大学物理练习册习题答案

合集下载

《大学物理》习题册题目及答案第17单元波的干涉-副本(可编辑修改word版)

《大学物理》习题册题目及答案第17单元波的干涉-副本(可编辑修改word版)

5 波的干涉、衍射学号姓名 专业、班级 课程班序号一 选择题[ D ]1.如图所示, S 1 和 S 2 为两相干波源,它们的振动方向均垂直于图面, 发出波长为 的简谐波。

P 点是两列波相遇区域中的一点,已知 S 1P = 2, S 2 P = 2.2,两列波在P 点发生相消干涉。

若 S 的振动方程为 y = A cos(2t + 1) ,则 S 的振动方程为(A) 1 122y = A c os( 2 t - 1) S 122(B) y 2 = A c os( 2 t - (C) y 2 = A c os( 2 t +) 1)2(D) y 2 = A c os( 2 t - 0.1 )S 2[ C ]2. 在一根很长的弦线上形成的驻波是(A)由两列振幅相等的相干波,沿着相同方向传播叠加而形成的。

(B)由两列振幅不相等的相干波,沿着相同方向传播叠加而形成的。

(C)由两列振幅相等的相干波,沿着反方向传播叠加而形成的。

(D)由两列波,沿着反方向传播叠加而形成的。

[ B ]3. 在波长为 λ 的驻波中,两个相邻波腹之间的距离为 (A) λ/4 (B) λ/2 (C)3λ/4 (D)λ[ A ]4. 某时刻驻波波形曲线如图所示,则 a 、b 两点的位相差是 (A)(C)4(B)1 2(D) 0[ B ]5. 如图所示,为一向右传播的简谐波在 t 时刻的波形图,BC 为波密介质的反射面,波由 P 点反射,则反射波在 t 时刻的波形图为y A O- Aac2xbP[ B ]6. 电磁波的电场强度 E 、磁场强度 H 和传播速度 u 的关系是: (A) 三者互相垂直,而 E 和 H 相位相差12(B) 三者互相垂直,而且 E 、H 、u 构成右旋直角坐标系 (C) 三者中 E 和 H 是同方向的,但都与 u 垂直(D) 三者中 E 和 H 可以是任意方向的,但都必须与 u 垂直二 填空题1. 两相干波源 S 1 和 S 2 的振动方程分别是y 1 = A cost 和 y 2= A cos(t + 1) 。

