上海地铁区间隧道6---傅德明

上海地铁区间隧道6---傅德明
上海地铁区间隧道6---傅德明

上海地铁区间隧道直径6.34m土压盾构施工

上海申通轨道交通研究咨询有限公司傅德明

1.工程概况

上海地铁规划22条线路,总长1050km,见图1所示,其中大部分为地下铁道。已建地铁1、2、3、4、5、6、7、8、9、11号线共10条线,运营长度330km,日客流量达400万人次。在建10号线和2号线东西延伸段长度约90km,将于2010年4月上海世博会前建成运营,使上海的运营地铁线路达11条约420km,日客流量可达500万人次。2012年将建成运营500km。

上海地铁区间隧道95%以上采用土压盾构掘进机施工,自1990年地铁1号线工程正式开工以来的19年间,已掘进隧道约达400km,其中,前10年仅施工40km,后9年施工380km。2008年使用的盾构掘进机多达97台。2007年掘进隧道80km,2008年掘进隧道140km。

图1 上海地铁线路总平面图

上海地铁1号线试验段始建于1980年,于1989年全线开工,全长14.5km,其中18km 区间隧道首次采用7台Φ6.34m土压盾构于1990年起陆续掘进施工。上海地铁1号线于1995年4月建成运营,成为我国第一条采用盾构法施工的地铁线路。

1996年至1999年,上海地铁2号线工程圆隧道部分西起中山公园站,东至龙东路站,双线(上、下行)全长24km,采用10台Φ6.34m土压盾构掘进施工。

2000年至2007年的8年中,上海地铁4、6、8、9号线约140km区间隧道采用40余台盾构掘进施工,并首次应用5台双圆DOT盾构掘进8.2km隧道。

2008年在建的5线2段约260km区间隧道共采用97台盾构同时掘进施工,创世界盾构隧道工程史新纪录。

2.工程地质概况

上海地铁隧道的埋深最浅的为11m(最小覆土5m),最深的达35m(穿越黄浦江底)。上海市区的地层从地表以下依次为杂填土、粘土、灰色淤泥质粘土、灰色淤泥质粉质粘土、灰色粉质土、粉砂、暗绿色粘土。盾构穿越的地层大多为淤泥质粘土、淤泥质粉质粘土,也有穿越粉质土、粉砂,见图2所示。

图2 上海地层地质剖面图

淤泥质粘土和淤泥质粉质粘土具有含水量饱和(40%~55%),孔隙比大(1.0~1.4),内力小(1.0kPa~13kPa),内摩擦角小(7o~15o),易塑流等,属高压缩性土。土的主要指标见表1 。

表1 上海地铁隧道穿越地层土的主要指标

3.地铁隧道衬砌

地铁隧道衬砌外径为6.2m,内径为5.5m,衬砌为预制钢筋混凝土管片,每环宽度100cm和120cm2种,厚度35cm。每环由封顶块(F)、邻接块(L1及L2)、标准块(B1 及B2)和落底块(D)6块管片拼装而成,见图3 所示。上海地铁管片大部分采用通缝拼装,小部分采用错缝拼装。两相邻管片的纵向、环向均采用M30螺栓连接,管片设计强度等级为C50,抗渗为S8,接缝防水采用水膨胀性橡胶和氯丁橡胶复合而成的弹性密封垫。

在衬砌接缝构造设计中,考虑到软土地层的特性,便于在环间传递一定的剪力,控制环间踏步,同时方便管片拼装时的定位,在环缝和纵缝上均设计成凹凸榫槽。管片连接由直螺栓方式逐步发展为更合理的弯螺栓,这样,内弧面开孔更小,管片受力性能更好,见图4所示。

图3 上海地铁隧道衬砌结构图

4.地铁隧道盾构掘进机

4.1 Φ6.34m土压盾构

1990年,上海地铁1号线隧道掘进施工首次选用对掘削面影响小、机械化程度高、掘进速度快的ф6.34m土压盾构。7台ф6.34m土压盾构由法国FCB公司、上海隧道工程股份有限公司、上海市隧道工程设计院、上海沪东造船厂联合体制造, 见图5所示,其主要技术性能见表2。

图5 ф6.34m土压平衡盾构

表2 ф6.34m土压平衡盾构主要工作参数

盾构本体

外径 6 350mm 盾尾内径6540mm 最大推力 3.330×104k N 推进速度3cm/min

切削刀盘

最大扭矩 4 635k N-m

转速0~0.8r/min 螺旋输送机

螺杆直径Ф700cm

扭矩0~15k N-m

排土量200m3/h

拼装机回转速度0~1.5r/min 回转角度±210°提升重力82k N 提升行程650mm 平移行程 1 050mm

1995年以后,上海地铁分别从法国、日本的盾构制造商购置20余台ф6.34m土压盾构掘进机,其主要工作性能参数基本相近。2004年以来,上海隧道工程公司机械厂制造的“先行号”ф6.34m土压盾构掘进机逐渐在上海地铁区间隧道工程中应用,至今已有30余台投入施工,占上海地铁工程使用盾构的30%以上,见图6所示。

1、壳体

2、中心回转接头

3、刀盘系统

4、推进油缸

5、人行闸

6、拼装机

7、螺旋机8、盾尾密封9、管片吊运机构10、拼装平台

图6 ф6.34m土压平衡盾构主机结构图

表3 ф6.34m土压平衡盾构主要工作参数

4.2 F6520mm×W11120mm双圆型土压盾构

2003年上海地铁从日本引进DOT双圆盾构隧道技术,购置4台F6520mm×

W11120mm 加泥式土压平衡双圆盾构掘进机。盾构长12745mm ,总推力68600kN 。盾构

图7 在工厂安装调试的双圆盾构机 双圆盾构隧道施工 表4 双圆盾构主要工作参数

1、 盾壳

2、刀盘

3、仿形刀

4、可更换土压计

5、固定土压计

6、观测孔

7、人行闸

8、球形注射管

9、中心刀头 10、推进油缸 11、管片顶托装置 12、真圆保持器 13、刀盘驱动 14、拼装机 15、盾尾密封装置 16、1号螺旋机 17、2号螺旋机

图6 双圆盾构机构造示意

5.盾构安装及始发准备

5.1 盾构安装验收及施工设施准备

上海地铁车站之间的区间隧道采用土压盾构施工,盾构始发和接受一般在地铁车站的两端。区间隧道上下行线一般采用2台盾构并行施工。

盾构安装前先在端头井下安装盾构基座,盾构基座为钢结构预制件,需满足支撑盾构机出洞时的本体重量,并起到一个导向作用,见图8所示。支座材料采用43Kg/m重型轨道,共布置2根。盾构基座位置按设计轴线准确放样,安装时按照测量放样的基线,吊入井下就位。两根轨道中心线与基座上的盾构必须对准洞门中心且与隧道设计轴线反向延长线基本一致,并在基座四周加设支撑保证整体稳定。

图8 盾构基座示意图

盾构吊装一般采用大吊车将盾构后车架依次吊入井下并移至地铁车站站台层,盾构本体分块吊入井下,在盾构基座上正确就位、组装,最后由专业技术人员进行系统调试和井下验收。

在最后一环负环和井壁结构之间加设钢后靠,钢后靠与负环管片之间的间隙灌注水泥砂浆(或混凝土),使混凝土管片受力均匀,环面平整,见图9所示。为保证管片脱出盾尾后不产生变形,在管片外弧面加设支撑,予以固定。第一环闭口环与钢后靠之间采用4根Φ609钢管传递轴向力。

图9 盾构尾部钢后靠

考虑到区间隧道上下行线2台盾构同时施工,一般在井口处布置一台32T行车用于上、下行线推进时的垂直运输;另外布置一台5T行车,用于场内管片吊运,在5T行车工作范围内布置管片堆场。在端头井边侧设置集土坑,集土坑容积具备20环的存土量。场内布置拌浆间,浆液通过送浆管路送至井下浆车内。

