流体力学习题答案讲解
流体力学习题解答讲解
2.在现实生活中可视为牛顿流体的有水 和空气 等。
3.流体静压力和流体静压强都是压力的一种量度。
它们的区别在于:前者是作用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压强。
4.均匀流过流断面上压强分布服从于水静力学规律。
5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。
7.流体受压,体积缩小,密度增大 的性质,称为流体的压缩性 ;流体受热,体积膨胀,密度减少 的性质,称为流体的热胀性 。
8.压缩系数β的倒数称为流体的弹性模量 ,以E 来表示12.液体静压强分布规律只适用于静止、同种、连续液体。
13.静止非均质流体的水平面是等压面,等密面和等温面。
14.测压管是一根玻璃直管或U 形管,一端连接在需要测定的容器孔口上,另一端开口,直接和大气相通。
16.作用于曲面上的水静压力P 的铅直分力z P 等于其压力体内的水重。
17.通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。
18. 流线不能相交(驻点处除外),也不能是折线,因为流场内任一固定点在同一瞬间只能有一个速度向量,流线只能是一条光滑的曲线或直线。
20.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。
21.由紊流转变为层流的临界流速k v 小于 由层流转变为紊流的临界流速kv ',其中kv '称为上临界速度,k v 称为下临界速度。
23.圆管层流的沿程阻力系数仅与雷诺数有关,且成反比,而和管壁粗糙无关。
25.紊流过渡区的阿里特苏里公式为25.0)Re68(11.0+=d k λ。
26.速度的大小、方向或分布发生变化而引起的能量损失,称为局部损失。
29.湿周是指过流断面上流体和固体壁面接触的周界。
31.串联管路总的综合阻力系数S 等于各管段的阻抗叠加。
32.并联管路总的综合阻力系数S 与各分支管综合阻力系数的关系为3211111s s s s ++=。
管嘴与孔口比较,如果水头H 和直径d 相同,其流速比V 孔口/V 管嘴等于82.097.0,流量比Q 孔口/Q 管嘴等于82.060.0。
(完整版)流体力学习题解析
《流体力学》习题(二)2-1 质量为1000kg 的油液(S =0.9)在有势质量力k i F 113102598--=(N)的作用下处于平衡状态,试求油液内的压力分布规律。
2-2 容器中空气的绝对压力为p B =93.2kPa ,当地大气压力为p a =98.1kPa 试求玻璃管中水银柱上升高度h v 。
2-3 封闭容器中水面的绝对压力为p 1=105kPa ,当地大气压力为p a =98.1kPa ,A 点在水面下6m ,试求:(1)A 点的相对压力;(2)测压管中水面与容器中水面的高差。
题2-2图 题2-3图 2-4 已知水银压差计中的读数⊿h =20.3cm ,油柱高h =1.22m ,油的重度γ油=9.0kN/m 3,试求:(1)真空计中的读数p v ;(2)管中空气的相对压力p 0。
题2-4图 题2-5图 2-5 设已知测点A 到水银测压计左边水银面的高差为h 1=40cm ,左右水银面高差为h 2=25cm ,试求A 点的相对压力。
2-6 封闭容器的形状如图所示,若测压计中的汞柱读数△h =100mm ,求水面下深度H =2.5m 处的压力表读数。
题2-6图 题2-7图 2-7 封闭水箱的测压管及箱中水面高程分别为▽1=100cm 和▽4=80cm ,水银压差计右端高程为▽2=20cm ,问左端水银面高程▽3为多少?2-8 两高度差z =20cm 的水管,与一倒U 形管压差计相连,压差计内的水面高差h =10cm ,试求下列两种情况A 、B 两点的压力差:(1)γ1为空气;(2)γ1为重度9kN/m 3的油。
题2-8图题2-9图2-9 有一半封闭容器,左边三格为水,右边一格为油(比重为0.9)。
试求A、B、C、D四点的相对压力。
2-10 一小封闭容器放在大封闭容器中,后者充满压缩空气。
测压表A、B的读数分别为8.28kPa和13.80kPa,已知当地大气压为100kPa,试求小容器内的绝对压力。
(完整版)工程流体力学习题及答案
(完整版)工程流体力学习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1章 绪论选择题【1.1】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有诸如速度、密度及压强等物理量的流体微团。
(d )【1.2】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切应力和剪切变形速度;(c )切应力和剪切变形;(d )切应力和流速。
解:牛顿内摩擦定律是d d v y τμ=,而且速度梯度d d v y 是流体微团的剪切变形速度d d t γ,故d d t γτμ=。
(b )【1.3】流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N·s/m 2。
解:流体的运动黏度υ的国际单位是/s m 2。
(a )【1.4】理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RTp=ρ。
解:不考虑黏性的流体称为理想流体。
(c )【1.5】当水的压强增加一个大气压时,水的密度增大约为:(a )1/20 000;(b )1/1 000;(c )1/4 000;(d )1/2 000。
解:当水的压强增加一个大气压时,其密度增大约95d 1d 0.51011020 000k p ρρ-==⨯⨯⨯=。
(a )【1.6】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时不能承受切应力;(b )不能承受拉力,平衡时能承受切应力;(c )不能承受拉力,平衡时不能承受切应力;(d )能承受拉力,平衡时也能承受切应力。
解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。
流体力学课后习题答案
5.17解:总扬程包括抬水高度及水头损失,
....
5-2有一平底空船,其船底面积Ω为8m2,船舷高h为0.5m,船自重G为9.8kN。现船底破一直径10cm的圆孔,水自圆孔漏入船中,试问经过多少时间后船将沉没。
题5-4图
解:在船沉没的过程中存在
得
∴船沉没过程中水自圆孔漏入的流量是不变的。
另外,当h2=0时,h1’=0.125,则
5-10工厂供水系统,由水泵向A、B、C三处供水,管道均为铸铁管,已知流量Qc=10L/s,qB=5L/s,qA= 10L/s,各管段长l1=350m,l2= 450m,l3=100m,各段直径d1=200mm,
d2=150mm,d3=100mm,整个场地水平,试求水泵出口压强。
闸门右侧水压力:
作用点:
总压力大小:
对B点取矩:
2-16.如图, ,上部油深h1=1.0m,下部水深h2=2.0m,油的重度 =8.0kN/m3,求:平板ab单位宽度上的流体静压力及其作用点。
[解]合力
作用点:
2-19.已知曲面AB为半圆柱面,宽度为1m,D=3m,试求AB柱面所受静水压力的水平分力Px和竖直分力Pz。
自由下落时:
第二章流体静力学
2-1.一密闭盛水容器如图所示,U形测压计液面高于容器内液面h=1.5m,求容器液面的相对压强。
[解]
2-3.密闭水箱,压力表测得压强为4900Pa。压力表中心比A点高0.5m,A点在液面下1.5m。求液面的绝对压强和相对压强。
[解]
2-13.如图所示盛水U形管,静止时,两支管水面距离管口均为h,当U形管绕OZ轴以等角速度ω旋转时,求保持液体不溢出管口的最大角速度ωmax。
工程流体力学答案详解
第一章 流体及其物理性质1-1 已知油的重度为7800N/m 3,求它的密度和比重。
又,0.2m 3此种油的质量和重量各为多少?已已知知::γ=7800N/m 3;V =0.2m 3。
解解析析::(1) 油的密度为 3kg/m 79581.97800===gγρ; 油的比重为 795.01000795OH 2===ρρS (2) 0.2m 3的油的质量和重量分别为 kg 1592.0795=⨯==V M ρ N 15602.07800=⨯==V G γ1-2 已知300L(升)水银的质量为4080kg ,求其密度、重度和比容。
已已知知::V =300L ,m =4080kg 。
解解析析::水银的密度为 33kg/m 13600103004080=⨯==-V m ρ 水银的重度为3N/m 13341681.913600=⨯==g ργ水银的比容为 kg /m 10353.7136001135-⨯===ρv1-3 某封闭容器内空气的压力从101325Pa 提高到607950Pa ,温度由20℃升高到78℃,空气的气体常数为287.06J/k g ·K 。
问每kg 空气的体积将比原有体积减少多少?减少的百分比又为多少?已已知知::p 1=101325Pa ,p 2=607950Pa ,t 1=20℃,t 2=78℃,R =287.06J/k g ·K 。
