电容失效分析详解
电解电容失效原因
![电解电容失效原因](https://img.taocdn.com/s3/m/94bb4b5659fafab069dc5022aaea998fcc22408c.png)
电解电容失效原因
电解电容失效的原因主要有以下几点:
1. 电压过高:电解电容器的极板之间存在电解质,当电压超出规定范围时,电解质会发生电化学反应,导致电容器失效。
2. 温度过高:电解电容器的电解质受热后,会发生蒸发、漏泄等情况,导致电容器性能下降甚至失效。
3. 极板腐蚀:由于电解质的化学性质,电解电容器的极板在长期使用中容易发生腐蚀,从而导致电容器失效。
4. 电解质老化:长时间使用后,电解质会随着化学反应的进行逐渐老化,导致电容器容量下降,性能变差。
5. 漏电流过大:电解电容器在正常工作条件下,会有少量的漏电流,但当漏电流过大时,说明电容器内部绝缘损坏,容易导致失效。
6. 电容器封接不良:电解电容器的端子封接不良,会导致电容器内部电解液泄漏,造成电容器无法正常工作。
总之,电解电容失效主要是由于电压过高、温度过高、极板腐蚀、电解质老化、漏电流过大和封接不良等原因引起的。
电容失效分析
![电容失效分析](https://img.taocdn.com/s3/m/50e17302a8114431b80dd803.png)
电容失效分析
电子元件的失效主要由于电应力(电压、电流、功率、频率、脉冲宽度等),
环境应力(高温、低温、潮湿、气压等)及电磁干扰等。
而电容失效在原因很多很多时候并不是电容的质量不好而是有很多因素造成以下是一人之言请各位指正并探讨:
1 失效主要原因:
大电流冲击失效、高电压、热击穿、高温、高潮、噪声干扰。
2 电容质量控制要求:
(1) 注意降额使用,降额值应根据不同电容和工作状态选取,注意低电平失效
和交流工作状态下的失效。
(2) 对于高效或高稳定要求的电路中,选择电容要注意选漏电流小的电容。
(3)在潮湿环境下,不要使用云母电容器,易受潮。
(4)在高频条件下,应选取电容介质损耗小的电容器。
(5)在高温环境中,最好不用铝电解电容,而用聚丙涤烯纶或云母电容器。
电容器失效模式和失效机理
![电容器失效模式和失效机理](https://img.taocdn.com/s3/m/2aec5abcf121dd36a32d82c9.png)
金属化纸介电容器在高湿环境中工作时,电容器正端引线根部会遭到严重腐蚀,这种电解性腐蚀导致引线机械强度降低,严重时可造成引线断裂失效.
(6)、铝电解电容器的失效机理
铝电解电容器正极是高纯铝,电介质是在金属表面形成的三氧化二铝膜,负极是黏稠状的电解液,工作时相当一个电解槽.铝电解电容器常见失效模式有:漏液、爆炸、开路、击穿、电参数恶化等,有关失效机理分析如下.
产生低电平失效的原因主要在于电容器引出线与电容器极板接触不良,接触电阻增大,造成电容器完全开路或电容量幅度下降.
精密聚苯乙烯薄膜电容器一般采用铝箔作为极板,铜引出线与铝箔极板点焊在一起.铝箔在空气中极易氧化;极板表面生成一层氧化铝半导体薄膜,在低电平条件下氧化膜层上的电压不足以把它击穿,因而铝箔间形成的间隙电容量的串联等效容量,间隙电容量愈小,串联等效容量也愈小.因此,低电平容量取决于极板表面氧化铝层的厚薄,氧化铝层愈厚,低电平条件下电容器的电容量愈小.此外,电容器在交流电路中工作时,其有效电容量会因接触电阻过大而下降,接触电阻很大时有效电容量可减小到开路的程度.即使极板一引线间不存在导电不良的间隔层,也会产生这种后果.
② 电解液沿引线渗漏,使引线遭受化学腐蚀;
③ 引线在电容器制造过程中受到机械损伤;
④ 引线的机械强度不够.
(6) 引起电容器绝缘子破裂的主要原因
① 机械损伤;
② 玻璃粉绝缘子烧结过程中残留热力过大;
③ 焊接温度过高或受热不均匀.
(7) 引起绝缘子表面飞弧的主要原因
① 绝缘了表面受潮,使表面绝缘电阻下降;
⑧ 在机械应力作用下电介质瞬时短路.