井下运输配14T电瓶车5辆,凹平板车10节,送浆平板车船4节,容积10m3土箱8只。

5.2 洞圈密封和洞口外土体加固

由于盾构工作井洞圈直径与盾构外径存有一定的间隙,为了防止盾构进出洞施工期间土体从该间隙中流失,在洞圈周围安装帘布橡胶带、环板、铰链板等组成的密封装置,并设置注浆孔,作为洞口防水堵漏的预防措施。为确保区间隧道施工过程中盾尾的密封防水效果,在盾构调试结束后,向盾尾钢刷之间涂抹盾尾油脂。

为防止盾构洞门凿除后发生洞口土体塌落,必须对洞口外土体进行加固处理,一般采用深层搅拌进行加固。加固范围长6m,宽3m,深度为洞圈向下3m,洞圈向上3m 。设计强度要求无侧限抗压强度达到0.5~0.8Mpa。盾构出洞前对井外地基加固质量进行验收,在洞门上钻5-9个样孔至加固土体检查有否渗漏水。

6 Φ6.34m土压盾构掘进施工

6.1 盾构始发施工

洞门混凝土凿除后,盾构向前推进,刀盘靠上加固土体并开始旋转刀盘、启动顶在开口环上的推进油缸。

盾构始发穿越加固区时,刀盘切削加固土体,土压力的设定可低于按原状土计算的静止土压值,推进速度慢些(拟小于1cm/min)、推力小些,并注意洞圈密封处有否渗漏水。当加固土体不能顺利从螺旋输送机出土时,应根据需要在盾构土舱加入发泡剂或润滑泥浆,以改善切削土体朔流性。

盾构姿态严格控制在容许范围内,管片拼装注意环面平整和错台。

盾尾脱出洞圈后,及时做好隧道衬砌环与洞圈的永久密封。

6.2 盾构掘进施工参数的设定和调整

盾构穿越加固区后进入原状土,设定土压增大,略大于静止土压值,推进速度逐步提高至3 cm/min以上,盾构推力、刀盘转速、螺旋机转速等工作参数应作相应调整,并根据地面隆沉监测数据优化盾构掘进施工参数。盾构始发100m为盾构掘进施工参数盾构掘进施工参数调整优化的阶段,对推进时的各项技术数据进行采集、统计、分析,摸索地面沉降与施工参数之间的关系,争取在较短时间内掌握盾构机械设备的操作性能,及盾构在本标段地质条件下推进的施工参数设定范围。。

盾尾脱出始发井后,在盾构推进的同时进行盾尾同步注浆,以充填盾构外径6.34m 与隧道外径6.2m之间的空隙。推进1m的盾尾空隙约为1.4m3。注浆浆液采用粉煤灰、黄砂、膨潤土为主的单液浆,泵送性好,但收缩性大。注浆充填率约为150%-200%,可根据地面隆沉量调整确定。

6.3 盾构在软土中推进时总推力与埋深关系分析

盾构推力主要承担开挖面的水土压力和盾壳与周围土层的摩阻力。盾构在同一地层条件下总推进力的大小随埋深增加而增大。表4是上海地铁几个标段Φ6.34m盾构推进时总推力与埋深的几组数据。图10是根据该表数据拟合成的线性关系图。

表4 上海地铁几个标段Φ6.34m盾构推进时总推力与埋深关系表

图10 上海不同工地盾构总推力与盾构中心埋深关系图

上海地铁隧道穿越的地层主要为淤泥质粘土和淤泥质粉质粘土,也有粉质粘土、粉砂、粉细砂,深埋隧道会遇到暗绿色粘土。盾构的设定土舱压力一般略大于盾构中心处的静止土压Po。其计算方法可采用朗肯土压公式:

Po=γhtg2(45o-?Φ)-C tg2(45o-?Φ)

式中:γ为土的容重,h为隧道埋深(地面至盾构中心),Φ为内摩擦角,C为内聚力。

也可采用侧压系数的简易公式:Po=Koγh

在淤泥质粘土和淤泥质粉质粘土地层中Ko约为0.7。在粉质粘土、粉砂、粉细砂0.241地层中

Ko约为0.6-0.7。

6.4 土仓压力与埋深的关系

把上海几个工程盾构推进时土仓压力与埋深统计成表5。把上海不同工程的土仓压力设定与埋深关系绘成图,即图11。

表5 上海工程土仓压力取值表

图11 上海工程土仓压力与埋深关系图

从上面的图表,可得到结论:在上海地区,当隧道埋深小于12mm时,土仓压力的设定基本上在0.12~0.20MPa之间;当埋深大于12mm时,土仓压力的设定与埋深成正比。

6.5 上海地铁土压平衡盾构掘进时刀盘扭矩统计分析

把上海不同工程不同土层的地铁盾构刀盘扭矩与埋深统计成表6。从该表可以看出,随着盾构埋深的增加,盾构刀盘的扭矩增大;盾构穿越加固区时刀盘扭矩会有较大幅度的增大。在目前上海隧道的埋深情况下,刀盘扭矩基本在盾构机额定扭矩范围内。

表6 上海地铁工程盾构推进时刀盘扭矩值统计表

7 盾构穿越建筑物及保护技术

7.1穿越穿越引水箱涵施工技术

地铁2号线在杨高路站~东方路站区间隧道施工中,始发段盾构穿越6.2m加固区后,即穿越上海市自来水供水的上游引水箱涵管道。该箱涵距端头井壁门约20m,位于隧道上方,与隧道基本正交,箱涵底板距盾构顶部净距仅为2.2m,见图12。

图12 盾构穿越上游引水箱涵示意图

盾构到达箱涵前施工,局部暴露箱涵结构、在两侧布设跟踪注浆管,同时布置沉降监测点。以箱涵上边线为基准,向两侧各布设2排共4排注浆管。另外,在此两排注浆管外侧各布置一排斜管。根据地面上的高精度水准测量、连通管和分层沉降监测信息的反馈及时调整土压设定值和出土量,使盾构较匀速地向前掘进以减少对土体的扰动,并在这一段时期的施工中摸索出了掘进速率、出土量、注浆量和地层变形的相互关系。

盾构到达箱涵前1~2环至盾尾全部进入箱涵阶段以设定土压力值和出土量的控制为推进管理重点。同时严格控制同步注浆量及地面跟踪注浆量。

根据施工的实际结果,盾构在穿越箱涵的整个过程中都保持了较好的姿态。监测结果表明,箱涵的沉降量控制在+8.5mm以下。

当盾构掘进至33环后,盾尾全部脱离箱涵。严格控制掘进速度和同步注浆量,使盾尾脱离箱涵时箱涵没有因为建筑间隙未能得到及时充填而发生突然下沉。

7.2 盾构穿越中山北路建筑群施工

地铁7号线铜川路站~中山北路站区间隧道长1358m,为穿越既有结构物较为密集的地区,区间隧道在通过华池路和镇坪路时,以半径为400m的曲线穿越浅基础建筑物23栋,建筑物均为5-7层砖混结构,条形基础,基础埋深2.6~3.2m,见图13。

图13 7号线铜川路站~中山北路站区间隧道穿越建筑群示意图

盾构施工穿越的土层为:②3-2砂质粉土④淤泥质粘土、⑤1粉质粘土。盾构穿越土层的物理力学性质如下表7所示。

表7 7号线铜川路站~中山北路站区间隧道土层物理力学指标

层号土层名称含水量W

(%)

重度γ

(KN/m3

孔隙比

e

直剪固快峰值强度压缩

模量

(MPa)

内聚力

C(kPa)

内摩擦角

φ(0)