大学物理(二)练习册答案

大学物理(二)练习册答案

1 大学物理(二)练习册参考解答第12章真空中的静电场一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B),二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aaò×==00d /(U 0=0). (2). ()042e /q q+,q 1、q 2、q 3、q 4 ;(3). 0,l / (2e 0);(4). s R / (2e 0) ;(5). 0 ;(6). ÷÷øöççèæ-p 00114r r qe ;(7). -2³103 V ;(8). ÷÷øöççèæ-p a br r q q 11400e (9). 0,pE sin a ;(10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为l =q / L ,在x 处取一电荷元d q = l d x = q d x / L ,它在P 点的场强:()204d d x d L qE -+p =e ()204d x d L L xq -+p =e 总场强为ò+p =Lx d L x Lq E 020)(d 4-e ()d L d q +p =04e 方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在q 处取微小电荷d q = l d l = 2Q d q / p 它在O 处产生场强Ldq P +Q-QROxyPLdd qx (L+d -x ) d ExOq e e d 24d d 20220RQRq E p =p =按q 角变化,将d E 分解成二个分量:分解成二个分量:q q e q d sin 2sin d d 202RQE E x p ==q q e q d cos 2cos d d 202RQE E y p -=-=对各分量分别积分,积分时考虑到一半是负电荷对各分量分别积分,积分时考虑到一半是负电荷úûùêëé-p =òòpp p q q q q e 2/2/0202d sin d sin 2R QE x =0 2022/2/0202d cos d cos 2R Q R QE y e q q q q e pp p p -=úûùêëé-p -=òò所以所以j R Q j E i E E y x202e p -=+=3. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为l ,试求轴线上一点的电场强度.,试求轴线上一点的电场强度.解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为荷线密度为q l l l d d d p=p =l R取q 位置处的一条,它在轴线上一点产生的场强为位置处的一条,它在轴线上一点产生的场强为q e l e l d 22d d 020RR E p =p =如图所示. 它在x 、y 轴上的二个分量为:轴上的二个分量为:d E x =d E sin q , d E y =-d E cos q 对各分量分别积分对各分量分别积分 R R E x 02002d sin 2e lq q e l pp =p =ò 0d c o s 202=p -=òp q q e lRE y场强场强 i Rj E i E E y x02e lp =+=4. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C . (1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;体密度;(2) 假设地表面内电场强度为零,假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0e =8.85³10-12 C 2²N -1²m -2) d qR Oxyqd qqq d E y y d l d q R q O d E xx d EOR’O'解:(1) 设电荷的平均体密度为r ,取圆柱形高斯面如图(1)(侧面垂直底面,底面D S 平行地面)上下底面处的上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:,则通过高斯面的电场强度通量为:òòE²S d =E 2D S -E 1D S =(E 2-E 1) D S 高斯面S 包围的电荷∑q i =h D S r由高斯定理(E 2-E 1) D S =h D S r /e∴ () E Eh121-=er =4.43³10-13 C/m 3(2) 设地面面电荷密度为s .由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理由高斯定理òòE ²S d =åi 01q e-E D S =SD se1∴ s=-e 0 E =-8.9³10-10 C/m 35. 一半径为R 的带电球体,其电荷体密度分布为的带电球体,其电荷体密度分布为r =Ar (r ≤R ) , r =0 (r >R ), A 为一常量.试求球体内外的场强分布.为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为的薄球壳,该壳内所包含的电荷为 r r Ar V q d 4d d 2p ×==r在半径为r 的球面内包含的总电荷为的球面内包含的总电荷为 403d 4Ar r Ar dV q rV p =p ==òòr (r ≤R) 以该球面为高斯面,按高斯定理有以该球面为高斯面,按高斯定理有 0421/4e Ar r E p =p ×得到得到 ()0214/e ArE =, (r ≤R ) 方向沿径向,A >0时向外, A <0时向里.时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有的同心高斯球面,按高斯定理有0422/4e AR r E p =p ×得到得到 ()20424/rAR E e =, (r >R ) 方向沿径向,A >0时向外,A <0时向里.时向里.6. 如图所示,一厚为b 的“无限大”带电平板的“无限大”带电平板 , 其电荷体密度分布为r =kx (0≤x ≤b ),式中,式中k 为一正的常量.求:为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;处的电场强度大小;(2) 平板内任一点P 处的电场强度;处的电场强度; (3) 场强为零的点在何处?场强为零的点在何处?解:解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.,如图所示.E(2)xbP 1 P 2Px OSE 2D SE 1(1) h按高斯定理åò=×0e /d q S E S ,即,即 020002d d 12e e r e kSbx x kSxS SEb b ===òò得到得到 E = k b kb 2 / (4e 0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ¢,如图所示.按高斯定理有定理有()022ee k S bx d x kSSE Ex==+¢ò得到得到 ÷÷øöççèæ-=¢22220b x k E e (0≤x ≤b ) (3) E ¢=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为s .如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为s 的大平面和面密度为-s 的圆盘叠加的的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为处产生的场强为 i xx E012e σ=圆盘在该处的场强为圆盘在该处的场强为i x R x x E÷÷øöççèæ+--=2202112e σ ∴ i xR xE E E 220212+=+=e σ 该点电势为该点电势为()22222d 2xRR xR xx U x+-=+=òe se s8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为r =Ar (r ≤R ),式中A 为常量.试求:求:(1) 圆柱体内、外各点场强大小分布;圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:面.则穿过该柱面的电场强度通量为:xS P SE ESSEd xb E ¢sOROxPòp =×SrhE S E2d 为求高斯面内的电荷,r <R 时,取一半径为r ¢,厚d r ¢、高h 的圆筒,其电荷为的圆筒,其电荷为r r Ah V ¢¢p =d 2d 2r则包围在高斯面内的总电荷为则包围在高斯面内的总电荷为3/2d 2d 32Ahrr r Ah V rVp =¢¢p =òòr由高斯定理得由高斯定理得 ()033/22e Ahr rhE p =p 解出解出 ()023/e Ar E = (r ≤R ) r >R 时,包围在高斯面内总电荷为:时,包围在高斯面内总电荷为:3/2d 2d 32AhRrrAh VRVp=¢¢p=òòr由高斯定理由高斯定理 ()033/22e A h R r h E p =p 解出解出 ()r AR E 033/e = (r >R ) (2) 计算电势分布计算电势分布r ≤R 时 òòò×+==lRRrlrrr AR r r A r E U d 3d 3d 0320e e()Rl AR rR A ln 3903330e e +-=r >R 时 rl AR rr AR rE Ulrl rln3d 3d 033e e =×==òò9.一真空二极管,其主要构件是一个半径R 1=5³10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 300 VV ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19 C) 解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为l .按高斯定理有.按高斯定理有 2p rE = l / e 0 得到得到 E = l / (2p e 0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差方向沿半径指向轴线.两极之间电势差òòp -=×=-21d 2d 0R R BAB A rr r E U U el120ln 2R R elp -=得到得到()120/ln 2R R UUAB-=p e l, 所以所以 ()rR R UUE AB1/ln 12×-=在阴极表面处电子受电场力的大小为在阴极表面处电子受电场力的大小为 ()()11211/c R RR UUeReE F AB×-===4.37³10-14 N 方向沿半径指向阳极.方向沿半径指向阳极.RrhABR 2 R 1四 研讨题1. 真空中点电荷q 的静电场场强大小为的静电场场强大小为 241rq E pe=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?何解释?参考解答:参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而同)而路径相等.因而d d d ¹×¢-×=×òòòc ba d l E l E l E 按静电场环路定理应有0d =×òl E , 此场不满足静电场环路定理,所以不可能是静电场.此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?能否求出该点的场强?为什么?参考解答:参考解答:由电势的定义:由电势的定义: ò×=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。

大学物理练习册习题及答案4

大学物理练习册习题及答案4

习题及参考答案第3章 刚体力学参考答案思考题3-1刚体角动量守恒的充分而必要的条件是 (A )刚体不受外力矩的作用。

(B )刚体所受合外力矩为零。

(C)刚体所受的合外力和合外力矩均为零。

(D)刚体的转动惯量和角速度均保持不变。

答:(B )。

3-2如图所示,A 、B 为两个相同的绕着轻 绳的定滑轮。

A 滑轮挂一质量为M 的物体, B 滑轮受拉力F ,而且F =Mg 。

设A 、B 两 滑轮的角加速度分别为βA 和βB ,不计滑轮 轴的摩擦,则有(A )βA = βB (B )βA > βB(C )βA < βB (D )开始时βA = βB ,以后βA < βB 答:(C )。

3-3关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C )取决于刚体的质量、质量的空间分布和轴的位置。