(2) 引起电容器开路的主要失效机理
① 引线部位发生“自愈“,使电极与引出线绝缘;
电容失效的原因范文
![电容失效的原因范文](https://img.taocdn.com/s3/m/29a8777ef011f18583d049649b6648d7c1c7080b.png)
电容失效的原因范文电容是一种常见的电子元器件,广泛应用于各种电路中。
但是,电容也有可能会失效,造成电路故障。
下面将介绍电容失效的一些常见原因。
1.环境因素:电容失效的一个重要原因是环境因素。
电容通常会受到温度、湿度、震动等环境条件的影响。
长时间高温会使电容内部材料的性能发生变化,导致电容失效。
湿度过高时,会导致电容器内部发生电解腐蚀,损坏内部结构。
震动会使电容的内部接触不良,导致电容失效。
2.电压过高:电容通常都有一个额定电压范围,超过这个范围就可能会导致电容失效。
当电压超过电容额定电压时,电容会发生击穿现象,使得电容内部的绝缘材料被氧化,导致失效。
3.频率失调:电容还有一个额定频率范围。
当频率超出电容器的额定范围时,会导致电容器的损坏。
频率过高会导致电容器内部的介质无法完全极化,导致电容失效。
频率过低会导致电容内部的介质无法快速极化,导致电容损耗增大。
4.电解液干燥:电解电容器在工作时会产生电解液,电解液对电容器的性能非常重要。
如果电容器长时间不使用,电解液会逐渐蒸发,导致电解液干燥,电容器失去工作能力。
5.老化和疲劳:电容器使用时间过长或工作频率过高会导致电容器老化和疲劳,使得电容失效。
长时间的工作和频繁的充放电会损坏电容内部的材料结构,导致电容失效。
6.制造缺陷:电容在制造过程中可能会存在一些缺陷,如结构设计不合理、金属箔厚度不均匀、焊接质量差等。
这些制造缺陷会导致电容在使用过程中容易失效。
7.过电流:电容通常承受的电流都有一定的额定范围。
如果电容承受的电流超过了额定范围,会导致电容过热并失效。
总的来说,电容失效的原因可以分为环境因素、过电压、频率失调、电解液干燥、老化和疲劳、制造缺陷以及过电流等。
为了提高电容的使用寿命,需要合理选择电容型号、合理使用电容、注意环境条件以及避免超压、过流等异常情况,确保电容的正常工作和延长寿命。
电子产品组装中陶瓷电容常见失效模式及改善建议
![电子产品组装中陶瓷电容常见失效模式及改善建议](https://img.taocdn.com/s3/m/57db157aa22d7375a417866fb84ae45c3a35c216.png)
电子产品组装中陶瓷电容常见失效模式及改善建议电子产品中常见的陶瓷电容失效模式有漏电、断线、破裂等。
以下是对这些失效模式的分析以及改善建议。
1.漏电:陶瓷电容的漏电是指电容器在工作过程中出现电流通过绝缘材料,导致电容器失效。
这可能是由于陶瓷电容的绝缘层质量不良引起的,也可能是由于电容器使用环境中的湿度过高引起的。
改善建议:a.选择高质量的陶瓷电容器,确保陶瓷材料具有良好的绝缘性能。
b.控制电容器使用环境中的湿度,避免湿度过高导致漏电。
2.断线:陶瓷电容器的断线通常发生在电容器的引线位置。
这可能是由于工艺不良引起的,也可能是由于电容器的引线材料质量不良引起的。
改善建议:a.提高制造工艺的质量控制,确保电容器引线与电容体之间的连接牢固可靠。
b.选择高质量的引线材料,确保引线的连接性能良好。
3.破裂:陶瓷电容器的破裂通常发生在电容器的外壳上。
这可能是由于外界应力过大引起的,也可能是由于制造工艺不良引起的。
改善建议:a.设计和选择合适尺寸的陶瓷电容器,以满足实际应用场景的需求,避免外界应力过大。
b.提高制造工艺的质量控制,确保电容器外壳的强度满足要求。
此外,还有几个改善建议适用于以上三种常见失效模式:a.进行多次的温度循环测试,以确保陶瓷电容能够在不同温度范围下稳定工作。
b.对陶瓷电容器进行严格的耐压测试,以确保其能够在额定电压范围内正常工作。
c.对陶瓷电容器进行振动和冲击测试,以确保其能够在不同振动和冲击条件下正常工作。
综上所述,在电子产品的组装中,陶瓷电容常见的失效模式是漏电、断线和破裂。
为了改善这些失效模式,应选择质量优良的陶瓷材料和引线材料,改善制造工艺的质量控制,并进行必要的温度循环、耐压、振动和冲击测试等。
这些措施可以确保陶瓷电容器在电子产品中的可靠性和稳定性。
电容失效模式和失效机理
![电容失效模式和失效机理](https://img.taocdn.com/s3/m/6ef6865f5e0e7cd184254b35eefdc8d377ee1461.png)
电容失效模式和失效机理
电容器是一种常见的电子元件,它们在电子设备中起着储存电荷和滤波的重要作用。
然而,电容器也会出现失效,主要有以下几种模式和机理:
1. 电容漏电流增加,电容器在使用过程中,由于介质老化或者制造过程中的缺陷,会导致电容器的绝缘性能下降,从而使得电容器的漏电流增加。
这种失效模式会导致电路中的电流泄露,影响整个电路的性能。
