分子荧光分析法
分子荧光光谱法
![分子荧光光谱法](https://img.taocdn.com/s3/m/0958097831b765ce0508144f.png)
磷光是分子吸光成为激发态分子,在返回基态时 的发光现象.
荧光:受光激发的分子从第一激发单重态的最低 振动能级回到基态所发出的辐射。
磷光: 从第一激发三重态的最低振动能级回到基 态所发出的辐射。
1~3 ;
荧光分析法的特点
★★★
因应能试
为用提样
有范供用
态.当吸收一定频率的电磁辐射发生能级跃迁时,可上升到不同激发态
的各振动能级,其中多数分子上升至第一激发单重态这一过程约需10-
15秒.
激发
2 去活化过程
激发态分子的失活: 激发态分子不稳定,它要以辐射 或无辐射跃迁的方式回到基态
☆振动驰豫 (Vibrational relaxation)
☆荧光发射(Fluorescence)
荧光分析法的应用
无机物分析 无机离子中除少数例外一般不发荧光.但很多 无机离子能怀一些有机试剂形成荧光络合物,而进行定量 测定.
生物化学及生理医学方面的应用 荧光法对于生物中许多 重要的化合物具有很多的灵敏度和较好的物效性,故广用 于生物化学分析,生理医学和临床分析.
药物分析
目前还采用荧光分光光度计作为高效液相色谱,薄层色谱 和高效毛细管电泳等的检测器,使有效的分离手段与高灵 敏度,高选择性的测定方法结合起来,可用于测定复杂的混 合物.
荧光与环境因素的关系
★温度降低会使荧光强度增大; ★PH 带有酸性或碱性取代基的芳 香化合物的荧光与pH有关; ★溶剂 溶剂极性增加有时 会使荧光强度增加,荧光波长红移; 若溶剂和荧光物质形成氢键或使荧 光物质电离状态改变,会使荧光强度 、荧光波长改变;含重原子的溶剂 (碘乙烷、四溴化碳)使荧光减弱。 ★溶解氧的存在往往使荧光强度 降低。 ★激发光的照射
分子荧光法测定实验报告
![分子荧光法测定实验报告](https://img.taocdn.com/s3/m/15d3b0480a4e767f5acfa1c7aa00b52acfc79cac.png)
一、实验目的1. 熟悉分子荧光法的基本原理和操作步骤。
2. 掌握荧光光谱仪的使用方法。
3. 通过实验,测定罗丹明B的荧光光谱,分析其激发光谱和发射光谱。
4. 掌握荧光定量分析的方法。
二、实验原理分子荧光法是一种灵敏的定量分析方法,基于物质在特定波长范围内吸收光能后,电子从基态跃迁到激发态,再回到基态时释放出一定波长的荧光。
罗丹明B作为一种荧光物质,在特定波长范围内具有明显的荧光特性。
通过测定罗丹明B的激发光谱和发射光谱,可以确定其最佳激发波长和发射波长,从而进行定量分析。
三、实验仪器与试剂1. 仪器:荧光光谱仪、紫外-可见分光光度计、移液器、容量瓶、试管等。
2. 试剂:罗丹明B标准溶液、无水乙醇、蒸馏水等。
四、实验步骤1. 准备罗丹明B标准溶液:准确移取一定量的罗丹明B标准溶液,用无水乙醇稀释至100mL,配制成一定浓度的罗丹明B标准溶液。
2. 测定激发光谱:在荧光光谱仪上,设定罗丹明B标准溶液的浓度为1.0×10^-5 mol/L,以无水乙醇为参比溶液,扫描激发光谱,记录激发波长范围内荧光强度的变化。
3. 测定发射光谱:在荧光光谱仪上,设定罗丹明B标准溶液的浓度为1.0×10^-5 mol/L,以无水乙醇为参比溶液,以激发光谱中最大激发波长为激发波长,扫描发射光谱,记录发射波长范围内荧光强度的变化。
4. 荧光定量分析:取一定量的罗丹明B样品溶液,按照上述步骤测定其激发光谱和发射光谱,计算样品溶液中罗丹明B的浓度。
五、实验结果与讨论1. 激发光谱:罗丹明B的激发光谱显示,在激发波长为540nm附近,荧光强度达到最大值。
因此,选择540nm作为激发波长。
2. 发射光谱:罗丹明B的发射光谱显示,在发射波长为590nm附近,荧光强度达到最大值。
因此,选择590nm作为发射波长。
3. 荧光定量分析:根据罗丹明B的激发光谱和发射光谱,以及标准曲线,计算样品溶液中罗丹明B的浓度为1.2×10^-5 mol/L。
分子荧光分析法
![分子荧光分析法](https://img.taocdn.com/s3/m/bfbf295811a6f524ccbff121dd36a32d7375c7c7.png)