(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无 答:(C )。

3-4一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统(A)动量守恒; (B)机械能守恒; (C)对转轴的角动量守恒;(D)动量、机械能和角动量都守恒; (E)动量、机械能和角动量都不守恒。

答:(C )。

3-5光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点o 且垂直于杆的竖直光滑固定轴自由转动,其转动惯量为213mL,起初杆静止,桌面上有两个质量均为m 的小球,各自在 垂直于杆的方向上,正对着杆的一端,以相同速率v 相向 运动,如图所示,当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为AMF思考题3-2图v思考题3-5图(A)23L v (B)45L v (C)67L v (D)89L v (E)127L v答:(C )。

大学物理学练习册参考答案全

大学物理学练习册参考答案全

大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。

大学物理练习册答案

大学物理练习册答案

振动的相位差为 –1 = /6。若第一个简谐振动的振幅为10 3 cm = 17.3 cm,则 第二个简谐振动的振幅为__ __ cm,第一、二两个简谐振动的相位差1 2


三、计算题
1、由一个电容 C=4.0μF 的电容器和一个自感为 L=10mH 的线圈组成的 LC 电
路,当电容器上电荷的最大值 Q0=6.0×10-5C 时开始作无阻尼自由振荡,试求:
x1
0.05cos(t
1 4
)
(SI),
x2
0.05cos(t
9 ) 12
(SI)
其合成运动的运动方程为 x =

8
3、已知一物体同时参与两个同方向同频率的简谐振动,这两个简谐振动的振
动曲线如下图所示,其中 A1 >A 2 ,则该物体振动的初相为__ __。
x
A2
x2
t
A1
x1
4、两个同方向同频率的简谐振动,其合振动的振幅为 20 cm,与第一个简谐
(C)x=6m 的质点向右运动
10
(D)x=6m 的质点向下运动
4、如右图所示,一平面简谐波以波速 u 沿 x 轴正方向传播,O 为坐标原
点.已知 P 点的振动方程为 y Acost ,则( )
(A)O 点的振动方程为 y Acos(t l / u) ; (B)波的表达式为 y Acos[t (l / u) (x / u)] ; (C)波的表达式为 y Acos[t (l / u) (x / u)] ; (D)C 点的振动方程为 y Acos(t 3l / u) 。
(A) A 2
(B) A 4
(C) A 2
(D) A
二、填空题
1、已知简谐振动

《大学物理》习题册题目及答案第12单元稳恒电流的磁场

《大学物理》习题册题目及答案第12单元稳恒电流的磁场

第12单元 稳恒电流的磁场 第七章 静电场和恒定磁场的性质(三)磁感应强度序号序号 学号学号 姓名姓名 专业、班级专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是:向的半球壳表面的磁通量的大小是: (A) Wb 2a R p(B) Wb 2b R p (C) Wb 2c R p (D) Wb 2abc R p[ B ]2. ]2. 若要使半径为若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.07.0××105- T T,则铜线中需,则铜线中需要通过的电流为要通过的电流为((μ0=4π×107-T ·m ·A 1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. [ B ]3. 一载有电流一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r)(R=2r),,两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B 沿图中闭合路径L 的积分l B d ×ò等于等于(A)I 0m(B)I 031m (C) I041m(D)I032m[ D ]5. [ D ]5. 有一由有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0abcdI L1201I 2I 1R 2R二 填空题1.1.一无限长载流直导线,通有电流一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度强度 B B 的大小为aIp m 830。

大学物理练习册(上册)答案

大学物理练习册(上册)答案

练习一 (第一章 质点运动学) 一、选择题 1、(D )2、(C )3、(D )4、(B )5、(D ) 二、填空题1、(1)A (2)1.186s(或4133-s) (3)0.67s (或32s ) 2、8m 10m3、(1)t e t t A βωβωωωβ-+-]sin 2cos )[(22 (2)ωπωπk +2( ,2,1,0=k ) 4、3/30Ct v + 400121Ct t v x ++ 5、(1)5m/s (2) 17m/s 三、计算题1、解:dxdvv dt dx dx dv x dt dv a ==+==262分离变数积分⎰⎰+=xvdx x vdv 020)62(得 )1(422x x v +=质点在任意位置处的速度为 )1(22x x v +=(由初始时刻的加速度大于零,可知速度的大小为非负)。

2、解:(1)第二秒内的位移为 m x x x 5.0)1()2(-=-=∆ 第二秒内的平均速度为s m txv /5.0-=∆∆= (2)t 时刻的速度为 269t t dtdxv -==第二秒末的瞬时速度为 s m s m s m v /6/26/292-=⨯-⨯=(3)令0692=-==t t dtdxv ,解得s t 5.1= 第二秒内的路程为 m x x x x s 25.2)5.1()2()1()5.1(=-+-=。

3、解:(1)由几何关系θθsin cos r y r x ==质点作匀速率圆周运动故dtd θω=,代入初始条件0=t 时0=θ,得 t 时刻t ωθ=,所以j y i x r+=)sin (cos j t i t rωω+=(2)速度为)cos sin (j t i t r dtrd v ωωω+-==加速度为)sin (cos 2j t i t r dt vd a ωωω+-==(3)r j t i t r dtv d a 22)sin (cos ωωωω-=+-==由此知加速度的方向与径矢的方向相反,即加速度的方向指向圆心。