2. 电容器内部短路,电容器内部的金属层或电介质层可能会出现短路现象,导致电容器无法正常工作。
这种失效模式会导致电路中的电压异常,甚至损坏其他元件。
3. 电容器老化,随着使用时间的增加,电容器的性能会逐渐下降,如电容值减小、损耗角正切值增大等,最终导致电容器失效。
这种失效模式是由于电容器内部材料的老化和疲劳造成的。
4. 电容器机械损坏,在运输、安装或使用过程中,电容器可能会受到机械振动或冲击,导致内部连接不良或元件损坏,从而引起
电容器失效。
总的来说,电容器的失效主要是由于材料老化、制造缺陷、外部环境等因素引起的。
为了延长电容器的使用寿命,可以采取合适的工作条件、定期检测和维护等措施,以确保电容器的可靠性和稳定性。
电容阻值降低漏电失效分析
![电容阻值降低漏电失效分析](https://img.taocdn.com/s3/m/50efee49b42acfc789eb172ded630b1c59ee9b23.png)
电容阻值降低漏电失效分析电容阻值的降低和漏电失效是电容器在使用过程中可能出现的一些问题,下面将对这两个问题进行分析。
一、电容阻值降低电容阻值的降低可能由以下原因引起:1.电容器老化:长时间使用后,电容器内部的电解液可能会发生变质,导致电容器内部的电极和电介质之间的电阻值增加,从而导致电容阻值降低。
2.温度变化:电容器的温度变化会导致电容极板的线性膨胀或收缩,进而导致电容极板之间的距离变化,从而改变了电容阻值。
3.电压过高:当电容器所承受的电压超过其耐压范围时,电容器可能会发生击穿,导致电容阻值降低。
4.外部电磁干扰:电容器的阻值可能会受到外部电磁干扰的影响,例如强磁场或高频电磁波等,导致电容阻值降低。
5.安装不当:如果电容器的安装方式不正确,例如固定方式不稳定、引线接触不良等,都可能导致电容阻值降低。
针对以上原因,可以采取以下措施来避免电容阻值的降低:1.定期检测:定期检测电容器的阻值情况,一旦发现阻值降低,应及时更换电容器。
2.选择合适温度范围:根据使用环境选择合适的电容器,以避免温度变化对电容阻值的影响。
3.控制电压范围:确保电容器所承受的电压不超过其额定值,避免电容击穿。
4.防止电磁干扰:采取相应的屏蔽措施,以减小外部电磁干扰对电容器的影响。
5.安装稳固:确保电容器的固定方式牢固可靠,引线接触良好,以避免安装不当对电容阻值的影响。
二、漏电失效电容器的漏电失效指的是电容器内部电介质的绝缘性能下降,导致漏电现象的发生。
漏电失效可能由以下原因引起:1.电容器老化:长时间使用后,电容器的绝缘性能可能会降低,导致电容器内部发生漏电。
2.温度变化:电容器的温度变化会导致电容极板的线性膨胀或收缩,进而导致电容极板之间的绝缘距离变化,从而增加了电容器的漏电风险。
3.电压过高:电容器所承受的电压超过其耐压范围时,电容器内部电介质可能会被击穿,导致漏电失效。
4.湿度变化:电容器工作环境的湿度变化可能导致电容器绝缘性能下降,进而导致漏电现象的发生。
贴片电容裂纹失效原因分析
![贴片电容裂纹失效原因分析](https://img.taocdn.com/s3/m/7bd3497a0a4c2e3f5727a5e9856a561253d32148.png)
贴片电容裂纹失效原因分析贴片电容是电子设备中常见的电子元器件之一,它广泛应用于电子电路中,主要用于过滤、耦合、绝缘电容等方面。
然而,在使用过程中,贴片电容有时会出现裂纹失效的情况。
本文将对贴片电容裂纹失效的原因进行分析。
一、外力作用:贴片电容在使用过程中容易受到外界的机械振动、冲击等力的作用。
当贴片电容所承受的应力超过其材料的耐力极限时,就会发生裂纹失效。
例如,在运输、组装、焊接等过程中,贴片电容可能受到机械冲击而导致裂纹失效。
二、热膨胀不匹配:贴片电容由多种材料组成,如电极材料、介质材料等。
这些材料在使用过程中产生热膨胀时,可能会存在不匹配的情况。
当贴片电容的不同部分存在热膨胀不匹配时,就会产生应力集中,从而导致裂纹失效。
此外,贴片电容在焊接过程中也会受到高温的影响,当焊接温度过高或焊接时间过长时,可能会导致贴片电容内部的材料发生热膨胀不一致,从而引发裂纹失效。
三、环境因素:贴片电容的失效与环境因素密切相关。
在高温、高湿度、高盐度、高气压等特殊环境下,贴片电容的材料容易产生膨胀或腐蚀,导致内部应力积累,从而引发裂纹失效。
另外,在一些粗糙表面的基板上安装贴片电容,其间发生微小位移时,也会形成应力集中而导致裂纹失效。
四、焊接过程:贴片电容在焊接过程中容易受到过温或焊接不良的影响,从而导致裂纹失效。
焊接温度过高或焊接时间过长,可能会引起焊点附近的材料热膨胀,产生应力集中;焊接温区宽度不均匀、接触不良或焊接剂残留等因素,也会对贴片电容产生不良影响。
五、材料质量:贴片电容的材料质量是决定其裂纹失效的重要因素之一、如果材料本身质量不稳定、工艺控制不当或混入杂质,就容易降低贴片电容的抗裂性能和可靠性。
六、设计问题:贴片电容的设计问题也会引发裂纹失效。