能发射荧光物质条件: ①物质分子在紫外-可见光区有较强吸收的特定结构。 ②分子必须有较高的荧光效率。 ③Фf=发射荧光的量子数/吸收激发光的量子数
第五章 分子荧光分析法
2.分子结构与荧光的关系 (1)共轭双键结构:芳环杂环化合物,含共轭双键
脂肪烃π-π激 (2)分子的刚性平面:效应增加,可使荧光效率增
标作图E荧-λ激 (2)荧光光谱:固定入激以λ荧为横坐标,E荧纵坐
标作图E荧-λ荧
第五章 分子荧光分析法
4.激发光谱和荧光光谱的关系: (1)荧光发射光谱不随激发波长而改变。只强度改
变。因此荧光光谱只有一个谱带。 (2)激发光谱和荧光光谱呈现镜像对称关系。
第五章 分子荧光分析法
二、分子结构与荧光关系
第五章 分子荧光分析法
2.荧光的产生:分子跃迁到较高能级后,以无辐射 跃迁的形式下降到第一电子激发态的最低振动 能级,以光的形式放出所吸收的能量,由第一 电子激发态的最低振动能级回到基态各振动能 级,这种光称为荧光。
3.激发光谱和荧光光谱:是定性和定量分析的基础 (1)激发光谱:固定入荧以λ激为横坐标,E荧纵坐
第五章 分子荧光分析法
第一节 基本原理
一、分子荧光的发生过程
1ቤተ መጻሕፍቲ ባይዱ分子的激发态 (1)去活化过程:当分子吸收一定能量后,处于激
发态的分子不稳定,其电子以辐射跃迁或无辐射 跃迁释放出多余的能量回到基态,这个过程为分 子去活化过程。 (2)单线态:分子受辐射激发时,电子从最高占有 轨道跃迁到较高空轨道,受激电子自旋仍保持方 向相反,称激发单线态。 (3)三线态:受激电子自旋方向反转,电子自旋为 平行时是激发三线态。
构造:激发光源——单色器——样品池——单色 器——检测器等四部分
分子荧光分析法
![分子荧光分析法](https://img.taocdn.com/s3/m/b6aa94f08bd63186bcebbca0.png)
第五章 分子荧光分析法
第一节 基本原理
一、分子荧光的发生过程
1.分子的激发态 (1)去活化过程:当分子吸收一定能量后,处于激
发态的分子不稳定,其电子以辐射跃迁或无辐射 跃迁释放出多余的能量回到基态,这个过程为分 子去活化过程。 (2)单线态:分子受辐射激发时,电子从最高占有 轨道跃迁到较高空轨道,受激电子自旋仍保持方 向相反,称激发单线态。 (3)三线态:受激电子自旋方向反转,电子自旋为 平行时是激发三线态。
构造:激发光源——单色器——样品池——单色 器——检测器等四部分
1.激发光源:能发出强度较大,连续稳定的光 源。
主要有:溴钨灯、氢灯、高压汞灯、氙弧灯 2.分光系统: 第一单色器(激发单色器):位于光源与液槽
间,滤去非选择波长的激发光。 第二单色器(发射单色器):位于液槽与检测器
之间,滤去反色光,散色光和杂质产生的荧 光。
第五章 分子荧光分析法
3.样品池:石英材质,四面透光。玻璃吸收323nm 以下紫外光。
4.检测器:荧光弱,检测器灵敏度要高。 光二极管阵列检测器。
二、仪器的类型 1.光电荧光计:滤光片荧光计。
溴钨灯,滤光片,光电管。 2.荧光分光光度计:氙灯,光栅,狭缝,
光电倍增管。
第五章 分子荧光分析法
第三节 定性定量分析
第五章 分子荧光分析法
第一节 第二节 第三节 第四节
基本原理 仪器 定性定量分析 荧光新技术和应用实例
第一节 基本原理
一、分子荧光的发生过程 分子的激发态 荧光的产生 激发光谱和荧光光谱 激发光谱和荧光光谱的关系 二、分子结构与荧光关系 荧光效率 分子结构与荧光的关系 影响荧光强度的外界因素 荧光强度与荧光物质浓度的关系
卫生化学笔记:分子荧光分析法
![卫生化学笔记:分子荧光分析法](https://img.taocdn.com/s3/m/c91becb6dbef5ef7ba0d4a7302768e9950e76e5c.png)
分子荧光分析法物质吸收外界能量后,其电子能级由基态跃迁到激发态,物质的激发态分子以无辐射跃迁的形式释放能量,之后降至第一电子激发单线态的最低振动能级,并以光的形式释放能量回到基态的各个振动能级,此时,分子发射的光即称之为荧光分子荧光分析法:通过测定物质分子所发射荧光的特征和强度,对物质进行定性和定量分析的方法。
(一)基本原理一、分子荧光的产生1. 单线态:当物质处于基态时,电子成对地填充在能量最低的各轨道中,一个给定轨道中的两个电子具有相反的自旋(自旋量子数S分别为1/2和 -1/2),即总自旋量子数S为0,分子中电子能级的多重度M=2S+1=1。