解解析析::由理想气体状态方程(1-12)式,得 kg /m 83.0101325)27320(06.2873111=+⨯==p RT v kg /m 166.0607950)27378(06.2873222=+⨯==p RT v kg /m 664.0166.083.0321=-=-v v%80%10083.0166.083.0%100121=⨯-=⨯-v v v每kg 空气的体积比原有体积减少了0.664m 3;减少的百分比为80%。
《流体力学》课后习题答案.pdf
得:T1 = t1 + 273 = 50 + 273 = 323K ,T2 = t2 + 273 = 78 + 273 = 351K
根据
p
=
mRT V
,有:
p1
=
mRT1 V1
,
p2
=
mRT2 V2
得: V2 V1
=
p1 p2
T2 T1
=
9.8067 104 5.8840 105
351 323
=
0.18
设管段长度 l,管段表面积: A = dl
单位长度管壁上粘滞力: = A u = dl u − 0 = 3.14 0.025 0.03
l y l
0.001
1-8 解: A = 0.8 0.2 = 0.16m2 ,u=1m/s, = 10mm , = 1.15Pa s
T = A u = A u − 0 = 1.15 0.16 1 = 18.4N
1
=
T1 b
=
A b
u
−0 −h
=
0.7 0.06b b
15 − 0 0.04 − 0.01
=
21N
/m,方向水平向左
下表面单位宽度受到的内摩擦力:
2
=
T2 b
=
Au−0 b h−0
=
0.7 0.06b 15 − 0
b
0.01− 0
= 63N
/m,方向水平向左
平板单位宽度上受到的阻力:
= 1 + 2 = 21+ 63 = 84N ,方向水平向左。
h1 = 5.6m
2.4 解:如图 1-2 是等压面,3-4 是等压面,5-6 段充的是空气,因此 p6 = p5 ,6-7 是等压面,
流体力学例题及解答(一)
20℃的空气在直径为80mm的水平管流过 的空气在直径为80mm的水平管流过。 【例2】20℃的空气在直径为80mm的水平管流过。现于 管路中接一文丘里管,如本题附图所示。 管路中接一文丘里管,如本题附图所示。文丘里管的 上游接一水银U管压差计,在直径为20mm的喉颈处接一 上游接一水银U管压差计,在直径为20mm的喉颈处接一 20mm 细管,基下部插入水槽中。 细管,基下部插入水槽中。空气流过文丘里管的能量 损失可忽略不计。 管压差计读数R=25mm h=0.5m时 R=25mm、 损失可忽略不计。当U管压差计读数R=25mm、h=0.5m时, 试求此时空气的流量为若干m /h。 试求此时空气的流量为若干m3/h。当大气压强为 101.33× Pa。 101.33×103Pa。 (3)在两截在间列柏努利方程式, )在两截在间列柏努利方程式, 并化简得
有一输水系统,如本题附图所示, 【例5】有一输水系统,如本题附图所示,水箱内水 面维持恒定,输水管直径为φ60 3mm, φ60× 面维持恒定,输水管直径为φ60×3mm,输水量为 /h,水流经全部管道(不包括排出口) 18.3m3/h,水流经全部管道(不包括排出口)的能量 损失可按Σhf=15u 公式计算,式中u 损失可按Σhf=15u2公式计算,式中u为管道内水的流 m/s)。 速(m/s)。 (1)水箱中水面高于排出口的高度 )水箱中水面高于排出口的高度H 将有关数据代入上式便可求得Z )。式中 将有关数据代入上式便可求得 1(即H)。式中 )。
流体力学课后习题与答案
第三、四章 流体动力学基础习题及答案3-8已知流速场u x =xy 2, 313y u y =-, u z =xy, 试求:(1)点(1,2,3)的加速度;(2)是几维流动;(3)是恒定流还是非恒定流;(4)是均匀流还是非均匀流?解:(1)411633x x x x x x y z u u u u a u u u xy t x y z ∂∂∂∂=+++==∂∂∂∂25333213313233312163. 06m/s y y z x y a y u y a yu xu xy xy xy a =-===+=-====(2)二元流动 (3)恒定流(4)非均匀流41xy 33-11已知平面流动速度分布为x y 2222cxu u x ycy x y =-=++,, 其中c 为常数。
求流线方程并画出若干条流线。
解:2222-xdx=ydyx ydx dydx dy cy cx u u x y x y =⇒-=⇒++积分得流线方程:x 2+y 2=c方向由流场中的u x 、u y 确定——逆时针3-17下列两个流动,哪个有旋?哪个无旋?哪个有角变形?哪个无角变形?(1)u x =-ay,u y =ax,u z =0 (2)z 2222,,0,a c x ycy cxu u u x y x y =-==++式中的、为常数。
z 2222,,0,a c x y cy cxu u u x y x y =-==++式中的、为常数。
解:(1)110 ()()22yx x y z u u a a a xy ωωω∂∂===-=+=∂∂有旋流动 xy 11()()0 22y x xy zx u u a a x y εεε∂∂=+=-==∂∂ 无角变形 (2)222222222222222222211()2()2()22()()12()2()0 0 2()y x z x y u u x y c cx x y c cy x y x y x y c x y c x y x y ωωω∂⎡⎤∂+-+-=-=+⎢⎥∂∂++⎣⎦⎡⎤+-+====⎢⎥+⎣⎦无旋流动2222xy 22222112()()()022()()y x u u c x y c x y x y x y x y ε∂⎡⎤∂---=+==-≠⎢⎥∂∂++⎣⎦ 有角变形4—7变直径管段AB ,d A =0.2m,d B =0.4m ,高差△h=1.5m ,测得p A =30kPa ,p B =40kPa ,B 点处断面平均流速v B =1.5m/s ,试判断水在管中的流动方向。
流体力学题及答案讲解学习
C (c) 盛有不同种类溶液的连通器DC D水油BB (b) 连通器被隔断AA(a) 连通容器1. 等压面是水平面的条件是什么?2. 图中三种不同情况,试问:A-A 、B-B 、C-C 、D-D 中哪个是等压面?哪个不是等压面?为什么?3 已知某点绝对压强为80kN/m 2,当地大气压强p a =98kN/m 2。
试将该点绝对压强、相对压强和真空压强用水柱及水银柱表示。
4. 一封闭水箱自由表面上气体压强p 0=25kN/m 2,h 1=5m ,h 2=2m 。
求A 、B 两点的静水压强。
速?答:与流线正交的断面叫过流断面。
过流断面上点流速的平均值为断面平均流速。
引入断面平均流速的概念是为了在工程应用中简化计算。
8.如图所示,水流通过由两段等截面及一段变截面组成的管道,试问:(1)当阀门开度一定,上游水位保持不变,各段管中,是恒定流还是非恒定流?是均匀流还是非均匀流?(2)当阀门开度一定,上游水位随时间下降,这时管中是恒定流还是非恒定流?(3)恒定流情况下,当判别第II 段管中是渐变流还是急变流时,与该段管长有无关系?9 水流从水箱经管径分别为cmd cm d cm d 5.2,5,10321===的管道流出,出口流速sm V /13=,如图所示。
求流量及其它管道的断面平均流速。
解:应用连续性方程(1)流量:==33A v Q 4.91s l /103-⨯(2) 断面平均流速s m v /0625.01= , s m v /25.02= 。
10如图铅直放置的有压管道,已知d 1=200mm ,d 2=100mm ,断面1-1处的流速v 1=1m/s 。
求(1)输水流量Q ;(2)断面2-2处的平均流速v 2;(3)若此管水平放置,输水流量Q 及断面2-2处的速度v 2是否发生变化?(4)图a 中若水自下而上流动,Q 及v 2是否会发生变化?解:应用连续性方程 (1)4.31=Q s l / (2)s m v /42= (3)不变。
流体力学答案解析
流体力学答案解析题目:一不可压缩流体在水平管道内作稳定流动,管道截面由圆形逐渐扩大为方形,入口直径为d,出口边长为a。
已知入口流速为v1,入口处的压力为p1,求出口处的流速v2和压力p2。
解析:首先,根据连续性方程,流体在管道内的流速和截面积之间存在以下关系:A1v1 = A2v2其中,A1和A2分别为入口和出口的截面积。
由于管道截面由圆形变为方形,我们可以分别计算两个截面的面积。
入口截面积A1 = π(d/2)^2出口截面积 A2 = a^2将上述面积代入连续性方程,得到:π(d/2)^2 v1 = a^2 v2解得:v2 = (π(d/2)^2 v1) / a^2接下来,我们应用伯努利方程,该方程描述了流体在流动过程中速度、压力和高度之间的关系。
在水平管道中,高度不变,因此伯努利方程简化为:p1/ρ + v1^2/2 = p2/ρ + v2^2/2其中,ρ为流体的密度。
