论可以看出,带余除法是一元多项式因式分解理论的基础.若)(x f 与)(x g 的标准分解式中没有共同的不可约多项式,则)(x f 与)(x g 互素.注意:上述求最大公因式的方法不能代替辗转相除法,因为在一般情况下,没有实际分解多项式为不可约多项式的乘积的方法,即使要判断数域P 上一个多项式是否可约一般都是很困难的.例 在有理数域上分解多项式22)(23--+=x x x x f 为不可约多项式的乘积.§6 重因式一、重因式的定义定义9 不可约多项式)(x p 称为多项式)(x f 的k 重因式,如果)(|)(x f x p k ,但)(|)(1x f x p k /+.如果0=k ,那么)(x p 根本不是)(x f 的因式;如果1=k ,那么)(x p 称为)(x f 的单因式;如果1>k ,那么)(x p 称为)(x f 的重因式.注意. k 重因式和重因式是两个不同的概念,不要混淆.显然,如果)(x f 的标准分解式为)()()()(2121x p x p x cp x f s r s r r =,那么)(,),(),(21x p x p x p s 分别是)(x f 的1r 重,2r 重,… ,s r 重因式.指数1=i r 的那些不可约因式是单因式;指数1>i r 的那些不可约因式是重因式.使得)()()(x g x p x f k =,且)(|)(x g x p /.二、重因式的判别设有多项式0111)(a x a x a x a x f n n n n ++++=-- ,规定它的微商(也称导数或一阶导数)是1211)1()(a x n a nx a x f n n n n ++-+='--- .通过直接验证,可以得出关于多项式微商的基本公式:).()()()()()(()())((),()())()((x g x f x g x f x g x f x f c x cf x g x f x g x f '+'=''=''+'='+)))()(())((1x f x f m x f m m '='-同样可以定义高阶微商的概念.微商)(x f '称为)(x f 的一阶微商;)(x f '的微商)(x f ''称为)(x f 的二阶微商;等等. )(x f 的k 阶微商记为)()(x f k .一个)1(≥n n 次多项式的微商是一个1-n 次多项式;它的n 阶微商是一个常数;它的1+n 阶微商等于0.定理6 如果不可约多项式)(x p 是多项式)(x f 的一个)1(≥k k 重因式,那么)(x p 是微商)(x f '的1-k 重因式.分析: 要证)(x p 是微商)(x f '的1-k 重因式,须证)(|)(1x f x p k '-,但)(|)(x f x p k '/.注意:定理6的逆定理不成立.如333)(23++-=x x x x f , 22)1(3363)(-=+-='x x x x f ,1-x 是)(x f '的2重因式,但根本不是)(x f 是因式.当然更不是三重因式.推论 1 如果不可约多项式)(x p 是多项式)(x f 的一个)1(≥k k 重因式,那么)(x p 是)(x f ,)(x f ',…,)()1(x f k -的因式,但不是)()(x f k 的因式.)(x f 与)(x f '的公因式.推论3 多项式)(x f 没有重因式1))(),((='⇔x f x f这个推论表明,判别一个多项式有无重因式可以通过代数运算——辗转相除法来解决,这个方法甚至是机械的.由于多项式的导数以及两个多项式互素与否的事实在由数域P 过渡到含P 的数域P 时都无改变,所以由定理6有以下结论:若多项式)(x f 在][x P 中没有重因式,那么把)(x f 看成含P 的某一数域P 上的多项式时, )(x f 也没有重因式.例1 判断多项式2795)(234+-+-=x x x x x f有无重因式三、去掉重因式的方法设)(x f 有重因式,其标准分解式为s r s r r x p x p x cp x f )()()()(2121 =.那么由定理5),()()()()(1121121x g x p x p x p x f s r s r r ---='此处)(x g 不能被任何),,2,1)((s i x p i =整除.于是11211)()()()())(),((21---=='s r s r r x p x p x p x d x f x f用)(x d 去除)(x f 所得的商为)()()()(21x p x p x cp x h s =这样得到一个没有重因式的多项式)(x h .且若不计重数, )(x h 与)(x f 含有完全相同的不可约因式.把由)(x f 找)(x h 的方法叫做去掉重因式方法.例2 求多项式16566520104)(23456++++--=x x x x x x x f的标准分解式.