小升初简便运算专题讲解
小升初数学六年级简便运算
小升初数学六年级简便运算一、加法交换律和结合律。
1. 加法交换律。
- 定义:两个数相加,交换加数的位置,和不变。
用字母表示为a + b=b + a。
- 例如:计算23+15+77,我们可以根据加法交换律将式子变为23 + 77+15。
先计算23+77 = 100,再加上15,结果为115。
2. 加法结合律。
- 定义:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
用字母表示为(a + b)+c=a+(b + c)。
- 例如:计算12+34 + 66,根据加法结合律可写成12+(34 + 66)。
先算34+66 = 100,再加上12得到112。
- 在一些综合运算中,加法交换律和结合律常常一起使用。
例如计算18+25+75+82,可以变为(18 + 82)+(25+75),结果为200。
二、减法的性质。
1. 一个数连续减去两个数等于这个数减去这两个数的和。
- 用字母表示为a - b - c=a-(b + c)。
- 例如:计算125-36 - 64,可根据减法的性质写成125-(36 + 64)。
先算36+64 = 100,再用125减去100,结果为25。
2. 一个数减去两个数的差等于这个数先减去被减数再加上减数。
- 用字母表示为a-(b - c)=a - b + c。
- 例如:计算25-(15 - 5),可变为25-15 + 5,先算25-15 = 10,再加上5得到15。
三、乘法交换律、结合律和分配律。
1. 乘法交换律。
- 定义:两个数相乘,交换因数的位置,积不变。
用字母表示为a× b = b× a。
- 例如:计算25×4×13,根据乘法交换律可写成25×13×4,先算25×4 = 100,再乘以13得到1300。
2. 乘法结合律。
- 定义:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。
小升初简便运算专题讲解.pdf
小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+()+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算12.06+5.07+2.9434÷4÷1.7+102×7.3÷5.130.34-10.2+9.66+ 125÷2×8二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+(); a+b-c=a+( )a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
小升初简便运算知识点总结
小升初简便运算知识点总结
一、整数运算
1. 加法运算:两个数相加,结果是它们的和。
2. 减法运算:两个数相减,结果是它们的差。
3. 乘法运算:两个数相乘,结果是它们的积。
4. 除法运算:一个数除以另一个数,结果是它们的商。
二、分数运算
1. 分数加减法:要先求出两个分数的通分,然后按照通分后的分母,对应相加或相减分子。
2. 分数乘法:将两个分数的分子和分母分别相乘,得到新的分子和分母,即为分数的乘积。
3. 分数除法:将除数取倒数,然后将被除数与倒数相乘,得到商。
三、小数运算
1. 小数加减法:保持小数点对齐,按照十分位、百分位等位数进行加减运算。
2. 小数乘法:将两个小数的小数点去掉,相乘得到新的整数,然后再按原来小数位数,确
定小数点位置。
3. 小数除法:将除数乘以所需的倍数使其变成整数,然后同样进行整数除法运算,最后再
确定小数点位置。
四、混合运算
1. 先算括号内的运算,再算乘除法,最后算加减法。
2. 多步运算时,要按照顺序,逐步进行运算。
五、简便计算
1. 利用近似数计算,适当放大或缩小数值使计算更简便。
2. 利用近似数的特点进行计算,如抹除末尾的0、调整数字顺序等。
3. 利用计算规律,发现特殊的运算位置进行简便计算。
六、计算技巧
1. 将大数拆分成小数进行计算,然后再合并计算结果。
2. 发现并利用数的性质,如交换律、结合律等进行计算。
3. 对于平方、立方等特殊计算,可以利用特定的乘法规律进行计算。
以上就是小升初简便运算知识点的总结,希望对同学们的学习有所帮助。
小升初数学简便计算完整版
小升初数学简便计算完整版数学是一个需要大量计算的科学。
在小学阶段,我们学习了加减乘除等基本运算。
而在小升初的数学考试中,我们需要熟练掌握这些基本运算,并且能够应用到解决实际问题中。
在小升初的数学考试中,除了基本运算外,还会涉及到一些简单的几何知识、分数的运算、整数的运算等。
本文将介绍一些简便计算的方法,希望能够帮助到小升初考生。
一、加法运算:要熟练掌握加法运算,可以根据不同的数字特点来进行计算。
比如:1.两个数相加时,如果有进位,则进位数的个数等于个位数和十位数进位数的和;2.两个数相加时,如果个位数为9,十位数进位数为1,则个位数为0,十位数不变;3.两个数相加时,如果单位数和十位数的和大于10,则把个位数减去10,然后十位数进位。
二、减法运算:对于减法运算,同样可以根据数字的特点来进行简便计算。
比如:1.两个数相减时,如果减数中的个位数小于被减数中的个位数,则十位数减1,个位数为10加个位数,然后相减;2.两个数相减时,如果减数中的个位数大于被减数中的个位数,则减法退位,个位数为个位数加10,十位数减1,然后相减。
三、乘法运算:乘法运算是数学中最重要的一种运算方法。