大学物理习题册及解答_第二版_第一章_质点的运动

大学物理习题册及解答_第二版_第一章_质点的运动

如果质点在原点处的速度为零,试求其在任意位置的速度


a
d
dt
d
dx
dx dt
d
dx
d adx (3 6x2 )dx
d
x (3 6x2 )dx
0
0
6x 4x3
2.一质点沿半径为R的圆周运动,其路程S随时间t变化的规律为:
(S I)S,式bt中b0、.5cct为2 大于零的常数,且b2>R c.
Δt
2 1
“-”表示平均速度 方向沿x轴负向。
dx
(2) 第2秒末的瞬时速度 v 10t 9t 2 16m/s
dt
t2
(3) 由2秒末的加速度 a dv 10 18t 26m/s2
dt
t2
2.一质点在Oxy平面上运动,运动方程为x=3t, y=3t2-5(SI), 求(1)质 点运动的轨道方程,并画出轨道曲线;(2)t1=0s和t2=120s时质点的 的速度、加速度。
与其速度矢量恰好垂直;(4) 在什么时刻电子离原点最近.
4 质点作曲线运动, 表示位置矢量, 表示速度, 表示加速度,
S表示路程,at表示切向加速度,下列表达式中,
(1) d a
dt
(3) dS
dt
(2) dr
(4)
ddtr
dt
at
(A)只有(1)、(4)是对的.
(B) 只有(2)、(4)是对的.
(C)只有(2)是对的.
(D) 只有(3)是对的.
, ay
dvy dt
dv 2dt, dv 36t 2dt
x
y
dv vx
0
x
t
0
2 dt

大学物理习题册答案

大学物理习题册答案

练习 十三知识点:理想气体状态方程、温度、压强公式、能量均分原理、理想气体内能一、选择题1. 容器中储有一定量的处于平衡状态的理想气体,温度为T ,分子质量为m ,则分子速度在x 方向的分量平均值为 (根据理想气体分子模型和统计假设讨论) ( )(A )x υ=(B )x υ= (C )m kT x 23=υ; (D )0=x υ。

解:(D)平衡状态下,气体分子在空间的密度分布均匀,沿各个方向运动的平均分子数相等,分子速度在各个方向的分量的各种平均值相等,分子数目愈多,这种假设的准确度愈高.2. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 ( )(A )pV /m ; (B )pV /(kT ); (C )pV /(RT ); (D )pV /(mT )。

解: (B)理想气体状态方程NkT T N R N RT m N Nm RT M M pV AA mol ====3.根据气体动理论,单原子理想气体的温度正比于 ( )(A )气体的体积; (B )气体的压强;(C )气体分子的平均动量;(D )气体分子的平均平动动能。

解: (D)kT v m k 23212==ε (分子的质量为m )4.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 ( )(A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。

解:(A) kT v m k 23212==ε,2222H O H O T T m m =(分子的质量为m ) 5.如果在一固定容器内,理想气体分子速率都提高为原来的2倍,那么 ( )(A )温度和压强都升高为原来的2倍;(B )温度升高为原来的2倍,压强升高为原来的4倍; (C )温度升高为原来的4倍,压强升高为原来的2倍; (D )温度与压强都升高为原来的4倍。

大学物理练习册与大题答案

大学物理练习册与大题答案

大学物理(一)练习册 参考解答3. 质点作曲线运动,r 表示位置矢量,v表示速度,a 表示加速度,S 表示路程,a t 表示切向加速度,下列表达式中,(1) a t d /d v , (2) v t r d /d , (3) v t S d /d , (4) t a t d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的. 答案: (D) 参考解答:质点作曲线运动,应该考虑速度v,加速度a 的矢量性。

注意正确书写矢量公式,例如:.d d ,d d v vtr a t速度和速率是两个不同概念。

前者为矢量,后者为标量;瞬时速度的大小和瞬时速率相同:v t S d /d . 所以只有(3)是对的。

大学物理(一)练习册 参考解答第1章 质点运动学一、选择题1(D),2(D),3(B),4(D),5(B),6(D),7(D),8(E),9(B),10(B), 二、填空题 (1).1221n (n = 0,1,… ), t A sin 2 (2). 8 m ,10 m. (3). 23 m/s. (4). 16Rt 2(5). 4t 3-3t 2 (rad/s),12t 2-6t (m/s 2). (6).331ct ,2ct ,c 2t 4/R . (7). 2.24 m/s 2,104o(8).)5cos 5sin (50j t i tm/s ,0,圆. (9). K m x /0max v(10). 02121v v kt三、计算题1. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程.解:(1) 5.0/ t x v m/s(2) v = d x /d t = 9t - 6t 2, v (2) =-6 m/s. (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m.2. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S其中b 、c 是大于零的常量,求从0 t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S d /d v c t a t d /d v R ct b a n /2根据题意: a t = a n 即 R ct b c /2解得 cb c R t3. 一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x 10 m 处,初速度v 0.试求其位置和时间的关系式.解: a d v /d t 4 t , d v 4 t d tvv 0d 4d tt t v = 2t 2v d x /d t 2 t 2t t x txx d 2d 020x 2 t 3 /3+x 0 (SI)4. 一物体悬挂在弹簧上作竖直振动,其加速度为 a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.解: yt y y t a d d d d d d d d v v v v又 a ky ∴ -k y v d v / d yC ky y ky 222121 , d d v v v已知 y y 0 , v v 0 则 20202121ky C v)(220202y y k v v5. 一飞机驾驶员想往正北方向航行,而风以60 km/h 的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为 180 km/h ,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.解:设下标A 指飞机,F 指空气,E 指地面,由题可知:v FE =60 km/h 正西方向 v AF =180 km/h 方向未知v AE 大小未知, 正北方向由相对速度关系有: FE AF AE v v vAE v 、 AF v 、EE v 构成直角三角形,可得 km/h 17022 v v v FE AF AE 4.19/tg 1 AE FE v v(飞机应取向北偏东19.4 的航向).四 研讨题1. 在下列各图中质点M 作曲线运动,指出哪些运动是不可能的?参考解答: (1)、(3)、(4)是不可能的. (1) 曲线运动有法向加速度,加速度不可能为零; (3) 曲线运动法向加速度要指向曲率圆心;(4) 曲线运动法向加速度不可能为零.2. 设质点的运动方程为)(t x x ,)(t y y 在计算质点的速度和加速度时:第一种方法是,先求出22y x r ,然后根据 t d d rv 及 22d d tr a 而求得结果;第二种方法是,先计算速度和加速度的分量,再合成求得结果,即22)d d ()d d (t y t x v 和 222222)d d ()d d (ty t x a .你认为两种方法中哪种方法正确?参考解答:第二种方法是正确的。