②1粉质粘土31.418.50.8916.023.5 5.92

②3-1砂质粉土34.418.10.95 5.029.58.39

②3-2砂质粉土32.818.30.92 5.031.013.26

③淤泥质粉质粘土39.317.6 1.1111.023.0 3.76

④淤泥质粘土49.516.7 1.4114.011.5 2.26

⑤1粉质粘土36.517.8 1.0514.016.0 3.81

⑥粉质粘土24.719.50.714316.57.02

7.2.1 盾构推进施工对建筑物的影响分析

2007年11月12日~2007年11月30日,对上行线605环~705环之间所穿越的建筑物实际沉降和盾构施工参数如下:

(1)整个穿越过程中土仓压力控制在3bar左右,,在建筑物下方时增加为3.15bar。在推进和停机过程中保持土压基本平衡,避免出现过大的波动;

(2)盾构掘进速度控制在3cm/min左右,且穿越过程中保持匀速掘进;

(3)每环同步注浆量在3.8m3左右,浆夜注入率约200%;

(4)在推进过程中保持盾构机的姿态平稳,严禁姿态起伏过大,尽量避免蛇行超挖。

通过以上措施,盾构较为顺利的穿越本段建筑群,下面结合建筑物监测数据对其分析,图14为穿越施工时建筑物监测点位平面布置图。

705环

图14 监测点位平面布置图

盾构推进施工引起6层住宅建筑物各测点(位于628环-634环上方)的隆沉变化如图15~图1.7所示。当施工610环时,盾构切口进入建筑物下,测点向上隆起,切口到达测点240和241前后隆起量达+4mm,这是由于盾构掘进引起的土体挤压影响造成的。盾尾通过时(630环),测点明显下沉至-1mm,这是由于盾尾同步注浆还不能及时和足量充填盾尾建筑空隙造成的。盾构通过建筑物后(630环-660环)的30环掘进施工时加强了壁后双液注浆,使测点隆沉保持在+1—+2mm。停止壁后注浆后,测点发生微量沉降。从图中可以看出,本穿越段盾构穿越施工对建筑物产生的影响在允许范围以内,不均匀沉降小于2mm,6层住宅楼未发生沉降裂缝和门窗变形,穿越施工相当成功。

图15 JZ1建筑物各测点沉降变化趋势

-2

-10

1234

竖向变形量/m m

图16 盾构推进引起JZ1各测点的差异沉降图

(2)建筑物的长期沉降

图17为盾构穿越施工引起既有建筑物的长期沉降历时曲线图。从图中可以看出,盾构到达前15m 至0m ,测点呈上隆趋势,切口到达时隆起量达4mm ;盾构通过时至盾尾脱出后10天内,因同步注浆和璧后注浆效果明显,测点变化稳定在+3mm —+4mm 范围;盾尾脱出后10天—110天的100天内,后续补浆频率减缓,测点缓慢沉降了8mm ,沉降速率约为0.08mm/d ;盾尾脱出后110天—160天的50天内,后续补浆停止后,测点沉降

了12mm ,沉降速率约为0.24mm/d 。说明多次补浆对控制建筑物的长期沉降具有明显效果。

-18

-15-12-9

-6-30

36

竖向变形量/m m

图17 测点264的长期沉降曲线图

地铁车站结构设计

地铁车站结构设计 车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。 在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。 地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。 车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时,必须详细调查研究, 作经济技术比较。车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。然后进行车站构造设计, 内力计算, 配筋计算等等。 一、工程概况: 长沙市五一广场站设计为两层三跨岛式车站,车站全长134.6m,宽度为21.8m,上层为站厅层,下层为站台层。车站底板埋深16m,采用明挖法施工,用地下连续墙围护。 二、设计依据: 地铁设计规范(GB50157-2003); 地铁施工技术规范。 三、地铁车站结构设计 3.1 设计选用矩形框架结构。 设计为岛式车站,采用两层三跨结构。地铁车站采用明挖法。车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。顶板和楼板采用单向板,底板

按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。 3.2 车站开挖围护结构 地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为 =0.875,其中基坑开挖深度H 为16m,入土深度D为14m 。 四、侧压力计算: 土分层及土的钻孔柱状图如图4.1: 图4.1土分层及土的钻孔柱状图(单位,m)

上海地铁10号线线路说明

上海地铁10号线线路说明 上海轨道交通10号线,编号M1,是国内首条无人驾驶轨道交通线,一期由新江湾城站至虹桥火车站,支线在龙溪路站连接支线,抵达航中路站。线路全长36千米,其中龙溪路站以东及支线部分于2010年4月10日先期开通试运营,而主线龙溪路站以西于2010年11月28日开通。第二期将由新江湾城站延伸至基隆路,长10.08公里,共设6站,为上海2010~2020年规划建设线路。由于沿途经过新天地、豫园老城厢、南京路、淮海路、四川路、五角场城市副中心等上海中心区域,因此被称为“白金线路”。 未来发展规划: 浦东东北部的外高桥区域将新增一条通往虹桥枢纽的轨道交通线——日前,市规土局《关于轨道交通10号线(新江湾城-基隆路)选线专项规划》公示,透露了轨道交通10号线将进一步延伸,穿过黄浦江后到达基隆路。 轨道交通10号线是本市轨道交通网络中一条重要的市区级线路,一期工程已经运营通车,全长36.2公里,纵穿杨浦、虹口、黄浦、闸北、徐汇、长宁、闵行等区,并串联起虹桥火车站、虹桥机场等多个客运交通枢纽和大型客流集散点,共设31个车站。 10号线二期工程将由新江湾城出发向东延伸,设国帆路站、双江路站、高桥西站、高桥站、港城路站(换乘6号线)、基隆路站。 10号线未来将新增如下换乘站:港城路站(换乘6号线)

上海市轨道交通10号线二期工程线路起自一期工程终点站新江湾城站北端,沿淞沪路过黄浦江后,再沿港城路至外高桥保税区的基隆路站。线路主要途径杨浦区、浦东新区2个行政区。线路全长约10.080km,其中地下线(盾构)长度3.155km,明挖段长度0.228km,过渡段长度0.337km,高桥段长度6.36km;设站6座,其中地下站1座,高架站5座;设港城路停车场1座;在港城路停车场内设1座主变电所。预计2016年建成。10号线二期工程是10号线的组成部分,是上海轨道交通网络中北部越江通道,连接市中心区和浦东新区,服务于浦东新区北部及杨浦区北部地区,与10号线一期工程贯通运营 更多详情请访问媒力·中国官网:https://www.360docs.net/doc/0b691447.html,

地铁区间隧道结构设计计算书

地下工程课程设计 《地铁区间隧道结构设计计算书》

目录 一、设计任务 (3) 1、1工程地质条件 (3) 1、2其他条件 (3) 二、设计过程 (5) 2.1 根据给定的隧道或车站埋深判断结构深、浅埋; (5) 2.2 计算作用在结构上的荷载; (5) 2.3 进行荷载组合 (8) 2.4 绘出结构受力图 (10) 2.5 利用midas gts程序计算结构内力 (10) 附录: (15)

地铁区间隧道结构设计计算书 一、设计任务 对某区间隧道进行结构检算,求出荷载大小及分布,画出荷载分布图,同时利用软内力。具体设计基本资料如下: 1、1工程地质条件 工程地质条件 线路垂直于永定河冲、洪积扇的轴部,第四纪地层沉积韵律明显,地层由上到下依次为:杂填土、粉土、细砂、圆砾土、粉质粘土、卵石土。其主要物理力学指标如表1。 1、2其他条件 其他条件 地下水位在地面以下5m处;隧道顶部埋深6m;采用暗挖法施工。隧道段面为圆形盾构断面。断面图如下:

二、设计过程 2.1 根据给定的隧道或车站埋深判断结构深、浅埋; 可以采用《铁路隧道设计规范》推荐的方法,即有 上式中s为围岩的级别;B为洞室的跨度;i为B每增加1m时的围岩压力增减率。 由于隧道拱顶埋深6m,位于杂填土、粉土层、细砂层中,根据《地铁设计规范》10.1.2可知 “暗挖结构的围岩分级按现行《铁路隧道设计规范》确定”。 围岩为Ⅵ级围岩。则有 因为埋深,可知该隧道为极浅埋。 2.2 计算作用在结构上的荷载;

1 永久荷载 A 顶板上永久荷载 a. 顶板(盾构上部管片)自重 b. 地层竖向土压力 由于拱顶埋深6 m,则顶上土层有杂填土、粉土,且地下水埋深5m,应考虑土层压力和地下水压力的影响。(粉土使用水土合算) B 底板上永久荷载 a. 底板自重 b. 水压力(向上): C 侧墙上永久荷载 地层侧向压力按主动土压力的方法计算,由于埋深在地下水位以下,需考虑地下水的影响。(分图层水土合算,砂土层按水土分算) a. 侧墙自重 b. 对于隧道侧墙上部土压力: 用朗肯主动土压力方法计算

(完整word版)2014年土木工程专业(地铁车站)毕业设计任务书

土木工程专业 城市地下空间工程方向毕业设计任务书 中南林业科技大学土木工程与力学学院 二0一四年三月

××地铁车站初步设计 一、毕业设计目的 毕业设计是按教学计划完成理论教学和相关实践教学之后的综合性教学,是对专业方向教学的继续深化和拓宽,是培养学生工程实践能力的重要教学阶段,其目的在于全面培养、训练学生运用已学的专业基本理论、基本知识、基本技能,进行本专业工程设计或科学研究的综合素质。 二、毕业设计基本要求 1、按设计课题的要求,独立完成设计任务,做出不同的设计方案,交出各自的成果。 2、认真设计、准确计算、细致绘图、文字表达确切流畅。 3、树立科学态度,注重钻研精神、独立工作能力的培养。 4、严格按照有关文件要求进行毕业设计管理,努力提高毕业设计质量。 5、图纸绘制要求:全部采用A3图纸(可加长);计算机出图必须有3张;图纸布局要协调,要紧凑而不拥挤;线条粗细要正确,位置要准确; 6、注重资料的收集、分析和整理工作,设计完成后,设计成果应按如下要求装订成册:(1)《毕业设计计算书》A4一份;(2)《毕业设计图纸》A4一份。 7、图纸装订顺序:封面,目录,设计总说明,设计图纸、表格。 8、设计计算书装订顺序:封面、目录、中英文摘要、设计总说明、设计计算的全部内容、致谢(300字左右)。 三、设计任务与要求 (一)、设计资料 1、车站地质勘察报告 2、预测客流(见附表) 3、车辆外形尺寸:A型车或B型车。 4、车辆编组:设计时采用远期列车6辆编组。 5、防水等级:一级;二次衬砌混凝土抗渗等级不小于S6。 6、主要技术标准:执行《地铁设计规范》(GB50157-2003)的有关技术标

上海地铁1号线线路图

上海地铁1号线线路图 海地铁1号线,又称上海轨道交通一号线,是上海的第一条地铁,也是上海轨道交通最为繁忙、最重要 的线路之一。最早由南段(锦江乐园—徐家汇)于1993年5月28日开始试运营;1994年12月12日,全线通车调试;1995年7月,全线正式运营。上海地铁一号线南起闵行区莘庄站,北至宝山区富锦路站,全长近37公里,共设28个车站及2个车辆段,最低票价3元。上海地铁一号线的运营使上海成为继北京,天津之 后中国大陆第三个拥有地铁的城市。如下为其线路图: 1.由其线路图可进行其途径的商圈分析:其由南向北跨过多个商圈,途径徐家汇、人民广场、淮海路三大城市最繁华商圈以及商务CBD,线路首尾分别连接湖北大型生活区和沪闵、莘庄大型生活区。目前一号线南起闵行区莘庄站,北至宝山区富锦路站,全长近37公里,共设28个车站及2个车辆段(梅陇停车场,富锦路停车场),途径宝山、闸北、静安(途径,无车站)、黄浦、卢湾、徐汇、闵行7个区。 2.线路建设历程: 一号线一期(锦江乐园—上海火车站) 1995年4月10日,上海首条地下快速有轨干道——地铁一号线建成试运营,7月正式投入运营。地铁1号线全长16.1公里,设锦江乐园、新龙华、漕宝路、上海体育馆、徐家汇、衡山路、常熟路、陕西南路、黄陂南路、人民广场、新闸路、汉中路和上海火车站13座车站,锦江乐园站、新龙华站为地面站,余为地下站。此外,设地面车辆段1处,地下主变电站2座,牵引变电站7座,控制中心1座。区间隧道单线长18.5公里。征借地69.8公顷,建动迁房屋53万平方米,动迁居民5800户,单位304家。工程总概算人民币53.9亿元。 上

城市地铁隧道常用施工方法概述

城市地铁隧道常用施工方法概述 目前国内外修建地铁车站的施工方法有明挖法、盖挖法、暗挖法、盾构法等。主要阐述了修建地铁车站施工方法的原理、施工流程、优缺点,为我国各大城市修建地铁车站时选择合理的施工方法提供有益的参考。 伴随着我国社会主义经济建设的迅猛发展与综合国力的增强,城市的规模也不断的增大,城市人口流量还在增加、再加上机动车辆呈现逐年上涨的趋势,交通状况不断恶化。为了改善交通环境,采取了各种措施,其中兴建地下铁道得到了普遍的认可,如最近几年在北京、广州、深圳等城市便兴建了大量的地下铁道。由于在城市中修建地下铁道,其施工方法受到地面建筑物、道路、城市交通、水文地质、环境保护、施工机具以及资金条件等因素的影响较大,因此各自所采用的施工方法也不尽相同。下面将就城市地下铁道施工方法分别加以介绍。施工方法的选择应根据工程的性质、规模、地质和水文条件、以及地面和地下障碍物、施丁设备、环保和工期要求等因素,经全面的技术经济比较后确定。 1明挖法 明挖法是指挖开地面,由上向下开挖土石方至设计标高后,自基底由下向上顺作施工,完成隧道主体结构,最后回填基坑或恢复地面的施工方法。 明挖法是各国地下铁道施工的首选方法,在地面交通和环境允许的地

方通常采用明挖法施工。浅埋地铁车站和区间隧道经常采用明挖法,明挖法施工属于深基坑工程技术。由于地铁工程一般位于建筑物密集的城区,因此深基坑工程的主要技术难点在于对基坑周围原状十的保护,防止地表沉降,减少对既有建筑物的影响。明挖法的优点是施工技术简单、快速、经济,常被作为首选方案。但其缺点也是明显的,如阻断交通时间较长,噪声与震动等对环境的影响。 明挖法施工程序一般可以分为4大步:维护结构施工→内部土方开挖→工程结构施工→管线恢复及覆土,如图1。 上海地铁M8线黄兴路地铁车站位于上海市控江路、靖宇路交叉口东侧的控江路中心线下。该车站为地下2层岛式车站,长166.6m,标准段宽17.2m,南、北端头井宽21.4m。标准段为单柱双跨钢筋混凝土结构,端头井部分为双柱双跨结构,共有2个风井及3个出人口。车站主体采用地下连续墙作为基坑的维护结构,地下连续墙在标准段深26.8m.墙体厚0.6m。车站出人口、风井采用SMW桩作为基坑的维护结构。2盖挖法 盖挖法是由地面向下开挖至一定深度后,将顶部封闭,其余的下部工程在封闭的顶盖下进行施工.主体结构可以顺作,也可以逆作。 在城市繁忙地带修建地铁车站时,往往占用道路,影响交通当地铁车站设在主干道上,而交通不能中断,且需要确保一定交通流量要求时,可选用盖挖法。 2.1盖挖顺作法

