九年级数学上册期中复习知识点整理
九年级上数学期中考知识点
九年级上数学期中考知识点九年级上学期的数学课程涵盖了许多知识点,这些知识点对学生的数学学习和思维能力的培养非常重要。
在本篇文章中,我们将介绍九年级上学期的一些数学知识点,以帮助学生更好地准备期中考试。
一、代数表达式与方程式代数学是数学的重要组成部分。
学习代数可以帮助学生更好地理解和解决实际问题。
在九年级上学期,学生将学习代数表达式和方程式的概念及其运算法则。
他们需要熟悉代数表达式的基本形式,如一元一次多项式和二元一次多项式,并能够对表达式进行合并,分解和因式分解。
此外,学生还需要学习方程式的基本概念,如线性方程和一元二次方程,并能够使用适当的方法解决方程。
二、几何与图形几何学是数学中的另一个重要分支,它与形状,结构,空间和变换相关。
在九年级上学期,学生将通过学习几何相关的概念和原理来提高空间思维能力。
他们将学习几何中的基本概念,如点,线,面,角以及正方形,长方形,圆形等图形的性质。
此外,学生还需要了解三角形的性质和计算方法,以及平面图形和立体图形的体积与表面积计算。
三、函数和统计函数是九年级上学期的另一个重点内容。
学生将学习函数的概念,如自变量和因变量的关系,并掌握函数的图像与表达式之间的转化方法。
他们将学习线性函数,二次函数和反比例函数,并能够对函数进行图像、表格和公式的应用。
此外,统计学也是九年级上学期的重点之一。
学生将学习如何分析和利用各种统计数据,如频率表,直方图和折线图。
他们还需要掌握统计数据的集中趋势测量和离散程度测量方法。
四、概率与数理统计概率与数理统计是数学学科的重要组成部分,对学生培养数学思维和逻辑推理能力有很大帮助。
在九年级上学期,学生将学习概率的基本概念,如样本空间,事件和概率计算方法。
他们将学习如何通过计算来确定随机事件的概率,并能够应用概率解决实际问题。
此外,学生还将学习数理统计的基本知识,如频率与频率分布,抽样方法和统计推断。
总结起来,九年级上学期的数学课程涉及了代数表达式与方程式,几何与图形,函数与统计,概率与数理统计等多个知识点。
数学九年级期中上册知识点
数学九年级期中上册知识点【导语】学习是一架保持安稳的天平,一边是付出,一边是收获,少付出少收获,多付出多收获,不劳一定无获!要想获得理想的成绩,勤奋至关重要!只有勤奋学习,才能成绩美好人生!勤奋出天才,这是一面永不褪色的旗帜,它永久鼓励我们不断寻求、不断探索。
有书好好读,有书赶快读,读书的时间不多。
只要我们刻苦拼搏、一心向上,就一定能获得令人中意的成绩。
下面是作者为您整理的《数学九年级期中上册知识点》,仅供大家参考。
1.数学九年级期中上册知识点一元二次方程1、认识一元二次方程只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0(a、b、c为常数,a≠0)的情势,这样的方程叫一元二次方程。
把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一样情势,a为二次项系数;b为一次项系数;c为常数项。
2、用配方法求解一元二次方程①配方法配方法解一元二次方程的基本步骤:把方程化成一元二次方程的一样情势;将二次项系数化成1;把常数项移到方程的右边;两边加上一次项系数的一半的平方;把方程转化成的情势;两边开方求其根。
3、用公式法求解一元二次方程②公式法(注意在找abc时须先把方程化为一样情势)4、用因式分解法求解一元二次方程③分解因式法把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
(主要包括“提公因式”和“十字相乘”)5、一元二次方程的根与系数的关系①根与系数的关系:当b2-4ac>0时,方程有两个不等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程无实数根。
②如果一元二次方程ax2+bx+c=0的两根分别为x1、x2,则有:③一元二次方程的根与系数的关系的作用:已知方程的一根,求另一根;不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:已知方程的两根x1、x2,可以构造一元二次方程:x2-(x1+x2)x+x1x2=0已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根6、运用一元二次方程在利用方程来解运用题时,主要分为两个步骤:设未知数(在设未知数时,大多数情形只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面推敲);寻觅等量关系(一样地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
九上数学期中考试考点说明
九上数学期中考试考点说明
1、一元二次方程的根
2、中心对称点的坐标(横纵坐标互为相反数)
3、根与系数的关系(和-a b ,积a
c 4、一元二次方程根的判别式(b 2-4ac )
5、抛物线的顶点)442b (2
a
b a
c a -,- 6、一元二次方程配方
7、抛物线的对称轴
8、一元二次方程的实际应用(增长率问题)
9、二次函数的对称性、增减性(特殊值法,与对称轴的横向距离)
10、旋转计算
11、一元二次方程的解
12、一元二次方程的实际应用(传染病问题)
13、二次函数的图像与坐标轴交点的个数
14、旋转计算
15、二次函数的平移(解析式变形:上加下减,左加右减)
16、求极值(作对称点)
17、解方程
18、求二次函数解析式及一次函数与二次函数图像交点(定点问题)
19、一元二次方程的实际应用(封面问题)
20、求二次函数解析式、函数的顶点、与坐标轴的交点
21、网格中旋转画图、计算
22、旋转画图证明(模拟卷原题)(尺规作图)
23、运用二次函数解决实际应用问题:注意分段函数
24、二次函数与几何综合题。
九年级数学上册期中备考策略及示例分析
九年级数学上册期中备考策略及示例分析九年级数学上册期中测试答题(新华师大版)通常会覆盖该学期前半部分的重要知识点,包括但不限于代数、几何、概率与统计等多个方面。
以下是一些可能的考试重点、答题技巧以及示例题目分析,以帮助学生更好地准备考试。
一、考试重点1.代数部分o一元二次方程的解法(因式分解法、配方法、公式法)o一元二次方程根的判别式o二次函数的性质及其图像o分式方程与无理方程的解法o二次根式的化简与运算2.几何部分o相似三角形的性质与判定o特殊四边形的性质(平行四边形、矩形、菱形、正方形)o圆的性质(切线性质、垂径定理、圆周角定理)o三角形的全等与相似证明3.概率与统计o简单事件的概率计算o统计图表的理解与分析(条形图、折线图、扇形图、直方图)o数据的集中趋势与离散程度(平均数、中位数、众数、方差)二、答题技巧1.审题仔细o仔细阅读题目,明确题目要求,注意题目中的每一个条件和细节。
2.先易后难o按照从易到难的顺序答题,先做简单的题目,再攻克难题,以免在难题上花费过多时间而影响整体成绩。
3.合理分配时间o合理安排每道题目的答题时间,避免在某一题目上花费过多时间而导致其他题目来不及做。
4.注意步骤清晰o在解答题和证明题中,注意步骤的清晰性和逻辑性,确保每一步都有理有据。
5.检查答案o完成所有题目后,预留一定时间进行检查,确保答案的准确性和完整性。
三、示例题目分析选择题示例题目:一元二次方程x2−5x−6=0的根是()A. x1=1,x2=6B. x1=2,x2=3C. x1=1,x2=−6D. x1=−1,x2=6分析:1.识别题型:这是一道一元二次方程的求解问题。
2.解题方法:采用因式分解法。
将原方程x2−5x−6=0分解为(x−6)(x+1)=0。
3.求解:根据因式分解结果,得到x−6=0或x+1=0,解得x1=6,x2=−1。
4.匹配选项:根据求解结果,选择正确答案A(注意:实际答案应为D,因为示例题目中的选项顺序可能与实际不符,这里仅作演示)。
初三上学期期中考试数学考点
初三上学期期中考试数学考点数学,有学习、学问、科学之意。
古希腊学者视其为哲学之起点,“学问的基础”。
即便在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。
