风力发电机组及其控制系统.ppt
合集下载
风力发电机及偏航系统PPT课件
风向标和风速仪都安装在风力发电机机舱的尾部,固定在风向标支架 上,引线通过支架得铁管连接在机舱控制柜得模板上。
对风装置每隔十分钟进行一次对风检测。控制系统根据风向标的指向 来检测此时的风向角,再根据风向标与机舱的夹角(锐角)来判断是 否进行偏航。如果系统检测到风向没有发生改变,那么系统不发出偏 航指令:如果系统检测到风向发生变化,那么系统此时进行风向角计 算,工作人员可以根据风向标的方向和系统显示面板来判断风向,计 算出来的风向角再与机舱的夹角进行比对,如果大于10°系统则发出 偏航信号,根据风向角来决定是否左偏或者右偏,偏航多少度。
我国风能资源比较丰富,近十几年来,对风能资源状况作了较深入的 勘测调查,全国可开发利用的风能资源总量约2.5亿kw。东南沿海和 山东、辽宁沿海及其岛屿,内蒙古北部,甘肃、新疆北部以及松花江 下游等地区均属风能资源丰富区,年平均风速≥6m/s ,有很好的开 发利用条件。这些地区中很多地方常规能源贫乏,无电或严重缺电, 尤其是新疆、内蒙古的大部分草原牧区以及沿海几千个岛屿,人口分 散,电网难以通达,或无电力供应,或采用很贵的柴油发电。
水平轴风力机简介
水平轴风力机的风轮围绕一个水平轴旋转,工 作时,风轮的旋转平面与风向垂直,风轮上的叶 片是径向安置的,与旋转轴相垂直,用于风力发电 的风力机一般叶片数取 1~4(大多为 2片或 3 片) ,叶片数多的风力机通常称为低速风力机, 它在低速运行时,有较高的风能利用系数和较大 的转矩。它的起动力矩大,起动风速低,因而适用 于提水。叶片数少的风力机通常称为高速风力机。 它在高速运行时有较高的风能利用系数,但起动 风速较高。由于其叶片数很少,在输出同样功率 的条件下比低速风轮要轻得多,因此适用于发电。
偏航控制系统实物图
接近开关简介
对风装置每隔十分钟进行一次对风检测。控制系统根据风向标的指向 来检测此时的风向角,再根据风向标与机舱的夹角(锐角)来判断是 否进行偏航。如果系统检测到风向没有发生改变,那么系统不发出偏 航指令:如果系统检测到风向发生变化,那么系统此时进行风向角计 算,工作人员可以根据风向标的方向和系统显示面板来判断风向,计 算出来的风向角再与机舱的夹角进行比对,如果大于10°系统则发出 偏航信号,根据风向角来决定是否左偏或者右偏,偏航多少度。
我国风能资源比较丰富,近十几年来,对风能资源状况作了较深入的 勘测调查,全国可开发利用的风能资源总量约2.5亿kw。东南沿海和 山东、辽宁沿海及其岛屿,内蒙古北部,甘肃、新疆北部以及松花江 下游等地区均属风能资源丰富区,年平均风速≥6m/s ,有很好的开 发利用条件。这些地区中很多地方常规能源贫乏,无电或严重缺电, 尤其是新疆、内蒙古的大部分草原牧区以及沿海几千个岛屿,人口分 散,电网难以通达,或无电力供应,或采用很贵的柴油发电。
水平轴风力机简介
水平轴风力机的风轮围绕一个水平轴旋转,工 作时,风轮的旋转平面与风向垂直,风轮上的叶 片是径向安置的,与旋转轴相垂直,用于风力发电 的风力机一般叶片数取 1~4(大多为 2片或 3 片) ,叶片数多的风力机通常称为低速风力机, 它在低速运行时,有较高的风能利用系数和较大 的转矩。它的起动力矩大,起动风速低,因而适用 于提水。叶片数少的风力机通常称为高速风力机。 它在高速运行时有较高的风能利用系数,但起动 风速较高。由于其叶片数很少,在输出同样功率 的条件下比低速风轮要轻得多,因此适用于发电。
偏航控制系统实物图
接近开关简介
风力发电机组控制系统及SCADA系统参考文档课件
0
环境温度:存储温度-40 C-70 C(低温型)运行温度:0-60 C;相对湿度:5-95%
境 适合于振动环
► 高性能的CPU,大容量的存储器
点 intel 80386EX,33MHZ,8M内存,最大64M程序存储区,适合于复杂的算法,兼具传统DCS和PLC的优
► 灵活的通讯方式,简洁的网络结构
质 ► 支持CAN、FASTBUS、Profibus等现场总线及工业以太网通讯方式,支持双绞线和光纤通讯介 多种可编程的I/O 模块
► (2)控制系统采用计算机控制技术实现对风力发电 机组组的运行参数、状态监控显示及故障处理,完 成机组的最佳运行状态管理和控制。