将v2的表达式代入伯努利方程,得到:p1/ρ + v1^2/2 = p2/ρ + (π(d/2)^2 v1)^2 /(2a^2ρ)化简得到:p2 = p1 + ρ(v1^2 - v2^2)/2将v2的表达式代入上式,得到:p2 = p1 + ρ(v1^2 - (π(d/2)^2 v1)^2 /(2a^2ρ))/2化简得到:p2 = p1 + (ρ/2)(v1^2 - (π(d/2)^4 v1^2) / (2a^2))进一步化简得到:p2 = p1 + (ρ/2)(v1^2(1 - (π(d/2)^4) / (2a^2)))至此,我们已经求得了出口处的流速v2和压力p2。
以下是对解题过程的详细解析:1. 连续性方程的应用:连续性方程是流体力学中的一个基本原理,描述了流体在流动过程中质量守恒的关系。
在本题中,由于流体是不可压缩的,因此在流动过程中质量守恒。
根据连续性方程,我们可以求出出口处的流速v2。
2. 伯努利方程的应用:伯努利方程是流体力学中的一个重要方程,描述了流体在流动过程中速度、压力和高度之间的关系。
流体力学经典习题解答以及经典试卷及详细解答
第1章 绪论1.1 若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。
解:由g γρ=得,3327000N/m 714.29kg/m 9.8m /m γρ===g1.2 已知水的密度ρ=997.0kg/m 3,运动黏度ν=0.893×10-6m 2/s ,求它的动力黏度μ。
解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==⨯⨯=⨯⋅ 1.3 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以 0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。
解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500s dy y 0.510--===⨯ 由牛顿切应力定律d d uyτμ=,可得两块平板间流体的动力黏度为 3d 410Pa s d yuτμ-==⨯⋅1.4上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。
题1.4图解:圆盘不同半径处线速度 不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。
在半径r 处,取增量dr ,微面积 ,则微面积dA 上的摩擦力dF 为du r dF dA2r dr dz ωμπμδ== 由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d 43202d T dT r dr 32πμωπμωδδ===⎰⎰1.5 如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d =y u ,水的运动黏度ν=1.0×10-6m 2/s ,试求y =0,2,4cm 处的切应力。
(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题1.5图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dy τμ=得du(1250y 50)dyτμρν==-+ y=0cm 时,221510N /m τ-=⨯;y=2cm 时,222 2.510N /m τ-=⨯;y=4cm 时,30τ= 1.6 某流体在圆筒形容器中。
流体力学部分课后题答案详解中国建筑工业出版社
2-15解:(1)当1γ为空气 21p p = ()A B p h z p =++γ ()h z p p p B A +=-=∆γ 3.010008.9⨯⨯= kpa pa 94.22940== (2)当1γ为油 31p p =()z H h p p A +++=γ1 ()H h p p B γγ++=13H h z H h p p p p p B A γγγγγ--+++-=-=∆131h z h 1γγγ-+=1.090002.010008.91.010008.9⨯-⨯⨯+⨯⨯= k p a pa 04.22040== 2-16 解:21p p =()211h h H p p M +++=水γ 212h h p p a 汞油γγ++=()2121h h p h h H p a M 汞油水γγγ++=+++()2.010008.96.1378502.05.110008.998011⨯⨯⨯+⨯=++⨯⨯+-h h 26656785098002.098005.1980098011+=+⨯+⨯+-h h 1960147009802665619501--+=hm h 63.51= 2-28解:()21h h p -=γ()()()b h h h b h h h h P 02210212145sin 45sin 21-+--=γγ ()()145sin 22310008.9145sin 232310008.92100⨯-⨯⨯+⨯-⨯-⨯⨯⨯= kN N 65.343465022510008.9==⨯⨯=()()()Pbl h h h bl h h h h l D D D 2022110212145sin 45sin 21-+--=γγ m 45.222510008.9222210008.92322210008.9=⨯⨯⨯⨯⨯+⨯⨯⨯=2-32 解:b h h b h h P 02202145sin 2145sin γγ+= 2222210008.9212222110008.9⨯⨯⨯⨯⨯+⨯⨯⨯⨯=kN N 8576.1106.1108572810008.9==⨯⨯=Ph h b h h h h b h h l D 02102202102145sin 3245sin 2145sin 245sin ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=γγ2810008.92372410008.9222410008.9⨯⨯⨯⨯⨯+⨯⨯⨯=2613= 26722613=-=p lT P G l T l P l G ⨯=⨯+⨯22672810008.9162.19⨯=⨯⨯⨯+⨯T kN T 31.10134.27481.9=+= 2-41解:245sin 0=⨯=r hb h h P x ⨯⨯⋅⋅=21γ 4212210008.9⨯⨯⨯⨯⨯=kN N 2.3939200==V P z γ=b r r r⎪⎭⎫⎝⎛⨯⨯⨯-=00245cos 45sin 2136045πγ 4212281214.310008.92⨯⎪⎭⎫ ⎝⎛⨯⨯-⨯⨯⨯⨯= kN N 344.2222344==kN P 1.45344.222.3922=+=03057.0arctan 2.39344.22arctan arctan≈===x z P P α3-3解:(1)s m v d Q /0049.010025.04432323=⋅⋅=⋅=ππs kg Q /9.4=ρ(2)s m v d d v /625.032131=⎪⎪⎭⎫⎝⎛= s m v d d v /5.232232=⎪⎪⎭⎫ ⎝⎛=3-5解:s m h m Q /778.2/1000033==s m d Qv /2042≤=π所以,177.04=≥πv Qd 所以,mm m d 45045.0== 此时,s m d Q d Qv /4.1763585.0112.114422====ππ3-6解:22543212054d d A A A A A ππ======22114012021d d A A ππ=⋅="=' 22224012021d d A A ππ=⋅="='22334012021d d A A ππ=⋅="='22444012021d d A A ππ=⋅="='22554012021d d A A ππ=⋅="='2214014d d ππ=d d 1011=d r 10211= 2224034d d ππ=d d 1032= d r 10232= 2234054d d ππ=d d 1053= d r 10253= 2244074d d ππ=d d 1074= d r 10274=2254094d d ππ=d d 1035=d r 10235= ()()54321254321220240u u u u u d u u u u u d Q G ++++=++++==πρπρρ3-7解:干管前端的质量流量为:42562.2211111d A v Q πρρ⨯⨯==()s kg /128544.005.042562.22=⨯⨯⨯=πs kg Q Q Q /064272.02132===ρρρ ()s m A Q v /247.2204.043.2064272.022222=⋅⋅==πρρ()s m A Q v /05.18045.0424.2064272.023333=⋅⋅==πρρ 3-10解:将基准面建立在B 点经过的水平面上,列能量方程:gv p z gv p z 222222221111αγαγ++=++其中,m z 2.11= m p 5.11=γ s m v /21= s