今天作者在这给大家整理了一些初三上学期期中考试数学考点,我们一起来看看吧!初三上学期期中考试数学考点1、“三线八角”:两条直线被第三条直线所截而成的八个角。
其中,同位角:位置相同,及同旁和同规;内错角:内部,两旁;同旁内角:内部,同旁。
2、平行线的判定方法:1)同位角相等,两直线平行2)内错角相等,两直线平行3)同旁内角互补,两直线平行3、平行线的性质:1)两直线平行,同位角相等2)两直线平行,内错角相等3)两直线平行,同旁内角互补4、三角形的分类:1)按角分:锐角三角形、直角三角形、钝角三角形2)按边分:等腰三角形、不等边三角形5、三角形的性质:1)三角形中任意两边之和大于第三边,任意两边只差小于第三边2)三角形内角和为180o3)三角形外角等于与之不相邻的两个内角的和6、三角形中的主要线段:1)三角形的中位线:连接三角形两边中点的线段中位线性质:中位线平行于第三边,且等于第三边的一半。
2)三角形的中线、高线、角平分线都是线段7、等腰三角形的性质和判定:1)等腰三角形的两个底角相等2)等腰三角形底边上的高、中线、顶角的角平分线相互重合,简称三线合一3)有两个角相等的三角形是等腰三角形8、等边三角形的性质和判定:1)等边三角形每个角都等于60o,同样具有三线合一的性质2)三个角相等的三角形是等边三角形;三边相等的三角形是等边三角形;一个角等于60o的等腰三角形是等边三角形9、直角三角形的性质和判定:1)直角三角形两个锐角和为90o(互余)2)直角三角形中30o所对的直角边等于斜边的一半3)直角三角形中,斜边的中线等于斜边的一半4)勾股定理:直角三角形中,两直角边的平方和等于斜边的平方5)勾股定理的逆定理:若一个三角形中,有两边的平方和等于第三边的平方,则这个三角形是直角三角形10、全等三角形:1)对应边相等,对应角相等的三角形叫全等三角形2)全等三角形的判定方法:SSS、SAS、ASA、AAS、HL【视察这五种方法发觉,要证三角形全等,至少要有一组相等的边,因此在运用是要养成先找边的习惯】3)全等三角形的性质:全等三角形的对应边、对应角、面积、周长、对应高、对应中线、对应角平分线都相等11、分析、证明几何题的常用方法:1)综合法(由因导果):从命题的题设动身,通过一系列的有关定义、公理、定理的运用,逐渐向前推动,知道问题解决2)分析法(执果索因):从命题的结论动身,不断寻觅使结论成立的条件,直到已知条件3)两头凑法:将分析法和综合法合并使用,比较起来,分析法利于摸索,综合法适宜表达,因此在实际摸索问题时,可合并使用灵活处理。
人教版九年级数学上册期中考试知识点总结
人教版九年级数学上册期中考试知识点总结第二十一章一元二次方程21。
2 一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
注意一下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二一元二次方程的一般形式一般形式:ax2 + bx + c = 0(a ≠ 0)。
其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.方程的解的定义是解方程过程中验根的依据.21。
2 降次—-解一元二次方程21。
2。
1 配方法知识点一直接开平方法解一元二次方程(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a.(2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p ≥0,就可以利用直接开平方法。
(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:一移、二除、三配、四开。
(1) 把常数项移到等号的右边;(2) 方程两边都除以二次项系数(二次项系数不为1);(3) 方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4) 若等号右边为非负数,直接开平方求出方程的解。
九年级上册期中科目知识点
九年级上册期中科目知识点数学:1. 小数与分数的相互转化2. 分数的加减乘除运算3. 代数式的计算和化简4. 一元一次方程的解法5. 图形的平移、旋转与翻折6. 直角三角形的性质和求解7. 平行线与梯形的性质8. 统计图表的制作与分析语文:1. 诗歌等韵文的鉴赏和朗读2. 记叙文的基本结构和写作技巧3. 议论文的论证和观点表达4. 小说的人物形象与情节分析5. 古代文学名篇的理解和评析6. 信息阅读与总结归纳7. 知名作家及其作品的了解英语:1. 动词时态的正确使用和变化规则2. 句型转换与句子拼接3. 阅读理解的技巧和答题方法4. 书面表达的写作要点和结构5. 听力材料的听写和理解6. 单词的拼写和词汇运用7. 表达观点和建议的口语表达物理:1. 力、压强和密度的概念及计算2. 机械功与机械效率3. 光的传播和折射规律4. 音的传播和反射特性5. 电路的基本元件和电流规律6. 简单机械和杠杆原理7. 科学实验的设计和操作化学:1. 常见物质的性质和分类2. 元素与化合物的认识与命名3. 反应物与生成物的鉴别4. 酸、碱和盐的概念及性质5. 化学方程式的写法和平衡6. 金属和非金属元素的区分7. 实验操作的安全措施生物:1. 细胞结构和生命活动2. 遗传与进化的基本概念3. 物种多样性和生态系统4. 动植物的形态特征和分类5. 呼吸、循环和消化等生理功能6. 常见的传染病和预防措施7. 环境保护与生物资源利用历史:1. 文化传承与历史演变2. 古代文明以及世界古代史3. 中国古代史和近代史4. 世界近代史和二战历史5. 社会主义建设和改革开放6. 跨世纪的全球化和互联网时代地理:1. 自然地理的基本概念及要素2. 世界地理区域与国际关系3. 中国的自然地理和经济特点4. 世界人口与城市发展5. 地球资源的分布和利用6. 环境问题与可持续发展以上是九年级上册期中考试的科目知识点,希望你能够熟练掌握并取得优异成绩!。
九年级数学上册期中知识点
九年级数学上册期中知识点数学作为一门精密而抽象的科学,是培养学生逻辑思维和解决问题的能力的重要工具。
九年级数学上册期中考试是学生对前几个月所学知识的一次综合检验。
在这篇文章中,将会针对九年级数学上册期中考试中的几个关键知识点进行讨论和分析。
一、代数与函数在九年级数学上册期中考试中,代数与函数是一个重要的知识点。
学生需要掌握代数运算中的四则运算法则,包括加法、减法、乘法和除法。
特别需要注意的是乘除法中的整式的乘法运算,要善于运用因式分解、配方法和分配律等原理进行计算。
另外,在函数的求值和函数图像的表示方面也是需要注意的。
学生需要通过曲线图来观察函数的变化规律,并能够根据给定的函数关系式计算函数的值。
二、图形与空间几何图形与空间几何是九年级数学上册期中考试中的又一个重要知识点。
学生需要了解图形的分类和性质,掌握几何图形的名称、特征和判定方法。
例如,正方形的特点是四条边相等且四个角都是直角,三角形的分类根据边的长短和角的大小进行划分。
此外,学生还需要能够灵活运用勾股定理、相似三角形和平行四边形的性质解决实际问题。
三、数据与统计数据与统计是九年级数学上册期中考试中的第三个重要知识点。
学生需要理解统计学的基本概念和方法,能够对一组数据进行整理、分析和描述。
掌握平均数的计算方法以及如何绘制直方图和折线图是必不可少的。
此外,学生还需要能够正确解读统计图表,理解数据的分布特征和变化趋势。
四、概率与统计概率与统计是九年级数学上册期中考试中的最后一个重要知识点。
学生需要了解概率的基本概念和性质,如样本空间、事件和概率的计算方法等。
另外,学生还需要会计算排列组合和二项分布的概率,掌握求解生日问题和赌博问题的方法。
总结起来,九年级数学上册期中考试中的知识点包括代数与函数、图形与空间几何、数据与统计以及概率与统计。
学生要善于灵活运用所学知识解决实际问题,通过做题、复习和总结来加强自己的理解和掌握程度。
数学是一门需要探索和思考的学科,只有不断地学习和实践,才能掌握好这门学科。
九年级期中数学必考知识点
九年级期中数学必考知识点
一、有理数
1. 整数和分数的概念及运算规则
2. 有理数的比较和大小关系
二、代数式与方程式
1. 代数式的定义和基本操作
2. 一元一次方程的解法及实际应用