在小升初的数学考试中,经常会涉及到乘法的计算。
为了熟练掌握乘法运算,可以用以下方法简便计算:1.乘法交换律:axb=bxa。
如果遇到一个两位数和一个一位数相乘,可以按照这个规律交换位置进行计算;2.乘法的分配律:ax(b+c)=(axb)+(axc)。
如果遇到一个数乘以一个多位数,可以进行分步计算,将乘法运算和加法运算结合起来。
四、除法运算:除法运算是对除法的一种简便计算方法。
在小升初的数学考试中,常常会涉及到除法的计算。
以下是一些简便计算方法:1.除法的基本法则:如果被除数的个位数小于除数个位数,则商的个位数为0;2.除法的特殊法则:如果被除数是10的倍数,则商的个位数等于除数个位数;3.除法的近似法则:如果被除数和除数个位数相等,则商的个位数为1通过运用以上简便计算方法,我们可以在小升初数学考试中提高计算速度。
小升初常考简便运算
但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
分数裂项的最基本的公式这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。
有余力的孩子可以学一下。
简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
例题1。
计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1计算下面各题。
要想提高计算能力,还要掌握一些简算、巧算的方法,这要有老师的指导。
看看下面的例题,是一定会得到启发的。
分析与解在进行四则运算时,应该注意运用加法、乘法的运算定律,减法、除法的运算性质,以便使某些运算简便。
本题就是运用乘法分配律及减法性质使运算简便的。
例2 计算9999×2222+3333×3334分析与解利用乘法的结合律和分配律可以使运算简便。
9999×2222+3333×3334=3333×(3×2222)+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000分析与解将分子部分变形,再利用除法性质可以使运算简便。
分析与解在计算时,利用除法性质可以使运算简便。
分析与解这道分数乘、除法计算题中,各分数的分子、分母的数都很大,为了便于计算时进行约分,应该先将各分数的分子、分母分别分解质因数,这样计算比较简便。
分析与解通过观察发现,原算式是求七个分数相加的和,而这七个分由此得出原算式分析与解观察题中给出的数据特点,应该将小括号去掉,然后适当分组,这样可使运算简便。
全国版六年级下册数学小升初简便计算专题
专题二:简便计算类型一、简便运算之拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小。
例1、简便计算3.2×12.5×25思考:同学们,从题目中我们可以看到12.5,就会想到它的朋友8;看到25,我们也容易想到4,刚好3.2里面含有与8和4有关的因数。
这样这道题就可以把3.2进行拆分,就会让计算简便很多。
解答:原式=255.1284.0⨯⨯⨯=()()5.128254.0⨯⨯⨯=10010⨯=1000变式1 简便计算1.25×88+3.6×0.25类型二、简便运算之乘法分配律的应用乘法分配律:a×(b+c) =a×b+a×ca×b+a×c= a×(b+c),同样也是运用乘法分配律,正逆运算都要牢记于心。
例2:简便计算34.5×76.5-345×6.42-123×1.45思考:看到“×”“-”马上联想到乘法分配律。
首先看到前面两个式子,并没有相同的因数,但是有34.5和345,因为345=34.5×10,我们可以利用积不变性质构造出相同因数。
于是前面两项提取相同因数就为34.5×(76.5-64.2)=34.5×12.3,再看到第三个式子,同样 123=12.3×10,再次运用积不变性质构造出相同因数,就可得出答案。
原式=34.5×76.5-34.5×(10×6.42)-123×1.45=34.5×(76.5-64.2)-123×1.45=34.5×12.3-123×1.45=12.3×(34.5-14.5)=12.3×20=246变式2、简便计算1.025.174.48126.6125.0⨯-⨯+⨯例3:简便计算9999×2222+3333×3334思考:同学们,一般看到”+””-“,我们首先就可以联想到乘法分配律。
小升初-分数的简便运算与解方程
小升初-分数的简便运算与解方程知识点1、分数的简便运算知识点、拆分法:运用拆分法解题主要是使拆开后的一些分数互相抵消,达到简化运算的目的。
一般地,形如1a ×(a+1) 的分数可以拆成1a -1a+1 ;形如1a ×(a+n )的分数可以拆成1n ×(1a -1a+n ),形如a+b a ×b 的分数可以拆成1a +1b等等。
同学们可以结合例题思考其中的规律。