► (3)利用计算机智能控制实现机组的启停及功率优 化控制,主要进行软切入、功率因数补偿控制、大 小发电机切换和额定风速以上的恒功率控制。
风机控制系统组成
► 塔基控制柜
小风和逆功率停机是将风机停在待风状态, 当十分钟平均风速小于小风脱网风速或发电 机输出功率负到一定值后,风机不允许长期 在电网运行,必须脱网,处于自由状态,风 机靠自身的摩擦阻力缓慢停机,进入待风状 态。当风速再次上升,风机又可自动旋转起 来,达到并网转速,风机又投入并网运行。
自动运行控制要求 ► 3、普通
风电机组工作状态及控制方法
►V ≤V ≤V 切入风速
风速
转子最大转速下的风速
最佳Cp值控制:虽然最大Cp值在不同风速下是不相同的,但在风速一定 的情况下,需要使它达到最大。由上面的公式知道,只需要控制发电机 的转速ω ,使叶尖速比值为λ opt即可实现该风速下的最佳风能利用。发电机
的转速控制是通过风电变频器对发电机的控制来实现的。
轮毂控制柜
► 安装于柜体中,分3个部分,每个部分负责一个叶片 ► 轮毂PLC站
第四、五章 风力发电机原理与控制 风力发电原理课件
15
3.机组控制系统
主要控制系统
1)变桨距控制系统 2)发电机控制系统 3)偏航控制系统 4)安全保护系统
风轮
风
增速器
变桨距 风速测量
发电机 转速检测
并网开关
电网 变压器
并网
熔断器
控制系统
发电功率 其它控制
16
3.机组控制系统
控制系统功能要求:
1)根据风速信号自动进入启动状态或从电网自动切除; 2)根据功率及风速大小自动进行转速和功率控制; 3)根据风向信号自动对风; 4)根据电网和输出功率要求自动进行功率因数调整; 5)当发电机脱网时,能确保机组安全停机; 6)运行过程对电网、风况和机组的运行状况进行实时监测 和记录,处理; 7)对在风电场中运行的风力发电机组具有远程通信的功能; 8)具有良好的抗干扰和防雷保护措施。
(塔底急停)
(机舱急停)
Profibus ok
110S1 (振动)
110S2 (扭缆)
110K3 (叶轮超度)
110K4 (发电机超速)
110K5 (变桨安全链)
110K6 (看门狗动作)
110K7
110K8
110K9
(变桨安全链)
110KA (偏航系统安全链)
110KB (变流系统安全连)
安全链系统
直驱型变速恒频风力发电机组的结构示意图
10
2.双馈发电机
双馈异步发电机又称交流励磁发电机,具有定、转子两套绕组。定子结构与异 步电机定子结构相同,具有分布的交流绕组。转子结构带有集电环和电刷。与 绕线式异步电机和同步电机不同的是,转子三相绕组加入的是交流励磁,既可 以输入电能,也可以输出电能。转子一般由接到电网上的变流器提供交流励磁 电流,其励磁电压的幅值、频率、相位、相序均可以根据运行需要进行调节。 转子也可向电网馈送电能,即电机从两端(定子和转子)进行能量馈送,“双 馈”由此得名。
3.机组控制系统
主要控制系统
1)变桨距控制系统 2)发电机控制系统 3)偏航控制系统 4)安全保护系统
风轮
风
增速器
变桨距 风速测量
发电机 转速检测
并网开关
电网 变压器
并网
熔断器
控制系统
发电功率 其它控制
16
3.机组控制系统
控制系统功能要求:
1)根据风速信号自动进入启动状态或从电网自动切除; 2)根据功率及风速大小自动进行转速和功率控制; 3)根据风向信号自动对风; 4)根据电网和输出功率要求自动进行功率因数调整; 5)当发电机脱网时,能确保机组安全停机; 6)运行过程对电网、风况和机组的运行状况进行实时监测 和记录,处理; 7)对在风电场中运行的风力发电机组具有远程通信的功能; 8)具有良好的抗干扰和防雷保护措施。
(塔底急停)
(机舱急停)
Profibus ok
110S1 (振动)
110S2 (扭缆)
110K3 (叶轮超度)
110K4 (发电机超速)
110K5 (变桨安全链)
110K6 (看门狗动作)
110K7
110K8
110K9
(变桨安全链)
110KA (偏航系统安全链)
110KB (变流系统安全连)
安全链系统
直驱型变速恒频风力发电机组的结构示意图
10
2.双馈发电机