例如,结构设计不合理、焊盘过小、应力集中等因素,都可能导致贴片电容裂纹失效。
综上所述,贴片电容裂纹失效的原因主要包括外力作用、热膨胀不匹配、环境因素、焊接过程、材料质量和设计问题。
MLCC电容烧损失效机理分析及改善建议
![MLCC电容烧损失效机理分析及改善建议](https://img.taocdn.com/s3/m/85a3af170a4c2e3f5727a5e9856a561252d3218c.png)
MLCC电容烧损失效机理分析及改善建议1.失效背景马达产品在客户端运行一段时间后,发生功能失效。
经过初步检测,新阳检测中心(下文简称中心)判断该问题是组件中的MLCC电容发生失效导致的。
2.检测分析2.1失效样品的外观分析电容有明显开裂现象,但电容表面整体未见烧损碳化痕迹。
2.2电容切片断面的分析经过边研磨边观察的方式分析得出,在电容电极两端均检出有约45°的裂纹。
同时,在PCB层有烧损与碳化的现象。
并且电容内部电极之间有打火烧损异常。
电容研磨至陶瓷层刚去掉的位置时观察,烧损主要集中于PCB的PAD 位置,电容面未见明显烧灼异常,电容两端有明显的约45°裂纹异常。
电容研磨至约1/3位置时观察,PCB烧黑碳化、分层,电容面未见明显烧灼异常,电容两端有明显的约45°裂纹异常,且呈现碎裂状态。
电容研磨至约1/2位置时观察,PCB烧黑碳化、分层,电容面有明显开裂,烧损区域,电容两端有明显的约45°裂纹异常,且呈现碎裂状态。
根据电容断面烧损区域局部图显示,说明层间发生了短路异常。
根据烧损区域SEM分析图显示,说明异常位置存在开裂状态。
3.失效机理分析3.1不良分析电容失效特征:①电容端电极位置从外向内贯穿性45°裂纹,且裂纹延伸至内电极层;②电容内部烧损位置,有贯穿性裂纹;③PCB基材位置受到了高热影响,发生烧损、碳化、分层,电容没有比较严重的爆裂及烧灼点。
失效原因分析:①电容端电极45°裂纹,是典型的应力裂纹。
且该裂纹从外向内贯穿,电容烧损点呈现非聚集性、非点扩散性特征。
因此,判断该电容先前已有裂纹产生。
②裂纹在后续的过程中延展、贯穿,导致内部电极层错位短路,形成电阻效应,产生高热,使PCB基材高温碳化、分层。
③电容内部在电流作用下发生烧损,造成内部电极片层产生裂纹及烧损点。
3.2改善建议针对电容失效机理的分析,电容应力裂纹可能是失效的根本原因。
电容失效分析(详解干货)
![电容失效分析(详解干货)](https://img.taocdn.com/s3/m/4f15f2f688eb172ded630b1c59eef8c75fbf9520.png)
电容失效分析(详解干货)多层片状陶介电容器由陶瓷介质、端电极、金属电极三种材料构成,失效形式为金属电极和陶介之间层错,电气表现为受外力(如轻轻弯曲板子或用烙铁头碰一下)和温度冲击(如烙铁焊接)时电容时好时坏。
多层片状陶介电容器具体不良可分为:1、热击失效2、扭曲破裂失效3、原材失效三个大类(1)热击失效模式:热击失效的原理是:在制造多层陶瓷电容时,使用各种兼容材料会导致内部出现张力的不同热膨胀系数及导热率。
当温度转变率过大时就容易出现因热击而破裂的现象,这种破裂往往从结构最弱及机械结构最集中时发生,一般是在接近外露端接和中央陶瓷端接的界面处、产生最大机械张力的地方(一般在晶体最坚硬的四角),而热击则可能造成多种现象:第一种是显而易见的形如指甲狀或U-形的裂縫第二种是隐藏在内的微小裂缝第二种裂缝也会由裸露在外的中央部份,或陶瓷/端接界面的下部开始,并随温度的转变,或于组装进行时,顺着扭曲而蔓延开来(见图4)。
第一种形如指甲狀或U-形的裂縫和第二种隐藏在内的微小裂缝,两者的区别只是后者所受的张力较小,而引致的裂缝也较轻微。
第一种引起的破裂明显,一般可以在金相中测出,第二种只有在发展到一定程度后金相才可测。
(2)扭曲破裂失效此种不良的可能性很多:按大类及表现可以分为两种:第一种情况、SMT阶段导致的破裂失效当进行零件的取放尤其是SMT阶段零件取放时,取放的定中爪因为磨损、对位不准确,倾斜等造成的。
由定中爪集中起来的压力,会造成很大的压力或切断率,继而形成破裂点。
这些破裂现象一般为可见的表面裂缝,或2至3个电极间的内部破裂;表面破裂一般会沿着最强的压力线及陶瓷位移的方向。
真空检拾头导致的损坏或破裂﹐一般会在芯片的表面形成一个圆形或半月形的压痕面积﹐并带有不圆滑的边缘。
此外﹐这个半月形或圆形的裂缝直经也和吸头相吻合。
另一个由吸头所造成的损环﹐因拉力而造成的破裂﹐裂缝会由组件中央的一边伸展到另一边﹐这些裂缝可能会蔓延至组件的另一面﹐并且其粗糙的裂痕可能会令电容器的底部破损。
电容失效的原因分析
![电容失效的原因分析](https://img.taocdn.com/s3/m/70c84a2ac4da50e2524de518964bcf84b9d52d83.png)
电容失效的原因分析
电容失效的原因可能有以下几种:
热击穿:电容器内部的电解液、电极材料、以及由这些材料组成的连接部分都会在运行过程中产生热量,若散热不良,会导致热击穿而失效。
电击穿:电容器本身的绝缘性能不好,或者存在机械损伤、化学腐蚀等情况,会导致电介质分解、气体生成等,降低电容器的击穿强度,最终导致失效。
机械损坏:电容器在使用过程中,受到各种应力的作用,比如机械振动、冲击、挤压等,可能会导致电容器内部结构出现缺陷,降低电容器的性能和寿命。
介质老化:电容器中的电解液、电极材料等在长期使用过程中会发生老化,导致电容器性能下降,最终失效。
过压击穿:当电容器的工作电压超过其额定电压时,会导致电容器内部结构损坏,降低电容器的性能和寿命。
欠压击穿:当电容器的工作电压低于其额定电压时,会导致电容器内部的电解液分解、气体生成等,降低电容器的击穿强度,最终导致失效。
引线断裂:电容器中的引线部分若存在焊接不良、机械应力等问题,会导致引线断裂,最终导致电容失效。
短路:电容器内部的电极板之间发生短路现象,导致电容器无法正常工作。
以上是电容失效的主要原因,为了提高电容器的可靠性和寿命,需要在设计、制造、使用和维护等环节中加强质量控制和检测。
电力电子技术中如何处理电容器失效问题
![电力电子技术中如何处理电容器失效问题](https://img.taocdn.com/s3/m/539a12a86394dd88d0d233d4b14e852458fb39dd.png)
电力电子技术中如何处理电容器失效问题电力电子技术在现代社会中发挥着至关重要的作用,其中一个关键组件是电容器。
然而,由于使用环境和工作条件的变化,电容器失效成为了一个普遍存在的问题。
本文将讨论电力电子技术中如何处理电容器失效问题,并提供相应的解决方案。
一、电容器失效的原因和类型在探讨如何处理电容器失效问题之前,我们先来了解一下失效的原因和类型。
电容器失效主要可以分为以下几种情况:1. 电解液干化:电容器中的电解液会随着时间的推移逐渐干化,导致电容值下降或者无法正常工作。
2. 极板损伤:电容器的极板可能会因为过压或过流等原因而受到损伤,导致电容器无法正常工作。
3. 电容器内部短路:电容器内部的导电介质出现故障,导致电容器两极之间发生短路。
以上是电容器失效的一些常见原因和类型,接下来将介绍如何处理这些问题。
二、处理电解液干化的方法电解液干化是导致电容器失效的主要原因之一。
下面是处理电解液干化的方法:1. 定期检查和更换:定期检查电容器的工作状态和电解液的情况,一旦发现电解液干化的迹象,及时更换受损的电容器。
2. 维护温度和湿度:保持电容器所处的环境温度和湿度在合适的范围内,避免电容器因环境条件恶劣而过早干化。
以上方法能够有效处理电解液干化导致的电容器失效问题。
三、处理极板损伤的方法极板损伤是另一个常见的导致电容器失效的原因。
下面是处理极板损伤的方法:1. 设定保护措施:在电容器的工作电压范围内,设定过压保护和过流保护,以避免极板因为过压或过流而受损。
2. 合理使用电容器:根据应用的需求选择合适的电容器类型和规格,在设计电路时合理分配电容器的工作负载。
综上所述,通过设定保护措施和合理使用电容器,可以有效处理极板损伤导致的电容器失效问题。
四、处理电容器内部短路的方法电容器内部短路是电容器失效的另一个常见情况。
下面是处理电容器内部短路的方法:1. 经常进行测试:定期进行电容器的测试,以便及时发现电容器内部短路问题。
电解电容寿命的失效分析
![电解电容寿命的失效分析](https://img.taocdn.com/s3/m/d4001b706c85ec3a87c2c5aa.png)
电解电容广泛应用在电力电子的不同领域,主要是用于平滑、储存能量或者交流电压整流后的滤波,另外还用于非精密的时序延时等。在开关电源的MTBF预计时,模型分析结果表明电解电容是影响开关电源寿命的主要因素,因此了解、影响电容寿命的因素非常重要。
电解电容的寿命取决于其内部温度。因此,电解电容的设计和应用条件都会影响到电解电容的寿命。从设计角度,电解电容的设计方法、材料、加工工艺决定了电容的寿命和稳定性。而对应用者来讲,使用电压、纹波电流、开关频率、安装形式、散热方式等都影响电解电容的寿命。
1.电解电容的非正常失效
一些因素会引起电解电容失效,如极低的温度,电容温升(焊接温度,环境温度,交流纹波),过高的电压,瞬时电压,甚高频或反偏压;其中温升是对电解电容工作寿命(Lop)影响最大的因素。
电容的导电能力由电解液的电离能力和粘度决定。当温度降低时,电解液粘度增加,因而离子移动性和导电能力降低。当电解液冷冻时,离子移动能力非常低以致非常高的电阻。相反,过高的热量将加速电解液蒸发,当电解液的量减少到一定极限时,电容寿命也就终止了。在高寒地区(一般-25℃以下)工作时,就需要进行加热,保证电解电容的正常工作温度。如室外型UPS,在我国东北地区都配有加热板。
以上这些特性保证了电容在要求的领域中具有很长的工作寿命。
3.2、影响寿命的应用因素