例题1、计算:11×2 +12×3 +13×4 +…..+199×100原式=(1-12 )+(12 -13 )+(13 -14 )+…..+(199 -1100) =1-12 +12 -13 +13 -14 +…..+199 -1100=1-1100=99100练习1计算下面各题:1. 14×5 +15×6 +16×7 +…..+139×402. 110×11 +111×12 +112×13 +113×14 +114×153. 12 +16 +112 +120 +130 +142例题2、计算:12×4 +14×6 +16×8 +…..+148×50原式=(22×4 +24×6 +26×8 +…..+248×50 )×12=【(12 -14 )+(14 -16 )+(16 -18 )…..+(148 -150 )】×12=【12 -150 】×12=625练习2、计算下面各题:1.13×5 +15×7 +17×9 +…..+197×992. 11×4 +14×7 +17×10 +…..+197×100例题3、计算:113 -712 +920 -1130 +1342 -1556原式=113 -(13 +14 )+(14 +15 )-(15 +16 )+(16 +17 )-(17 +18) =113 -13 -14 +14 +15 -15 -16 +16 +17 -17 -18=1-18=78练习3计算下面各题:1. 112 +56 -712 +920 -11302. 114 -920 +1130-1342 +1556 3. 19981×2 +19982×3 +19983×4 +19984×5 +19985×6例题4、计算:12 +14 +18 +116 +132 +164原式=(12 +14 +18 +116 +132 +164 +164 )-164=1-164=6364练习4、计算下面各题:1. 12 +14 +18 +………+12562.23 +29 +227 +281 +2243例题5。
小升初数学简便运算例解
小升初数学简便运算例解在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15 (2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19 (2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减 1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”; 19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是 5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万,,就把其中的一个数叫做另一个数的“补数”。
小升初常考简便运算
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
3.2×12.5×25 1.25×88 3.6×0.252. 巧变除为乘也就是说,把除法变成乘法,例如:除以41可以变成乘4。
7.6÷0.25 3.5÷0.125七、裂项法分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
分数裂项的最基本的公式这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。
有余力的孩子可以学一下。
简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
例题1。
计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1计算下面各题。
1. 6.73-2 817 +(3.27-1 917 ) 2. 759 -(3.8+1 59 )-115小学生小升初数学常见简便计算总结要想提高计算能力,首先要学好各种运算的法则、运算定律及性质,这是计算的基础。
小升初数学计算分类专题--简便运算
小升初数学计算分类专题--简便运算在小学计算题中,有许多新颖独特的题型和方法。
这些题型在升重点中学考试和进入中学分班考试中经常出现。
有些学生由于没有见过这种题型,常常得分很少或得零分。
其实,只要掌握一定的解题方法和规律,这些题型一点都不难。
下面是一些计算专题的介绍和解题技巧:计算专题1:小数分数运算律的运用这个专题主要是针对小数和分数的运算,包括加减乘除等。
掌握这些运算律可以帮助我们更快地解决相关的计算题。
在这个专题中,我们需要掌握一些例题,例如:例一:4.75+9.63+(8.25-1.37)例二:×79+790×例三:3×25+37.9×6例四:36×1.09+1.2×67.3例五:81.5×15.8+81.5×51.8+67.6×18.5通过这些例题的练,我们可以更好地掌握小数分数运算律的运用。
计算专题2:大数认识及运用在这个专题中,我们需要掌握对大数的认识和运用。
大数一般是指超过一定位数的数字,例如千位、万位、亿位等。
在解决这些计算题时,我们需要掌握一些技巧,例如竖式计算、进位借位等。
以下是一些例题:例一:1234+2341+3412+4123例二:2×23.4+11.1×57.6+6.54×28例三:(9+7)÷(4+5)例四:1993+1992×1994例五:有一串数1.4.9.16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?通过这些例题的练,我们可以更好地掌握大数的认识和运用。
计算专题3:分数专题在这个专题中,我们需要掌握对分数的认识和运用。
分数是指一个数被另一个数除后所得到的结果,例如1/2、3/4等。
在解决这些计算题时,我们需要掌握一些技巧,例如通分、约分等。
以下是一些例题:例一:2/3+1/4例二:5/6-1/3例三:1/2×3/4例四:2/5÷1/4例五:3/4的三倍是多少?通过这些例题的练,我们可以更好地掌握分数的认识和运用。
(完整版)小升初简便运算奥数专题讲解