大学物理练习册答案

大学物理练习册答案

第十章练习一一、选择题1、以下四种运动〔忽略阻力〕中哪一种是简谐振动?〔〕(A)小球在地面上作完全弹性的上下跳动(B)细线悬挂一小球在竖直平面上作大角度的来回摆动(C)浮在水里的一均匀矩形木块,将它局部按入水中,然后松开,使木块上下浮动 (D)浮在水里的一均匀球形木块,将它局部按入水中,然后松开,使木块上下浮动2、质点作简谐振动,距平衡位置时,加速度a=/s 2,则该质点从一端运动到另一端的时间为〔 〕3、如图下所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动,假设从松手时开场计时,则该弹簧振子的初相位为〔〕(A) 0 (B) 2π (C) 2π-(D) π 4、一质量为m 的物体与一个劲度系数为k 的轻弹簧组成弹簧振子,当其振幅为A 时,该弹簧振子的总能量为E 。

假设将其弹簧分割成两等份,将两根弹簧并联组成新的弹簧振子,则新弹簧振子的振幅为多少时,其总能量与原先弹簧振子的总能量E 相等〔〕(A)2A (B) 4A(C)2A (D)A 二、填空题1、简谐振动A x =)cos(0ϕω+t 的周期为T ,在2Tt =时的质点速度为,加速度为。

2、月球上的重力加速度是地球的1/6,假设一个单摆(只考虑小角度摆动)在地球上的振动周期为T ,将该单摆拿到月球上去,其振动周期应为。

3、一质点作简谐振动,在同一周期内相继通过相距为11cm 的A,B 两点,历时2秒,速度大小与方向均一样,再经过2秒,从另一方向以一样速率反向通过B 点。

该振动的振幅为,周期为。

4、简谐振动的总能量是E ,当位移是振幅的一半时,k E E =,P E E =,当xA=时,k P E E =。

三、计算题1、一振动质点的振动曲线如右图所示, 试求:(l)运动学方程; (2)点P 对应的相位;(3)从振动开场到达点P 相应位置所需的时间。

2、一质量为10g 的物体作简谐运动,其振幅为24 cm ,周期为4.0s ,当t=0时,位移为+24cm 。

大学物理习题册答案

大学物理习题册答案

第15单元 机械振动[ B ]1. 已知一质点沿y 轴作简谐振动,其振动方程为)4/3cos(πω+=t A y 。

与其对应的振动曲线是:[ B ] 2. 一质点在x 轴上作简谐振动,振幅A = 4cm ,周期T = 2s, 其平衡位置取作坐标原点。

若t = 0时刻质点第一次通过x = -2cm 处,且向x 轴负方向运动,则质点第二次通过x = -2cm 处的时刻为: (A) 1s (B)s 32 (C) s 34(D) 2s [ C ] 3. 如图所示,一质量为m 的滑块,两边分别与劲度系数为k1和k2的轻弹簧联接,两弹簧的另外两端分别固定在墙上。

滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。

现将滑块m 向左移动x0,自静止释放,并从释放时开始计时。

取坐标如图所示,则其振动方程为:⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos (A)⎥⎦⎤⎢⎣⎡++=πt k k m k k x x )(cos (B)21210 ⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (C)⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (D)⎥⎦⎤⎢⎣⎡+=t mk k x x 210cos (E)[ E ] 4. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的: (A)167 (B) 169 (C) 1611 (D) 1613(E) 1615 [ B ] 5. 图中所画的是两个简谐振动的振动曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相为:(A) π21(B)π(C) π23(D) 0二 填空题1. 一水平弹簧简谐振子的振动曲线如图所示,振子处在位移零、速度为A ω-、加速度为零和弹性力为零的状态,对应于曲线上的 b,f 点。

振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力-kA 的状态,对应于曲线的 a,e点。

2两个同方向同频率的简谐振动,其合振动的振幅为20.cm,与第一个简谐振动的相位差为1ϕϕ-=π/6,若第一个简谐振动的振幅为103cm ,则第二个简谐振动的振幅为____10___cm ,第一、二个简谐振动的相位--(C)/A -A-差21ϕϕ-为2π-。

大学物理习题答案稳恒电流的磁场

大学物理习题答案稳恒电流的磁场

第十章 稳恒电流的磁场1、四条相互平行的无限长直载流导线,电流强度均为I ,如图放置,若正方形每边长为2a ,求正方形中心O 点的磁感应强度的大小和方向。

解:43210B B B B B r r r r r +++=无限长载流直导线产生的磁感应强度 rI2B 0πμ=由图中的矢量分析可得a 2I a 2I22B B 0042πμ=πμ=+a I45cos a2I 2B 0000πμ=⋅πμ= 方向水平向左2、把一根无限长直导线弯成图 (a)、(b) 所示形状,通以电流I ,分别求出O 点的磁感应强度B 的大小和方向。