§7 多项式函数到目前为止,我们始终是纯形式地讨论多项式,也就是把多项式看作形式表达式.在这一节,将从另一个观点,即函数的观点来考察多项式.一、多项式函数设0111)(a x a x a x a x f n n n n ++++=-- (1)是][x P 中的多项式,α是P 中的数,在(1)中用α代x 所得的数0111a a a a n n n n ++++--ααα称为)(x f 当α=x 时的值,记为)(αf .这样,多项式)(x f 就定义了一个数域上的函数.可以由一个多项式来定义的函数就称为数域上的多项式函数.因为x 在与数域P 中的数进行运算时适合与数的运算相同的运算规律,所以不难看出,如果,)()()(,)()()(21x g x f x h x g x f x h =+=那么.)()()(,)()()(21ααααααg f h g f h =+=定理7(余数定理)用一次多项式去除多项式)(x f ,所得的余式是一个常数,这个常数等于函数值)(αf .如果)(x f 在α=x 时函数值0)(=αf ,那么α就称为)(x f 的一个根或零点. 由余数定理得到根与一次因式的关系.推论 α是)(x f 的根的充要条件是)(|)(x f x α-.由这个关系,可以定义重根的概念. α称为)(x f 的k 重根,如果)(α-x 是)(x f 的k 重因式.当1=k 时,α称为单根;当1>k 时,α称为重根.定理8 ][x P 中n 次多项式)0(≥n 在数域P 中的根不可能多于n 个,重根按重数计算.二、多项式相等与多项式函数相等的关系在上面看到,每个多项式函数都可以由一个多项式来定义.不同的多项式会不会定义出相同的函数呢?这就是问,是否可能有)()(x g x f ≠,而对于P 中所有的数α都有)()(ααg f =?由定理8不难对这个问题给出一个否定的回答.定理9 如果多项式)(x f ,)(x g 的次数都不超过n ,而它们对n+1个不同的数有相同的值即)()(i i g f αα=,1,,2,1+=n i ,那么)(x f =)(x g .因为数域中有无穷多个数,所以定理9说明了,不同的多项式定义的函数也不相同.如果两个多项式定义相同的函数,就称为恒等,上面结论表明,多项式的恒等与多项式相等实际上是一致的.换句话说,数域P 上的多项式既可以作为形式表达式来处理,也可以作为函数来处理.但是应该指出,考虑到今后的应用与推广,多项式看成形式表达式要方便些.三、综合除法根据余数定理,要求)(x f 当c x =时的值,只需用带余除法求出用c x -除)(x f 所得的余式.但是还有一个更简便的方法,叫做综合除法.设n n n n n a x a x a x a x a x f +++++=---122110)(并且设r x q c x x f +-=)()()(. (2)其中.)(12322110-----+++++=n n n n n b x b x b x b x b x q比较等式(2)中两端同次项的系数.得到.,,,,121112201100-----=-=-=-==n n n n n cb r a cb b a cb b a cb b a b a⇒ .,,,,112121210100n n n n n a cb r a cb b a cb b a cb b a b +=+=+=+==---- 这样,欲求系数k b ,只要把前一系数1-k b 乘以c 再加上对应系数k a ,而余式r 也可以按照类似的规律求出.因此按照下表所指出的算法就可以很快地陆续求出商式的系数和余式:rb b b b cb cb cb cb a a a a ac n n n n n |)|12101210121---------------------------------+ 表中的加号通常略去不写.例1 用3+x 除94)(24-++=x x x x f .例2 求k 使355)(234+++-=kx x x x x f 能被3-x 整除注意 :若)(x f 缺少某一项,在作综合除法时该项系数的位置要补上零.四、拉格朗日插值公式已知次数n ≤的多项式)(x f 在)1,,2,1(+==n i c x i 的值)1,,,2,1()(+==n i b c f i i .设∑+=++-----=111111)())(()()(n i n i i i c x c x c x c x k x f依次令c x =代入)(x f ,得)())(()(1111++-----=n i i i i i i i i c c c c c c c c b k ∑+=++-++---------=1111111111)())(()()())(()()(n i n i i i i i i n i i i c c c c c c c c c x c x c x c x b x f 这个公式叫做拉格朗日(Lagrange)插值公式.