3. 一次函数与一元一次方程的关系
三、图形的性质和变换
1. 平面图形的基本概念:点、直线、线段、角
2. 三角形的性质及分类
3. 相似三角形的性质和判定
4. 平行线的性质及判定
四、比例与百分数
1. 比例的概念及解题方法
2. 百分数的概念和基本运算
3. 利息和利率的计算
五、数据的统计与概率
1. 统计图表的读取和分析
2. 常见统计指标的计算:平均数、中位数、众数
3. 概率的基本概念和计算方法
六、平面几何与空间几何
1. 平面图形的面积和周长的计算方法
2. 三维图形的表面积和体积的计算方法
3. 平行四边形的性质及计算
4. 球的表面积和体积的计算方法
七、函数与图像
1. 函数的概念和性质
2. 一元一次函数的图像和性质
3. 二次函数的图像和性质
以上是九年级期中数学必考知识点的详细内容。
掌握了这些内容,你就能在数学考试中更加游刃有余地解答问题。
希望你认真学习,加油!。
九年级上册数学知识点总结归纳
九年级上册数学知识点总结归纳一、一元二次方程。
1. 定义。
- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。
一般形式为ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
2. 一元二次方程的解法。
- 直接开平方法。
- 对于方程x^2=p(p≥0),解得x=±√(p)。
例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。
- 配方法。
- 步骤:先将方程化为ax^2+bx = - c的形式,然后在方程两边加上一次项系数一半的平方((b)/(2a))^2,将左边配成完全平方式(x+(b)/(2a))^2,再用直接开平方法求解。
例如对于方程x^2+6x - 7 = 0,移项得x^2+6x = 7,配方得x^2+6x+9 = 7 + 9,即(x + 3)^2=16,解得x = 1或x=-7。
- 公式法。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。
其中b^2-4ac叫做判别式,记作Δ。
当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。
例如方程2x^2-3x - 2 = 0,其中a = 2,b=-3,c = - 2,Δ=(-3)^2-4×2×(-2)=9 + 16 = 25>0,则x=(3±√(25))/(4)=(3±5)/(4),解得x = 2或x=-(1)/(2)。
- 因式分解法。
- 把方程化为一边是零,另一边是两个一次因式积的形式,然后使每个因式分别为零,从而求出方程的解。
例如方程x^2-3x+2 = 0,因式分解得(x - 1)(x - 2)=0,则x - 1 = 0或x - 2 = 0,解得x = 1或x = 2。
九年级上册数学各章节知识点总结(最新最全)
九年级上册数学各章节知识点总结(最新
最全)
1. 有理数与整式有理数与整式
- 有理数的概念及表示方法
- 有理数的大小比较
- 有理数的加法、减法、乘法、除法运算法则
- 整式的定义和基本运算
2. 方程与不等式方程与不等式
- 一元一次方程的概念、解法及应用
- 恒等方程和条件方程
- 一元一次不等式的概念及解法
- 一元一次方程与不等式的综合应用
3. 函数与图像函数与图像
- 函数的概念及表示
- 函数的增减性和奇偶性
- 函数的概率和函数的平移、翻折、对称变换
- 函数图像的特点和简单的函数图像绘制
4. 图形的性质图形的性质
- 平行线与相交线
- 三角形的定义及分类
- 三角形的性质与判定
- 常见四边形的性质及判定
5. 相似与全等相似与全等
- 相似的概念及相似三角形的判定
- 相似比的计算
- 全等的概念及全等三角形的判定
- 全等三角形的性质和应用
6. 三角函数三角函数
- 角的概念及角的度量
- 反义函数、同角三角函数特殊值
- 三角函数的图像
- 三角函数的性质及简单的计算与应用7. 圆圆
- 圆的定义和性质
- 圆上的弧和弦
- 切线与圆的位置关系
- 圆的周长和面积的计算
以上是九年级上册数学各章节知识点的总结,请根据具体情况进行查阅和复习。
九年级数学上册期中复习知识点
九年级数学上册期中复习知识点第一章 反比例函数(一)反比例函数 1.一般形式:(),也可以写成()的形式,注意:自变量x 的指数为,比例系数2.()也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式; (二)反比例函数的图象与性质 1.函数解析式:()2.自变量的取值范围:3.图象: (1)图象的形状:双曲线,越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:自变量,函数图象与x 轴、y 轴无交点,两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象关于原点对称,若(a ,b )在双曲线的一支上,(,)在双曲线的另一支上. 图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,)在 双曲线的另一支上.4、反比例函数y =kx(k ≠0)中比例系数k 的意义: (1)代数意义:双曲线上任一点的两坐标之积等于比例系数k , 即P (),b a 在双曲线y =kx上⇔k=xy (2)k 的几何意义: 如图1,设点P (a ,b )是双曲线上任意一点, 图1作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则则k S OAPB =矩 ,=AOP S ▲k S BOP 21▲=如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在 双曲线上,作QC ⊥PA 的延长线于C ,则有K S PQC 2▲=图2 5.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(三)反比例函数的应用 1、求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2、反比例函数与一次函数的联系.3、充分利用数形结合的思想解决问题.第二章 一元二次方程(一)一元二次方程1、只含有一个未知数且未知数的最高次数为2的整式方程,叫一元二次方程。
九年级上册数学复习知识点
九年级上册数学复习知识点一、代数与方程式1. 一元一次方程式1.1 解一元一次方程式的基本方法1.2 利用一元一次方程式解实际问题2. 二元一次方程式2.1 消元法解二元一次方程式2.2 代入法解二元一次方程式2.3 应用解二元一次方程式的方法解实际问题3. 不等式3.1 线性不等式的解及图示3.2 用不等式表示实际问题,并求解4. 平方根与平方差4.1 定义和性质4.2 求解平方根的方法4.3 解平方差的方法5. 平方根与二次方程5.1 二次方程的定义和性质 5.2 二次方程的解及图示5.3 利用二次方程解实际问题二、几何1. 平面图形1.1 三角形及其性质1.2 四边形及其性质1.3 多边形及其性质2. 圆与圆周角2.1 圆的定义和性质2.2 圆周角的定义和计算3. 相似与全等3.1 相似三角形的性质及判定3.2 全等三角形的性质及判定4. 三视图与投影4.1 顶视图、正视图和侧视图的概念 4.2 通过三视图还原物体的形状和尺寸5. 三角函数5.1 正弦、余弦和正切的概念及计算 5.2 利用三角函数解实际问题三、数据与统计1. 数据的整理和分析1.1 数据的收集和整理方法1.2 数据的图示和分析方式2. 概率与事件2.1 事件的概念和性质2.2 用树状图表示事件的组合和概率3. 线段与角度的测量3.1 利用直尺和量角器测量线段和角度 3.2 利用比例关系计算线段和角度的长度四、函数与图像1. 函数的概念与性质1.1 定义和符号化1.2 函数的性质及分类2. 一元一次函数2.1 函数关系及表达式的表示2.2 函数的图像和性质3. 一元二次函数3.1 函数关系及表达式的表示 3.2 函数的图像和性质4. 特殊函数的图像4.1 绝对值函数的图像和性质 4.2 反比例函数的图像和性质五、立体几何1. 空间图形的表示1.1 空间图形的名称和性质 1.2 空间图形的展开图2. 空间几何体的计算2.1 空间几何体的表面积计算2.2 空间几何体的体积计算3. 空间几何体的相交关系3.1 空间几何体的轴对称关系3.2 利用空间几何体的相交关系解实际问题六、整式与分式1. 整式的加减乘除1.1 整式的加减法运算1.2 整式的乘法运算1.3 整式的除法运算2. 分式的加减乘除2.1 分式的加减法运算2.2 分式的乘法运算2.3 分式的除法运算3. 整式与分式的应用3.1 利用整式解实际问题3.2 利用分式解实际问题以上是九年级上册数学的复习知识点,通过系统地了解和掌握这些知识点,可以有效提高数学学科的学习成绩,为下一阶段的学习打下坚实的基础。