m v d d v /5.4122212== 121==αα gp g 25.40225.12.1222++=++γ871.125.4225.12.1222=-++=gg p γ 3-11解:将2点所在的水平面作为基准面,列能量方程: gv p z gv p z 222222221111αγαγ++=++31=z 02=zγγ21p p =s m v /31=gv p g p 2023322221++=++γγ s m gh v /2.83222=+=32.822112=⎪⎪⎭⎫ ⎝⎛=d d v v 所以,m d 12.02= 3-14解:以水面为基准面,列0-0和D-D 的能量方程:gv p z gv p z DD DD 22220000αγαγ++=++00=z00=γp02200=gv α 4-=D z0=γDpgv DD 2040002α++-=++ 所以,422=gv DD α,即,s m v D /85.88.924=⋅⋅=所以,s m v d Q D /017368.085.805.044322=⋅⋅==ππ81:1:2:24422==A D DD A A d d gv gv αα列0-0和A-A 断面的能量方程:gv p z gv p z AA AA 22220000αγαγ++=++8147000++-=++γAp 所以,8147-=γAp 所以,kpa p A 1.68= 列0-0和B-B 断面的能量方程:gv p z gv p z BB BB 22220000αγαγ++=++kpa p B 484.08.9814-=⋅-= 列0-0和C-C 断面的能量方程:gv p z gv p z CC CC 22220000αγαγ++=++kpa p C 1.208.98142-=⨯⎪⎭⎫ ⎝⎛+-=0=D p3-18解:将基准面建在管道所在的水平面上,列能量方程:21222222111122-+++=++l h gv p z gv p z αγαγ128.998.0008.9490222+++=++g v α9.3222=gv s m v /74.82= 3-19 解:(1)(a )将基准面建在A 所在的水平面上,列0-0和C-C 断面的能量方程:gv p z gv p z CC CC 2222000αγαγ++=++gv CC 2000042α++=++422=gv CC α s m v C /85.88.98=⨯=1:4:2:22222==B C CC B B s s gv gv αα122=gv BB α s m v /43.48.921=⨯= 且 B A v v =(b )(c )gv p z gv p z AA AA 22220000αγαγ++=++10004++=++γAp3=γAp k p a p A 4.29=(2)(a )212200022-+++=++l CC CC h gv p z gv p z αγαγ其中,gv g v h l 2324222121+=-g v g v g v 223200004222222++++=++54222=g v 所以,s m v /96.32= s m v v /96.12121==(b )(c )gv g v p z g v p z 2222212111120000+++=++αγαγ 5300041++=++γp5341-=γp k p a p 32.331= gv g v g v p z g v p z 223242222222222220000++++=++αγαγ5423545400042⋅++++=++γp kpa p 76.112=3-20 解:()()212221221122-++=--++l a p v p z z v p ργγρs m d Qv /38.2005.014.34202.042221=⨯⨯⨯==πs m d Qv /19.1005.014.3402.04222=⨯⨯==π2423222121v v p l ρρ+=-()()242322222122212211v v v p z z v p a ρρργγρ+++=--++22214v v =()()8.930306.02.1224232300212221221⨯+---+++=v v v v p ρρρρ()()8.930306.02.12424212230022222222⨯+---+++=v v v v ρρρρ8.9606.019.1026.0133002⨯⨯-⨯⨯+= pa 16.352= mm p h 6.449.716.3521===γ3-22解:s kN h kN G /048944.0/2.176==s m GQ /1347.77.08.910048944.033=⨯⨯==γs m d Q d Qv /09.914.31347.7444222=⨯===ππ()2122221122-++=-++l a p v p H v p ργγρ其中,01≈v ,pa h p 988.9101010331=⨯⨯⨯==-γ()γgv d H H 2035.0209.97.008.97.02.1098222+⨯+=⨯⨯-++-()8.97.08.9209.9035.0209.97.008.97.02.109822⨯⨯⨯+⨯+=⨯⨯-++-H HH H 0122.19.289.498+=+-所以,m H 64.32=()212211212212-++=-++l M M a p v p H v p ργγρ()8.97.08.9209.9164.322035.0209.97.064.328.97.02.12109822⨯⨯⨯+⨯+=⨯⨯-++-M p 52.169.28968.7998++=+-M p所以,pa p M 45.63-=3-263-28解:列连续性方程:s m D Qv /18.34.014.344.04221=⨯⨯==π s m d Q v /96.501.014.344.04222=⨯⨯==π列能量方程: g v p z g v p z 222222221111αγαγ++=++ g v g v p 222112221ααγ-=m 98.1318.9218.396.5022=⨯-= kpa p 404.12938.998.1311=⨯=列动量方程:()12v vQ F -=∑ρ ()12222144v v Q R d p D p -=-⨯-⨯ρππ()18.396.504.04.04404.12932-⨯=-⨯⨯R πkN R 339.14378.474.04.04404.12932=⨯-⨯⨯=π kN R 94.1112=3-33解:列能量方程:g v p z g v p z 222222221111αγαγ++=++ 其中,5321=v v 2221259v v = g v g v 209.0205.1222211αα++=++gv g v 225926.02222-= s m v /3.42= s m v /58.21=()12v v Q F -=∑ρ()1222212121v v Q R b h b h -=--ργγ 其中,s m Q /644.45.12.158.23=⨯⨯= 72.1644.410009.0108.9215.1108.9212323⨯⨯=-⨯⨯⨯-⨯⨯⨯R N R 2.480=4-2 (1) m mm d 1.0100== s kg Q /10=ρ s m Q Q /01.03==ρρs m d Q v /274.11.014.301.04422=⨯⨯==π s m /10519.126-⨯=ν 8387110519.11.0274.1Re 6=⨯⨯==-νvd (紊流) (2) s kg Q /10=ρ s m Q Q /011765.0850103===ρρ s m d Q v /4987.11.014.3011765.04422=⨯⨯==π s m /1014.124-⨯=ν 13151014.11.04987.1Re 4=⨯⨯==-νvd 4-3 解:m d 3.0= C T 020= s m /107.1526-⨯=νs m d v /1067.1043.0107.152000Re 36max --⨯=⨯⋅=⋅=ν s m A v Q /103947.743.014.31067.1043323max max --⨯=⨯⨯⨯=⋅= h kg Q /9.3136002.1103947.73=⨯⨯⨯=-ρ4-4 解:212=d d 4212221==d d v v 222111Re 2214Re ===ννd v d v 所以,2Re Re 21= 4-12 紊流粗糙区,5106Re ⨯> νvd=Re ,所以,s m d v /14.325.010308.1106Re 65=⨯⨯⨯==-ν s m d v Q /154.0425.014.314.34322=⨯==π 4-13 s m s L Q /2.0/20031==s m d Q v /076433.44211==π 661107791.010308.125.0076433.4Re ⨯=⨯⨯==-νvd s L Q /202= s m v /4076433.02=4210791.7Re ⨯=s L Q /53= s m v /1019.03= 43109478.1Re ⨯=查尼氏图,得到, 