例3 求次数小于3的多项式)(x f ,使3)2(,3)1(,1)1(==-=f f f .下面介绍将一个多项式表成一次多项式α-x 的方幂和的方法.所谓n 次多项式)(x f 表成α-x 的方幂和,就是把)(x f 表示成0111)()()()(b x b x b x b x f n n n n +-++-+-=--ααα的形式.如何求系数011,,,,b b b b n n -,把上式改写成01211)]()()([)(b x b x b x b x f n n n n +-++-+-=---ααα ,就可看出0b 就是)(x f 被α-x 除所得的余数,而12111)()()(b x b x b x q n n n n ++-+-=--- αα就是)(x f 被α-x 除所得的商式.又因为123121)]()()([)(b x b x b x b x q n n n n +-++-+-=---ααα .又可看出1b 是商式)(1x q 被α-x 除所得的余式,而233122)()()()(b x b x b x b x q n n n n +-++-+-=---ααα .就是)(1x q 被α-x 除所得商式.这样逐次用α-x 除所得的商式,那么所得的余数就是n n b b b b ,,,,110- .例4 将5)2()2(3)2(2)2()(234+-+---+-=x x x x x f 展开成x 的多项式. 解 令2-=x y ,则2+=y x .于是532)2(234++-+=+y y y y y f .问题变为把多项式532234++-+y y y y 表成2+y (即x )的方幂和,-2 | 1 2 -3 1 5+) -2 0 6 -14--------------------------------------------------------2 | 1 0 -3 7 | -9+) -2 4 -2-------------------------------------------------------2 | 1 -2 1 | 5+) -2 8------------------------------------------------2 | 1 -4 | 9+) -2----------------------------------1 | -6所以9596)(234-++-=x x x x x f .注意:将)(x f 表成α-x 的方幂和,把α写在综合除法的左边,将α-x 的方幂和展开成x 的多项式,那么相当于将)(x f 表成c c x +-)(的方幂和,要把c -写在综合除法的左边.§8 复系数和实系数多项式的因式分解一、 复系数多项式因式分解定理代数基本定理 每个次数1≥的复系数多项式在复数域中有一个根.利用根与一次因式的关系,代数基本定理可以等价地叙述为:每个次数1≥的复系数多项式在复数域上一定有一个一次因式.由此可知,在复数域上所有次数大于1的多项式都是可约的.换句话说,不可约多项式只有一次多项式.于是,因式分解定理在复数域上可以叙述成:复系数多项式因式分解定理 每个次数1≥的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.因此,复系数多项式具有标准分解式s l s l l n x x x a x f )()()()(2121ααα---=其中s ααα,,,21 是不同的复数,s l l l ,,,21 是正整数.标准分解式说明了每个n 次复系数多项式恰有n 个复根(重根按重数计算).二、实系数多项式因式分解定理对于实系数多项式,以下事实是基本的:如果α是实系数多项式)(x f 的复根,那么α的共轭数α也是)(x f 的根,并且α与α有同一重数.即实系数多项式的非实的复数根两两成对.实系数多项式因式分解定理 每个次数1≥的实系数多项式在实数域上都可以唯一地分解成一次因式与含一对非实共轭复数根的二次因式的乘积.实数域上不可约多项式,除一次多项式外,只有含非实共轭复数根的二次多项式.因此,实系数多项式具有标准分解式r s k r r k l s l l n q x p x q x p x c x c x c x a x f )()()()()()(211221121++++---= 其中r r s q q p p c c ,,,,,,,,111 全是实数,s l l l ,,,21 ,r k k ,,1 是正整数,并且),,2,1(2r i q x p x i i =++是不可约的,也就是适合条件r i q p i i ,,2,1,042 =<-..