地铁区间隧道结构设计

地铁区间隧道结构设计 前言 一. 地下铁道的基本功能及特点 地下铁道(metro subway)是指,在大城市下的地下修筑隧道、铺设轨道,以电动快速列车运送大量乘客的公共交通体系,简称地铁。在城市郊区,地铁线路可延伸至地面或高架桥上。地铁运输几乎不占街道面积,不干扰地面交通,有些国家称它为“街外运输”,或称为“有轨公共交通线”(mass transit railway)。它是解决城市交通拥挤问题,并能大量快速、安全运送旅客的一种现代化交通工具。 随着国民经济的发展,城市人口的大量增加,机动车和非机动车数量迅速增长,市区的客运交通流量猛增,城市规模随之不断扩大,这样就使城市中空气污染、噪音、交通拥挤等影响城市居民生活的因素逐渐突出,于是居民区就需要向城市郊区扩展。在上下班时和节假日,城市交通更显得拥挤混乱。原有的城市道路面积和城市面积的比例(道路率)是受城市发展历史制约等,一般不容易改变,想通过拆迁改造城市交通状况是极其困难的,甚至是不可实现的。如上海市人均道路面积仅为2.2m2,要增加道路面积非常困难。因此,许多干道的交通堵塞状况日益严重。目前很多城市道路交通的平均车速已下降至10km/h以下,很多路口交通负荷度已经很饱和。根据国内、外的经验,建设大容量快速轨道交通包括地铁和轻轨运输是缓解交通紧张状况的有效途径。尤其是在市内,建设地铁,向地下发展是今后城市发展的一种趋势。 地下铁道在城市客运交通中的主要作用有以下几个方面: 1.能满足大客运量的需要。一条低铁道单方向每小时的运送能力可达4~6万人次,为公共汽车的6倍至8倍,为轻轨交通的2倍多。完善的地下铁道系统会成为城市公共交通系统的骨干,可担负起城市客客运量的一般左右(实例见下表)

上海地铁13号线线路说明

上海地铁13号线线路说明 上海轨道交通13号线,编号M5,为上海其中一条建设中的轨道交通路线。2012年12月30日开始运行,线路全长33.6千米,均为地下线,共有31个车站,还有北翟路停车场(与2号线共享)及川杨河辅助停车场2个车辆段,全线工程总投资为198.68亿元人民币。列车运行间隔为10分钟,首班车最早6:00,末班车22:00发车。有关部门公布了上海轨道交通十三号线的最新线路图,该线由嘉定区江桥镇的金运路站至浦东新区张江路站,共设31个车站,线路日客流约200,000人次。 线路概述: 缓解江桥、普陀出行压力,促使更多居民出行使用地铁连接淮海商圈、世博商圈及居民区。延伸段通车后,换乘站点将达7个。 发展规划: 轨道交通13号线一期工程共设14座车站,沿线与1、2、3、4、7、11、12号线及规划中的14、15、20、21共11条线、9座站换乘,其中三线换乘站3座,两线换乘站6座,全部为地下站,分别是金运路站、金沙江西路站、丰庄站、祁连山南站、真北路站、大渡河路站、金沙江路站(与3、4号线换乘)、隆德路站(与11号线换乘)、武宁路站、长寿路站(与7号线换乘)、江宁路站、汉中路站(与1号线、12号线换乘)、自然博物馆站、南京西路站(与2号线、12号线换乘)。

二期由南京西路站延伸至张江路站,现阶段有消息指出计划于2015年左右开通。 三期串联了张江高科园区、张江大型居住区等客流集散点,其起点位于二期工程终点站华夏中路站,沿中科路向东,共设中科路、学林路、张江路三站,线路全长5.254公里,设三座地下车站。列车编组的初、近、远期都采用A型车6节编组,运营时间从5:00至23:00,共18小时。初期全日开行列车218对,近期全日开行252对,远期全日开行280对。计划2014年开工,2017年建成试通车,工程建设总工期约3.5年。 更多详情请访问媒力·中国官网:https://www.360docs.net/doc/0b691447.html,

地铁隧道施工方法全解

地铁隧道施工方法全解 明挖法 在地面条件允许的情况下,地铁区间隧道采用明挖法。明挖法是指挖开地面,由上向下开挖土石方至设计标高后,自基底由下向上顺作施工,完成隧道主体结构,最后回填基坑或恢复地面的施工方法。浅埋地铁车站和区间隧道经常采用明挖法,明挖法施工属于深基坑工程技术。由于地铁工程一般位于建筑物密集的城区,因此深基坑工程的主要技术难点在于对基坑周围原状土的保护,防止地表沉降,减少对既有建筑物的影响。明挖法的优点是施工技术简单、快速、经济,但其缺点也是明显的,如阻断交通时间较长、噪声等会对环境产生影响。 盖挖法 01 顺作法 盖挖顺作法是在地表作业完成挡土结构后,以纵、横梁和路面板置于挡土结构上维持交通,往下反复进行开挖和加设横撑,直至设计标高。依序由下而上,施工主体结构和防水措施,回填土并恢复管线路或埋设新的管线路。最后拆除挡上结构外露部分并恢复道路。 02 逆作法 盖挖逆作法是先在地表面向下做基坑的维护结构和中间桩柱,和顺作法一样,基坑维护结构多采用地下连续墙或帷幕桩,中间支撑多用主体结构本身的中间立柱。随后开挖表层土体至主体结构顶板地面标高,利用未开挖的土体作为土模浇筑顶板。待回填土后将道路复原,恢复交通。之后的工作都是在顶板覆盖下进行,自上而下逐层开挖并建造主体结构直至底板。 盾构法 盾构法施工是以盾构施工机械在地面以下暗挖隧道的一种施工方法。盾构是一个既可以支承地层压力又可以在地层中推进的活动钢筒结构。钢筒的前端设置支撑和开挖土体的装置,中段安装顶进所需的千斤顶,尾部可以拼装预制或现浇隧道衬砌环。盾构每推进一环距离,就在盾尾支护下拼装或现浇一环衬砌,并向衬砌环外围的空隙中压注水泥砂浆。盾构施工前应先修建一竖井,在竖井内安装盾构,盾构开挖出的土体由竖井通道送出地面。 盾构按断面形状不同可分为圆形、拱形、矩形、马蹄形4种。盾构法的主要优点是除竖井施工外,施工作业均在地下进行,既不影响地面交通,又可减少对附近居民的噪声和振动影响;土方量少;盾构推进、出土、拼装衬砌等主要工序循环进行,易于管理;施工不受风雨等气候条件的影响。 浅埋暗挖法 浅埋暗挖法即松散地层的新奥法施工,新奥法是充分利用围岩的自承能力和开挖面的空间约束作用,采用锚杆和喷射混凝土作为主要支护手段,对围岩进行加固,并通过对围岩和支护的量测、监控,指导地下工程的设计施工。浅埋暗挖法是针对埋置深度较浅、松散不稳定的上层和软弱破碎岩层施工而提出

ansys课程设计-地铁车站主体结构设计

目录 课程设计任务书 ................................................................................................................ - 1 - GUI方式 ............................................................................................................................... - 3 - 一、打开ANSYS........................................................................................................... - 3 - 二、建立模型.............................................................................................................. - 3 - 1、定义单元类型.................................................................................................. - 3 - 2、定义单元实常数.............................................................................................. - 3 - 3、定义材料特性.................................................................................................. - 3 - 4、定义截面.......................................................................................................... - 3 - 5、建立几何模型.................................................................................................. - 3 - 6、划分网格.......................................................................................................... - 4 - 7、建立弹簧单元.................................................................................................. - 4 - 三、加载求解.............................................................................................................. - 5 - 1、施加位移约束.................................................................................................. - 5 - 2、施加荷载.......................................................................................................... - 6 - (1)计算结构所受荷载................................................................................ - 6 - (2)施加结构所受荷载................................................................................ - 6 - (3)施加重力场............................................................................................ - 7 - 3、求解.................................................................................................................. - 8 - 四、查看计算结果...................................................................................................... - 8 - 1、添加单元表...................................................................................................... - 8 - 2、查看变形图...................................................................................................... - 8 - 3、查看各内力图.................................................................................................. - 9 - 4、查看内力列表.................................................................................................. - 9 - 单元内力表........................................................................................................................ - 11 - APDL方式......................................................................................................................... - 17 -