5106Re ⨯=u 4104Re ⨯=l123Re Re Re Re Re <<<<u l ,所以,1Q 属于紊流粗糙区,2Q 属于紊流过渡区,3Q 属于紊流光滑区,(1) 对于1Q ,采用希弗林松公式,02326.025.0105.011.011.025.0325.01=⎪⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛=-d K λm g v d l h f 888.78.92076433.425.010002326.0222111=⨯⨯⨯==λ (2) 对于2Q ,采用阿公式,02547.010791.76825.0105.011.0Re 6811.025.04325.02=⎪⎪⎭⎫ ⎝⎛⨯+⨯=⎪⎭⎫ ⎝⎛+=-d K λ m g v d l h f 086.08.924076433.025.010002547.0222222=⨯⨯⨯==λ(3) 对于3Q ,采用布公式02678.05.194773164.0Re 3164.025.025.03===λ m g v d l h f 005676.08.9244076433.025.010002678.0222333=⨯⎪⎭⎫ ⎝⎛⨯⨯==λ 4-15 5102Re ⨯=u 4000Re =lm d 05.0= m K 31025.0-⨯= s m d v u /028.405.010007.1102Re 65max =⨯⨯⨯==-νs L d v Q /905.7405.014.3028.4422max max =⨯==π 26m i n 10056.805.010007.14000Re --⨯=⨯⨯==d v l ν s L s m d v Q /1581.0/1001581.0405.014.310056.8432222min min =⨯=⨯⨯==--π 4-21 (1) a d d =21 2211av v = gv d l d v g v d l g v d l h f 2642Re 64221111211121111νλ=== 4212221211ad d v v h h f f == 19.1=a (2)75.425.12275.12122225.0225.0225.021125.0125.0125.021123164.023164.0a d d v v gv d l d v g v d l d v h h f f =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==νν 16.1=a (3)25.525.11222122225.0221125.01211211.0211.0a d d v v g v d l d K g v d l d K h h f f =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛= 14.1=a 4-24 解:s m Q /002742.0602329.03=⨯=s m d Q v /3972.105.014.3002742.04422=⨯⨯==π 629.022=⎪⎭⎫ ⎝⎛+g v d l ζλ ()629.08.923972.162=⨯+ζ 3151.0=ζ 4-26 解:(1) 突然缩小375.03145.7815.015.0121=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=A A ζmm m g v h j 5.760765.08.922375.022211==⨯==ζ (2)5.02=ζmm m g v h j 102102.08.9225.022222==⨯==ζ (3)1693145.781122213=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=A A ζ mm m h j 115115.08.92216923==⨯= (4)14=ζ mm m h j 204204.08.922124==⨯= 4-27 解:()()gv v g v v h h m m j j 222121-+-=''+' ()()()()02212221=-+--=''+'gv v g v v h h m m vm j j 所以,221v v v m += 此时,()j j j h gv v g v v v g v v v h h 2221222222121212211=-=⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+-=''+' 4-29 解:s m h m Q /1044.4/16333-⨯== s m d Q v /2624.205.014.31044.44423211=⨯⨯⨯==-π s m d Q v /5656.01.014.31044.44423222=⨯⨯⨯==-π m g v v p p h j 140674.08.925656.02624.28.910001739.522222121=⨯-+⨯⨯-=-+-=γ g v h j 2211ζ= 5387.01=ζ gv h j 2222ζ= 619.82=ζ5-17 解:5.6082.014.32.12.01002.08842412111=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=d d l S p πρλ 7.30422.014.32.12.05002.08842422222=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=d d l S p πρλ 973671.014.32.11.05002.08842432333=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=d d l S p πρλ 3.101018973677.30425.608321=++=++=p p p p S S S S 22211/91.227215.03.101018m N Q S p p =⨯==22222/1.258616.03.101018m N Q S p p =⨯==5-25 解:()()⎪⎩⎪⎨⎧=++=++=1021520232322223221SQ Q Q S SQ Q Q S SQ 610=S解得,s m Q /10472.4331-⨯= s m Q /1041.2332-⨯= s m Q /1063.0333-⨯=5-27 解:94.10348.92.014.32.020002.08842412111=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=g d d l S πλ 8.206988.91.014.31.0100025.08842422222=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=g d d l S πλ 78.37258.92.014.32.072002.08842432333=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=g d d l S πλ 038035.087.14311705.321111211=+=+='S S S 所以,25.6911='S 1)()H Q S S =+'231s m S S H Q /10186.604417163331-⨯==+'=2)H SQ =2 H Q S =⎪⎭⎫ ⎝⎛'221 1325133831432=+'=-'=S S S S gd πζ ()1.25688.92.014.31325142=⨯⨯⨯=ζ 5-28 解:286.1368.93.014.383.020002.084242=⨯⨯⨯⨯==g d d l S AB AB AB AB πλ 029.1098.93.014.383.016002.084242=⨯⨯⨯⨯==g d d l S AC AC AC AC πλ 34.328.94.014.384.020002.084242=⨯⨯⨯⨯==g d d l S AD AD AD AD πλ 772.818.93.014.383.012002.084242=⨯⨯⨯⨯===g d d l S S BC BC BC CD BC πλ 5108.2⨯=A p2AB AB A Q S p γ= s m S p Q AB A AB /457868.08.91000286.136108.235=⨯⨯⨯==γ 2AD AD A Q S p γ= s m S p Q AD AAD /93993.08.9100034.32108.235=⨯⨯⨯==γ ()()222BC BC BC AC A Q S Q S p += ()s m S S p Q Q BC AC A CD BC /23488.043=+==γs m Q Q Q BC AB /69275.022=+= s m Q Q Q CD AD /17481.123=+=s m Q Q Q /86756.13321=+= 22/2.44m kN Q S p BC BC C ==γ。