初三上册数学期中考试知识点
初三上册数学期中考试知识点1.初三上册数学期中考试知识点单项式与多项式仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a 时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。
多项式的加、减法,乘法1、多项式的加、减法2、多项式的乘法单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式公式I平方差公式a+ba—b=a^2—b^2两个数的和与这两个数的差的积等于这两个数的平方差。
九年级数学上册期中复习(全部内容)华东师大版
九年级数学上册期中复习(全部内容)华东师大版【本讲教育信息】一. 教学内容:期中复习(九年级上册全部内容)二. 重点、难点:1. 重点:⑴二次根式的化简以及运算.⑵运用一元二次方程的知识、技能解决问题.⑶相似三角形性质、判定的应用.⑷理解并掌握直角三角形边角之间的关系.⑸学会求解简单随机事件的概率,会进行简单的实验.2. 难点:⑴二次根式性质、法则的正确使用.⑵灵活运用一元二次方程的知识解决实际问题.⑶相似三角形性质、判定的灵活应用.⑷如何应用直角三角形的边角关系解决有关实际问题.⑸对实验频率与理论概率的内涵的理解.三. 知识梳理:1. 二次根式本章是前面学习数的开方的延伸,主要是在理解二次根式概念的基础上,进一步掌握最简二次根式和同类二次根式的意义,并能熟练进行二次根式的乘除、加减运算.体会运算律在计算过程中的简便思想,完善幂的运算性质的知识体系.本章学习应该注意二次根式是从形式上给出的定义,不要与判断带根号的数是不是无理数、有理数混淆.同时注意二次根式乘除法运算公式正反用法的条件及最后计算结果的最简性.学习本章还要注意类比方法的运用,即以前学习的运算律、公式在二次根式计算中同样可以使用.本章常见考点有:⑴利用二次根式性质进行化简;⑵利用二次根式的定义确定字母取值范围;⑶利用二次根式的加减乘除法则进行计算、化简、求值.2. 一元二次方程本章是我们在前面学习的一元一次方程、二元一次方程组和可化为一元一次方程的分式方程等知识的延伸,它也是数学科学中方程领域的重要基础部分.通过系统地学习本章知识,不但可以熟练地解一元二次方程,而且还要更深入地了解一元二次方程与一元一次方程之间的联系和相互转化的思想,经历一元二次方程解法的探究过程,更好地体会数学的实际应用价值.学习本章可以采用公式记忆法类比学习法.如以“公式”形式记忆一元二次方程的一般形式,直接开平方法、因式分解法及公式法解一元二次方程的模型.再如:一元一次方程有一个解,而一元二次方程有解时一定是两个解,可以通过类比记忆二者的联系和区别.本章常见考点有:⑴利用一元二次方程的四种常用方法解一元二次方程;⑵一元二次方程根的判别式的简单应用;⑶利用一元二次方程解决简单的实际问题.3. 图形的相似本章是对三角形知识的进一步认识,围绕比例线段和相似三角形的基础知识展开,主要研究了相似图形的概念、性质,相似三角形的判定、性质及其应用,并介绍了用坐标研究图形的运动变换的方法.在学习过程中应注意:⑴观察图形结合图形特点弄清概念的意义,理解概念的范畴;⑵注意与实际问题相结合,体会相似及相似三角形在现实生活中的应用;⑶注意加强合情推理,注重通过直观操作(测量、观察、画图等)得出结论.本章常见考点有:⑴求比例线段;⑵应用相似三角形的性质或判定进行证明和计算;⑶图形与坐标;⑷运用相似三角形的知识解决实际生活问题.4. 解直角三角形本章主要是直角三角形的边、角关系及其应用.在实际生活中,很多问题,特别是测量问题都可以通过解直角三角形来解决.锐角三角函数是在直角三角形中定义的,它是研究直角三角形中边与角之间关系的根本依据.学习本章注意数形结合的思想,解直角三角形本身就是用数研究形或用形表示数,只有正确运用数与形的结合,才能深刻理解、迅速掌握、牢固地记忆定义和定理.我们要学会用解直角三角形解决现实生活中的实际问题,即把实际问题转换成直角三角形中的边、角关系问题,要在解题中体会,探索并运用一定的技巧.本章常见考点有:⑴三角函数的概念;⑵解直角三角形;⑶解直角三角形的应用.5. 随机事件的概率本章主要是概率的概念及通过模拟实验进行概率的预测,教材首先通过大量的实验得出概率的概念,体现了频率与概率的辩证关系,频率是对概率的估计,概率是对频率的预测.动手操作、多实验、用心观察、勤于思考、善于总结;改变学习方式,养成自主探索、合作学习的习惯,是学好本章的诀窍.学习过程中应注意:⑴注意相关知识的前后联系,有助于理解和掌握知识;⑵注意频率与概率之间的关系.当实验次数充分大时,可以取频率值作为概率的估计值,当理论概率不易求时,往往通过频率来求;⑶注意替代物选择的条件,在用替代物模拟实验时,要求必须在相同的条件下进行.本章常见考点有:⑴画树状图或列表求解某事件的概率;⑵利用概率,判断游戏的公平性;⑶利用概率设计方案.【典型例题】例1.2x x -有意义的x 的值. 分析:使代数式有意义的未知数的值,因不同代数式而各异.一般来说,二次根式要使被开方数是非负数,分式要使分母不为零.如果同时出现在几个不同的代数式中,则应综合考虑.使上式有意义的x 的值必须满足被开方数为非负数,分母不等于零.解:由题意得:⎪⎩⎪⎨⎧≠-≥+>-.02,03,04x x x 解得.2,3,4⎪⎩⎪⎨⎧≠-≥<x x x 即.243≠<≤-x x 且例2. 化简求值:aa 1a 2a 1a 1a 222-+----,其中321a +=分析:a =化简,并注意题目中的隐含条件. 解:aa 1a 2a 1a 1a 222-+---- )1a (a |1a |1a )1a )(1a (-----+= 因为32)32)(32()32(1321-=-+-⨯=+=a所以0<a<1 所以原式)1a (a a 11a ---+= a11a ++= 32132+++-==5例3. 下列方程是关于x 的一元二次方程的是 ( )A. 23(1)2(1)x x +=+B.21120x x +-= C. 20ax bx c ++= D. 2221x x x +=-解析:选A .因为B 选项含有分式,不是一元二次方程;C 选项由于a 的取值不确定,有可能等于0,不一定是一元二次方程;D 选项化简后是一元一次方程.例4. 方程x (x +3)=x +3的解是 ( )A. x =1B. x 1=0, x 2=-3C. x 1=1, x 2=3D. x 1=1, x 2=-3解析:根据方程的特点可用因式分解法.x (x +3)-(x +3)=0(x +3)·(x -1)=0∴x 1=-3,x 2=1,∴选D误点警示:要根据方程的特点灵活选用方法解方程. 但是解方程时切记不可在方程的两边同时除以(x +3)这个因式,否则会错选答案A .例5. 对于二次三项式x 2-10x +36,小聪同学作出如下结论:无论x 取什么实数,它的值都不可能等于11.你是否同意他的说法?说明你的理由.解析:此题问某个代数式的值能不能等于某个定值,我们可以从反面出发来思考,即假设其能够等于某个定值,再看其构成方程的解是不是存在,若存在说明可能,若不存在说明不可能.具体解法如下:不同意.∵当x 2-10x +36=11时,化简得x 2-10x +25=0即(x -5)2=0此方程有解,解得:x 1=x 2=5即当x =5时,x 2-10x +36=(x-5)2+11=11.例6. 如图,已知∠ABC =∠CDB =90°,AC =a ,BC =b ,问当BD 与a 、b 之间满足怎样的关系时,ΔABC 与ΔCDB 相似?