(完整版)小升初简便运算奥数专题讲解戴氏教育新津总校新津县太康东路奥数之简便运算目录:计算专题1 小数分数运算律的运用:计算专题2 大数认识及运用计算专题3 分数专题计算专题4 列项求和计算专题5 计算综合计算专题6 超大数的巧算计算专题7 利用积不变、拆数和乘法分配率巧解计算题:计算专题8 牢记设字母代入法计算专题9 利用a ÷b=ba巧解计算题:计算专题10 利用裂项法巧解计算题计算专题11 (递推法或补数法) 计算专题12 斜着约分更简单计算专题13 定义新运算计算专题14 解方程计算专题15 等差数列计算专题16 尾数与完全平方数计算专题17 加法原理、乘法原理计算专题18 分数的估算求值计算专题19 简单数论奥数专题20 周期问题在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。
下面老师跟你支支招:计算专题1小数分数运算律的运用:【例题精选】例题一: 4.75+9.63+(8.25-1.37)例题二:11 333387797906666124+?例题三:32232537.96555+?例题四:36?1.09+1.2?67.3例题五: 81.5?15.8+81.5?51.8+67.6?18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975?0.25+39769.754- 4、999999×222222+333333×3333345、 45?2.08+1.5?37.66、1391371137 138138?+?7、72?2.09-1.8?73.6 8、 53.5?35.3+53.5?43.2+78.5?46.5计算专题2大数认识及运用【例题精讲】例题一:1234+2341+3412+4123 例题二:4223.411.157.6 6.5428 5+?+?例题三:199319941199319921994-+?例题四:(229779+)÷(5579+)例题五:有一串数1, 4, 9, 16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?例六:2010×201120112011-2011×201020102010【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+?-3、99999?77776+33333?666664、30122-301125、999?274+62746、(83619711++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题一:44374527?1526例题二:11731581164179例题三:13274155+?例题四:5152566139131813 +?+?例题五:11664120÷2010 20102010 2011÷【综合练习】1、 73?74 752、2008201020093、1157764、131441513445+? 5、13392744+? 6、1451179179+?7、238238238239÷ 8、73171131581516152+?+?计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++例题二:1111.......2446684850++++例题三:179111315131220304056-+-+-例题四:1111111 248163264128++++++例题五:(1111234+++)?(11112345+++)-(111112345++++)?(111234++)【综合练习】1、1111 ........ 1011111212134950 ++++2、111111 2612203042+++++3、1111142870130208++++ 4、191113151420304256-+-+5、201020102010201020101223344556++++6、22222392781243++++7、1111111111111111 () ()()() 89101191011128910111291011 +++?+++-++++?++计算专题5计算综合【例题精讲】例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111?111111111 例题三: 12324671421135261072135+??++??+??例题四:201012010220103111...1111222...2222333...3333=÷142431424314243个个个例题五:从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:??+????? ?????? ??+???? ?????? ??+991-1991131-131121-1211 【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011434214434421个个3、1612886443224201612108654??+??++??+?? 4、443442144344212201242012222222444444个个443442162012666666个??÷5、(1+3+5+7+...+1999)-(2+4+6+8+ (1998)6、??1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算熟记规律,常能化难为易。