代数基本定理虽然肯定了n 次方程有n 个复根,但是并没有给出根的一个具体的求法.高次方程求根的问题还远远没有解决.特别是应用方面,方程求根是一个重要的问题,这个问题是相当复杂的,它构成了计算数学的一个分支.三、n 次多项式的根与系数的关系.令.)(11n n n a x a x x f +++=- (1)是一个n (>0)次多项式,那么在复数域C 中)(x f 有n 个根,,,,21n ααα 因而在][x C 中)(x f 完全分解为一次因式的乘积:).())(()(21n x x x x f ααα---=展开这一等式右端的括号,合并同次项,然后比较所得出的系数与(1)式右端的系数,得到根与系数的关系.,)1(),()1(),(),),(21323112111124213213131212211n n n n n n n n n n n n n n a a a a a αααααααααααααααααααααααααααααα-=+++-=+++-=+++=+++-=------(其中第),,2,1(n k k =个等式的右端是一切可能的k 个根的乘积之和,乘以k )1(-.若多项式 n n n a x a x a x f +++=- 110)(的首项系数,10≠a 那么应用根与系数的关系时须先用0a 除所有的系数,这样做多项式的根并无改变.这时根与系数的关系取以下形式:.)1(,),(21013121022101n n n n n n a a a a a a αααααααααααα-=+++=+++-=-利用根与系数的关系容易求出有已知根的多项式.例1 求出有单根5与-2,有二重根3的四次多项式.例2. 分别在复数域和实数域上分解1-n x 为标准分解式.§9 有理系数多项式作为因式分解定理的一个特殊情形,有每个次数≥1的有理系数多项式都能分解成不可约的有理系数多项式的乘积.但是对于任何一个给定的多项式,要具体地作出它的分解式却是一个很复杂的问题,即使要判别一个有理系数多项式是否可约也不是一个容易解决的问题,这一点是有理数域与复数域、实数域不同的.在这一节主要是指出有理系数多项式的两个重要事实:第一,有理系数多项式的因式分解的问题,可以归结为整(数)系数多项式的因式分解问题,并进而解决求有理系数多项式的有理根的问题.第二,在有理系数多项式环中有任意次数的不可约多项式.一、有理系数多项式的有理根设011)(a x a x a x f n n n n +++=--是一个有理系数多项式.选取适当的整数c 乘)(x f ,总可以使)(x cf 是一个整系数多项式.如果)(x cf 的各项系数有公因子,就可以提出来,得到)()(x dg x cf =,也就是)()(x g cd x f = 其中)(x g 是整系数多项式,且各项系数没有异于±1的公因子.如果一个非零的整系数多项式011)(b x b x b x g n n n n +++=-- 的系数01,,,b b b n n -没有异于±1的公因子,也就是说它们是互素的,它就称为一个本原多项式.上面的分析表明,任何一个非零的有理系数多项式)(x f 都可以表示成一个有理数r 与一个本原多项式)(x g 的乘积,即)()(x rg x f =.可以证明,这种表示法除了差一个正负号是唯一的.亦即,如果)()()(11x g r x rg x f ==,其中)(),(1x g x g 都是本原多项式,那么必有)()(,11x g x g r r ±=±=因为)(x f 与)(x g 只差一个常数倍,所以)(x f 的因式分解问题,可以归结为本原多项式)(x g 的因式分解问题.下面进一步指出,一个本原多项式能否分解成两个次数较低的有理系数多项式的乘积与它能否分解成两个次数较低的整系数多项式的乘积的问题是一致的.定理10(Gauss 引理) 两个本原多项式的乘积还是本原多项式.定理11 如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定可以分解两个次数较低的整系数多项式的乘积.以上定理把有理系数多项式在有理数域上是否可约的问题归结到整系数多项式能否分解成次数较低的整系数多项式的乘积的问题.推论 设)(x f ,)(x g 是整系数多项式,且)(x g 是本原多项式,如果)()()(x h x g x f =,其中)(x h 是有理系数多项式,那么)(x h 一定是整系数多项式.这个推论提供了一个求整系数多项式的全部有理根的方法. 定理12 设011)(a x a x a x f n n n n +++=--是一个整系数多项式.而sr是它的一个有理根,其中s r ,互素,那么(1) 0|,|a r a s n ;特别如果)(x f 的首项系数1=n a ,那么)(x f 的有理根都是整根,而且是0a 的因子.