解析:ΔABC 与ΔCDB 相似,这样设问时要分两种情况讨论,不要遗漏.∵∠ABC =∠CDB =90°1)当BDBC BC AC =时,ΔABC ∽ΔCDB ,∴BD =a b 22)当BC AC BD AB =时,ΔABC ∽ΔBDC ,∴ab a b BD 22-= ∴当BD =ab 2或 BD =a b a b 22-时,这两个三角形相似例7. 如图,△ABC 中,D 、E 分别是AB 、BC 边上的点,连结DE 并延长交AC 的延长线于F ,若BD ∶DE =AB ∶AC求证:△CEF分析:由已知AB ∶AC =BD ∶DE 并结合图形容易看出,若过点D 作DG ∥AF ,交BC 于G ,则AB ∶AC =BD ∶DG ,所以DG =DE ,从而可证CF =EF .证明:过点D 作DG ∥AF 交BC 于G ,则DG BD AC AB =, ∵DE BD AC AB =,∴DE =DG∵DG ∥CF ,∴△CFE ∽△GDE∴DG CF =EDEF . ∴CF =EF .∴△CEF例8. 如图,在△ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的平分线,已知AB=AD =_________.解析:在Rt △ACD 中,可得∠CAD =30°,则再需设法找出另一条件,可以先解Rt △ACB ,求出AC ,从而求出AD .在Rt △ABC 中,∠B =30°,∴AC =12AB =, ∵∠CAB =90°-∠B =90°-30°=60°,∴∠CAD =12∠CAB =30°, 在Rt △ACD 中,cos ∠CAD =AC AD, ∴AD =︒=∠30cos 32CAD cos AC =4. 领悟整合:解直角三角形的关键是把要求的有关量放到某个直角三角形中,利用角的关系、边的关系、锐角三角函数进行求解.尤其是用三角函数时要确定好已知量和所求量之间建立哪种函数关系,不能用错了.例9. 如图,河对岸有一铁塔AB .在C 处测得塔顶A 的仰角为30°,向塔前进16米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高.分析:本题求线段的长,结合已知条件,要通过解直角三角形来解决.由题可得△ABD 为等腰直角三角形,于是可设AB =BD =x ,在Rt △ABC 中用锐角三角函数得方程,解方程可得x 即AB 的高.解:在Rt △ABD 中,∵∠ADB =45°, ∴BD =AB .在Rt △ABC 中,∵∠ACB =30°,∴BC .设AB =x (米),∵CD =16, ∴BC =x +16.∴x +16x )81x ⇒==.即铁塔AB 的高为)81米. 另解:在Rt △ABC 中,∵∠ACB =30°,∴BC =ABcot30°在 Rt △ABD 中,∵∠ADB =45°,∴BD =ABcot45°∵CD =BC -BD =16,∴ ABcot30°- ABcot45°=16)13(8131645cot 30cot 16AB +=-=︒-︒=∴即铁塔AB 的高为 )81米. 例10. (2007年泰州市)某学校七年级数学兴趣小组组织一次数学活动.在一座有三道环形路的数字迷宫的每个进口处都标记着一个数,要求进入者把自己当做数“1”,进入时必须乘进口处的数,并将结果带到下一个进口,依次累乘下去,在通过最后一个进口时,只有乘积是5的倍数,才可以进入迷宫中心,现让一名5岁小朋友小军从最外环任一个进口进入.⑴小军能进入迷宫中心的概率是多少?请画出树状图进行说明.⑵小组两位组员小张和小李商量做一个小游戏,以猜测小军进迷宫的结果比胜负.游戏规则规定:小军如果能进入迷宫中心,小张和小李各得1分;小军如果不能进入迷宫中心,则他在最后一个进口处所得乘积是奇数时,小张得3分,所得乘积是偶数时,小李得3分,你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请在第二道环进口处的两个数中改变其中一个数使游戏公平.⑶在⑵的游戏规则下,让小军从最外环进口任意进入10次,最终小张和小李的总得分之和不超过28分,请问小军至少几次进入迷宫中心?分析:运用树状图求出概率,从而可以判断游戏是否公平,最后借助不等式的知识可以求出答案.解:⑴树状图:41()123P ==进入迷宫中心. ⑵不公平,理由如下:法一:由树状图可知,51()3P =的倍数,521()126P ==非的倍数的奇数,561()122P ==非的倍数的偶数.所以不公平. 法二:从(1)中树状图得知,不是5的倍数时,结果是奇数的有2种情况,而结果是偶数的有6种情况,显然小李胜面大,所以不公平.法三:由于积是5的倍数时两人得分相同,所以可直接比较积不是5的倍数时,奇数、偶数的概率.1()4P =奇数,3()4P =偶数,所以不公平.可将第二道环上的数4改为任一奇数.⑶设小军x 次进入迷宫中心,则23(10)28x x +-≤,解之得2x ≥.所以小军至少2次进入迷宫中心.【模拟试题】(答题时间:120分钟)一、填空题(每小题2分,共24分,错填、漏填、多填均不得分)1. 当a 时,2a =-a ;当a 为 时,2a =| a | ;2. 写出两个与23是同类二次根式且被开方数不是3的二次根式 , ;3. 将-π,0,23,-3.15,3.5用“>”连接: ;4. (a +2)2+|b -1|+c -3=0,则a +b +c = .5. 当x = 时,代数式23x x -比代数式221x x --的值大26. 方程2230x ax -+=有一个根是1,则a 的值是 .7. 若x 满足2510x x --=,则1x x-的值 . 8. 如图,为了测量油桶内油面的高度,将一根细木棒自油桶小孔插入桶内,测得木棒插入部分的长为100cm ,木棒上沾油部分的长为60cm ,桶高为80cm ,那么桶内油面的高度是 cm .9. 如图所示,线段m 的两个端点分别是梯形两个腰从上至下的2、3、4…n 等分点,梯形的两底长为a 、b ,根据图中规律,猜想m 与n 的关系是 .10. 等腰△ABC 中,底边BC 长为20,sinC =53,则△ABC 的周长为 11. 如图,在离塔150米的A 处,用测角仪测得塔顶为30o ,已知测角仪高AD =1.52米,则塔高BE = 米(精确到0.1米)12. 小洪班有男生25人,女生29人,随机抽取9名同学进行义务劳动,则男生小洪被抽到的机会大小为 .二、选择题(每小题3分,共24分,每小题只有一个正确答案,错选,漏选,多选均不得分)13. 下列说法正确的是( )A 、任何有理数均可用分数形式表示;B 、数轴上的点与有理数一一对应;C 、1和2之间的无理数只有2 ;D 、只有同类二次根式才可以相乘除.14. 使式子22-x 有意义的x 的取值是( )A 、x ≠2 ;B 、x ≥2 ;C 、x >2 ;D 、x <2 .15. 某型号的手机连续两次降阶,每个售价由原来的1185元降到580元,设平均每次降价的百分率为x ,则列出方程正确的是( )A 、2580(1+x)=1185B 、21185(1+x)=580C 、2580(1-x)=1185D 、21185(1-x)=58016. 过三角形一边上一点画直线,使直线与另一边相交,且截得的三角形与原三角形相似,那么最多可画这样的直线的条数是 ( )A 、1条B 、2条C 、3条D 、4条17. 在相似三角形中,已知其中一个三角形三边的长是4,6,8,另一个三角形的一边长是2,则另一个三角形的周长是 ( )A 、4.5B 、6C 、9D 、以上答案都有可能18. 某人沿坡度1:8的山坡向上走了65米,则此人离开地面的垂直高度为( )A 、65B 、60C 、652D 、2653 19. 有两人用掷一枚骰子比大小的方式决定胜负,下列说法正确的是( )A 、先掷的人胜的可能性大B 、后掷的人胜的可能性比较大C 、先掷和后掷的人胜的可能性相同D 、以上都不对20. 甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是( )A 、游戏的规则由甲方确定B 、游戏的规则由乙方确定C 、游戏规则由甲乙双方商定D 、游戏双方要各有50%赢的机会三、解答题21. 