此种状态称为单线态。
• 激发单线态:当物质受到光照射,吸收紫外光或可见光时,物质分子内可发生电子能级的跃迁。
若吸收能量后电子在跃迁过程中不发生自旋方向的变化,即总自旋量子数S为0,分子中电子能级的多重度为1。
则该分子所处的能级状态称为激发单线态。
• 激发三线态:当物质受到光照射,吸收紫外光或可见光时,物质分子内可发生电子能级的跃迁。
若吸收能量后电子在跃迁过程中还伴随自旋方向的变化,即分子具有两个自旋平行的电子,其总自旋量子数S为1,分子中电子能级的多重度M=2S+1=3,则该分子所处的能级状态称为激发三线态。
2. 振动弛豫:同一电子能级内的荧光物质分子与溶剂分子相碰撞,以热能量交换的形式由高振动能级至低振动能级间的跃迁。
3. 内部转移:两个电子能级非常接近时,电子从较高电子能级以非辐射跃迁形式转移至较低电子能级,此过程称为能量的内部转移。
4. 荧光发射:处于激发单线态的电子经过振动弛豫和能量内部转移,回到第一电子激发单线态的最低振动能级,以辐射的形式回到基态的各个振动能级,此过程称为荧光发射。
5. 系间跨越:受激发分子的电子在激发态发生自旋反转,使分子的多重态发生变化的过程。
由第一激发单线态(S1)跃迁至第一激发三线态(T1),使原来两个自旋配对的电子不再配对。
分子荧光光谱法
![分子荧光光谱法](https://img.taocdn.com/s3/m/62b6402bed630b1c59eeb561.png)
菲
线状环结构比非线状 结构的荧光波长长
• 芳香族化合物因具有共轭的不饱和体系, 芳香族化合物因具有共轭的不饱和体系, 多数能发生荧光 • 多环芳烃是重要的环境污染物,可用荧光 多环芳烃是重要的环境污染物, 法测定 • 3,4 - 苯并芘是强致癌物 , 苯并芘是强致癌物
λ ex = 386 nm λem = 430 nm
(二)荧光与有机化合物结构的关系
物质只有吸收了紫外可见光,产生π 物质只有吸收了紫外可见光,产生π → π*,n → π* 跃迁, 跃迁,产生荧光 跃迁相比,摩尔吸收系数大10 π → π*与n → π*跃迁相比,摩尔吸收系数大102~103, 寿命短 跃迁常产生较强的荧光, π → π*跃迁常产生较强的荧光, n → π*跃迁产生的 荧光弱
1. 电子自旋状态的多重性
大多数分子含有偶数电子,基态分子每一个轨道 大多数分子含有偶数电子, 中两个电子自旋方向总是相反的↑↓ 中两个电子自旋方向总是相反的↑↓ ,处于基态单 重态。 当物质受光照射时, 重态。用 “S0” 表示 ;当物质受光照射时,基态 分子吸收光能产生电子能级跃迁, 分子吸收光能产生电子能级跃迁,由基态跃迁至 更高的单重态,电子自旋方向没有改变, 更高的单重态,电子自旋方向没有改变,净自旋 = 0 .这种跃迁是符合光谱选律的 第一激发单重态 S1
VR S2 IC VR S1 ISC
VR:振动驰豫 : IC:内部转换 : ISC:系间窜跃 :
T1
S0 吸光 吸光
S0
3. 荧光光谱的产生—辐射去激 荧光光谱的产生—
处于S 处于S1或T1态的电子返回S0态时,伴随有发光现 态的电子返回S 态时, 象,这种过程叫辐射去激 发光 S0 S1或T1 荧光: (1)荧光: 当电子从第一激发单重态S 当电子从第一激发单重态S1的最低振动能级回到基 态S0各振动能级所产生的光辐射叫荧光 荧光是相同多重态间的允许跃迁,产生速度快, 荧光是相同多重态间的允许跃迁,产生速度快, 10-9~10-6s,又叫快速荧光或瞬时荧光,外部光源停 又叫快速荧光或瞬时荧光, 止照射, 止照射,荧光马上熄灭 无论开始电子被激发至什么高能级,它都经过无辐 无论开始电子被激发至什么高能级, 射去激消耗能量后到S 的最低振动能级,发射荧光, 射去激消耗能量后到S1的最低振动能级,发射荧光, 荧光波长比激发光波长长。 荧光波长比激发光波长长。 λ 荧>λ激
分析化学 第十一章 荧光分析法
![分析化学 第十一章 荧光分析法](https://img.taocdn.com/s3/m/ffbc4d5e87c24028915fc39b.png)
h
29
㈡环境因素
荧光分子所处的溶液环境对其荧光发射有直接的 影响。适当的选取实验条件有利于提高荧光分析的 灵敏度和选择性。 ⑴溶剂效应 ①溶剂的极性:
溶剂的极性增大,π→π*跃迁的能量减小,红 移。 ②溶剂的粘度
溶剂的粘度降低,分子间碰撞机会增加,无辐 射跃迁几率增加,荧光减弱。
h
30
⑵温度的影响
激发态分子与溶剂和其它溶质分子间的相 互作用及能量转换等过程称为外部能量转换。
外转换过程是荧光或磷光的竞争过程,因该
过程发光强度减弱或消失,该现象称为“猝灭” 或
“熄灭”。
h
10
⑸体系间跨越 系间跃迁是不同多重态之间的一种无辐射跃迁
该过程是激发态电子改变其自旋态,是分子的多 重性发生变化的结果。
当两种能态的振动能级重叠时,这种跃迁的几 率增大。
的吸收(或激发)光谱的波长长。荧光发射这种波长 位移的现象称为Stokes位移。
原因:处于激发态的分子一方面由于振动弛豫 等损失了部分能量,另一方面溶剂分子的弛豫作用 使其能量进一步损失,因而产生了发射光谱波长的 位移。
Stokes位移表明在荧光激发和发射之间所产生 的能量损失。(见P220图11-3)
①对于含有酸性或碱性基团的荧光物质而言, 溶液的pH将对这类物质的荧光强度产生较大的 影响。 如:在pH7~12的溶液中,苯胺以分子形式存 在,产生蓝色荧光;
当pH<3、 pH>13时,苯胺以阳离子、 阴离子形式存在,均无荧光。 ②溶液的pH也影响金属配合物的荧光性质。
h
32
⑷荧光猝灭
荧光猝灭:荧光分子与溶剂或其它溶质分子之间相互 作用,使荧光强度减弱的作用。
F0/eF0eKf
则K= 1/τf,将其带入 Ft F0eKt
分析化学第11章--荧光分析法
![分析化学第11章--荧光分析法](https://img.taocdn.com/s3/m/4a90085d4028915f814dc24f.png)
概述 基本原理 定量分析方法 荧光分析技术及应用
11.1 概述
1.光致发光:物质受到光照射时,除 吸收某种波长的光之外还会发射出比 原来所吸收光的波长更长的光,这种 现象称为光致发光。
2.荧光(fluorescence):物质分子接受 光子能量被激发后,从激发态的最低 振动能级返回基态时发射出的光。
低一些。 2.荧光的产生 1)激发过程: 基态分子 hv 激发单重态(s1*,s2*)
激发三重态
2)激发态能量传递途径
传递途径
辐射跃迁
无辐射跃迁
荧光 磷光 系间跨越内转换 外转换 振动弛豫
1.无辐射跃迁
a.振动驰豫(vibrational relexation):
处于激发态各振动能级的分子通过 与溶剂分子的碰撞而将部分振动能 量传递给溶剂分子,其电子则返回 到同一电子激发态的最低振动能级 的过程。
2)电子能态的多重性:
M=2S+1
S:总自旋量子数。S=s1+s2 对于 S=1/2 +(-1/2)=0
M=2S+1=1
对应基线单重态;
对于激发态
s1=1/2,s2=1/2,
S=1/2+1/2=1, M=2×1+1=3 三重态
• 单重态与三重态的区别 1)电子自旋方向不同; 2)激发三重态的能量稍
8-羟基喹啉
8-羟基喹啉镁
弱荧光
强荧光
刚性和共面性增加,可以发射荧光或增 强荧光。
c.位阻效应
NaO3S
N(CH3)2
NaO3S
N(CH3)2
1-二甲氨基萘-7-磺酸钠 f=0.75
1-二甲氨基萘-8-磺酸钠 f =0.03
分子荧光分析法实验
![分子荧光分析法实验](https://img.taocdn.com/s3/m/6d33f15553ea551810a6f524ccbff121dd36c5d8.png)
1.1 荧光的产生
S2
2 1
V=0
2
S1
1 V=0
VR
ic
VR
A1
A2
F
发生激发 态反应
isc
T1
2
1
V=0
P
3
S0
2 1
V=0
分子内的激发和衰变过程
激发态能量的跃迁与转 化的形式和速率:
A1,A2 吸收: 10-15 s VR 振动松弛: 10-12 s ic 内转化: 10-11 s isc 系间窜越:
10-6 ~ 10-2 s
F 荧光: 10-9 ~ 10-6 s
P 磷光: 10-6 ~ 100 s
1.2 荧光光谱
当固定激发光波长和强度不变,而记录荧光 强度随波长变化的曲线,称为荧光光谱。若 固定荧光最强处的荧光波长不变而改变激发 光波长,记录荧光强度随激发光波长变化的 曲线,称为激发光谱。