(2) ),()()(x q srx x f -= 其中)(x q 是一个整系数多项式.给了一个整系数多项式)(x f ,设它的最高次项系数的因数是k v v v ,,,21 ,常数项的因数是.,,,21l u u u 那么根据定理12,欲求)(x f 的有理根,只需对有限个有理数ji v u 用综合除法来进行试验.当有理数jiv u 的个数很多时,对它们逐个进行试验还是比较麻烦的.下面的讨论能够简化计算.首先,1和-1永远在有理数jiv u 中出现,而计算)1(f 与)1(-f 并不困难.另一方面,若有理数)1(±≠a 是)(x f 的根,那么由定理12,)()()(x q x x f α-=而)(x q 也是一个整系数多项式.因此商)1(1)1(),1(1)1(--=+-=-q af q af 都应该是整数.这样只需对那些使商a f a f +--1)1(1)1(与都是整数的ji v u来进行试验.(我们可以假定)1(f 与)1(-f 都不等于零.否则可以用1-x 或1+x 除)(x f 而考虑所得的商.)例1 求多项式2553)(234-+++=x x x x x f的有理根.例2 证明15)(3+-=x x x f在有理数域上不可约.二、有理数域上多项式的可约性定理13 (艾森斯坦(Eisenstein)判别法) 设011)(a x a x a x f n n n n +++=--是一个整系数多项式.若有一个素数p ,使得1. n a p |/;2. 021,,,|a a a p n n --;3. 02|a p /.则多项式)(x f 在有理数域上不可约.由艾森斯坦判断法得到:有理数域上存在任意次的不可约多项式.例如2)(+=n x x f .,其中n 是任意正整数.艾森斯坦判别法的条件只是一个充分条件.有时对于某一个多项式)(x f ,艾森斯坦判断法不能直接应用,但把)(x f 适当变形后,就可以应用这个判断法.例3 设p 是一个素数,多项式1)(21++++=--x x x x f p p叫做一个分圆多项式,证明)(x f 在][x Q 中不可约.证明:令1+=y x ,则由于1)()1(-=-p x x f x ,yCyC y y y yf p pp ppp 1111)1()1(--+++=-+=+ ,令)1()(+=y f y g ,于是1211)(---+++=p p p p p C yC y y g ,由艾森斯坦判断法,)(y g 在有理数域上不可约,)(x f 也在有理数域上不可约.第一章 多项式(小结)一元多项式理论,主要讨论了三个问题:整除性理论(整除,最大公因式,互素);因式分解理论(不可约多项式,典型分解式,重因式);根的理论(多项式函数,根的个数).其中整除性是基础,因式分解是核心.一、基本概念.1.一元多项式(零多项式),多项式的次数.多项式的相等,多项式的运算,一元多项式环.2.基本结论:(1) 多项式的加法,减法和乘法满足一些运算规律.(3) 多项式乘积的常数项(最高次项系数)等于因子的常数项(最高次项系数)的乘积.二、整除性理论1.整除的概念及其基本性质.2.带余除法. (1) 带余除法定理.(2) 设1)()()()(|)(,0)(][)(),(=⇔≠∈x r x f x g x f x g x g x F x g x f 的余式除,. 因此多项式的整除性不因数域的扩大而改变.3. 最大公因式和互素. (1) 最大公因式,互素的概念.(2) 最大公因式的存在性和求法------辗转相除法.(3) 设)(x d 是)(x f 与)(x g 的最大公因式,反之不然.三、 因式分解理论 1.不可约多项式(1) 不可约多项式的概念.(2) 不可约多项式p(x)有下列性质:(4) 艾森斯坦判断法. 2.因式分解的有关结果: (1) 因式分解及唯一性定理.(2) 次数大于零的复系数多项式都可以分解成一次因式的乘积.(3) 次数大于零的实系数多项式都可以分解成一次因式和二次不可约因式的乘积.3.重因式(1) 重因式的概念.(2) 若不可约多项式)(x p 是)(x f 的k 重因式)1(≥k ,则)(x p 是)(x f 的1-k 重因式.(4) 消去重因式的方法:))(),(()(x f x f x f '是一个没有重因式的多项式,它与)(x f 具有完全相同的不可约因式.四、多项式根的理论1.多项式函数,根和重根的概念.2.余数定理.c x -去除)(x f 所得的余式为)(x f ,则.0)()(|=⇔-c f x f c x3.有理系数多项式的有理根的求法.4.实系数多项式虚根成对定理.5.代数基本定理.每个)1(≥n n 次复系数多项式在复数域中至少有一个根.因而n 次复系数多项式恰有n 个复根(重根按重数计算).6.韦达定理.。