双馈异步发电机又称交流励磁发电机,具有定、转子两套绕组。定子结构与异 步电机定子结构相同,具有分布的交流绕组。转子结构带有集电环和电刷。与 绕线式异步电机和同步电机不同的是,转子三相绕组加入的是交流励磁,既可 以输入电能,也可以输出电能。转子一般由接到电网上的变流器提供交流励磁 电流,其励磁电压的幅值、频率、相位、相序均可以根据运行需要进行调节。 转子也可向电网馈送电能,即电机从两端(定子和转子)进行能量馈送,“双 馈”由此得名。
《风机控制系统培训》PPT课件
电网数据管理
培训ppt
5
系统设计(机舱)
培训ppt
6
系统设计(塔基)
培训ppt
7
QUEST公司控制系统
QUEST公司提供的风力发 电控制系统控制器
科若斯中心控制器
测量准确性高 经证实的高可靠性 经过标准工业总线系统的
输入/输出信号 简单快捷的配置 高效益的产品 Motorola MPC 555
风
远程通讯
纪录
历史
监视
报警
打印
场
控
风场监视控制系统支撑软件
制
变压器监视接入
风机本机监视接入
其它信号接入
DLS或类似接口接
入
风力发电机组控制算法
本 机
系统诊断 历史及数 及报警 据存储
HMI
通讯 接口
逻辑实现平台
控
制
实时网络操作系统平台
I/O模块通讯
Profi BUS 通讯
A I/O 通讯模式
机执 构行
柔性设计的控制系统以满足 不同用户需求
集成实时电网测量 易于扩展 远程软件升级
培训ppt
15
MITA的风力发电控制系统
培训ppt
16
MITA的风力发电控制系统
硬件设计特点
集成I/O及COM端口 满足风机控制的紧凑型设计 易于扩展 集成实时电网测量 友好的用户界面 基于MITA控制技术的控制系统网络 适用于不同规模的风场
培训ppt
23
GH的风场控制系统
培训ppt
24
远程对话单元(RIU) (Remote Interface unit (RIU))
统计分析(Statistical analysis)
培训ppt
5
系统设计(机舱)
培训ppt
6
系统设计(塔基)
培训ppt
7
QUEST公司控制系统
QUEST公司提供的风力发 电控制系统控制器
科若斯中心控制器
测量准确性高 经证实的高可靠性 经过标准工业总线系统的
输入/输出信号 简单快捷的配置 高效益的产品 Motorola MPC 555
风
远程通讯
纪录
历史
监视
报警
打印
场
控
风场监视控制系统支撑软件
制
变压器监视接入
风机本机监视接入
其它信号接入
DLS或类似接口接
入
风力发电机组控制算法
本 机
系统诊断 历史及数 及报警 据存储
HMI
通讯 接口
逻辑实现平台
控
制
实时网络操作系统平台
I/O模块通讯
Profi BUS 通讯
A I/O 通讯模式
机执 构行
柔性设计的控制系统以满足 不同用户需求
集成实时电网测量 易于扩展 远程软件升级
培训ppt
15
MITA的风力发电控制系统
培训ppt
16
MITA的风力发电控制系统
硬件设计特点
集成I/O及COM端口 满足风机控制的紧凑型设计 易于扩展 集成实时电网测量 友好的用户界面 基于MITA控制技术的控制系统网络 适用于不同规模的风场
培训ppt
23
GH的风场控制系统
培训ppt
24
远程对话单元(RIU) (Remote Interface unit (RIU))
统计分析(Statistical analysis)
风力发电原理(控制)教学课件
机舱
包含发电机和齿轮箱, 用于将风轮的机械能转
换为电能。
塔筒
支撑整个风力发电机组 ,提供所需的高度以捕
获更多风能。
控制系统
监控风力发电机组的运 行状态,确保其安全、
高效地运行。
风力发电机的工作原理
01
02
03
04
风能捕获
当风吹过风轮叶片时,叶片的 翼型剖面产生升力,使叶片旋
转。
机械能转换
风轮通过主轴和齿轮箱将旋转 的机械能传递给发电机。
生命周期成本
包括初始投资、运营和维护成 本在内的总成本。
03
CATALOGUE
控制系统的基本原理与技术
控制系统的基本概念与组成
控制系统定义
控制系统是一种通过输入、处理和输出等环节,实现某一特定目 标的闭环系统。
控制系统组成
控制系统通常由传感器、控制器、执行器和被控对象等部分组成。
控制系统的基本功能
风力发电机组的维护与检修
日常维护
定期检查风电机组及相关设备的运行状态,及时 发现并处理潜在故障。