解:(a )(b )均可看成由两个半无限长载流直导线1、3和圆弧2组成,且磁感应强度在O 点的方向相同 (a )方向垂直纸面向外。

)38(R16I43R 4I R 4I R 4I B 00000π+πμ=π⋅πμ+πμ+πμ=(b )由于O 点在电流1、3的延长线上,所以0B B 31==r r方向垂直纸面向外。

R8I323R I 4B B 0020μ=π⋅πμ==14(a ) I(b )3、真空中有一边长为l 的正三角形导体框架,另有互相平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连 (如图) 。

已知直导线中的电流为I ,求正三角形中心点O 处的磁感应强度B 。

解:三角形高为 l l360sin h .0==4 它在 θθπμ=θ=d sin R 2Isin dB dB 20x θθπμ−=θ−=d cos R2I cos dB dB 20yRI d sin R2I dB B 20200x x πμ=∫θθπμ∫==π0d cos R2I dB B 020y y =∫∫θθπμ−==π)T (1037.6100.10.5104RI B B 522720x P −−−×=××π××π=πμ==∴轴正方向。

大学物理课后习题答案(全册)

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。

解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。

解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。

大学物理练习题册答案

大学物理练习题册答案

大学物理练习题册答案一、选择题1. 光在真空中的传播速度是:A. 299792458 m/sB. 299792458 km/sC. 299792458 cm/sD. 299792458 mm/s2. 根据牛顿第二定律,如果一个物体的质量为2 kg,受到的力为6 N,那么它的加速度是:A. 1 m/s²B. 2 m/s²C. 3 m/s²D. 6 m/s²3. 以下哪个不是电磁波的类型?A. 无线电波B. 微波C. 可见光D. 声波4. 一个物体从静止开始做匀加速直线运动,经过4秒后的速度为8m/s,那么它的加速度是:A. 1 m/s²B. 2 m/s²C. 4 m/s²D. 8 m/s²5. 根据能量守恒定律,如果一个物体的势能减少,那么它的:A. 动能增加B. 动能减少C. 总能量不变D. 温度增加二、填空题6. 根据热力学第一定律,能量______,它表明能量不能被创造或销毁,只能从一种形式转换为另一种形式。