线性空间一(1-3).

线性空间一(1-3).

是V的向量组。
则称x可由x1 ,x2 , …,x p线性表示,称x是 x1 ,x2 , …,x p的线性组合。 例1 在二维空间R2中,任意一个二维向量 都可由标准单位向量e1 , e2 线性表示。
例2、在线性空间
中,
例3 在三维空间R3中,求k1 , k2 , k3 ,使得
求解
注:讨论向量组的线性表示可化为讨论线性方程组的求
则称向量组 x1 ,x2 , …,xp 是线性相关的; 否则,就称向量组 x1 ,x2 , …,xp 是线性无关的。
等价命题
命题一 向量组x1 ,x2 , …, xp是线性无关的充要条件 是仅当k1 = k2 = … = kp= 0 时成立
命题二 向量组 x1 ,x2 , …,xp 是线性相关的充 要条件是其中的一个向量可由其余的向量线性表 示。
定义 设V是一个非空集合,F是一个数域(如实数域R或 [1]加法运算
“和”
复数域C),如果在V上规定了下列两种运算, 则称V是数域F上的一个线性空间
对V的任意两个元素x、y,都有V的 唯一的 ,且满足
•(1)交换律 x+y=y+x; •(2)结合律 x+(y+z)=(x+y)+z; •(3)存在0元 x+0=x; •(4)存在负元-x x+(-x)=0 .
当F是实数域时,V称为实线性空间; 当F是复数域时,V称为复线性空间。
可以验证:
n维实向量空间是线性空间,仍记作
n维复向量空间是线性空间,仍记作