1.2 荧光光谱
5.空白溶液测试:
设置好仪器的工作条件后,把装有去离子水的样品池置于试样架 内,在荧光光路上插入UV-35滤光片,合上样品室盖子,在计 算机屏幕上点击“AUTO ZERO”,观察屏幕右下脚的基线值接近零 时,再点击“READ”读数,得空白溶液数值。
7.未知试样的测定:
将已配制处理好的未知试样装入样品池置于试样架内,用测定标 准溶液相同的条件,测其相对荧光强度。
1.5 分子荧光分析法的应用简介
常规分析应用:
定性分析:φf;λex;λem;峰形等
其它(略)
分子相互作用研究;
显微成像(物理迁移与化学衍化的原位 “显迹”)
定量检测: F = K﹒I0﹒φf﹒C 高端生化研究: 代谢动力学跟踪;
分子荧光分析法
![分子荧光分析法](https://img.taocdn.com/s3/m/3b7c95595ef7ba0d4b733ba0.png)
分子荧光分析法标准化管理部编码-[99968T-6889628-J68568-1689N]分子荧光分析法用X射线作光源,待测物质的原子受激发后在很短时间内(10-8 s)发射波长在X射线范围内的荧光。
2. 原子荧光分析法:待测元素的原子蒸气吸收辐射激发后,在很短的时间内(10-8 s),部分将发生辐射跃迁至基态,这种二次辐射即为荧光,根据其波长可进行定性,根据谱线强度进行定量。
荧光的波长如与激发光相同,称为共振荧光。
荧光的波长比激发光波长长,称为stokes荧光;若短,称为反stokes荧光。
3. 分子荧光分析法:有些物质的多原子分子,在用紫外、可见光(或红外光)照射时,也能发射波长在紫外、可见(红外)区荧光,根据其波长及强度可进行定性和定量分析,这就是通常的(分子)荧光分析法。
基本原理一. 分子荧光的发生过程(一)分子的激发态——单线激发态和三线激发态大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=+(-)=0,其多重性M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂,称“单线态”;图1 单线基态(A)、单线激发态(B)和三线激发态(C)当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即S=0,则激发态仍是单线态,即“单线(重)激发态”;如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1: S=1/2+1/2=1 其多重性: M=2S+1=3即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线(重)激发态”;“三线激发态” 比“单线激发态” 能量稍低。
但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态→单线态过程的 10-6~10-7。
(二)分子去活化过程及荧光的发生:(一个分子的外层电子能级包括 S0(基态)和各激发态S1,S2,…..,T1…..,每个电子能级又包括一系列能量非常接近的振动能级)处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为“去活化过程”,这些途径为:1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能量以热的形式迅速传递给溶剂分子(环境),在10-11~10-13 秒时间回到同一电子激发态的最低振动能级,这一过程称为振动弛豫。
分子荧光的定性分析原理
![分子荧光的定性分析原理](https://img.taocdn.com/s3/m/0f863d54a88271fe910ef12d2af90242a895ab98.png)
分子荧光的定性分析原理
分子荧光定性分析是一种用于确定化合物是否具有荧光性质的方法。
荧光是指分子吸收光能后发出的短波长光。
以下是分子荧光定性分析的原理:
1. 激发:荧光分析通常需要先将化合物激发到一个能级,使其能够吸收能量。
通常使用紫外光或可见光来激发化合物。
这个能级通常对应着化合物的电子跃迁。
2. 吸收:化合物吸收光能后,电子从基态跃迁到激发态能级。