根据寿命公式,可以得出影响寿命的应用因素为:纹波电流(IRMS)、环境温度(Ta)、从热点传递到周围环境的总的热阻(Rth)。
(1).纹波电流
纹波电流的大小,直接影响电解电容内部的热点温度。查询电解电容的使用手册,就可以得到纹波电流的允许范围。如果超出范围,可以采用并联方式解决。
另外将延长的阴极铝箔与电容器铝壳直接接触,也是很好的降低热阻的方法。同时应注意铝壳会因此带负电,不能作负极连接。
了解电力电子技术中的电容电压稳定器失效分析
![了解电力电子技术中的电容电压稳定器失效分析](https://img.taocdn.com/s3/m/f05b0075ef06eff9aef8941ea76e58fafab0458e.png)
了解电力电子技术中的电容电压稳定器失效分析电容电压稳定器(Capacitor Voltage Stabilizer)是一种常见的电力电子设备,用于保护电路免受电压波动的影响。
然而,长期的使用或其他因素可能导致电容电压稳定器失效。
本文将对电容电压稳定器失效的分析进行探讨。
一、失效原因1. 电容老化:电容器使用时间长了会发生老化现象。
长时间使用会使电容内部介质老化,导致电容性能下降,无法正常工作。
2. 电容失效:电容器内部可能发生短路、开路等故障,导致电容无法存储电能或无法正常放电,从而导致电容电压稳定器失效。
3. 温度过高:过高的温度会导致电容器内部材料的物理和化学性质发生变化,从而影响电容器的性能和寿命。
4. 电压过高或过低:电容器在规定的电压范围内工作是最稳定的,过高或过低的电压会产生过电压或欠电压现象,可能导致电容器失效。
5. 设计不合理:电容电压稳定器的设计不合理也是导致其失效的原因之一。
例如,电路设计中忽略了电容的使用寿命和工作环境等因素,导致电容器无法承受实际工作条件下的要求。
二、失效分析1. 检查电容外观:首先,可以通过检查电容外观来判断电容是否失效。
如果电容出现明显的物理损坏,如鼓胀、漏液等情况,可以初步判断电容已经失效。
2. 使用电容测试仪:可以使用专门的电容测试仪来测试电容的参数,如容量、电阻、工作电压等。
通过测试结果可以初步判断电容是否失效。
3. 检查电路连接:失效的电容电压稳定器可能是由于电路连接问题引起的。
检查电路连接是否稳固,是否存在松动、焊接不良等情况。
4. 温度检测:使用温度计或红外线测温仪检测电容器的表面温度,如果超过了电容器的额定温度范围,可能会导致电容失效。
5. 电压测试:通过电压表或示波器等仪器监测电容器的工作电压,如果电容器所承受的电压超过了其额定电压,可能导致失效。
三、应对措施1. 定期检测和维护:定期对电容电压稳定器进行检测和维护,包括检查电容外观、测试电容参数等。
y电容失效模式
![y电容失效模式](https://img.taocdn.com/s3/m/a005c2391611cc7931b765ce0508763231127402.png)
y电容失效模式
(实用版)
目录
1.电容失效的常见模式
2.电容失效的原因
3.如何防止电容失效
正文
电容是一种常见的电子元件,被广泛应用于各种电子设备中。
然而,电容失效是一种常见的故障模式,会影响设备的性能和稳定性。
下面,我们将探讨电容失效的常见模式、原因以及如何防止电容失效。
一、电容失效的常见模式
电容失效的主要模式有以下几种:
1.电容漏电:电容存储电能的能力降低,导致电容器两端的电压下降。
2.电容击穿:电容器电压超过其额定电压,导致电容器损坏,无法继续使用。
3.电容老化:电容器在长时间的使用过程中,其性能逐渐下降,电容量减少。
4.电容短路:电容器内部出现短路,导致电容器无法正常工作。
二、电容失效的原因
电容失效的原因有很多,主要包括以下几点:
1.质量问题:电容器本身的质量不合格,导致其在使用过程中容易失效。
2.温度过高:电容器在高温环境下工作,会导致其性能下降,加速老化。
3.电压波动:电容器在电压波动较大的环境中工作,容易导致击穿。
4.使用时间过长:电容器在长时间的使用过程中,其性能会逐渐下降。
三、如何防止电容失效
为了防止电容失效,可以采取以下措施:
1.选择高质量的电容器:在选购电容器时,应选择知名品牌的高质量产品,以确保其稳定性和可靠性。
2.控制工作温度:尽量使电容器在适宜的温度环境下工作,避免高温环境。
3.稳定电压:为电容器提供稳定的电压,避免电压波动。
4.定期更换:对于使用时间较长的电容器,应定期进行检查和更换,以确保其正常工作。
第1页共1页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陶瓷电容失效分析:多层片状陶介电容器由陶瓷介质、端电极、金属电极三种材料构成,失效形式为金属电极和陶介之间层错,电气表现为受外力(如轻轻弯曲板子或用烙铁头碰一下)和温度冲击(如烙铁焊接)时电容时好时坏。
多层片状陶介电容器具体不良可分为:1、热击失效2、扭曲破裂失效3、原材失效三个大类(1)热击失效模式:热击失效的原理是:在制造多层陶瓷电容时,使用各种兼容材料会导致内部出现张力的不同热膨胀系数及导热率。