作图题(12分,每小题6分,不写作法,保留作图痕迹)(1)如图所示,在右边的方格中,画出边长是左边四边形2倍的相似形(2)如图所示,在△ABC 中画出长宽之比为2:1的矩形,使长边在BC 上,22. (本题10分)解方程x 2+4x =2时,有一位同学解答如下:解:这里221,4,2,444128a b c b ac ===-=-⨯⨯=,所以2x ===-±即:1222x x =-=-请你分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程.23. (本题12分)设a 、b 、c 都是实数,且满足(2-a )2+a 2+b+c +∣c +8∣=0,20ax bx c ++=.求代数式221x x ++的值.24. (14分)如图,在小山的东侧A 处有一热气球,以每分钟28米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参考数值:42615sin -=︒,42615cos +=︒,3215tan -=︒,3215cot +=︒25. (12分)小明把语文、数学、外语三本书按任意次序放在他的书架上,求: ⑴语文书恰好被放在中间的概率⑵外语书恰好被放在边上的概率⑶数学书恰好被放在右边的概率26. (12分)如图,在△ABC 中,∠C =60o ,AD 、BE 是△ABC 的高,DF 为△ABD 的中线,试确定DE 与DF 的关系,并证明你的结论.试题答案一. 1. ≤0;任意实数 2. 略 3. 3.5>2 3 >0>-π>-3.154. 25. -16. 27. 58. 489. m =na+b n+1 10. 45 11. 88.1 12. 16二. 13. A 14. C 15. D 16. D17. D 18. A 19. C 20. D21. 略22. 以上解答有错误.没有化一元二次方程为一般形式;正确结果为1222x x =-=-23. 由题意知,a =2,c =-8,b =4.又有ax 2+bx +c =0得,2x 2+4x -8=0.从而x 2+2x -4=0,则x 2+2x +1=524. 由速度为每分钟28米,显然AD =28×35=980,在Rt 三角形AFD 中,可得DF =490 3 ,AF =490.又由∠MDB =15o ,所以在Rt △DBF 中,∠DBF =15o .BF =cot15o ·DF =(2+3)·4903=9803+1470BA =BF -AF =9803+98025. (1) 所有机会均等的结果有(语、数、外)、(语、外、数)、(数、语、外)、(数、外、语)、(外、数、语)、(外、语、数)六种,其中,语文书放在中间的有2种.P (语文书放在中间)=31 (2)外语书放在边上的有4种 所以P (外语书放在边上)=32 (3)数学书放在右边的有2种 所以P (数学书放在右边)=31 26. DE 和DF 相等;先证明△ABC ∽△DEC ,得ACDC AB DE =,在Rt △ADC 中,∠C =60o , 21AC DC =。
九年级上册数学期中知识点
九年级上册数学期中知识点九年级上学期的数学课程内容博大精深,包含了许多重要的知识点,下面我们将逐一进行探讨。
1. 几何形体与平面几何九年级上学期的数学教学重点之一是几何形体与平面几何。
几何形体是指二维或三维空间中呈现的各种图形,如直线、线段、射线、角、三角形、四边形等。
平面几何研究的是二维平面上的图形与它们之间的关系。
在这一部分的学习中,我们需要掌握各种图形的性质及其相互之间的关系,如线段的长度、角的度数等,并运用所学的知识解决与平面几何相关的实际问题。
2. 线性方程与不等式线性方程与不等式是数学中的重要内容。
线性方程是指未知数的最高次数为1的方程,而不等式则是描述不同数之间大小关系的数学表达式。
在九年级上学期的数学学习中,我们需要学习解线性方程和不等式的方法,并能运用这些知识解决实际问题。
同时,还需要掌握一元一次方程组的解法,以及不等式的图解法,为今后的数学学习和应用奠定基础。
3. 比例与相似比例与相似是数学中常见的数学关系。
比例是指两个或多个数之间的比较关系,相似则是指两个或多个图形之间形状和尺寸的相似关系。
在九年级上学期的数学学习中,我们需要学习解决比例问题的方法,如比例方程、比例分配等,同时也需要了解相似图形的性质及其判断方法。
掌握这些知识将有助于我们在日常生活中进行实际问题的解决。
4. 平方根与实数平方根与实数是九年级上学期数学学习的重点之一。
平方根是指一个数的平方等于给定数的非负根,实数则是数学中用来表示实际物理量的数。
在这一部分的学习中,我们需要了解平方根的性质和计算方法,如开方运算、二次根式化简等,并能运用所学的知识解决和实际问题相关的数学计算。
5. 勾股定理与三角函数勾股定理和三角函数是数学中重要的几何和三角学理论。
勾股定理是指在直角三角形中,直角边的平方等于斜边平方和的关系,三角函数则是描述角度与三角比之间关系的数学函数。
在九年级上学期的数学学习中,我们需要学习勾股定理的证明和运用方法,了解正弦、余弦、正切等三角函数的定义和性质,并能运用所学的知识解决与勾股定理和三角函数相关的实际问题。
2024~2025学年九年级数学上册期中复习——圆的基本性质学案(知识点+例题含解析)
《圆的基本性质》章节复习【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.(3)不在同一条直线上的三个点确定一个圆.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.点与圆的位置关系判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O外;点P在⊙O上;点P在⊙O内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.定理2:平分弧的直径垂直平分弧所对的弦.4.与圆有关的角圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或者等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对量都相等.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.在同圆或者等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.5.圆内接四边形圆内接四边形的对角互补.要点二、图形的旋转在平面内,一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转.这个定点叫做旋转中心,转过的角叫做旋转角.图形经过旋转所得的图形和原图形全等.对应点到旋转中心的距离相等.任何一对对应点与旋转中心连线所成的角度等于旋转的角度.要点三、正多边形各边相等,各内角也相等的多边形是正多边形.要点诠释:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).正多边形的外接圆和圆的内接正多边形正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.要点四、弧长及扇形的面积圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识1.如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行(或重合)的直线与⊙O有公共点,设OP=x,则x的取值范围是().A.-1≤x≤1B.≤x≤2C.0≤x≤2D.x>2【答案】C;【解析】如图,平移过P点的直线到P′,使其与⊙O相切,设切点为Q,连接OQ,由切线的性质,得∠OQP′=90°,∵OA∥P′Q,∴∠OP′Q=∠AOB=45°,∴△OQP′为等腰直角三角形,在Rt△OQP′中,OQ=1,OP′=2,∴当过点P且与OA平行的直线与⊙O有公共点时,0≤OP≤,当点P在x轴负半轴即点P向左侧移动时,结果相同.故答案为:0≤OP≤2.【总结升华】本题考查了直线与圆的位置关系问题.关键是通过平移,确定直线与圆相切的情况,求出此时OP的值.