这个激发态能级通常是一个高能量、不稳定的能级。
3. 跃迁:电子在激发态能级上停留的时间很短,随后会再次跃迁到较低的能级。
在这个过程中,荧光光子被释放出来。
光子的能量通常比激发光的能量低,对应着较长波长的光。
4. 发射:荧光光子的发射可以通过荧光光谱来观察。
荧光光谱通常是一个峰状曲线,波峰对应着荧光发射的波长。
通过比较样品的荧光光谱与已知荧光性化合物的光谱,可以确定样品是否具有荧光性质。
5. 荧光颜色:荧光发射的波长与化合物的结构密切相关,不同化合物具有不同的荧光颜色。
因此,荧光颜色也可以用来进行分子荧光定性分析。
需要注意的是,分子荧光定性分析只能确定一个化合物是荧光性还是非荧光性,
并不能提供关于分子结构和化合物量的定量信息。
为了进行准确的分子荧光定性分析,通常需要使用荧光光谱仪或相关的仪器。
分子发光分析法
![分子发光分析法](https://img.taocdn.com/s3/m/aee9b544852458fb770b5642.png)
分子发光分析法基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光(Molecular Luminescence)。
依据激发的模式不同,分子发光分为光致发光、热致发光、场致发光和化学发光等。
光致发光按激发态的类型又可分为荧光和磷光两种。
本章讨论分子荧光(Molecular Fluorescence)、分子磷光(Molecular Phosphorescence)和化学发光(Chemiluminescence)分析法。
第一节荧光分析法一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。
早在16世纪,人们观察到当紫外和可见光照射到某些物质时。
这些物质就会发出各种颜色和不同强度的光,而当照射停止时,物质的发光也随之很快消失。
到1852年才由斯托克斯(Stokes)给予了解释,即它是物质在吸收了光能后发射出的分子荧光。
斯托克斯在对荧光强度与浓度之间的关系进行研究的基础上,于1864年提出可将荧光作为一种分析手段。
1867年Goppelsroder应用铝—桑色素络合物的荧光对铝进行了测定。
进入20世纪,随着荧光分析仪器的问世,荧光分析的方法和技术得到了极大发展,如今已成为一种重要且有效的光谱分析手段。
荧光分析法的最大优点是灵敏度高,它的检出限通常比分光光度法低2~4个数量级,选择性也较分光光度法好。
虽然能产生强荧光的化合物相对较少,荧光分析法的应用不如分光光度法广泛,但由于它的高灵敏度以及许多重要的生物物质都具有荧光性质。
使得该方法在药物、临床、环境、食品的微量、痕量分析以及生命科学研究各个领域具有重要意义。
二、基本原理(一)分子荧光的产生大多数分子含有偶数电子。
根据保里不相容原理,基态分子的每一个轨道中两个电子的自旋方向总是相反的,因而大多数基态分子处于单重态(2S+1=1),基态单重态以S0表示。
当物质受光照射时,基态分子吸收光能就会产生电子能级跃迁而处于第一、第二电子激发单重态,以S1、S2表示。
荧光分析法
![荧光分析法](https://img.taocdn.com/s3/m/374b2aa271fe910ef12df841.png)
基态时分子中的电子对填充在能量最低的轨道,
且自旋相反,即总自旋量子数s为0
电子能级多重性:M=2s+1 单重态S M=1 自旋相反 三重态T M=3 自旋相同
4
基态
被激发跃迁过程中:
通常电子不发生自旋方向的改变,电子对自旋相反, 电子发生自旋方向的改变,电子对自旋相同,总自旋
总自旋量子数s为0,处于激发单重态。
第十一章 荧光分析法
(Fluorescence)
1
分子发光(molecular luminescence)
某些物质分子吸收能量跃迁到较高的电子激发态后, 返回基态的过程中伴随发光的现象。
hγ
概述
M+ 能量 →M*
M
2
分类
原子荧光 荧光 分子荧光 光致发光(PL) 紫外可见荧光 磷光 化学发光(CL) 红外荧光 X射线荧光 电致发光(EL) 生物发光(BL)
19
3)荧光光谱与激发光谱镜像关系 通常荧光发射光谱与它的吸收光谱(与激发光谱
形状一样)成镜像对称关系
基态上的各振动能级分布与第一激发态上的各振 动能级分布类似;
20
镜像关系?