当温度转变率过大时就容易出现因热击而破裂的现象,这种破裂往往从结构最弱及机械结构最集中时发生,一般是在接近外露端接和中央陶瓷端接的界面处、产生最大机械张力的地方(一般在晶体最坚硬的四角),而热击则可能造成多种现象:第一种是显而易见的形如指甲狀或U-形的裂縫第二种是隐藏在内的微小裂缝第二种裂缝也会由裸露在外的中央部份,或陶瓷/端接界面的下部开始,并随温度的转变,或于组装进行时,顺着扭曲而蔓延开来(见图4)。
第一种形如指甲狀或U-形的裂縫和第二种隐藏在内的微小裂缝,两者的区别只是后者所受的张力较小,而引致的裂缝也较轻微。
第一种引起的破裂明显,一般可以在金相中测出,第二种只有在发展到一定程度后金相才可测。
(2)扭曲破裂失效此种不良的可能性很多:按大类及表现可以分为两种:第一种情况、SMT阶段导致的破裂失效当进行零件的取放尤其是SMT阶段零件取放时,取放的定中爪因为磨损、对位不准确,倾斜等造成的。
由定中爪集中起来的压力,会造成很大的压力或切断率,继而形成破裂点。
这些破裂现象一般为可见的表面裂缝,或2至3个电极间的内部破裂;表面破裂一般会沿着最强的压力线及陶瓷位移的方向。
真空检拾头导致的损坏或破裂﹐一般会在芯片的表面形成一个圆形或半月形的压痕面积﹐并带有不圆滑的边缘。
此外﹐这个半月形或圆形的裂缝直经也和吸头相吻合。
另一个由吸头所造成的损环﹐因拉力而造成的破裂﹐裂缝会由组件中央的一边伸展到另一边﹐这些裂缝可能会蔓延至组件的另一面﹐并且其粗糙的裂痕可能会令电容器的底部破损。
第二种、SMT之后生产阶段导致的破裂失效电路板切割﹑测试﹑背面组件和连接器安装﹑及最后组装时,若焊锡组件受到扭曲或在焊锡过程后把电路板拉直,都有可能造成‘扭曲破裂’这类的损坏。
在机械力作用下板材弯曲变形时,陶瓷的活动范围受端位及焊点限制,破裂就会在陶瓷的端接界面处形成,这种破裂会从形成的位置开始,从45°角向端接蔓延开来。
(3)原材失效多层陶瓷电容器通常具有2大类类足以损害产品可靠性的基本可见内部缺陷:电极间失效及结合线破裂燃烧破裂。
这些缺陷都会造成电流过量,因而损害到组件的可靠性,详细说明如下:1、电极间失效及结合线破裂主要由陶瓷的高空隙,或电介质层与相对电极间存在的空隙引起,使电极间是电介质层裂开,成为潜伏性的漏电危机;2、燃烧破裂的特性与电极垂直,且一般源自电极边缘或终端。
假如显示出破裂是垂直的话,则它们应是由燃烧所引起;备注:原材失效类中第一种失效因平行电容内部层结构分离程度不易测出,第三种垂直结构金相则能保证测出。
结论:由热击所造成的破裂会由表面蔓延至组件内部,而过大的机械性张力所引起的损害,则可由组件表面或内部形成,这些破损均会以近乎45°角的方向蔓延,至于原材失效,则会带来与内部电极垂直或平行的破裂。
另外:热击破裂一般由一个端接蔓延至另一个端接﹐由取放机造成的破裂﹐则在端接下面出现多个破裂点﹐而因电路板扭曲而造成的损坏﹐通常则只有一个破裂点。
一张图教你分析电解电容失效分析看不清图片,可以点击图片之后,放大后查看:钽电容:优点:体积小、电容量较大、外形多样、长寿命、高可靠性、工作温度范围宽缺点:容量较小、价格贵、耐电压及电流能力较弱应用:军事通讯、航天、工业控制、影视设备、通讯仪表1.也属于电解电容的一种,使用金属钽做介质,不像普通电解电容那样使用电解液,钽电容不需像普通电解电容那样使用镀了铝膜的电容纸绕制,本身几乎没有电感,但这也限制了它的容量。
——我们在大容量,但是需要低ESL的场景,我们就选用钽电容。
2.由于钽电容内部没有电解液,很适合在高温下工作。
——一些温度范围要求比较宽的场景。
3.钽电容器的工作介质是在钽金属表面生成的一层极薄的五氧化二钽膜。
此层氧化膜。
介质与组成电容器的一端极结合成一个整体,不能单独存在。
因此单位体积内具有非常高的工作电场强度,所具有的电容量特别大,即比容量非常高,因此特别适宜于小型化。
——集成度比较高的场景,用铝电解电容占的面积比较大,陶瓷电容容量不够的场景。
4.钽电容的性能优异,是电容器中体积小而又能达到较大电容量的产品,在电源滤波、交流旁路等用途上少有竞争对手。
钽电解电容器具有储藏电量、进行充放电等性能,主要应用于滤波、能量贮存与转换,记号旁路,耦合与退耦以及作时间常数元件等。
在应用中要注意其性能特点,正确使用会有助于充分发挥其功能,其中诸如考虑产品工作环境及其发热温度,以及采取降额使用等措施,如果使用不当会影响产品的工作寿命。
——例如USB接口输出,需要降额后,耐压满足5V,集成度比较高的场景,陶瓷电容不满足高耐压与大容量的情况下,我们不得不选择钽电容。
陶瓷电容的储能效果,不能按照并联的容值去等效,达到相同的效果需要的代价也非常大。
5.钽电容的容值的温度稳定性比较好。
在一些耦合、滤波的场景,如果对相位,和滤波的频率特性要求比较高的场景,同时容量精度要求比较高的场景,会选用无极性的钽电容。
如高音质要求的音频电路设计。