上海地铁9号线地铁线路介绍

上海地铁9号线线路介绍 海轨道交通9号线(轨道交通8号线),也称作申松线,以天蓝色为标志色,列车编组采用6节编组方式。 该线由上海港铁建设有限公司负责建设,由上海地铁第一运营有限公司负责运营。该线于2007年12月29日一期通车。此后,先后开通一期遗留段、二期、二期遗留段、南延伸段。该线是一条东西走向为主的线路,穿越徐家汇、花木两个城市副中心,是横穿上海的一条主要干线。截至2014年8月,该线全长45.6公里,共设23座车站,其中换乘车站5座,拥有车辆段1 个。 1.线路信息:上海地铁9号线共设有26个站点,线路日客流972,000人次。这条线路女性乘客比例较多,由于一段经过松江大学城,因此线路中高学历学生具有一定占比,此外25-34岁拥有较高个人月收入的白领人士人群较多。线路主要经过松江新城、佘山、七宝、漕河泾、徐家汇、打浦桥、八佰伴、世纪大道等浦西、浦东主要商务、商贸核心区域,商业价值显著。 2.线路发展历程: 2007年12月29日,一期工程(松江新城站-桂林路站)通车。全长29公里,共设12座车站,其中松江大学城站至泗泾站4站为高架车站,其余8座车站均为地下车站,平均站距2.54公里。 2008年12月28日,一期遗留段(桂林路站-宜山路站)通车。从桂林路站乘坐短驳公交到宜山路换乘3、4号线的时间缩短80%,短驳公交同时取消。同时,9号线增加5列新车投入运营,上线列车达到12列,列车 上

运营间隔缩短到10分钟以内。 2009年12月31日,二期工程(宜山路站-世纪大道站)通车。增加全长约12公里,增设9座车站,上线列车达到26列电客列车,全天最小行车间隔为6分钟。 2010年4月1日,二期遗留站(杨高中路站)开通。 2012年12月,三期工程获国家发改委批复,由上海建工四建集团有限公司中标建设。2012年12月30日,三期南延伸段工程(松江新城站-松江南站站)通车。 3.线路发展规划:该线有三期东延伸规划,将增加7个车站:平度路站、黑松路站、碧云路站、金桥路站、张桥站、金海路站、上川路站。 更多详情请访问媒力·中国官网:https://www.360docs.net/doc/0b691447.html,

上海地铁线路及换乘

上海地铁1号线途径站点 富锦路- 友谊西路- 宝安公路- 共富新村- 呼兰路- 通河新村- 共康路- 彭浦新村- 汶水路- 上海马戏城- 延长路- 中山北路- 上海火车站(换3、4)- 汉中路- 新闸路- 人民广场(换2、8)- 黄陂南路- 陕西南路(换10)- 常熟路(换7)- 衡山路- 徐家汇(换9)- 上海体育馆(换4)- 漕宝路- 上海南站(换3)- 锦江乐园- 莲花路- 外环路- 莘庄(换5) 上海地铁2号线途径站点 徐泾东- 虹桥火车站(换10)- 虹桥2号航站楼(换10)- 淞虹路- 北新泾- 威宁路- 娄山关路- 中山公园(换3、4)- 江苏路(换11)- 静安寺(换7)- 南京西路- 人民广场(换1、8)- 南京东路(换10)- 陆家嘴- 东昌路- 世纪大道(换4、6、9)- 上海科技馆- 世纪公园- 龙阳路- 张江高科- 金科路- 广兰路- 唐镇- 创新中路- 华夏东路- 川沙- 凌空路- 远东大道- 海天三路- 浦东国际机场 上海地铁3号线途径站点 上海南站(换1)- 石龙路- 龙漕路- 漕溪路- 宜山路(换4、9)- 虹桥路(换4、10)- 延安西路(换4)- 中山公园(换2、4)- 金沙江路(换4)- 曹杨路(换4、11)- 镇坪路(换4)- 中潭路(换4)- 上海火车站(换1、4)- 宝山路(换4)- 东宝兴路- 虹口足球场(换8)- 赤峰路- 大柏树- 江湾镇- 殷高西路- 长江南路- 淞发路- 张华浜- 淞滨路- 水产路- 宝杨路- 友谊路- 铁力路- 江杨北路 上海地铁4号线途径站点 虹桥路- 延安西路(换3)- 中山公园(换2、3)- 金沙江路(换3)- 曹杨路(换3、11)- 镇坪路(换3)- 中潭路(换3)- 上海火车站(换1、3)- 宝山路(换3)- 海伦路(换10)- 临平路- 大连路- 杨树浦路- 浦东大道- 世纪大道(换2、6、9)- 浦电路(换6)- 蓝村路(换6)- 塘桥- 南浦大桥- 西藏南路(换8)- 鲁班路- 大木桥路- 东安路(换7)- 上海体育场- 上海体育馆(换1)- 宜山路(换3、9) 上海地铁5号线途径站点 莘庄(换1)- 春申路- 银都路- 颛桥- 北桥- 剑川路- 东川路- 金平路- 华宁路- 文井路- 闵行开发区 上海地铁6号线途径站点06:00-21:11 港城路- 外高桥保税区北- 航津路- 外高桥保税区南- 洲海路- 五洲大道- 东靖路- 巨峰路- 五莲路- 博兴路- 金桥路- 云山路- 德平路- 北洋泾路- 民生路- 源深体育中心- 世纪大道(换2、4、9)- 浦电路(换4)- 蓝村路(换4)- 上海儿童医学中心- 临沂新村- 高科西路(换7)- 东明路- 高青路- 华夏西路- 上南路- 灵岩南路