7. 波长为600 nm的光的频率是______ Hz(光速为299792458 m/s)。

8. 一个物体在水平面上做匀速直线运动,其动摩擦系数为0.25,如果物体受到的摩擦力是10 N,那么物体的重力是______ N。

9. 根据库仑定律,两个点电荷之间的力与它们的电荷量的乘积成正比,与它们之间的距离的平方成______。

10. 理想气体状态方程是______,其中P代表压强,V代表体积,n代表摩尔数,R代表理想气体常数,T代表绝对温度。

三、简答题11. 简述牛顿第三定律的内容及其在日常生活中的应用。

12. 解释什么是相对论,并简述其对时间和空间概念的影响。

13. 描述麦克斯韦方程组,并解释它们在电磁学中的重要性。

14. 什么是量子力学?它与经典物理学有何不同?15. 描述什么是热力学第二定律,并解释它对能量转换的限制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理练习册习题答案练习一 (第一章 质点运动学)一、1.(0586)(D )2.(0587)(C )3.(0015)(D )4.(0519)(B ) 5.(0602)(D )二、1.(0002)A t= 1.19 s t= 0.67 s2.(0008)8 m 10 m3.(0255)()[]tt A tωβωωωββsin 2cos e 22+--,()ωπ/1221+n , (n = 0, 1, 2,…) 4.(0588)30/3Ct +v400112x t Ct ++v5.(0590) 5m/s 17m/s三、1.(0004)解:设质点在x 处的速度为v ,2d d d 26 d d d x a x t x t==⋅=+v v ()2d 26d xx x =+⎰⎰v v v()2 213x x +=v2.(0265)解:(1)/0.5 m/sx t ∆∆==-v(2)2=/96dx dt t t =- v(3)2= 6 m/s-v|(1.5)(1)||(2)(1.5)| 2.25 mS x x x x =-+-=3.(0266)解:(1)jt r i t r j y i x r ϖϖϖϖϖsin cos ωω+=+=(2)d sin cos d r r t i r t jt ωωωω==-+v v v v v22d cos sin d a r t i r t jtωωωω==--v v v v v(3) ()rj t r i t r a ϖϖϖϖ sin cos 22ωωωω-=+-=这说明 a ϖ与 r ϖ方向相反,即a ϖ指向圆心.4. 解:根据题意t=0,v=0--------==⋅+⋅∴=⋅+⋅=====⋅+⋅=+⋅+⋅⎰⎰⎰⎰⎰⎰由于及初始件v t trt tr dv adt m s i m s j dtv m s ti m s tjdr v t r m idtdr vdt m s ti m s tj dtr m m s t m s t j 02202202202222[(6)(4)] (6)(4)0,(10)[(6)(4)][10(3)][(2)]质点运动方程的分量式:--=+⋅=⋅x m m s t y m s t 222210(3)(2)消去参数t ,得到运动轨迹方程 =-y x 3220练习二(第一章 质点运动学)一、1.(0604)(C ) 2.(5382)(D ) 3.(5627)(B ) 4.(0001)(D ) 5.(5002)(A )二、1.(0009) 0bt +v2.(0262) -c (b -ct )2/R3.(0509)331ct 2ct c 2t 4/R4.(0596) 4.8 m/s 2 3.15rad5.(0599) 2200cos /gθv三、1. (0021)解: 记水、风、船和地球分别为w ,f ,s 和e ,则水地、风船、风地和船地间的相对速度分别为weV ϖ、fs V ϖ、fe V ϖ和seV ϖ. 由已知条件weV =10 km/h ,正东方向. feV =10 km/h ,正西方向.swV =20 km/h ,北偏西030方向. 根据速度合成法则: se V ϖ=sw V ϖ+weV ϖ 由图可得: seV =310 km/h ,方向正北.同理 fs V ϖ=fe V ϖ-se V ϖ, 由于fe V ϖ=-weV ϖ∴ fs V =sw V , fsV ϖ的方向为南偏西30°在船上观察烟缕的飘向即fsV ϖ的方向,它为南偏西30°2.(0272)解:设抛出时刻车的速度为0vv ,球的相对于车的速度为/0v v ,与竖直方向成θ角.抛射过程中,在地面参照系中,车的位30ofsV ϖswV ϖ fe V ϖweϖ 北东30o swV vθ a/0v ρ移21012x t at ∆=+v ①球的位移 ()/2sin x t θ∆=+v v ② ()/221cos 2y t gt θ∆=-v ③ 小孩接住球的条件 0221=∆∆=∆y x x ,即 ()21sin 2/at t θ=v , ()2/01cos 2gt t θ=v 两式相比得 tg /θ=g a ,∴ ()g a /tg 1-=θ 3. (0517) 解:(1) 题给雨滴相对于地面竖直下落,故相对于地面的水平分速为零.雨滴相对于列车的水平分速与列车速度等值反向为10 m/s ,正西方向.(2) 设下标W 指雨滴,t 指列车,E 指地面,则有WE v v = W tv v + vv tE , v tE =10 m/s v WE 竖直向下,v W t 偏离竖直方向30°,由图求得 雨滴相对于地面的速率为 v WE = v tE ctg30o =17.3 m/s雨滴相对于列车的速率 20sin 30tEW t ==ovv m/s 4.(0692)解:选地为静系,火车为动系.已知:雨滴对地速度vv a的方向偏前30°,火车行驶时,雨滴对火车的相对速度v v r偏Wtv ϖWEvϖtEv ϖ30°rv ϖ v ϖtv ϖav ϖv ϖ30°v ϖ45° v ϖ后45°,火车速度v t =35 m/s ,方向水平, 由图可知: oosin30sin45art+=v v voocos30cos 45ar=v v由此二式解出: 25.6cos30sin 30sin 45cos 45ta==+oo oovv m/s 5. 解: 由题意 2t ω∝,则322222k rad s t Rtt ωω-===⋅=v当t=0.5s 时,角速度、角加速度和切向加速度分别为21222220.54 2.01.0 1.01t t n t nt rad s d t rad s dta R m s a a a R e R e a m s ωωαααω----==⋅===⋅==⋅=+=+==⋅v v v v v在2.0s 内该点所转过的角度2222 5.33dt t dt rad θθω-===⎰⎰练习三 (第二章 牛顿定律)一、1.(0038)B2.(0338)A3.(0341)B4.(0610)B5.(5388)B6.(0024)B二、1.(0352) 80 N 与车行方向相同 98 N 与车行方向相反2.(0355) 2%3.(0526) sg μ/三、1.(0037) 解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律d d K m t -=vv0v d d d ,d t K K t t m m -=-=⎰⎰vvvvv/0e Kt m-=v v(2) 求最大深度解法一: d d xt=v /0d e d Kt m x t -=v /000d e d x tKt mx t -=⎰⎰v/0(/)(1e )Kt mx m K -=-v max 0/x m K =v解法二: d d d d ()()d d d d x K m m m t x t x-===v v v v v mdx d K=-vmax 0d d x mx K =-⎰⎰v vKm x /0max v =2.(0530)解:人受力如图(1) a m g m N T 112=-+底板受力如图(2) a m g m N T T 2221=-'-+ 212T T = N N ='由以上四式可解得 a m m g m g m T )(421212+=-- 5.2474/))((212=++=a g m m T N5.412)(21=-+=='T a g m N N N3.