举一反三:【变式】如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OB平行的直线于⊙O有公共点,设P(x,0),则x的取值范围是().A.-1≤x<0或0<x≤1B.0<x≤1C.-2≤x<0或0<x≤2D.x>1【答案】∵⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,∴过点P′且与OB平行的直线与⊙O相切时,假设切点为D,∴OD=DP′=1,OP′=2,∴0<OP≤2,类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,已知在⊙O中,AB是⊙O的直径,弦CG⊥AB于D,F是⊙O上的点,且 CF CB=,BF交CG于点E,求证:CE=BE.【答案与解析】证法一:如图(1),连接BC,∵AB是⊙O的直径,弦CG⊥AB,∴ CB GB=.∵CF BC=,∴CF GB=.∴∠C=∠CBE.∴CE=BE.证法二:如图(2),作ON⊥BF,垂足为N,连接OE.∵AB是⊙O的直径,且AB⊥CG,∴ CB BG=.∵CB CF=,∴CF BC BG==.∴BF=CG,ON=OD.∵∠ONE=∠ODE=90°,OE=OE,ON=OD,∴△ONE≌△ODE,∴NE=DE.∵12BN BF=,12CD CG=,∴BN=CD,∴BN-EN=CD-ED,∴BE=CE.证法三:如图(3),连接OC交BF于点N.∵CF BC=,∴OC⊥BF.∵AB是⊙O的直径,CG⊥AB,∵BG BC=,CF BG BC==.∴BF CG=,ON OD=.∵OC=OB,∴OC-ON=OB-OD,即CN=BD.又∠CNE=∠BDE=90°,∠CEN=∠BED,∴△CNE≌△BDE,∴CE=BE.【总结升华】上述各种证明方法,虽然思路各异,但都用到了垂径定理及其推论.在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【变式】如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19B.16C.18D.20【答案】如图,延长AO交BC于点D,过O作OE⊥BC于E.则三角形ABD为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt△ODE中,∠ODE=60°,∠DOE=30°,则DE=12OD=2,BE=BD-DE=10OE垂直平分BC,BC=2BE=20.故选D类型三、图形的旋转3.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°【思路点拨】利用旋转和平移的性质得出,∠A′B′C=60°,AB=A′B′=A′C=4,进而得出△A′B′C是等边三角形,即可得出BB′以及∠B′A′C的度数.【答案】B;解:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6-4=2,∴平移的距离和旋转角的度数分别为:2,60°.【总结升华】此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出△A′B′C是等边三角形是解题关键.类型四、圆中有关的计算4.(2016•绵阳)如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF ⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.【思路点拨】(1)先连接OD、AD,根据点D是的中点,得出∠DAO=∠DAC,进而根据内错角相等,判定OD∥AE,最后根据DE⊥OD,得出DE与⊙O相切;(2)先连接BC交OD于H,延长DF交⊙O于G,根据垂径定理推导可得OH=OF=4,再根据AB是直径,推出OH是△ABC的中位线,进而得到AC的长是OH长的2倍.【答案与解析】解:(1)DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.(2)连接BC交OD于H,延长DF交⊙O于G,由垂径定理可得:OH⊥BC,==,∴=,∴DG=BC,∴弦心距OH=OF=4,∵AB是直径,∴BC⊥AC,∴OH∥AC,∴OH是△ABC的中位线,∴AC=2OH=8.【点评】本题主要考查了直线与圆的位置关系,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,通常连接过该公共点的半径,证明该半径垂直于这条直线.本题也可以根据△ODF与△ABC相似,求得AC的长.举一反三:【变式】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,+S△OFD=S△AOD=×6×3=9,∴S△ACF即阴影部分的面积是9.类型五、圆与其他知识的综合运用5.如图,△是等边三角形,是⌒上任一点,求证:ABC D BC DB DC DA+=.【答案与解析】延长DB至点E,使BE=DC,连结AE∵△ABC是等边三角形∴∠ACB=∠ABC=60°,AB=AC∴∠ADB=∠ACB=60°∵四边形ABDC是圆内接四边形∴∠ABE=∠ACD在△AEB和△ADC中,BE CDABE ACD AB AC===⎧⎨⎪⎩⎪∠∠∴△AEB≌△ADC∴AE=AD∵∠ADB=60°∴△AED是等边三角形∴AD=DE=DB+BE∵BE=DC∴DB+DC=DA.【总结升华】由已知条件,等边△ABC可得60°角,根据圆的性质,可得∠ADB=60°,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC.本例也可以用其他方法证明.如:(1)延长DC至F,使CF=BD,连结AF,再证△ACF≌△ABD,得出AD=DF,从而DB+CD=DA.(2)在DA上截取DG=DC,连结CG,再证△BDC≌△AGC,得出BD=AG,从而DB+CD=DA.6.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是().A.3πB.6πC.5πD.4π【答案】B;【解析】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选B.【总结升华】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.即可求解.举一反三:【变式】某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为().A. B.72 C.36 D.72【答案】本题解法很多,如两个小半圆面积和减去两个弓形面积等.但经过认真观察等腰直角三角形其对称性可知,阴影部分的面积由两个小半圆面积与三角形面积的和减去大半圆面积便可求得,所以由已知得直角边为,小半圆半径为(cm),因此阴影部分面积为.故选C.。
数学九年级上册期中知识点
数学九年级上册期中知识点九年级上册数学期中知识点一、有理数的运算1. 加法和减法的运算规则- 同号相加,异号相减- 绝对值大的数减去绝对值小的数,取负数的符号2. 乘法的运算规则- 同号相乘为正,异号相乘为负3. 除法的运算规则- 同号相除为正,异号相除为负4. 有理数的混合运算- 先按照括号内外、乘除法、加减法的顺序进行运算二、分式与整式1. 整式的基本概念- 包括常数、变量、系数和指数2. 分式的基本概念- 分子、分母,真分式和假分式3. 分式的四则运算- 加减乘除三、一次函数1. 一次函数的图像和性质- 斜率的概念,斜率与函数单调性的关系2. 一次函数的解析式- y = kx + b,k为斜率,b为截距3. 一次函数的应用问题- 直线的斜率问题,包括速度问题、单位价格问题等四、面积与体积1. 平行四边形的面积计算- S = 底边长度 ×高2. 长方形、正方形、矩形的面积计算- 长 ×宽3. 三角形的面积计算- S = 1/2 ×底边长度 ×高4. 梯形的面积计算- S = (上底 + 下底) ×高 / 25. 圆的面积计算- S = π × 半径²6. 立体图形的体积计算- 立方体、长方体、正方体的体积计算公式五、几何运动1. 同一圆周上的角- 同弧对应角、同切线截角、同径角的性质2. 设计问题中的角- 平行线、相交线、对顶角、同位角的关系3. 圆的性质- 切线、切点、弦、弧的概念和性质六、统计与概率1. 数据的整理与分析- 频率表、频率分布直方图、频率分布折线图2. 概率的基本概念- 样本空间、事件、概率计算公式3. 事件的几种关系- 互斥事件、对立事件、必然事件、不可能事件七、其他知识点1. 相似三角形- 相似三角形的判定、性质和类比比例2. 实数的开方运算- 平方根、立方根、开方运算的计算方法和性质3. 密立根数的基本概念- 密立根数的定义、性质和运算这些是九年级上册数学的期中考试重点知识点,希望同学们能够认真学习并掌握这些知识,为接下来的学习打下坚实的基础。