我们需要考虑不同温度情况下的电容的准确性和一致性。
陶瓷电容的温度特性显然不够稳定。
6.在钽电容器工作过程中,具有自动修补或隔绝氧化膜中的疵点所在的性能,使氧化膜介质随时得到加固和恢复其应有的绝缘能力,而不致遭到连续的累积性破坏。
这种独特自愈性能,保证了其长寿命和可靠性的优势。
——铝电解电容由于干涸不能满足寿命的场景。
第一、钽电容失效的模式很恐怖,轻则烧毁冒烟,重则火光四溅。
这里不去赘述“钽电容”的失效模式的原理。
通过这个失效的现象,就知道:如果电容失效,只是短路造成电路无法工作,或者工作不稳定,都是小问题,大不了退货。
但是如果造成了客户场地失火,则是需要赔偿对方的人员及财产损失的。
那就麻烦大了。
这是我们不要去选用钽电容的重要原因。
第二、钽电容的成本高看看我们的淘宝就可以知道100uF的钽电容与100uF的陶瓷电容的价格差别,大概钽电容的价格是陶瓷电容的10倍。
如果电容容量需求在100uF以下的情况下,我们现在绝大多数下,耐压如果满足的情况下,我们一般需用陶瓷电容。
再大容量,或者再高耐压,陶瓷电容的封装大于1206的时候,尽量谨慎选择。
贴片陶瓷电容最主要的失效模式断裂(封装越大越容易失效):贴片陶瓷电容器作常见的失效是断裂,这是贴片陶瓷电容器自身介质的脆性决定的.由于贴片陶瓷电容器直接焊接在电路板上,直接承受来自于电路板的各种机械应力,而引线式陶瓷电容器则可以通过引脚吸收来自电路板的机械应力.因此,对于贴片陶瓷电容器来说,由于热膨胀系数不同或电路板弯曲所造成的机械应力将是贴片陶瓷电容器断裂的最主要因素。
高分子聚合物固体铝电解电容器与传统的电解电容相比,它采用具有高导电度、高稳定性的导电高分子材料作为固态电解质,代替了传统铝电解电容器内的电解液,它所采用的电解质电导率很高,再加上其独特的结构设计,大幅改善传统液态铝电解电容器的缺点,展现出极为优异的特性。
理想的高频低阻抗特性。
高分子聚合物固体电解电容器的损耗极低,具有理想的高频低阻抗特性,所以被广泛应用于退耦、滤波等电路中,效果埋想,特别是高频滤波效果优秀。
通过一个实验可以更加直观和清楚地看出高分子聚合物固体铝电解电容器与普通电解电容之间的高频特性明显差异。
在平滑电路输入叠加1MHz(峰一峰值电压8V)高频干扰信号,用1只47uF的高分子聚合物固体电解电容器滤波,可使噪声降到仅有峰一峰值电压30mV输出。
要达到同样的滤波效果,需要并联4只1000uF的普通型液态铝电解电容器,或者并联接入3只100UF的钽电解电容器。
此外,在高频滤波效果更好的情况下,高分子聚合物固体铝电解电容器的体积明显小于普通型铝电解电容器。
随着工艺不断提升,高分子聚合物固体铝电解电容器优势逐步显现。
同时,价格也需要进一步优化。
铝电解电容的失效分析铝电解电容是电容中非常常见的一种。
铝电解电容用途广泛:滤波作用;旁路作用;耦合作用;冲击波吸收;杂音消除;移相;降压等等。
对于铝电解电容,常见的电性能测试包括:电容量,损耗角正切,漏电流,额定工作电压,阻抗等等。
在失效分析案件中,关于铝电解电容的失效案件不少,那么常见的铝电解电容的失效机理有哪些呢?1.漏液在正常的使用环境当中,经过一段时间密封便可能出现泄漏。
通常,温度升高、振动或密封的缺陷等都有可能加速密封性能变坏。
漏液的结果是电容值下降、等效串联电阻增大以及功率耗散相应增大等。
漏液使工作电解液减少,丧失了修补阳极氧化膜介质的能力,从而丧失了自愈作用。
此外,由于电解液呈酸性,漏出的电解液还会污染和腐蚀电容器周围其他的元器件及印刷电路板。
2.介质击穿铝电解电容器击穿是由于阳极氧化铝介质膜破裂,导致电解液直接与阳极接触而造成的。
氧化铝膜可能因各种材料、工艺或环境条件方面的原因而受到局部损伤,在外电场的作用下工作电解液提供的氧离子可在损伤部位重新形成氧化膜,使阳极氧化膜得以填平修复。
但是如果在损伤部位存在杂质离子或其他缺陷,使填平修复工作无法完善,则在阳极氧化膜上会留下微孔,甚至可能成为穿透孔,使铝电解电容击穿。
工艺缺陷如阳极氧化膜不够致密与牢固,在后续的铆接工艺不佳时,引出箔条上的毛刺刺伤氧化膜,这些刺伤部位漏电流很大,局部过热使电容器产生热击穿。
3.开路当电容器内部的连接性能变差或失效时,通常就会发生开路。
电性能连接变差的产生可能是腐蚀、振动或机械应力作用的结果。
当铝电解电容在高温或潮热的环境中工作时,阳极引出箔片可能会由于遭受电化学腐蚀而断裂。
阳极引出箔片和阳极箔的接触不良也会使电容器出现间歇开路。
4.其他1)在工作早期,铝电解电容器由于在负荷工作过程中电解液不断修补并增厚阳极氧化膜(称为补形效应),会导致电容量的下降。
2)在使用后期,由于电解液的损耗较多,溶液变稠,电阻率增大,使电解质的等效串联电阻增大,损耗增大。
同时溶液黏度增大,难以充分接触铝箔表面凹凸不平的氧化膜层,这就使电解电容的有效极板面积减小,导致电容量下降。
此外,在低温下工作,电解液的黏度也会增大,从而导致电解电容损耗增大与电容量下降等后果。
参数铝电解电容。