上海市轨道交通10号线详勘报告

一.前言 1.工程概况 上海市轨道交通10号线(地铁M1线)是《上海市城市轨道交通系统规划方案》中规划的市区级轨道线网中的地铁类线路之一。一期工程线路起点为高速铁路客站站、终点为新江湾城站,全长32.76km。线路具体走向为:高速铁路客站~星站路~吴中路~虹井路~延安西路~虹桥路~淮海路~复兴路~河南路~武进路~四平路~淞沪路~新江湾城,连接闵行、长宁、徐汇、卢湾、黄浦、虹口、杨浦等7个区。一期工程均采用地下线方案,共包含30个车站、29个区间,并在外环路站南侧设地面停车场一座。 拟建南京东路站~天潼路区间在苏州河(吴淞江)以南位于黄浦区境内,苏州河以北位于闸北区和虹口区交界处。区间起点为南京东路站北端,线路从河南中路、宁波路口起,沿河南中路向北穿越北京东路,在通过苏州河后,沿河南北路行进,到达区间终点天潼路站南端,里程约为AK21+116~AK21+618,全长502m。本区间拟采用盾构法施工,盾构外径约为6.5m。 工程建设单位为上海申通集团有限公司,本区间由上海市隧道工程轨道交通设计研究院设计。我单位受建设单位委托对本工程进行详勘工作,工程勘察等级为甲级。 2.勘察依据 1)上海市轨道交通10号线(地铁M1线)一期工程(AK18+521~AK25+076)岩土工程初勘报告(上海市隧道工程轨道交通设计研究院,2005年2月) 2)上海市轨道交通10号线(地铁M1线)工程南京东路站~天潼路站区间平面图、结构断面图。 3)上海市轨道交通10号线(地铁M1线)一期工程第4标段岩土工程勘察投标文件(上海市隧道工程轨道交通设计研究院,2005年7月)。 3.采用的规范、规程及标准 1)国家及行业规范、标准 《岩土工程勘察规范》(GB50021-2001) 《地下铁道、轻轨交通岩土工程勘察规范》(GB 50307-1999) 《建筑地基基础设计规范》(GB50007-2002) 《建筑抗震设计规范》(GB50011-2001) 《土工试验方法标准》(GB/T50123-1999) 《建筑工程勘察文件编制深度规定》(2003年6月试行) 《工程测量规范》(GB50026-93) 2)上海市工程建设规范、规程 《岩土工程勘察规范》(DGJ08-37-2002) 《地基基础设计规范》(DGJ08-11-1999) 《城市轨道交通设计规范》(DGJ08-109-2004) 《建筑抗震设计规程》(DGJ08-9-2003) 《岩土工程勘察文件编制深度规定》(DGJ08-72-98) 《岩土工程勘察外业操作规程》(DG/TJ08-1001-2004) 3)其他标准 《工程建设标准强制性条文》(2002年版) 《静力触探技术标准》(CECS04:88) 4.勘察目的及技术要求 本次勘察目的是在初勘基础上,详细查明拟建场地的工程地质、水文地质条件,并作出定性、定量评价,对不良地质、特殊地质提出治理措施,为施工图设计提供充分地质依据及必要的设计参数,给出结论并提出相应的建议。主要技术要求如下: 1)详细查明工程沿线场地的地形地貌、地基土层埋藏深度、地质年代、成因类型和分布特征,对拟建场地稳定性和适宜性作出分析评价。 2)详细查明工程沿线场地内不良地质,分析其成因、分布范围及其对工程可能产生的不利影响,并为设计提供所需的资料。 3)详细查明地下水类型、埋藏条件、水位、水质及渗透性等,分析其对拟选施工方案的影响,为设计提供所需的水文地质参数。 4)划分场地类别和地基土类型,按抗震设防烈度7度要求,对场地地震效应进行分析。 5)根据既有资料并结合拟建建(构)筑物的特征,提供设计所需的各种物理力学指标及其它的技术参数,提出适宜的技术措施及合理的建议,满足设计施工要求:对区间隧道沿线地基土及不良地质等对隧道盾构施工可能产生的各种影响作出评价,提出相应的防治措施,并提供盾构设计施工所需的有关参数。

(整理)地铁车站和区间隧道的设计和选型

一、地铁车站的建筑设计 1地铁车站的分类 1.1 按照车站埋深分:浅埋车站、深埋车站 1.2 按照车站运营性质分:中间站、区域站、换乘站、枢纽站、联运站、终点站 1.3 按照车站结构断面形式分:矩形断面、拱形断面、圆形断面、其他 1.4 按车站站台形式分:岛式、侧式、岛侧混合式 2 地铁车站建筑及平面布局 2.1 地铁车站的组成 地铁车站由车站主体(站台、站厅、生产、生活用房)、出入口及通道、通风道及地面通风厅等三大部分组成。 车站建筑又可概括为以下部分组成:乘客使用空间、运营管理用房、技术设备用房、辅助用房。 2.2车站总体平面布置 按照以下流程确定:前期工作(设计资料的收集、现场调查、构思),确定车站中心位置及方向,选定车站类型,合理布置车站出入口、通道、通风道与地面通风厅。 3 车站建筑设计 3.1 车站设计 3.1.1 设计原则 (1)根据车站规模、类型及平面布置,合理组织人流路线,划分功能分区。 (2)车站一般宜设在直线上。 (3)车站公用区间划分为付费区和非付费区。 (4)隔、吸声措施。 (5)无障碍通行。 3.1.2 平剖面设计 (1)车站规模确定。确定车站外形尺寸大小、层数和站房面积,确定车站规模大小。 (2)车站功能分析。确定车站乘客流线、工作人员流线、设备工艺流线等,以便于合理进行车站平剖面布置。

(3)站厅设计。主要解决客流出入的通道口、售票、进出站检票、付费区与非付费区的分隔、站厅与站台的上下楼梯与自动楼梯的位置等。 (4)站台设计。确定站台形式、站台层的有效长度、宽度和站台高度,然后进行站台层公共区(上、下车与候车区及疏散通路)的设计。 (5)主要房间布置。包括变电所、环控用房、主副值班室、车站控制室、站长室等,一般设置在站厅和站台层的两端。 (6)车站主要设施布置。包括楼梯、自动扶梯、电梯、售检票设施等的布置和各部位通过能力的设计,按照有关规范执行。 3.1.3 消防、安全与疏散 主要考虑建筑防火与防水淹问题。 3.2 车站出入口及出入口通道 3.2.1 普通出入口的设计 (1)出入口数量的确定。一般情况,浅埋地下车站的出入口不少于4个,深埋车站不少于2个。 (2)主要尺寸的确定。出入口的宽度总和应大于该站远期预测超高峰小时客流量所需的总和,可按照公式计算。 3.2.2 出入口通道 包括出入口通道宽度的设计、埋深、楼梯踏步和自动扶梯的设置等,出入口通道地面坡度等。 3.3 车站通风道 3.3.1 车站通风道 确定地铁车站内的通风方式、环控设备的布置等来确定车站内通风道的布置。 3.3.2 地面通风亭 根据风量及风口数量确定通风亭的大小,根据实际环境和设备的条件确定通风亭的位置。 3.4 残废人设施 考虑残废人专用电梯和站内盲道的设置。

明挖地铁车站结构设计

关于明挖地铁车站结构设计中若干问题的探讨摘要:随着中国经济持续快速发展和城市化水平的提高,我国城市地铁的建设正大规模地开展。本文以明挖法地铁车站框架结构为研究对象,简述地铁车站结构设计及构造中存在的一些值得商榷的地方,以供同行参考,进行设计优化。 引言 为解决城市交通拥堵问题,修建具有超强运力的地铁与轻轨已逐渐成为大城市的首选手段。目前国内绝大多数直辖市及省会城市已经部分建成或正在修建地铁。地铁在城市中的经济效益与社会效益也是有目共睹的。但是对于以地下工程为主的地铁结构,在结构设计中由于岩土性质的复杂性、设计理论的局限性,使地铁结构设计及构造中存在的一些值得商榷的地方,需要我们在实践中不断的探索、求解,不断优化地铁设计。 一、地震作用对地铁整体现浇框架结构的影响 1.侧墙大开洞对抗震设计的影响 标准的两层地下车站结构型式一般为单柱双跨或双轴三跨两层整体现浇砼框架结构,结构刚度分布均匀、对称。但在车站主体结构与出入口、风亭以及大外挂物业用房相接处,侧墙必须大开洞。大开洞严重削弱了结构侧向刚度,且造成结构两侧刚度不对称,对结构抗震产生不利影响,结构设计时此影响应予以考虑。 2.结构中柱设计对抗震设计的影响 车站结构中的中柱在抗震设计中基本是一种脆性破坏,是框架结