线性空间实例
•例1 所有 型矩阵在矩阵加法和数乘运算下 构成一个线性空间,记为 •例2 所有次数不超过n 的多项式在多项式加法 和数乘运算下构成一个线性空间,记为 •例3 二阶齐次线性微分方程的解集合对于函数加 法与数与函数的乘法构成一个线性空间。 •例4 闭区间[a,b]上所有连续函数的集合在函数加 法和数乘运算下构成一个线性空间,记为

第一章第一节

第一章第一节
Q P.
Remark
数环: 设P为非空数集,若
a,b P , a b P , a b P
则称P为一个数环. 例如,整数集Z 就作成一个数环.
三、数学归纳法
第一数学归纳法 设S是一个与自然数有关的命题,且满足. 1)当
n n0
时,S成立
k (k N , k n0 )
x y (ac 2bd ) (ad bc ) 2 Q (

a b
2 0,
于是
ab
2
也不为0.
(否则,若 于是有 或
cd ab 2 2
ab
2 0,

a b
2,
a

2 Q,
2 0.
b a 0, b 0 a b
(c d (a b
2)假设当 n 当
时,S成立,则
n k 1 时,S成立。
第二数学归纳法 设S是一个与自然数有关的命题,且满足. 1)当
n n0
时,S成立
2)假设S对一切大于或等于 n 0 而小于 n 的 自然数成立,则S对 则S对当
n0
n
成立。
的一切自然数都成立。
作业
P 1.若 P1 , P2 为数域,证明:1 P2
例1.证明:数集
是一个数域. 证:
0 0 0
Q(
2)
a b
2 | a,b Q

2) 2,
2, 2 ),
11 0
2,
0,1 Q (
又对 x , y Q (
a,b,c,d Q ,

x a b
2, y c d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类似可证 Q( i ) a bi a , b Q , i 1 是数域.
第一章 多项式


例2.设P是至少含两个数的数集,证明:若P中任
意两个数的差与商(除数≠0)仍属于P,则P为一 一个数域. 证:由题设任取 a, b P , 有
b 0 a a P , 1 P (b 0), a b P , b a P (b 0), a b a (0 b) P , b b 0 时, ab a b 0 时, ab 0 P . 1 P,
一、数域其中包括 0与1,如果P中任意两个数的和、差、积、商(除 数不为0)仍是P中的数,则称P为一个数域. 常见数域: 复数域C;实数域R;有理数域Q; (注意:自然数集N及整数集Z都不是数域.)
第一章 多项式
说明: 1)若数集P中任意两个数作某一运算的结果仍在P 中,则说数集P对这个运算是封闭的. 2)数域的等价定义:如果一个包含0,1在内的数 集P对于加法,减法,乘法与除法(除数不为0) 是封闭的,则称集P为一个数域.
P1 {2n 1 | n Z },
P2 {n 2 | n Z } Z ( 2).
第一章 多项式
作业
1.若 P1 , P2为数域,证明:P1
P2也为数域.
m 是一个数环. 2.证明:集合 S n m, n Z 2
S是数域吗?
第一章 多项式
b
所以,P是一个数域.
第一章 多项式
二、数域的性质定理
任意数域P都包括有理数域Q. 即有理数域为最小数域.
证明: 设P为任意一个数域.由定义可知,
0 P, 1 P .
于是有
m Z , m 1 1
第一章 多项式
1 P
进而 有
m m , n Z , P, n
第一章 多项式
例1.证明:数集 Q( 2) a b 2 | a , b Q
是一个数域. 证:


0 0 0 2, 1 1 0 2, 0,1 Q( 2)
又对 x , y Q( 2), 设 x a b 2, y c d 2,
a , b, c , d Q ,

m m 0 P. n n
而任意一个有理数可表成两个整数的商,
Q P.
第一章 多项式
附:
数环 设P为非空数集,若
a , b P , a b P , a b P
则称P为一个数环. 例如,整数集Z 就作成一个数环.
第一章 多项式
练习 判断数集 P1 , P2 是否为数域?为什么?
因若 b 0, 则 a 0, 矛盾; a 2 Q , 矛盾) 于是有 b
c d 2 (c d 2)(a b 2) a b 2 (a b 2)(a b 2) ac 2bd ad bc 2 2 2 Q. 2 2 a 2b a 2b
Q ( 2 )为数域.
则有
x y (a c ) (b d ) 2 Q( 2), x y (ac 2bd ) (ad bc ) 2 Q( 2)
设 a b 2 0,
第一章 多项式
于是 a b 2 也不为0.
(否则,若 a b 2 0, 则 a b 2, b 0,
相关文档
最新文档