固定em=620nm 固定ex=290nm (MAX)
IF
4 3 2 1
4800 4400
1→ 4 1→ 3
S1
4000
44
4.胶束增敏荧光分析 当单体表面活性剂浓度增大到临界胶束浓度,
会缔合为球状胶束, 利用胶束溶液对荧光物质有
增溶、增敏和增稳的作用,对荧光物质进行保护
45
荧光分析法的应用 1.无机化合物的分析 与有机试剂配合物后测量;可测量约60多种元素。 铍、铝、硼、镓、硒、镁、稀土常采用荧光分析法; 氟、硫、铁、银、钴、镍采用荧光熄灭法测定; 铜、铍、铁、钴、锇及过氧化氢采用催化荧光法测; 铬、铌、铀、碲采用低温荧光法测定; 铈、铕、锑、钒、铀采用固体荧光法测定 2.生物与有机化合物的分析
第七章-分子荧光法
![第七章-分子荧光法](https://img.taocdn.com/s3/m/24820198a98271fe900ef97c.png)
第七章分子荧光分析法第一节概述物质的分子吸收一定的能量后,其电子从基态跃迁到激发态,如果在返回基态的过程中伴随有光辐射,这种现象称为分子发光(molecular luminescence),以此建立起来的分析方法,称为分子发光分析法。
物质因吸收光能激发而发光,称为光致发光(根据发光机理和过程的不同又可分为荧光和燐光);因吸收电能激发而发光,称为电致发光;因吸收化学反应或生物体释放的能量激发而发光,称为化学发光或生物发光。
根据分子受激发光的类型、机理和性质的不同,分子发光分析法通常分为荧光分析法,燐光分析法和化学发光分析法。
荧光分析法历史悠久。
早在16世纪西班牙内科医生和植物学家N.Monardes,就发现含有一种称为“Lignum Nephriticum”的木头切片的水溶液中,呈现出极为可爱的天蓝色,但未能解释这种荧光现象。
直到1852年Stokes在考察奎宁和叶绿素的荧光时,用分光计观察到它们能发射比入射光波长稍长的光,才判明这种现象是这些物质在吸收光能后重新发射的不同波长的光,从而导入了荧光是光发射的概念,并根据荧石发荧光的性质提出“荧光”这一术语,他还论述了Stokes 位移定律和荧光猝灭现象。
到19世纪末,人们已经知道了包括荧光素、曙红、多环芳烃等600多种荧光化合物。
近十几年来,由于激光、微处理机和电子学新成就等科学科术的引入,大大推动了荧光分析理论的进步,促进了诸如同步荧光测定、导数荧光测定、时间分辨荧光测定、相分辨荧光测定、荧光偏振测定、荧光免疫测定、低温荧光测定、固体表面荧光测定、荧光反应速率法、三维荧光光谱技术和荧光光纤化学传感器等荧光分析方面的发展,加速了各种新型荧光分析仪器的问世,进一步提高了分析方法的灵敏度、准确度和选择性,解决了生产和科研中的不少难题。
目前,分子发光分析法在生物化学,分子生物学,免疫学,环境科学以及农牧产品分析,卫生检验、工农业生产和科学研究等领域得到了广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作用:鉴别荧光物质; 选择适当的荧光测定波长。
激发光谱和荧光光谱类似“镜像对称”关系
荧 光 强 度
300nm
400nm
500nm
硫酸奎宁的激发光谱(虚线)及荧光光谱(实线)
3 溶液荧光光谱的特征
A 斯托克斯位移:Stokes shift
1852年,Stokes首先观察到:溶液荧光光谱中, 荧光波长总是大于激发光波长。
称荧光。
荧光的波长总比激发光的波长要长?