构中受力最薄弱的部位,和首先遭到破坏的构件。因此,提高地下框架抗震性能的最有效的方法是改善中柱的受力性能和受力特征。目前,中柱基本采用的是普通钢筋砼柱,砼强度较高,轴压比偏大,对抗震不利。故中柱应尽量采用塑性性能良好的钢管砼柱。 二、侧向水土压力的不确定性对结构设计的影响问题 1.对中板配筋设计的影响 各层板在侧向水土压力和竖向荷载的共同作用下,实际上处于偏压受力的状态。但是,由于侧向水土压力计算理论上的缺陷以及水压力的多变性,目前各层板的配筋大多按纯弯构件计算,按偏压进行验算,所得结果是偏于安全的。笔者参与的多条地铁线路设计总体技术要求,均有此规定。一般情况下,按上述方法设计时,偏压验算都能满足,因此,设计人员往往不进行偏压验算。但是,在板的轴向压力很大的时候,属小偏压构件,如仍按纯弯构件进行配筋计算,受力上偏于不安全。在这种情况下,应按偏压构件设计,按纯弯构件验算,以保证结构安全。 2.对车站侧墙设计的影响 水位的变化对侧墙剪力的大小影响很大,当水位取至抗浮设计水位时,由于底板所受水浮力很大,向上凸起,侧墙向外侧鼓出,导致侧墙外侧土体产生被动土压力,侧墙剪力最大。以一般两层站为例,侧墙在与底板的节点处,剪力可以达到800kN以上,大于不配箍墙(板)构件抗剪承载力。可见,侧向水土压力的取值,对侧墙的剪力设计值影响很大。

上海地铁2030官方规划

大家都知道自从新中国成立以来我国的各大城市都是在积极的建设发展之中,城市的综合实力已经有着显著的提升了,城市在有了一定的经济实力作为发展的基础之后,对于市内的市容市貌的建设也就更加的重视了,因为这是关乎到城市的形象问题的,一座城市拥有一个良好的形象对于城市的经济发展也是有着很大的帮助的,比如说拥有一个良好形象的城市在招商引资或者人才吸引方面都占据着很大的优势的。 那么城市的形象如何提升呢?我国很多的城市都是采用修建高楼大厦,完善交通状况来实现提升城市的形象,很多经济实力比较强大的城市都已经在修建地铁了,地铁大家都比较的熟悉了,它的运行速度非常的快,而且还不堵车,票价也比较的合理,所以深受人们的喜爱,很多城市都想着去修建地铁,但是并不是每一座城市都有着实力去修建的,可以修建地铁的城市在经济实力预计人口数量上都是比较的突出。 我国的上海市肯定是有实力去修建地铁的了,而且上海的地铁网现在已经是非常的完善了,上海目前已经拥有世界范围内线路总长度最长的城市轨道交通系统,上海的第一条地铁在1993年的时候建成的,如今上海已经运行的地铁线有着16条之多,还有很多条地铁线在建,除了这个之外,上海市城市轨道交通第三期建设规划已经出来了,并且得到了国家的同意,今天就为大家介绍一条上海规划将要建设的一条地铁线。 它就是上海地铁20号线,上海地铁20号线现在还是处于规划

状态,规划将分为2期来修建,上海地铁20号线原称为L3线,它是一条北部的切向线,这条地铁线一期大体上的规划已经完成了,路线起于普陀区的金昌路站且与11换乘,途径普陀、宝山、静安以及杨浦等区,一期终点站止于杨浦区共青森林公园站,二期的走向如今还不是非常的确定。 上海地铁20号线的修建将完善上海市的北部地区东西向交通,支撑重点地区开发建设,带动沿线区域发展,汇集并转换沿线相交轨道路线客流,更加进一步的完善上海的地铁网,上海轨道交通20号线预计将会在2030年左右开通。 上海又在规划修建新地铁,目前规划共设16站,将于2030年左右开通,上海地铁20号线,大家是不是非常的期待呢?

地铁区间隧道常见结构的设计

地铁区间隧道常见结构的设计 【摘要】结合深圳地铁2号线工程实例,介绍地铁区间隧道常见结构型式的设计,以用于指导建设实践。 【关键词】地铁;区间隧道;结构设计 地铁区间隧道目前主要的设计方案有暗挖马蹄形断面隧道、圆形盾构断面隧道、明挖矩形断面隧道。每种型式各有优缺点,在设计中需根据不同的地质条件、线路埋深和周边环境加以选择。 1、设计结构型式的选择 1.1 明挖矩形结构经过多年的发展,明挖法施工工艺成熟,方法简单、可靠,施工风险小,容易控制;工程进度快,根据需要可以分段同时作业;浅埋时造价及运营费用低;对地质条件要求不高;防水处理容易。但施工对城市地面交通和居民的正常生活也有一定影响,在施工期间对周边环境有一定的破坏;在明挖影响范围的地下管线需拆迁;需较大的施工场地。对于跨度大、埋深浅、地质条件差且地面环境允许,有施工场地的区间段,应优先考虑使用,以减少施工的风险和减少工程造价。 1.2矿山法马蹄形结构 1.2.1矿山法优缺点分析地铁区间隧道采用矿山法施工,是为适应城市浅埋隧道的需要而发展起来的施工方法,也称浅埋暗挖法。在我国地铁区间隧道建设中已广泛采用。它是采用信息化设计和施工,可以根据施工监测的信息反馈来验证或修改设计和施工工艺,具有适应城市地下工程周围环境复杂、地质条件较差、埋深浅、地面沉降控制严格及结构防水要求高等特点。矿山法施工除在施工竖井或洞口位置需占有一定的施工场地外,对地面交通、管线等干扰较少,对周边环境影响较小;废弃土石方量少;对不同的地质情况及周边环境采用不同的工程措施及施工方法,针对性强;对软硬不均地层,可以采用不同的开挖方式进行处理,处理方便容易。矿山法也有自身的弱点:在施工中容易引起地下水流失,从而引起地面沉降或隆起,在重要管线和房屋周边需采取切实可行的保护措施;在施工中处理不当,容易引起地面坍塌,从而造成对周边环境的影响和引发事故。在施工过程中需严格按施工工艺和要求进行施工,并加强施工中的监控量测工作。跨度大时,需分多步进行开挖施工,工序之间干扰大,施工组织麻烦,施工中存在一定的风险。在设计及施工过程中,需要充分论证和考虑隧道周边的环境和工程及水文地质条件,采用合理的工程措施和施工工艺之后,以上弱点才可以弱化并避免的。因此采用矿山法设计和施工时,必须从隧道施工方法、施工程序、辅助工法的采用等方面进行认真研究。 1.2.2计算简图采用荷载-结构模型平面杆系有限单元法。选取地质条件最差、最不利典型横断面进行承载能力极限状态和正常使用极限状态的计算。计算简图和计算结果见图1~图3。 1.3盾构法圆形结构 1.3.1盾构法优缺点盾构法施工不仅施工进度快,而且无噪音,无振动,对地面交通及沿线建筑物、地下管线和居民生活等影响较少。由于管片采用高精度预制构件,机械化拼装,因而质量易于控制。地铁工程建设经验表明,由于采用高精度管片及复合防水封垫,单层钢筋混凝土管片组成的隧道衬砌可取得良好的防水效果,不需要修筑内衬结构。盾构技术的发展,尤其是泥水式、复合式土压平衡式盾构的开发,使之在含水砂层以及砂质黏性土层等地层中进行开挖成为可能,所以当工程地质和水文地质条件以及周围环境情况等难以用矿山法和明挖法施工时,盾构法是较好的选择。而且采用盾构法施工下穿房屋筏板基础时,能较有效控制地面沉降,减少对房屋的破坏。因此,地铁区间隧道采用盾构技术已成为发展的必然趋势。采用盾构法较矿山法施工有施工风险相对较小、对环境的影响较小、工程投资较省等优点。盾构法施工也有一定的弱点。盾构机在匀质地层中施工是顺利的,但是地层软硬不均,尤其是在软

相关文档
最新文档