小升初热点考题:简便运算
第2讲 简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a -b -c = a -(b +c ),使运算过程简便。
所以原式=4.75+8.25-9.63-1.37 =13-(9.63+1.37) =13-11 =2练习1:计算下面各题。
1. 6.73-2817 +(3.27-1917 )2. 759 -(3.8+159 )-1153. 14.15-(778 -61720 )-2.1254. 13713 -(414 +3713)-0.75【例题2】计算33338712 ×79+790×6666114【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790 =100000×790 =79000000练习2:计算下面各题: 1. 3.5×114 +125%+112 ÷452. 975×0.25+934 ×76-9.753. 925 ×425+4.25÷1604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = 1.2×30。
这样一转化,就可以运用乘法分配律了。
所以原式=1.2×30×1.09+1.2×67.3 =1.2×(30×1.09+1.2×67.3) =1.2×(32.7+67.3) =1.2×100 =120练习3:计算: 1. 45×2.08+1.5×37.6 2. 52×11.1+2.6×778 3. 48×1.08+1.2×56.8 4. 72×2.09-1.8×73.6【例题4】计算:335 ×2525 +37.9×625【思路导航】虽然335 与625 的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把37.9分成25.4和12.5两部分。
小升初简便运算专题讲解.pptx
乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c 3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。我们可以用两种计算方法 得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:
一、变换位置(带符号搬家)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
(注:去掉括号是添加括号的逆运算) a+(b+c)= a +(b-c)= a-(b-c)= a-( b +c)= 例 4:用简便方法计算
5.68+(5.39+4.32)+ 19.68-(2.97+9.68) 4.75-9.63+(8.25-1.37)
2 当一个计算模块(同级运算)只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是 乘还 是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要 变 为乘。(现在没有括号了,可以带符号搬家了)(注:去掉括号是添加括号的逆运算)
30.34-10.2+9.66 + 125÷2×8
二、结合律法 1、加括号法
1 当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号 里的 运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为 减 ;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号, 括号前是减号,括号里要变号)
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例 6:简便运算:
小升初数学专项题第三讲 简便运算(二)_通用版
第三讲 简便运算(二)【知识梳理】在实际的奥数练习中,有些题目并不能直接变形,要从算式的整体特点出发,如通过拆项,或从数字的构成上出发,进行变形后,才能使计算简便。
【典例精讲1】435×2525+63.3×525思路分析:虽然435与525的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把63.3分成50.8和12.5两部分。
当出现12.5×5.4时,我们又可以将5.4看成6-0.6,这样计算就简便多了。
解答:435×2525+63.3×525=435×2525+(50.8+12.5)×5.4=435×2525+50.8×5.4+12.5×5.4=(4.6+5.4)×50.8+12.5×(6-0.6)=508+75-7.5=575.5小结:首先要进行拆项,再利用运算律。
【举一反三】1、6.8×16.8+19.3×3.22.39×3738+37×138【典例精讲2】1234+2341+3412+4123思路分析:整体观察全式,可以发现题中的4个四位数均由数1,2,3,4组成,且4个数字在每个数位上各出现一次,于是可以变成1×1111+2×1111+3×1111+4×1111,再利用乘法分配律就可解决。
解答:1234+2341+3412+41231×1111+2×1111+3×1111+4×1111=(1+2+3+4)×1111=10×1111=11110小结: 要注意数字的构成,然后进行分解转化。