定期检修
根据设备运行状况和维修周期,进行全面的检查 、测试和维修,确保设备正常运行。
备件管理
建立完善的备件管理体系,确保备件供应及时、 充足,降低设备维修成本。
风力发电与其他可再生能源的互补利用
风光互补
利用风能和太阳能的互补性,合理配置风光发电机组,提高能源 利用效率和可靠性。
多能互补
结合风能、太阳能、水能等多种可再生能源,构建多能互补发电 系统,实现能源的多元化和稳定性。
区域能源互联
加强区域内的能源互联互通,优化能源资源配置,提高可再生能 源的消纳能力和能源利用效率。
06
风力发电 ppt课件
提升风电并网性能
智能电网技术可以提升风电并网性能,解决风电间歇性问题,提高 电网稳定性。
促进能源互联网发展
智能电网与风力发电的融合发展可以促进能源互联网的发展,实现 能源的互联互通和优化配置。
绿色能源政策对风力发电的推动作用
政策支持力度加大
随着全球对气候变化和环境保护的重视程度不断提高,各 国政府纷纷出台绿色能源政策,加大对风力发电的支持力 度。
工作原理
性能参数
列出风力发电机组的主要性能参数, 如功率、效率、额定风速等,并解释 其含义和影响。
详细解释风力发电机组的工作原理, 包括风能捕获、能量转换和电能输出 等过程。
风力发电控制系统
01
02
03
控制策略
介绍风力发电系统的常用 控制策略,如最大功率跟 踪控制、恒速恒频控制等 。
控制系统组成
阐述风力发电控制系统的 基本组成,包括传感器、 控制器、执行器等。
提高风能利用率
高效能风电机组能够更好地捕捉风能,提高风能利用率,从而增 加发电量。
降低度电成本
高效能风电机组的发电效率更高,可以降低度电成本,使风电更 具竞争力。
保证风电稳定性
高可靠性风电机组可以保证风电的稳定性,减少设备故障和维护 成本。
智能电网与风力发电的融合发展
实现可再生能源的高效利用
智能电网技术可以实现可再生能源的高效利用,优化能源结构, 提高能源利用效率。
海上风力发电
定义
海上风力发电是指利用海洋上的风能资源建设大型风力发电设施 。
特点
海上风能资源丰富,风速稳定,发电量大,适合建设大型风电场。
案例
欧洲北海地区是全球最大的海上风力发电区域,其中英国、德国和 荷兰等国家在海上风电领域发展迅速。
智能电网技术可以提升风电并网性能,解决风电间歇性问题,提高 电网稳定性。
促进能源互联网发展
智能电网与风力发电的融合发展可以促进能源互联网的发展,实现 能源的互联互通和优化配置。
绿色能源政策对风力发电的推动作用
政策支持力度加大
随着全球对气候变化和环境保护的重视程度不断提高,各 国政府纷纷出台绿色能源政策,加大对风力发电的支持力 度。
工作原理
性能参数
列出风力发电机组的主要性能参数, 如功率、效率、额定风速等,并解释 其含义和影响。
详细解释风力发电机组的工作原理, 包括风能捕获、能量转换和电能输出 等过程。
风力发电控制系统
01
02
03
控制策略
介绍风力发电系统的常用 控制策略,如最大功率跟 踪控制、恒速恒频控制等 。
控制系统组成
阐述风力发电控制系统的 基本组成,包括传感器、 控制器、执行器等。
提高风能利用率
高效能风电机组能够更好地捕捉风能,提高风能利用率,从而增 加发电量。
降低度电成本
高效能风电机组的发电效率更高,可以降低度电成本,使风电更 具竞争力。
保证风电稳定性
高可靠性风电机组可以保证风电的稳定性,减少设备故障和维护 成本。
智能电网与风力发电的融合发展
实现可再生能源的高效利用
智能电网技术可以实现可再生能源的高效利用,优化能源结构, 提高能源利用效率。
海上风力发电
定义
海上风力发电是指利用海洋上的风能资源建设大型风力发电设施 。
特点
海上风能资源丰富,风速稳定,发电量大,适合建设大型风电场。
案例
欧洲北海地区是全球最大的海上风力发电区域,其中英国、德国和 荷兰等国家在海上风电领域发展迅速。
风力发电机组主控系统培训课件
二、 主控产品简介
3. 参数指标
目前三一主控系统的产品如表2.2所示
表2.2 三一主控系统型谱
产品名称 1.5MW陆上低温型风机主控系统 1.5MW陆上高原型风机主控系统 2.0MW陆上低温型风机主控系统 2.0MW-60Hz低温型风机主控系统 2.0MW海上型风机主控系统 3.0MW海陆兼容型风机主控系统 ...