流体力学习题集与答案解析
流体力学与叶栅理论课程考试试题一、选择题(每小题1分,共10分)1、在括号填上“表面力”或“质量力”:摩擦力();重力();离心力();浮力();压力()。
2、判断下列叙述是否正确(对者画√,错者画╳):(a) 基准面可以任意选取。
()(b) 流体在水平圆管流动,如果流量增大一倍而其它条件不变的话,沿程阻力也将增大一倍。
()(c) 因为并联管路中各并联支路的水力损失相等,所以其能量损失也一定相等。
()(d) 定常流动时,流线与迹线重合。
()(e) 沿程阻力系数λ的大小只取决于流体的流动状态。
()二、回答下列各题(1—2题每题5分,3题10分,共20分)1、什么是流体的连续介质模型?它在流体力学中有何作用?2、用工程单位制表示流体的速度、管径、运动粘性系数时,管流的雷诺数4Re ,10问采用国际单位制时,该条件下的雷诺数是多少?为什么?3、常见的流量的测量方法有哪些?各有何特点?三、计算题(70分)1、如图所示,一油缸及其中滑动栓塞,尺寸D=120.2mm,d=119.8mm,L=160mm,间隙充满μ=0.065Pa·S的润滑油,若施加活塞以F=10N的拉力,试问活塞匀速运动时的速度是多少?(10分)题1图2、如图所示一盛水容器,已知平壁AB=CD=2.5m,BC及AD为半个圆柱体,半径R=1m,自由表面处压强为一个大气压,高度H=3m,试分别计算作用在单位长度上AB面、BC面和CD面所受到的静水总压力。
(10分)题2图3、原型流动中油的运动粘性系数υp=15×10-5m2/s,其几何尺度为模型的5倍,如确定佛汝德数和雷诺数作为决定性相似准数,试问模型中流体运动粘性系数υm=?(10分)4、如图所示,变直径圆管在水平面以α=30。
弯曲,直径分别为d1=0.2m,d2=0.15m,过水流量若为Q=0.1m3/s,P1=1000N/m2时,不计损失的情况下,求水流对圆管的作用力及作用力的位置。
流体力学课后习题答案.doc
流体力学课后习题答案第一章流体及其主要物理性质1-1. 轻柴油在温度15ºC时相对密度为0.83,求它的密度和重度。
解:4ºC时所以,1-2. 0.83 水 0.83 1000 830kg/m3 0.83 水 0.83 9800 8134N/m3 甘油在温度0ºC时密度为1.26g/cm3,求以国际单位表示的密度和重度。
1.26g/cm3 126kg0/m3 g 126 09.8 1234N8/m31-3. 水的体积弹性系数为1.96×109N/m2,问压强改变多少时,它的体积相对压缩1,,p 1-4. V p V E 0.01E 1.96 107Pa 19.6MPaV容积4m3的水,温度不变,当压强增加105N/m2时容积减少1000cm3,求该水的体积压缩系数βp和体积弹性系数E。
,1000 10,6V,9,1 , 2.5 10Pa 解: p , 5 p10E1-5. 1 p 18 4 10Pa ,92.5 10用200L汽油桶装相对密度为0.70的汽油,罐装时液面上压强为1个大气压,封闭后由于温度变化升高了20ºC,此时汽油的蒸气压为0.18大气压。
若汽油的膨胀系数为0.0006ºC,1,弹性系数为14000kg/cm2。
试计算由于压力及温度变化所增减的体积,问灌桶时每桶最多不超过多少公斤为宜,解:E,E’?g,14000×9.8×10PaΔp,0.18atdV V VdT,dp T pV0 V0 V V TV0 p , , pV0 T T p p4 T所以,dV V VdT,dp TV0dT, pV0dp T p1从初始状态积分到最终状态得:即VV0dV TV0dT, T0Tpp0 pV0dpV,V0 T(T,T0)V0,1(p,p0)V0E0.18 9.8 1040.0006 20 200, 20014000 9.8 1042.4L,2.57 10,3L 2.4L200,2.4 138.32kg 1000M ,V, V, 0.7 1000另解:设灌桶时每桶最多不超过V升,则V,dVt,dVp 200dVt t V dt 0.00061 20VdVp , p V dp ,1 0.18V(1大气压,1Kg/cm2) 14000V,197.6升dVt,2.41升dV p,2.52×10-3升G,0.1976×700,138Kg,1352.4N1-6. 石油相对密度0.9,粘度28cP,求运动粘度为多少m2/s?28 10,33.1 10,5m2/s, 0.31St 31cS,t 0.9 10001-7. 相对密度0.89的石油,温度20ºC时的运动粘度为40cSt,求动力粘度为多少,解:d -42 0.89 ν,40cSt,0.4St,0.4×10m/s水μ,νρ,0.4×10-4×890,3.56×10-2 Pa?s1-8. 图示一平板在油面上作水平运动,已知运动速度u=1m/s,板与固定边界的距离δ=1,油的动力粘度μ,1.147Pa?s,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少,2解:1-9. du1 1.147 1.147 103N/m2 ,3dy1 10如图所示活塞油缸,其直径D,12cm,活塞直径d,11.96cm,活塞长度L,14cm,油的μ,0.65P,当活塞移动速度为0.5m/s时,试求拉回活塞所需的力F=,解:A,πdL , μ,0.65P,0.065 Pa?s , Δu,0.5m/s , Δy=(D-d)/2 F Adu0.5 0.065 3.14 11.96 10,2 14 10,2 8.55Ndy12,11.96 10,223第二章流体静力学2-1. 如图所示的U形管中装有水银与水,试求:(1)A、C两点的绝对压力及表压各为多少,(2)A、B两点的高度差为多少,解:? pA表,γh水,0.3mH2O,0.03at,0.3×9800Pa,2940PapA绝,pa+ pA表,(10+0.3)mH2O,1.03at,10.3×9800Pa,100940PapC表,γhghhg+ pA表,0.1×13.6mH2O+0.3mH2O,1.66mH2O,0.166at,1.66×9800Pa,16268PapC绝,pa+ pC表,(10+1.66)mH2O,11.66mH2O ,1.166at,11.66×9800Pa,114268Pa ? 30cmH2O,13.6h cmH2O h, 30/13.6cm=2.2cm题2-2 题2-32-2. 水银压力计装置如图。
《流体力学》课后习题详细解答
1-8解:
或,由 积分得
1-9解:法一:5atm
10atm
=0.537 x 10-9x (10-5) x98.07 x 103= 0.026%
法二: ,积分得
1-10解:水在玻璃管中上升高度
h =
水银在玻璃管中下降的高度
H= mm
第二章流体静力学
2-1解:已知液体所受质量力的x向分量为–a ,z向分量为-g。液体平衡方程为
重心C位于浮心之上,偏心距
沉箱绕长度方向的对称轴y轴倾斜时稳定性最差。浮面面积A=15m2。浮面关于y
轴的惯性矩和体积排量为
定倾半径
可见, >e,定倾中心高于重心,沉箱是稳定的。
第三章流体运动学
3-1解:质点的运动速度
质点的轨迹方程
3-Байду номын сангаас解:
由 和 ,得
故
3-3解:当t=1s时,点A(1,2)处的流速
线速度u = 0r,速度环量
(2)半径r+dr的圆周封闭流线的速度环量为
得
忽略高阶项2 0dr2,得d
(3)设涡量为 ,它在半径r和r+dr两条圆周封闭流线之间的圆环域上的积分为d 。因为 在圆环域上可看作均匀分布,得
将圆环域的面积dA=2 rdr代入该式,得
可解出 =2 + dr/r。忽略无穷小量 dr/r,最后的涡量
沉箱绕长度方向的对称轴y倾斜时稳定性最差。浮面面积A=15m2.浮面关于y轴的惯性矩和体积排量为
定倾半径
可见, ,定倾中心低于重心,沉箱是不稳定的。
(2)沉箱的混凝土体积
沉箱的重量
沉箱水平截面面积
设吃水深度为h,取水的密度 =1000kg/m3.浮力F等于重量G。有
工程流体力学课后习题讲解
解:由题意及图示得:点A处
p0 油H 0.4 9800 p0 1.6 9800
那么, A B A B
H (1.6 0.4) 9800 1.5m 油 9800
又因为在B点处,
Pa 0.5 13.6 9800 p0 2.4 9800
Hg h 745 103 13.6 9800 1.5 104 9800 1
9.929 104 1.5 104 0.98 104
7.449 104 Pa
那么
7.449 104 h 0.56m 13.6 9800
2-5 油罐内装相对密度0.8的油品,下有底水。为测定油深及油面上的压力, 装置如图所示的U形管水银压力计,测得个液面位置如图。试确定油面高 度H及液面压力P0
p Hg h h p / Hg
与z无关,所以不变。 2-16 在一直径D=300mm、高H=500mm的圆柱形容器中注入水至高度 h1=300mm,然后使容器绕其垂直轴旋转。试决定能使水的自由液面到达 容器上部边缘时的转速n1,当转速超过n1时,水开始逸出容器边缘,而抛 物面的顶端将相底部接近。试求能使抛物面顶端碰到容器底时的转数n2。 在容器静止后,水面高度h2将为多少?