【举一反三】3、34567+45673+56723+67345+734564、84567+45678+67845+78456+567845、224.64+424.64+624.64+824.64+1024.64答案及解析:1.【解析】先把19.3拆成16.8+2.5,得到6.8×16.8+(16.8+2.5)×3.2,再利用乘法分配律得到:6.8×16.8+16.8×3.2+2.5×3.2,最后再一次利用乘法分配律解决即可。
小升初简便运算方法详解(乘法分配律篇)
简便运算方法详解(乘法分配律小升初篇)前言:简便运算在历年的小升初考试以及名校选拔中都占有巨大的分值。
在简便运算专题中,乘法分配律占据重要的位置。
接下来将深度分析乘法分配律的题型和方法总结。
同学们要做好笔记了哦!首先我们来回顾一下字母表示乘法分配律:这类题通常分为两种类型,第一种是从做到右,也就是顺向的乘法分配律应用。
但我们做题的时候经常遇到逆向应用,通常我们是从a×c+b×c这种形式转化到c×(a+b)这种形式,其实质是提取公因数。
这是出题的一般规律。
一.出题形式同学们只要看到__×__+__×__或者是__×___-__×__的形式,毫无疑问,这一题需要用到乘法分配律的知识去解答。
二.类型1)间接提取公因数1.1)小数、分数和百分数之间的相互转化×60+75%x5例1 0.75×35+34分析:本题一眼看上去并没有直接的公因数可以进行提取,但仔细一看,存在着小数、分数和百分数三种形式,这个时候我们需要统一成一种,即可提取公因数。
解:原式=0.75×35+0.75×60+0.75x5=0.75x(35+60+5)=0.75x100=75看到这里有同学会问,那什么时候统一成小数,什么时候统一成分数呢?其实,如果提取公因式后,和能和公因数进行约分,则化为分数为宜。
如:34x(1+2+5)=34x8=61.2)倍数关系例2 2.8×36+5.6x32分析:本题满足乘法分配律的形式,但是同样的没有直接的公因数可以进行提取,也不是小数,分数和百分数的互化,这个时候我们需要仔细观察,看每个数之间是否存在倍数关系,明显5.6是2.8的2倍。
解:原式=2.8×36+2.8×2×32=2.8×36+2.8×64=2.8×(36+64)=2.8×100=280例3 925×425+4.25÷160 分析:本题依然是倍数关系,其中425是4.25的100倍。
小升初简便运算专题讲解
6月12日:小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算1、12.06+5.07+2.942、3、4、30.34-10.2+9.66 + 125÷2×85、 34÷4÷1.7+102×7.3÷5.16、7×3÷7×37、8、二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
小升初数学简便运算专题(含解析)
小升初专题 (简便运算)教学目标;1.使学生理解、掌握四则运算的五大定律和两个性质;2.掌握积、商的变化规律;3.能运用这些定律、性质和规律进行简便计算,提高计算能力。
(1)741941733953732++-+ (2)12×4 +14×6 +16×8 +…..+ 148×50 745= 256=(3)75.07%75254322⨯-⨯+⨯(4)11711473⨯⨯⎪⎭⎫⎝⎛+ =30 =61【学科分析】(结合考纲要求)1、理解并运用加法交换律进行简便计算;2、理由减法的性质进行凑整简便运算;3、根据乘法分配律的逆运算进行简便计算;4、利用乘法分配律进行拆项计算。
【学生分析】学生认知方式(老师自行预设):整体型/分析型,场依存型/场独立型; 学生风格:听觉型/视觉型/动觉型/混合型 2、先行知识分析:①不熟悉加法交换律的移动时要带上前面的符号; ①利用减法性质计算的时候忘记转变括号里的符号; ①乘法分配律的时候漏掉其中的某一项。
根据问题定位部分的题目,对学生可能出现的错误进行原因分析。
根据学生对各知识点的掌握情况,针对相关知识点进行详细讲解。
(学生掌握得很好的知识点可略过不讲。
)精讲1 乘法分配律学习目标:1.熟练、灵活运用乘法分配律进行小数、分数、整数的简便计算目标分解:1.利用积的变化规律和乘法分配律使计算简便2.通过找因数中倍数关系进行乘法分配律拆分3.找因数中的和差关系进行乘法分配律拆分、逆运算4.先分组提取公因数,再第二次提取公因数,使计算简便教学过程:考点一:积的变化规律和乘法分配律的结合 例题1.1 计算:41666617907921333387⨯+⨯原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25 =(33338.75+66661.25)×790 =100000×790 =79000000考点二:找因数中倍数关系进行乘法分配律拆分 例题1.2 计算:36×1.09+1.2×67.3原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3) =1.2×(32.7+67.3) =1.2×100=120考点三:找因数中的和差关系进行乘法分配律拆分、逆运算 例题1.3 计算:5269.375225533⨯+⨯原式=()4.65.124.255225533⨯++⨯=4.65.124.64.255225533⨯+⨯+⨯=(3.6+6.4)×25.4+12.5×8×0.8 =254+80 =334考点四:先分组提取公因数,再第二次提取公因数 例题1.4: 计算:81.5×15.8+81.5×51.8+67.6×18.5原式=81.5×(15.8+51.8)+67.6×18.5=81.5×67.6+67.6×18.5 =(81.5+18.5)×67.6 =100×67.6 =6760精讲2 乘法分配律与除法学习目标:1.