21
品质改变世界
三、 主控产品组成部分(电气
电气组成
机舱柜主要有:
(1) 控制单元;(2) 低压器件;(3) 电源单 元; (4) 安全链系统;(5)防雷单元;(6) 通讯单元;(7) 监控单元
塔底柜主要有: (1) 电源单元 ; (2) 传感器单元 ; (3) 控制单元;(4) 监控单元;(5) 通讯单元
产品型号 SYK15L SYK15H SYK20L SYK20LE SYK20S SYK30S ...
13
品质改变世界
二、 主控产品简介
4. 功能介绍
风
风轮
传动链
当前桨距角
变桨系统
当前桨距角
给定的桨距角
核心功能 辅助功能
主控制器
发电机
变流器
测
量
的
转
速 转
矩
环境和设备 状态检测
远程通讯/ 人机交互
日志、报警 和故障处理
• 外部通讯是指主控与远端数据 服务器,多个风机控制器之间 的数据传输,通常使用 EtherNET TCP/IP(局域网络) 实现。
图3.2 主控系统产品实物
22
品质改变世界
三、 主控产品组成部分(电气
配电线路图
图3.3 主控系统配电线路示意图 23
品质改变世界
风力发电机ppt课件
偏航驱动装置偏航驱动电动机一般选用转速较高体积小的电动机但由于偏航驱动所要求的输出转速又很低多采用多级行星轮系传动以实现大速比紧凑型传动的要求以满足偏航动作要偏航驱动电机偏航驱动电机偏航减速器偏航减速器21偏航制动装置风机机械液压系统对偏航刹车的控制偏航系统未工作时刹车片全部抱闸机舱不转动
1
目录
1
主轴起支承轮毂及叶片,传递扭矩到增 速器的作用,主轴轴承主要承受径向力, 其性能的好坏不仅对传递效率有影响, 而且也决定了主传动链的维护成本,所 以要求具有良好的调心性能、抗振性能
11
和运转平稳性。
风电机组齿轮箱
齿轮箱是风电机组传动系统中的主要部
件,需要承受来自风轮的载荷,同时要
承受齿轮传动过程产生的各种载荷。需
30
雷电保护装置
雷电保护爪主要由三部分组成,按照安装顺序从上到下 依次是垫片压板,碳纤维刷和集电爪。
31
雷电保护装置
雷电保护装置在变桨装 置中的具体位置见右图, 在大齿圈下方偏左一个 螺 栓 孔 的 位 置 装安第装位一置 个 工保作护原理爪,然后120度等分 安装另外两个雷电保护 爪。 雷电保护装置可以有效的将作用在轮毂和叶片上的电流通过集电爪导到地面,
偏航驱动部件一般由电动机、大速比减速机和开式齿轮传动副组成,通过法兰连接安
装在主机架上。
偏航驱动电机
根据传动比要求,偏航减速器通常需 要采用3-4级行星轮传动方案,继承了行星 齿轮传动平稳的优点。
偏航驱动电动 机一般选用转 速较高体积小 的电动机但由 于偏航驱动所
偏航减速器 21
偏航系统相关部件
偏航制动装置
最此后外风还机需采要用一机个械冗刹余车限 系位统开使关叶(轮用停于止95转°动限。
1
目录
1
主轴起支承轮毂及叶片,传递扭矩到增 速器的作用,主轴轴承主要承受径向力, 其性能的好坏不仅对传递效率有影响, 而且也决定了主传动链的维护成本,所 以要求具有良好的调心性能、抗振性能
11
和运转平稳性。
风电机组齿轮箱
齿轮箱是风电机组传动系统中的主要部
件,需要承受来自风轮的载荷,同时要
承受齿轮传动过程产生的各种载荷。需
30
雷电保护装置
雷电保护爪主要由三部分组成,按照安装顺序从上到下 依次是垫片压板,碳纤维刷和集电爪。
31
雷电保护装置
雷电保护装置在变桨装 置中的具体位置见右图, 在大齿圈下方偏左一个 螺 栓 孔 的 位 置 装安第装位一置 个 工保作护原理爪,然后120度等分 安装另外两个雷电保护 爪。 雷电保护装置可以有效的将作用在轮毂和叶片上的电流通过集电爪导到地面,
偏航驱动部件一般由电动机、大速比减速机和开式齿轮传动副组成,通过法兰连接安
装在主机架上。
偏航驱动电机
根据传动比要求,偏航减速器通常需 要采用3-4级行星轮传动方案,继承了行星 齿轮传动平稳的优点。
偏航驱动电动 机一般选用转 速较高体积小 的电动机但由 于偏航驱动所
偏航减速器 21