九年级数学第一学期期中知识点梳理
2014-2015九年级第一学期期中知识点梳理一、考试范围:第二十三章到第二十四章,内容分别是:数据分析、一元二次方程、图形的相似、解直角三角形、反比例函数。
二、知识点梳理(按章节进行详细梳理)'第二十三章:数据分析 1、加权平均数=权之和权数据权数据⋯⋯+⨯+⨯=⋯⋯⋯⋯总总 (作用:综合考量整组数据) 2、中位数:将数据按大小排列后,处于中间位置的一个数,或处于中间位置的两个数的平均值 (作用:确定某个数据所处位置(中上或中下))3、众数:出现次数最多的数 (作用:确定某种型号或品种最受欢迎)4、极差:一组数据中的最大值减去最小值 ¥5、方差:])(...)()[(1222212x x x x x x nSn -++-+-=(极差、方差作用:确定数据的稳定性和波动性)第二十四章:一元二次方程 第一节、 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
: 一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 02=++c bx ax (a ≠0)的形式,则这个方程就为一元二次方程;(4)将方程化为一般形式:02=++c bx ax 时,应满足(a ≠0)第二节、解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:(1)、直接开平方法:用直接开平方法解形如 (n ≥0)的方程,其解为x=± m. 直接开平方法就是平方的逆运算.通常用根号表示其运算结果. ¥ (2)、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
①.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)②.系数化1: 将二次项系数化为1 ③.移项: 将常数项移到等号右侧 \④.配方: 等号左右两边同时加上一次项系数一半的平方⑤.变形: 将等号左边的代数式写成完全平方形式 ⑥.开方: 左右同时开平方⑦.求解: 整理即可得到原方程的根 (3)、公式法(4)、因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学上册知识点复习梳理归纳第一单元 二次根式1、二次根式 式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。
2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
4、二次根式的性质(1))0()(2≥=a a a )0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥•=b a b a ab(4))0,0(≥≥=b a ba b a 5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
第二单元 一元二次方程一、一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b aac b b x 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判别式根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆四、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
第三单元 旋转一、旋转1、定义把一个图形绕某一点O 转动一个角度的图形变换叫做旋转,其中O 叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征(3分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)第四单元圆一、圆的相关概念1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”二、弦、弧等与圆有关的定义(1)弦连接圆上任意两点的线段叫做弦。
(如图中的AB)(2)直径经过圆心的弦叫做直径。
(如途中的CD)直径等于半径的2倍。
(3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧四、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。
五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。
2、弦心距从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
六、圆周角定理及其推论1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
七、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r⇔点P在⊙O内;d=r⇔点P在⊙O上;d>r⇔点P在⊙O外。
八、过三点的圆1、过三点的圆不在同一直线上的三个点确定一个圆。
2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。
九、反证法先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。
十、直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交⇔d<r;直线l与⊙O相切⇔d=r;直线l与⊙O相离⇔d>r;十一、切线的判定和性质1、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
2、切线的性质定理圆的切线垂直于经过切点的半径。
十二、切线长定理1、切线长在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
十三、三角形的内切圆1、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
十四、圆和圆的位置关系1、圆和圆的位置关系如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定设两圆的半径分别为R和r,圆心距为d,那么两圆外离⇔d>R+r两圆外切⇔d=R+r两圆相交⇔R-r<d<R+r(R≥r)两圆内切⇔d=R-r(R>r)两圆内含⇔d<R-r(R>r)4、两圆相切、相交的重要性质如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
十五、正多边形和圆1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
十六、与正多边形有关的概念1、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。
3、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
十七、正多边形的对称性1、正多边形的轴对称性正多边形都是轴对称图形。
一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。
2、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。