解:根据题意和图示可得,由压缩性得
nt
d2
4
PVdp
n
4 PV0 p t D 2
dV V dV P dpV dp
4 4.75 1010 300 106 250 9.8 104 2 103 3.14 0.012
22.24 23圈
17.8cm
得: dCCl4=(30.6-17.8)/8=1.6
流体力学课后习题答案第一章
—1 水的密度为1000kg/m3,2L水的质量和重量是多少? 解: 1—2 体积为0.5 m3的油料,重量为4410N,试求该油料的密度是多少? 解; 1—3 当空气的温度从0℃增加到20℃时,运动黏滞系数值增加15%,密 度减少10%,问此时动力黏滞系数值增加多少? 解:
因此增加了3.5% 1—4 为了进行绝缘处理,将导线从充满绝缘涂料的模具中间拉过。已 知导线直径为0.8mm,涂料的动力黏滞系数,模具的直径为0.9mm,长度 为20mm,导线的牵 拉速度为50m/s。试求所需牵拉力? 解: 1—5 某底面积为的木块,质量5kg,沿着一与水平面成20°的涂有润滑 油的斜面下滑。油层厚度为0.6mm,如以等速度U=0.84m/s下滑时,求 油的动力黏滞系数? 解: 1—6 温度为20℃的空气,在直径为2.5cm的管中流动,距管壁上1mm处 的空气速度为3cm/s。求作用于单位长度管壁上的黏滞切力为多少? 解:因为T=200,故查表得 1—7 一圆锥体绕其铅直中心轴等速旋转,锥体与固定壁面间的距离, 用的润滑油充满间隙。当旋转角速度,锥体底部半径R=0.3m、高 H=0.5m时,求作用于圆锥的阻力矩。 解: 1—8 水在常温下,压强由5at增加到10at时,密度改变多少? 解:
1—11 钢贮罐内装满10℃的水,密封加热到75℃,在加热增压的温度和 压强范围内,水的热胀系数为℃-1,体积模量为,罐体坚固,假设容积不 变,试估算加热后管壁所承受的压强。 解: 1—12 汽车上路时,轮胎内空气的温度为20℃,绝对压强为395kPa,行 驶轮胎内空气的温度上升到50℃,试求此时的压强。 解:
故变为原来的2倍。 1—9 体积为5m3的水,在温度不变的情况下,当压强从1at增加到5at 时,体积减少1L,求水的压缩系数和弹性模量。 解:压缩系数为k 体积摸量为K 1—10 如图所示的采暖系统,由于水温升高引起的水的体积膨胀,了 防止管道及暖气片胀裂,特在系统顶部设置一膨胀水箱,使水的体积有 自由膨胀的余地。若系统内水的总体积V=8m3,加热后温差50℃,水的 热胀系数为0.0005/℃-1,求膨胀水箱的最小容积。 解:膨胀系数为:
流体力学课后习题与解答
流体力学课后习题与解答1.1 按连续介质的概念,流体质点是指:()(a )流体的分子;(b )流体的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
1.2 作用于流体的质量力包括:()(a )压力;(b )摩擦阻力;(c )重力;(d )表面力。
1.3 单位质量力的国际单位是:()(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4 与牛顿摩擦定律直接有关的因素是:()(a )剪应力和压强(b )剪应力和剪应变率(c )剪应力和剪应变(d )剪应力和流速 1.5 水的动力黏度μ随温度的升高:()(a )增大;(b )减小;(c )不变;(d )不定。
1.6 流体运动黏度ν的国际单位是:()(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ?。
1.7 无黏性流体的特征是:()(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p=ρ。
1.8 当水的压强增加1个大气压时,水的密度增大约为:()(a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。
2.1 静止流体中存在:()(a )压应力;(b )压应力和拉应力;(c )压应力和剪应力;(d )压应力、拉应力和剪应力。
2.2 相对压强的起算基准是:()(a )绝对真空;(b )1个标准大气压;(c )当地大气压;(d )液面压强。
2.3 金属压力表的读值是:()(a )绝对压强(b )相对压强(c )绝对压强加当地大气压(d )相对压强加当地大气压2.4 某点的真空度为65000Pa ,当地大气压为0.1MPa,该点的绝对压强为:()(a )65000Pa ;(b )55000Pa ;(c )35000Pa ;(d )165000Pa 。
2.5 绝对压强abs p 与相对压强p 、真空度V p 、当地大气压a p 之间的关系是:()(a )abs p =p +V p ;(b )p =abs p +a p ;(c )V p =a p -abs p ;(d )p =V p +V p 。
《流体力学》课后习题答案详解
习题【1】1-1 解:已知:120t =℃,1395p kPa '=,250t =℃ 120273293T K =+=,250273323T K =+= 据p RT ρ=,有:11p RT ρ'=,22p RT ρ'= 得:2211p T p T '=',则2211323395435293T p p kPa T ''=⋅=⨯=1-2 解:受到的质量力有两个,一个是重力,一个是惯性力。
重力方向竖直向下,大小为mg ;惯性力方向和重力加速度方向相反为竖直向上,大小为mg ,其合力为0,受到的单位质量力为01-3 解:已知:V=10m 3,50T ∆=℃,0.0005V α=℃-1根据1V V V Tα∆=⋅∆,得:30.000510VVV Tα∆=⋅⋅∆=⨯⨯1-4 解:已知:419.806710Pa p '=⨯,52 5.884010Pa p '=⨯,150t =℃,278t =℃得:1127350273323T t K=+=+=,G =mg自由落体: 加速度a =g2227378273351T t K =+=+=根据mRTp V=,有:111mRT p V '=,222mRT p V '=得:421251219.8067103510.185.884010323V p T V p T '⨯=⋅=⨯='⨯,即210.18V V = 体积减小了()10.18100%82%-⨯=1-5 解:已知:40mm δ=,0.7Pa s μ=⋅,a =60mm ,u =15m/s ,h =10mm根据牛顿内摩擦力定律:uT Ayμ∆=∆ 设平板宽度为b ,则平板面积0.06A a b b =⋅=上表面单位宽度受到的内摩擦力:1100.70.06150210.040.01T A u b N b b h b μτδ-⨯-==⋅=⨯=--/m ,方向水平向左下表面单位宽度受到的内摩擦力: 2200.70.061506300.010T A u b N b b h b μτ-⨯-==⋅=⨯=--/m ,方向水平向左平板单位宽度上受到的阻力:12216384N τττ=+=+=,方向水平向左。
流体力学答案解析
流体力学答案流体力学课后答案 分析答案 解答BP1.1.1 根据阿佛迦德罗定律,在标准状态下(T = 273°K ,p = 1.013×105 Pa )一摩尔空气(28.96ɡ)含有6.022×10 23个分子。
在地球表面上70 km 高空测量得空气密度为8.75×10 -5㎏/m 3。
试估算此处 10 3μm 3体积的空气中,含多少分子数n (一般认为n <106 时,连续介质假设不再成立)答: n = 1.82×10 3提示:计算每个空气分子的质量和103μm 3体积空气的质量 解: 每个空气分子的质量为 g 1081.410022.6g 96.282323-⨯=⨯=m 设70 km 处103μm 3体积空气的质量为M g 1075.8)m 1010)(kg/m 1075.8(20318335---⨯=⨯⨯=M323201082.1g1081.4g 1075.8⨯=⨯⨯==--m M n 说明在离地面70 km 高空的稀薄大气中连续介质假设不再成立。
BP1.3.1 两无限大平行平板,保持两板的间距δ= 0.2 mm 。
板间充满锭子油,粘度为μ= 0.01Pa ⋅s ,密度为ρ= 800 kg / m 3。
若下板固定,上板以u = 0.5 m / s 的速度滑移,设油内沿板垂直方向y 的速度u (y)为线性分布,试求: (1) 锭子油运动的粘度υ; (2) 上下板的粘性切应力τ1、τ2 。
答: υ= 1.25×10 – 5 m 2/s, τ1=τ2 = 25N/m 2。
提示:用牛顿粘性定侓求解,速度梯度取平均值。
解:(1 ) /s m 1025.1kg/m800/sm kg 0.0125-3⨯===ρμν (2)沿垂直方向(y 轴)速度梯度保持常数,δμμττ/21u dydu==== (0.01Ns /m 2)(0.5m/s)/(0.2×10-3m)=25N/m 2BP1.3.2 20℃的水在两固定的平行平板间作定常层流流动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m510m V ρ-===⨯⨯相对密度 330.906100.9061.010w ρδρ⨯===⨯【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时,体积减少1L 。
求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少?【解】根据膨胀系数1t dVV dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。