偏航系统相关部件
偏航制动装置
最此后外风还机需采要用一机个械冗刹余车限 系位统开使关叶(轮用停于止95转°动限。
风力发电机PPT课件
整流器 转子励磁绕组 定子三相绕组
励磁调节器
蓄电池组
2024/1/12
图3-18硅整流自励式交流同步发电机电路原理图
第30页/共119页
(4)电容自励式异步发电机
电容自励式异步发电机是在异步发电机定子绕组的输出端接上电
容,以产生超前于电压的容性电流建立磁场,从而建立电压。其电路
示意图如下图所示。
A B
2024/1/12
第34页/共119页
2024/1/12
第35页/共119页
2024/1/12
双馈异步发电机工作原理:
异步发电机中定、转子电流产生的旋转磁场始终是相对静止的,当
发电机转速变化而频率不变时,发电机转子的转速和定、转子电流的频
率关系可表示为:
f1
p n 60
f2
式中
f1——定子电流的频率(Hz),f1=pn1/60,n1 为同步转速;
风力等级与风速的关系: N 0.1 0.824N 1.505
式中 VN——N级风的平均风速(m/s); N——风的级数。
2024/1/12
第10页/共119页
4、风能
(1) 风能密度,空气在一秒钟内以速度ν流过单位面积产生的动
能。
E 0.5 3
表达式为:
(2) 风能,空气在一秒钟时间内以速度ν流过面积为S截面的动能。
SSW S
SSE
2024/1/12
第9页/共119页
2、风速
由于风时有时无、时大时小,每一瞬时的速度都不相同,所以 风速是指一段时间内的平均值,即平均风速。
3、风力
风力等级是根据风对地面或海面物体影响而引起的各种现象, 按风力的强度等级来估计风力的大小。国际上采用的为蒲福风级, 从静风到飓风共分为13个等级。
励磁调节器
蓄电池组
2024/1/12
图3-18硅整流自励式交流同步发电机电路原理图
第30页/共119页
(4)电容自励式异步发电机
电容自励式异步发电机是在异步发电机定子绕组的输出端接上电
容,以产生超前于电压的容性电流建立磁场,从而建立电压。其电路
示意图如下图所示。
A B
2024/1/12
第34页/共119页
2024/1/12
第35页/共119页
2024/1/12
双馈异步发电机工作原理:
异步发电机中定、转子电流产生的旋转磁场始终是相对静止的,当
发电机转速变化而频率不变时,发电机转子的转速和定、转子电流的频
率关系可表示为:
f1
p n 60
f2
式中
f1——定子电流的频率(Hz),f1=pn1/60,n1 为同步转速;
风力等级与风速的关系: N 0.1 0.824N 1.505
式中 VN——N级风的平均风速(m/s); N——风的级数。
2024/1/12
第10页/共119页
4、风能
(1) 风能密度,空气在一秒钟内以速度ν流过单位面积产生的动
能。
E 0.5 3
表达式为:
(2) 风能,空气在一秒钟时间内以速度ν流过面积为S截面的动能。
SSW S
SSE
2024/1/12
第9页/共119页
2、风速
由于风时有时无、时大时小,每一瞬时的速度都不相同,所以 风速是指一段时间内的平均值,即平均风速。
3、风力
风力等级是根据风对地面或海面物体影响而引起的各种现象, 按风力的强度等级来估计风力的大小。国际上采用的为蒲福风级, 从静风到飓风共分为13个等级。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同步发电机
机侧 变流器
DC
网侧 变流器
主回路 断路器
变流控制器
主轴承 同步发电机
制动器
变桨 机构
风机主控器
10...24 kV, f = 50 Hz
变压器
开关设备
并网运行风力发电机组中的发电机
双馈异步发电机
结构: 由一台带集电环的绕线转子异步发电机和变频器组成
原理:定、转子电流产生的旋转磁场始终是相对静止的,当发电机 转速变化而频率不变时,发电机的转子的转速和定、转子电流的频 率关系可表示为:
由于风向经常变化,为了有效的利用风能,在风机上装有 迎风装置。 迎风装置根据风向传感器测得的风向信号, 由控制器控制偏航电机,驱动与塔架上大齿轮相啮合的小 齿轮转动,使机舱始终对准风向方向。
风力机的气动原理
风车简化为一维流管:
一维动量方程,风轮轴向推力:
T U U w A d U d
额定转速以上的恒功率控制 当风速过高时,通过调节桨叶角,改变风力发电机组获得的空气动力 转矩,使功率输出保持在额定值附近。
并网型风力发电机组功率调节控制
传统变桨距风力发电机组的控制系统
功率给定 转速给定
发电机功率Fra bibliotek功率控制器
节距
变距
控制器
机构
速度
控制器
发电机转速
风轮
增速 齿轮箱
dU d2pd
1 2W U W 2pW1 2dU d2pd
TA *p d p d
U dU U W 2
风力机的气动原理
风机损失的能量:
轴向诱导因子 风轮处速度
ava U
U dU 1a
风轮尾流速度
U WU 12a
发电机
双馈异步发电机
主回路断路器
齿轮箱
制动器 异步发电机
机侧 变流器
网侧 变流器
主轴承
变桨 机构
变流控制器
10...24 kV, f = 50 Hz or 60 Hz
变压器 开关设备
风机主控器
风力发电机组的控制策略
控制目标: 保证系统的可靠运行 能量利用率最大 电能质量高 机组寿命长 常规控制功能: 在运行的风速范围内,确保系统的稳定运行 低风速时,跟踪最佳叶尖速比,获取最大能量 高风速时,限制风能的捕获,保持风力发电机组输出的功率为额定值 减小阵风引起的转矩波动峰值,减小风轮的机械应力和输出的功率波
f1
pn 60
f2
当发电机的转速 n变化时,可通过调节 f2 来维持 f1 不变,以保证与 电网频率相同,实现变速恒频控制。
并网运行风力发电机组中的发电机
三种运行状态
a) 亚同步 n n1 s0
b) 超同步 c) 同步 功率分析
n n1 s0 n n1 f2 0
不计损耗时: p 1p em (1 s)p em sep m
风力机的气动原理(叶素理论)
作用在叶素上的合力流速为: W U 2(1 a )2 2 r2(1 a ')2
其中是合力流与旋转平面的夹角,可以称之为入流角。
sinU(1a)
W
cosr(1a')
W
风力机的气动原理(叶素理论)
攻角 可表示为:
Ta
感应
Te*
*
滞后
Tm
控制器
Te*
变流器 及发电机
转速
r / v
传动系统 动态特性
Tm Te
风速
K
opt
控制系统设计
控制系统设计原则
安全、可靠 最大功率追踪 控制器易于扩展 便于维护
控制系统
塔底柜 机舱柜 变距系统 变流器 滑环 水冷系统
结构:桨叶与轮毂的连接是固定的,桨距角固定不变,当风速变化时 ,桨叶的迎风角度不能随之变化。在风速超过额定风速后利用桨叶翼 型本身的失速特性,维持发电机的输出功率在额定值附件。为了提高 风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机) 。在低风速段运行的,采用小电机使桨叶具有较高的气动效率,提高 一些发电机的运行效率。 优点:失速调节简单可靠,没有变距机构。 缺点:叶片形成工艺复杂,机组整体效率低。
作用在单位圆环径向宽上的升力分量r ,与合力流方向垂直,
表达式为:
L12W2cCLrr
阻力分量与合力流W方向平行,表达式为:
D12W2cCdrr
发电系统基础理论
独立运行风力发电机组中的发电机
直流发电机
永磁式直流发电机: 定子采用永磁体 电磁式直流发电机: 定子采用励磁绕组,通以直流电
opt
K
风速
气动 Ta
转矩
r / v
感应 Tm
滞后
Te
其中 Ta12C T,r3v2
Te Te*B
传动系统 动态特性
转速
变流器及
Te*
发电机
Te* K 2
变速恒频风力发电机组的控制策略
直接速度控制
气动 转矩
传动轴转矩
1
* (Tm / K 2 )
并网运行风力发电机组中的发电机
异步发电机
结构:定子为三相绕组,采用星形或角形链接,转子为笼型或绕线形, 定子绕组并连电容器来提供无功电流建立磁场,一般为4极或6极。