④ 外转换:external conversion 如果分子在溶液中被激发,激发态分子与溶 剂分子及其它溶质分子之间相互碰撞而失去能 量,以热能形式放出,此过程称为外转换。 通常发生在第一激发单线态或第一激发三线 态的最低振动能级向基态转换的过程中,会降 低荧光或磷光强度。
外转换、体系间跨越。
三、激发光谱与发射光谱
1激发光谱:excitaton spectrum
不同激发波长的辐射引起物质发射某一波长 荧光的相对效率。即固定荧光波长,以荧光 强度(F)为纵坐标,激发波长(λex)为横 坐标作图可得。
2 发射光谱:fluorescence spectrum
即荧光光谱,使激发光的波长和强度保持不 变,通过发射单色器扫描以检测各种波长下 相应的荧光强度,记录荧光强度(F)对发射 波长(λem)的关系曲线。
② 内转换:internal conversion
当两电子激发态之间能量相差较小以致其振动 能级有重叠时,受激分子将多余的能量转变为 热能而跃迁至较低电子能级。
③ 荧光发射:
无论分子最初处于哪一个激发单线态,通过内 转换及振动弛豫,均可返回至第一激发单线态 的最低振动能级上,然后再以辐射形式发射光 量子而返回到基态的任一振动能级上,所发射 的光量子即
体系间跨越
V1
V0
VV23
V1
T1
V0
S0
VV23
V1
V0
荧光与磷光产生示意图
发射荧光过程约为 109 ,10返7回S 基态 时,可停留在任一振动能级上,因此,可得几
个非常靠近的荧光峰谱线。
有关概念: ① 振动弛豫:vbrational relexation
物质分子被激发后,其电子可能跃迁到第一电 子激发态或更高的电子激发态的几个振动能级 上,在溶液中,激发态分子通过与溶剂分子碰 撞而将部分振动能量传递给溶剂分子,其电子 则返回到同一电子激发态的最低振动能级上, 此过程称为~。
⑤ 体系间跨越:intersystem crossing
指处于激发态分子的电子发生自旋反转而使 分子的多重性发生变化的过程。如果第一激 发单线态的最低振动能级同激发三线态的最 高振动能级重叠,那么激发态分子的电子发 生自旋反转,分子由激发单线态跨越到激发 三线态,荧光强度减弱或熄灭。
含有重原子如Br2、I2等的分子,体系间跨 越最常见,因为电子的自旋与轨道运动之间 的相互作用较大,有利于电子自反转的发生。 溶液中存在的氧分子等顺磁性物质也容易发 生体系间跨越,从而使荧光减弱。
发射荧光的光子数
吸收激发光的光子数
任何物质的 在0~1之间,如荧光素在水中 =0.65,蒽在乙醇中 =0.30,菲在乙醇中 =0.10。
除电子自旋方向改变外,能量亦不相同。
E
基态 激发单线态 激发三线态
3 荧光的产生
荧光的产生过程:
基态吸收辐射 激发单线态 内转换、振动驰豫 第一激发单线态的最低振动能级 发射荧光 基态的各振动能级外转换、振动驰豫 基态的最低振动能级
S
2
VV23
V1
V0
内转换
S1
VV23
荧光分析法检出限为1010 1012 g / ml
二 基本原理 1 有关概念 单线态:
大多数分子含偶数个电子,成对地填充 在能量最低的各轨道中,根据Pauli不相 容原理,轨道中的两个电子具有相反方 向的自旋,即自旋量子数为+1/2和-1/2, 其总自旋量子数为0。用2S+1表示电子 能态的多重性,基态所处的电子能态为 单线态。
原因:内转换、振动驰豫达到第一激发单线态 的最低振动能级;激发态分子与溶剂相互作 用;激发态分子返回到基态的各不同振动能 级,进一步损失能量。
B 荧光光谱的形状与激发波长无关:荧光发射 通常发生于第一电子激发态的最低振动能级; 而与激发到哪一个电子激发态无关。
四 分子结构与荧光的关系
物质能否产生荧光,主要取决于物质结构及 环境条件。 1 物质产生荧光的必要条件 ① 物质分子必须有强的紫外-可见吸收。 ② 物质必须具有较高的荧光效率。 荧光效率(fluorescence efficiency)又称荧光 量子产率(fluorescence quantum yield)
当基态分子的一个电子吸收光辐射被激 发而跃迁至较高的电子能级时,电子不发 生自旋方向的改变,此时分子处于激发的 单线态。
激发三线态:
电子在跃迁过程中自旋方向改变,分子 具有两个自旋不配对的电子,总自旋量子 数为1,处于激发的三线态(2S+1=3)。
2 基态、激发单线态、激发三线态比较
如图所示,激发三线uorometry
根据物质的荧光谱线位置及其强度进行 物质鉴定和物质含量测定的方法。 X射线荧光分析法 X-ray fluorometry 原子荧光分析法 atomic fluorometry 分子荧光分析法 molecular fluorometry
3.优点:
灵敏度高,选择性好。 紫外 可见分光光度法检出限 107 g / ml
⑥ 磷光发射: 激发单线态最低振动能级体系间跨越激发
三线态高振动能级 振动驰豫 激发三线态 最低振动能级(存活) 发射磷光 基态 各振动能级振动驰豫、外转换基态最低振动能级
与荧光比较:过程比荧光长( 104 )10S
磷光波长较荧光长?
综上所述的能量释放方式中:
辐射跃迁:荧光、磷光的发射。 无辐射跃迁:振动弛豫、内转换、
一、概述
1 光致发光:
当某些物质受到光的照射时,除吸收某种波 长的光之外还发射波长相同或比吸收波长更长 的光,这种现象叫光致发光。
荧光 fluorescence:
物质分子吸收光子能量而被激发,然后从激发 态的最低振动能级返回至基态时发射出的光。
磷光 phosphorescence:
吸收光子 激发 三线态最低