记住并掌握一些特殊数值的拆分,从而进行简便运算2.形成先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算目标分解:1.根据特殊数的特点,类比进行简便运算2.根据积不变性质及多次分配进行简便运算3.观察分子、分母特点,创造相同的分子、分母进行简便运算4.熟练运用两个数平方的差进行拆分简便运算5.懂得在被除数中找到与除数中一样的公因数教学过程:考点五:理由特殊数的特点进行简便运算 例题2.1 计算:1234+2341+3412+4123原式=1×1111+2×1111+3×1111+4×1111=(1+2+3+4)×1111 =10×1111 =11110考点六:积不变与多次分配例题2.2 计算:2854.66.571.114.23542⨯+⨯+⨯原式=2.8×23.4+2.8×65.4+11.1×8×7.2=2.8×(23.4+65.4)+88.8× 7.2 =2.8×88.8+88.8×7.2 =88.8×(2.8+7.2) =88.8×10 =888考点七:分子、分母转换 例题2.3 计算:199419921993119941993⨯+-⨯原式=()1994199219931199411992⨯+-⨯+=1994199219931199419941992⨯+-+⨯=1考点八:平方差公式的转换例题2.4 有一串数1,4,9,16,25,36…….它们是按一定的规律排列的,那么其中第2000个数与2001个数相差多少?这串数中第2000个数是20002,而第2001个数是20012,它们相差:20012-20002,即20012-20002=2001×2000-20002+2001 =2000×(2001-2000)+2001 =2000+2001=4001考点九:在被除数中提取除数的公因数 例题2.5 计算:⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛+9575927729原式=⎪⎭⎫ ⎝⎛+÷⎪⎭⎫⎝⎛+9575965765 =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⨯÷⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛+⨯91715917165 =65÷5 =13精讲3 分数除法简便运算学习目标:1.掌握特殊分数的除法简算技巧目标分解:1.熟练并掌握除数是整数的除法简算2.熟练并掌握除数是分数的除法简算教学过程:考点十:除数是整数的除法简算 例题3.1 计算:166120÷41原式=(164+2120)÷41=164÷41+4120 ÷41=4+120=4120考点十一:除数是分数的除法简算 例题3.2 计算:1998÷199819981999原式=1998÷1998×1999+19981999=1998÷1998×20001999=1998×19991998×2000=19992000提前对本节课的教学目标所涉及的所有知识点准备巩固练习,再根据学生的具体情况抽调相关题目进行巩固练习。
小升初 乘法简算9页
专题五 简便运算类型三 乘法简算【知识讲解】 一、简便运算律(一)交换两个因数的位置,积不变,这叫做乘法交换律。
用字母表示:a b b a ⨯=⨯(二)先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。
用字母表示: ()()a b c a b c a c b ⨯⨯=⨯⨯=⨯⨯()(三)两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
用字母表示:()a b c a c b c a b c a b a c +⨯=⨯+⨯⨯+=⨯+⨯()或二、简便方法 (一)结合法一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
例1 计算:19×4×519×4×5 =19×(4×5) =19×20 =380在计算时,添加一个小括号可以使计算简便。
因为括号前是乘号,所以括号内不变号。
(二)分解法一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
例2 计算:45×1848×18=45×(2×9)=45×2×9=90×9=810将18分解成2×9的形式,再将括号去掉,使计算简便。
(三)拆数法有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