原理: 同步转速:
n1
60 f1 P
转差率:
s n1 n n1
当 n n1 时,电机工作在电动状态
当 n n1 时,电机运行在发电状态(一般 0.0 2s 0.0)5
轮毂内 ,3个 滑环 ,RS 485 通讯 塔底控制柜
电量采集 风场通讯
监控系统
液压系统
功能: 控制偏航刹车和机械转子主动刹车。
组成: 油箱:液位指示 油泵:柱塞泵、电机 滤油单元 转子刹车阀组 偏航刹车阀组
并网型风力发电机组功率调节控制
定桨距风力发电机组的控制。 高风速用4极大发电机,低风速用6极小发电机。依据平均或瞬时功率 做切换条件。
定桨距风力发电机组的控制系统结构
并网型风力发电机组功率调节控制
变桨距风力发电机组的调节与控制 通过变桨距机构改变叶片桨距角的大小,改善气动性能和功率特性。 变桨距调节的3个过程:启动时的转速控制、额定转速以下的控制、 额定转速以上的控制。
并网运行风力发电机组中的发电机
同步发电机
结构:定子由定子铁心和三相定子绕组组成,转子由转子铁心、转子 绕组、集电环和转子轴组成,转子上的励磁绕组经集电环、电刷与直 流电源相连,通以直流励磁电流来建立磁场,转子分凸极式和隐极式
原理:同步发电机在风力机的拖动下,转子以转速 n旋转,旋转的转
全功率变流器
3000kW 690V +/-0.975 水冷 2460X2300X640 IP54 2500kg Canopen
滑环
信号列表:变距系统电源、通讯、 控制信号 耐压、电流冲击电气性能等; 防护等级:IP54 设计寿命:7000万转
主控系统
机舱控制柜
传感器等
ACS 867
以太光纤 EtherCan 通讯
一维不可压缩流的连续方程:
V * A const.
伯努力方程:
1U2pghcon. st
2
T U U w A d U d
风力机的气动原理
在风机上游: 在风机下游: 风机上获得的推力: 风轮盘面气流速度:
1
2
U 2p1 2
动,避免共振 减小功率传动链的暂态响应 控制器简单,控制代价小 调节机组功率,确保机组输出成电压和频率稳定
并网型风力发电机组功率调节控制
风力机的功率调节 风力机的调节是气动功率调节技术,其方式有定桨失速调节、变桨调 节、主动失速调节。
定桨距失速风力发电机组的调节与控制 定桨距失速调节
启动时的转速控制 在发电机并入电网前,变桨距系统的桨距角给定值由发电机的转速信 号控制,转速调节器按一定的速度上升斜率给出速度参考值。变桨系 统根据给定的速度参考值与反馈信号比较来调整桨距角,进行速度闭 环控制。
额定转速以下的控制 在发电机并王后,当风速低于额定风速时,发电机在欠功率状态下运 行,通过调节功率给定值来调整风机转速。
子磁场切割定子上的三相对称绕组,在定子绕组中产生频率为 f1 的三 相对称的感应电动势和电流输出。
f1
pn 60
pn1 60
为了保证输出频率与电网频率一致,发电机转速必须恒定,因此对调 速机构有很高的要求。为了改善这一点,出现了低速永磁同步发电机 ,并通过全功率变流器与电网联接。
并网运行风力发电机组中的发电机
永磁式交流同步发电机:转子采用永磁体,有凸极式和爪极式两种, 定子与普通交流电机相同
硅整流自励式交流同步发电机:定子由铁心和三相定子绕组组成,定 子绕组为星型联接,转子由转子铁心、转子绕组、集电环和转子轴组 成,励磁绕组通过集电环和电刷与整流器的直流输出端相连,以后的 直流电流励磁
电容自励式异步发电机: 在异步发电机定子绕组输出端接电容,以产 生超前于电压的容性电流产生磁场,从而建立电压
垂直轴风机:风轮的旋转轴与地面或气流方向垂直
(1)
(2)
(3)
风机的分类
按运行方式分 独立运行风力发电机组 并网运行风力发电机组
按功率分:微型(50~1000W) 小型(1~10KW) 中型(10~100KW) 大型(>100KW)
风力发电机的结构
独立运行的风力发电机组 水平轴独立运行的风力发电机组由 风轮、尾舵、发电机、支架、 电缆、充电器、逆变器、蓄电池组成