罐装时液面上压强为98000Pa 。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由1β=-=P p dV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E 由于温度变化而增加的体积,可由1β=tt dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆tp V V ,相比之下可以忽略由压力变化引起的体积改变,则由 200L β+=t V V dT 得 1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。
【解】根据牛顿内摩擦定律=du dy τμ 则 21=0.980798.07N/m 0.01uτμδ=⨯=【1-6】已知半径为R 圆管中的流速分布为22=(1)r u c R-式中c 为常数。
试求管中的切应力τ与r 的关系。
【解】根据牛顿内摩擦定律du drτμ=- 则 2222[(1)]d r rc c dr R Rτμμ=--=【2-1】容器中装有水和空气,求A 、B 、C 和D 各点的表压力?【解】空气各点压力相同,与空气接触的液面压力即为空气的压力,另外相互连通的同种液体同一高度压力相同,即等压面34342223232()()()(2)MA MB MA MC MB MD MC p g h h p p g h h h gh p p gh p p g h h g h h ρρρρρρ=+=-++=-==-=-+=-+【2-2】如图所示的U 形管中装有水银与水,试求: (1)A 、C 两点的绝对压力及表压力各为多少? (2)求A 、B 两点的高度差h ?习题1-6图习题1-5图【解】由51.0132510Pa a p =⨯,33110Kg/m ρ=⨯w ,3313.610Kg/m ρ=⨯H 得(1) ()0.310132510009.80.3104265Pa ρ=+⨯=⨯⨯=ab A a w p p g + 0.310009.80.32940Paρ=⨯=⨯⨯=MA w p g ()0.30.110132598000.3136009.80.1117593Paρρ=+⨯+⨯=+⨯+⨯⨯=ab C a w H p p g g 0.30.198000.3136009.80.116268Paρρ=⨯+⨯=⨯+⨯⨯=MC w H p g g (2)选取U 形管中水银的最低液面为等压面,则0.3w H g gh ρρ⨯= 得 0.310.32.2 cm 13.6ρρ⨯⨯===w H h【2-3】在一密闭容器内装有水及油,密度分别为ρw及ρo ,油层高度为h 1,容器底部装有水银液柱压力计,读数为R ,水银面与液面的高度差为h 2,试导出容器上方空间的压力p 与读数R 的关系式。
【解】选取压力计中水银最低液面为等压面,则121()o w H p gh g h R h gR ρρρ+++-=得121()H o w p gR gh g h R h ρρρ=--+-【2-4】油罐内装有相对密度为0.7的汽油,为测定油面高度,利用连通器原理,把U 形管内装上相对密度为1.26的甘油,一端接通油罐顶部空间,一端接压气管。
同时,压力管的另一支引入油罐底以上的0.4m 处,压气后,当液面有气逸出时,根据U 形管内油面高度差△h =0.7m 来计算油罐内的油深H = ?【解】选取U 形管中甘油最低液面为等压面,由气体各点压力相等,可知油题2-3图题2-4图罐底以上0.4m 处的油压即为压力管中气体压力,即00(0.4)go o p g h p g H ρρ+∆=+- 得 1.260.70.40.4 1.66 m 0.7go o h H ρρ∆⨯=+=+= 【2-5】图示两水管以U 形压力计相连,A 、B两点高差1m ,U 形管内装有水银,若读数△h =0.5m ,求A 、B 两点的压力差为多少?【解】选取U 形管内水银最低液面为等压面,设B 点到水银最高液面的垂直高度为x ,则(1)()A w H B w p g x g h p g x h ρρρ+++∆=++∆得 ()B A w H w p p g g h ρρρ-=+-∆410009.8(136001000)9.80.57.15410 Pa=⨯+-⨯⨯=⨯你的书稿:该处公式先前提一下!【2-6】图示油罐发油装置,将直径为d 的圆管伸进罐内,端部切成45°角,用盖板盖住,盖板可绕管端上面的铰链旋转,借助绳系上来开启。
已知油深H =5m ,圆管直径d =600mm ,油品相对密度0.85,不计盖板重力及铰链的摩擦力,求提升此盖板所需的力的大小?(提示:盖板为椭圆形,要先算出长轴2b 和短轴2a ,就可算出盖板面积A =πab )。
【解】分析如图,2=d a,=b 以盖板上的铰链为支点,根据力矩平衡,即拉力和液体总压力对铰链的力矩平衡,以及切角成45°可知T d P L ⨯=⨯其中30.60.85109.85(3.14216643.2 Nρρπ=⨯=⨯=⨯⨯⨯⨯⨯=o o P gH A gH ab题2-5图题2-6图C D C C J L y y y A =-+=+3π=+ab 0.431 m =可得 16643.20.43111955.4 N 0.6P L T d ⨯⨯=== 【2-7】图示一个安全闸门,宽为0.6m ,高为1.0m 。
距底边0.4m 处装有闸门转轴,使之仅可以绕转轴顺时针方向旋转。
不计各处的摩擦力,问门前水深h 为多深时,闸门即可自行打开?【解】分析如图所示,由公式CD C C Jy y y A -=可知,水深h 越大,则形心和总压力的作用点间距离越小,即D 点上移。
当D 点刚好位于转轴时,闸门刚好平衡,即0.1m -=D C y y 。
则由 B =0.6m ,H =1m ,可知31120.1m (0.5)12(0.5)-====-⨯-C D C C BH J y y y A h BH h 得 1.33m h =【2-8】有一压力贮油箱(见图),其宽度(垂直于纸面方向)b =2m ,箱内油层厚h 1=1.9m ,密度ρ0=800kg/m 3,油层下有积水,厚度h 2=0.4m ,箱底有一U 型水银压差计,所测之值如图所示,试求作用在半径R =1m 的圆柱面AB 上的总压力(大小和方向)。
【解】分析如图所示,先需确定自由液面,选取水银压差计最低液面为等压面,则0.5 1.9 1.0H B o w g p g g ρρρ⨯=+⨯+⨯题2-7图汞等效自由液面0.5- 1.9 1.0136009.80.5-8009.8 1.9-10009.841944(Pa)ρρρ=⨯⨯+⨯=⨯⨯⨯⨯⨯=B H o w p g g g 由p B 不为零可知等效自由液面的高度*419445.35 m 8009.8ρ===⨯B o p h g 曲面水平受力*()218009.8(5.35)2291728Nρρ==+=⨯⨯+⨯=x o C x o P gh A Rg h Rb 曲面垂直受力2*1()418009.8( 3.14 5.35)2496196.8Nρρπ==+=⨯⨯⨯+⨯=Z o o P gVg R Rh b则132.92kN =P91728arctan()arctan()43.796196.8θ===x Z PP 【2-9】一个直径2m ,长5m 的圆柱体放置在图示的斜坡上。
求圆柱体所受的水平力和浮力。
【解】分析如图所示,因为斜坡的倾斜角为60°,故经D 点过圆心的直径与自由液面交于F 点。
BC 段和CD 段水平方向的投影面积相同,力方向相反,相互抵消,故圆柱体所受的水平力()3 1.0109.80.515 24.5kNx C F B xP gh A ρ-==⨯⨯⨯⨯⨯⨯= 圆柱体所受的浮力题2-9图分别画出F -A 段和A -D 段曲面的压力体,虚实抵消,则123()()111.0109.8(1 3.141)522119.364kNρρ∆=+=+=⨯⨯⨯⨯⨯⨯⨯=Z FAD FBD P g V V g S S L 半圆【2-10】图示一个直径D =2m ,长L =1m 的圆柱体,其左半边为油和水,油和水的深度均为1m 。
已知油的密度为ρ=800kg/m 3,求圆柱体所受水平力和浮力。
【解】因为左半边为不同液体,故分别来分析AB 段和BC 段曲面的受力情况。
(1)AB 曲面受力11128009.80.511 3.92kNρρ==⨯⨯=⨯⨯⨯⨯=x o C x o RP gh A g RL30.810⨯应改为8002211()418009.8(11 3.141)141.686kNρπ=-⨯=⨯⨯⨯-⨯⨯⨯=Z o P g R R L(2)BC 曲面受力首先确定自由液面,由油水界面的压力oB o p gR ρ=可确定等效自由液面高度*10.8 1.8m oBw p H R h R gρ=+=+=+= 则222*3()21109.8(0.80.5)1 12.74kNx w C x w RP gh A g h RL ρρ==⨯+⨯=⨯⨯⨯+⨯=水的等效自由液面题2-10图2212*31()()411109.8(10.8 3.141)1415.533kNρρπ=+=⨯+⨯=⨯⨯⨯⨯+⨯⨯⨯=Z w w P g V V g R h R L则,圆柱体受力12 3.9212.7416.66kN =+=+=x x x P P P2115.533 1.68613.847kN =-=-=Z Z Z P P P (方向向上) 【2-11】图示一个直径为1.2m 的钢球安装在一直径为1m 的阀座上,管内外水面的高度如图所示。