例3 计算:99×99+199(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:99×99+199=99×99+99+100=99×(99+1)+100=99×100+100=10000(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:99×99+199=(100-1)×99+(100-1)+100=(100-1)×(99+1)+100=(100-1)×100+100=10000(四)改数法有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算12.06+5.07+2.94 34÷4÷1.7+102×7.3÷5.130.34-10.2+9.66 + 125÷2×8二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+( ); a+b-c=a+( ) a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前保留原符号,括号前是乘号,括号里不变号,括号前是除号,括号里要变号)根据:乘法结合律a×b×c=a×( ) a×b÷c=a×( ) a÷b÷c=a÷( ) a÷b×c=a÷( )例3:用简便方法计算1、1.06×2.5×42、17×0.6÷0.33、18.6÷2.5÷0.4 + 700÷14×22、去括号法(1)当一个计算模块只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了)(注:去掉括号是添加括号的逆运算)a+(b+c)= a +(b-c)= a-(b-c)= a-( b +c)= 例4:用简便方法计算5.68+(5.39+4.32)+ 19.68-(2.97+9.68) 4.75-9.63+(8.25-1.37)(2)当一个计算模块(同级运算)只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
(现在没有括号了,可以带符号搬家了)(注:去掉括号是添加括号的逆运算)a×(b×c) = , a×(b÷c) = , a÷(b×c) = , a÷(b÷c) = 。
例5:用简便方法计算0.25×(4×1.2)+1.25×(8÷0.5) 46÷(4.6×2)+ 4÷(6÷0.25) 1.25×(213×0.8)三、乘法分配律法乘法分配律公式:m(a±b)=ma±mb ma±mb= m(a±b)1.分配法括号里是加或减运算,与另一个数相乘,注意分配例6:简便运算: 24×(1211-83-61-31)2.提取公因式乘法分配律的逆运算:注意相同因数的提取例7:简便计算:0.92×1.41+0.92×8.59 516×137-53×137 5.8×4.7+5.8×12.1-5.8×6.8 6×108-107-5×1083.注意构造,让算式满足乘法分配律的条件。
例8:简便运算257×103-257×2-257 1.25×10833338712 ×79+790×6666114 36×1.09+1.2×67.3335 ×2525 +37.9×625 81.5×15.8+81.5×51.8+67.6×18.5 0.495×2500+495×0.24+51×4.95四、借来还去法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦 ,有借有还,再借不难嘛。
1、凑整法例9:简便运算9999+999+99+9 4821-9982、拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小。
例10:简便计算3.2×12.5×25 1.25×88+3.6×0.25 765×64×0.5×2.5×0.1253、巧变除为乘 也就是说,把除法变成乘法,例如:除以41可以变成乘4。
利用a ÷b=a b 巧解计算题 巧解计算题例11:简便计算7.6÷0.25+3.5÷0.125 6.4×480×33.3÷3.2÷120÷66.6(927 +729 )÷(57 +59 )五、裂项法分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
分数裂项的最基本的公式第三个公式在一般的小升初考试中不常见,属于小学奥数方面的知识。
有余力的孩子可以学一下。
例12:简便计算12×4+14×6+16×8+…..+148×50110×11+111×12+112×13+113×14+114×151 2+16+112+120+130+1421-16+142+156+172114-920+1130-1342+155611×4+14×7+17×10+…..+197×100113-712+920-1130+1342-155619981×2+19982×3+19983×4+19984×5+19985×6综合例题精讲:99999×77778+33333×666661993×1994-11993+1992×199412+14+18+116+132+16423 +29 +227 +281 +2243简便运算练习题:6.73-2817 +(3.27-1 917 ) 759 -(3.8+1 59 )-115 14.15-(778 -61720)-2.12513713 -(414 +3713 )-0.75 3.5×114 +125%+112 ÷45 975×0.25+934 ×76-9.75925 ×425+4.25÷1600.9999×0.7+0.1111×2.7 45×2.08+1.5×37.652×11.1+2.6×778 48×1.08+1.2×56.8 72×2.09-1.8×73.66.8×16.8+19.3×3.2 139×137138 +137×11384.4×57.8+45.3×5.6204+584×19911992×584-380 -1143 (89 +137 +611 )÷(311 +57 +49 ) (3711 +11213 )÷(1511 +1013 )。