(0628)解:以r 表示小球所在处圆锥体的水平截面半径.对小球写出牛顿定律方程为 r m ma N T 2cos sin ωθθ==-sin cos =-+mg N T θθ 其中θsin l r =联立求解得: (1) θθωθcos sin sin 2l m mg N -= θωθ22sin cos l m mg T +=(2) 0,==N cωω图(1)ϖaϖ图(2) Tϖ gm 1θωcos /l g c =θcos /mg T =练习四 (第三章 动量守恒定律和能量守恒定律)一、1. (0063) (C) 2.(0067)(B) 3. (0384)(B) 二、1. (0061) 1 m /s 0.5 m /s 2. (0066) b t – P 0 + b t三、 1. (0375) 解:(1) 设A ,B 间绳中张力为T ,分别对A 、B 列动力学方程M A g –T =M A a 1分T =M B a1分解得 a =Mg / (M A +M B )由 M A = M B = Ma =21g 1分 设B 、C 之间绳长为l ,在时间t 内B 物体作匀加速运动,有l =21at 2=gt 2/4 , t=g l /4=0.4 s 2分(2) B 和C 之间绳子刚拉紧时,A 和B 所达到的速度为 v =at =21gt =21×10×0.4=2.0 m/s 令B 、C 间拉紧后,C 开始运动时A 、B 、C 三者的速度大小均变为V ,由动量定理(设三者速度变化过程中T AB 为AB 间绳中平均张力,T BC 为BC 间绳中平均张力,τ为过程时间)M A V - M A v = –T AB ·τ(∵M A g<<T AB ) 2分M B V – M B v =T AB ·τ–T BC ·τ 1分M C V – 0 = T BC ·τ1分得 (M A + M B + M C )V = ( M A + M B ) vV =33132)(.M MM M CB A BA ==+++v M v m/s 1分2.(0395)解:这个问题有两个物理过程: 第一过程为木块M 沿光滑的固定斜面下滑,到达B 点时速度的大小为θsin gl 21=v 1分 方向:沿斜面向下第二个过程:子弹与木块作完全非弹性碰撞.在斜面方向上,内力的分量远远大于外力,动量近似守恒,以斜面向上为正,则有V v v )(cos M m M m +=-1θ 3分Mm gl M m +-=θθsin cos 2v V 1分练习五 (第三章 动量守恒定律和能量守恒定律)一、1. (0078) (C) 2. (0095)(C) 3. (0101) (C) 二、1. (0079)2 mg x 0 sin α 2. (0733)12 J 3. (0737) 4000 J 三、1. (0438) 解:设弹簧伸长x 1时,木块A 、B 所受合外力为零,即有:F -kx 1 = 0 x 1 = F /k 1分设绳的拉力T ρ对m 2所作的功为W T 2,恒力F ρ对m 2所作的功为为W F ,木块A 、B 系统所受合外力为零时的速度为v ,弹簧在此过程中所作的功为W K .对m 1、m 2系统,由动能定理有W F +W K =221)(21v m m + ① 2分 对m 2有 W F +W T 2=2221v m② 2分而 W K =k F kx 221221-=-, W F=Fx 1=kF 2 2分代入①式可求得 )(21m m k F +=v1分由②式可得+-=F T W W 22221v m])(21[2122m m m k F +--=)(2)2(21212m m k m m F ++-=由于绳拉A 和B 的力方向相反大小相等,而A 和B 的位移又相同,所以绳的拉力对m 1作的功为)(2)2(2121221m m k m m F W W T T ++=-= 2分练习六 (第三章 动量守恒定律和能量守恒定律)一、1. (0796)(D) 2. (0076) (C)二、1. (0801) x ≥ x 1 U 02. (0802) (2 m ,6 m) (-4 m ,2 m)和(6 m ,8 m) 2 m 和6 m三、1.(0713) 解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分即 mg t μμ≥-)3(5, 0s 256.0t t =≥ 1分物体开始运动后,所受冲量为⎰-︒=tt t N F I 0d )30cos (μ)(96.1)(83.3022t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的大小为 I m =v速度的大小为 8.28==mIv m/s 2分2.(5261)解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v ' 2分 v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v ρ方向为正方向) 2分负号表示冲量方向与0v ϖ方向相反. 2分练习七 (第四章 刚体的转动)一、 1.(0981) (B ) 2. (5028) (C) 3.(0153) (A)4.(0291) (C)5. (0610) (C)6.(5030) (B)二、 1.(0983) 20参考解: r 1ω1=r 2ω2 , α1 = ω1 / t 1, θ1=21112t α 21211412ωθr r n π=π=4825411⨯π⨯⨯π=t =20rev2.(0551) 4.0 rad3.(5642) 2mgl μ参考解: M =⎰M d =()mgl r r l gm l μμ21d /0=⎰ 4. (5031) (1)Jk 920ω-(2) 02ωk J三、1.(0159) 解:根据转动定律 M =J d ω / d t即 d ω=(M / J ) d t其中 M =Fr ,r =0.1 m ,F =0.5 t ,J =1×10-3kg ·m 2, 分别代入上式,得d ω=50t d t则1 s 末的角速度 ω1=⎰1050t d t =25 rad / s2.(0563) 解:受力分析如图所示. 设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a向下.根据牛顿第二定律可得:对人: Mg -T 2=Ma ①对重物: T 1-21Mg =21②根据转动定律,对滑轮有(T 2-T 1)R =J α=MR 2α / 4③2因绳与滑轮无相对滑动, a =αR ④①、②、③、④四式联立解得 a =2g / 73.(0782) 解:各物体受力情况如图. T A -mg =ma (2m)g -T B =(2m )a(T -T A )r =212mr α (T B -T )(2r )=21(2m )(2r )2α' a =r α=(2r )α'由上述方程组解得:α=2g / (9r )=43.6 rad ·s -2 ; α'=12α=21.8 rad ·s -2; T =(4/3)mg =78.4 N练习八 (第四章 刚体的转动)一、 1.(0133) (B) 2.(0230)(C) 3.(0247) (C) 4.(0772)(D) 5.(5640)(D)'6.(0228) (A)7.(0499)(B)二、 1.(0235) ()643/M m l+v2.(0773) 对O 轴的角动量 ;对该轴的合外力矩为零 ;机械能3.(0556)2mRJ mR J +-vω 4.(0546)(1)W ; (2)kl cos θ ; (3)W =2kl sin θ .三、1.(5045)解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即22122113m l m l m l ω=-+v v ①碰后棒在转动过程中所受的摩擦力矩为gl m x x l m g M lf1121d μμ-=⋅-=⎰ ② 由角动量定理 ω21310l m dt M tf-=⎰ ③由①、②和③解得 12212t m m gμ+=v v2. (0785) 解:以转台和二人为研究对象,所受外力只有重力及轴的支撑力,诸力对转轴的合力矩为零,所以系统角动量守恒. 各转动惯量分别为 221mR J =,221mR JA=,()22/21R m J B =以地面为参照系,A 处的人走动的角速度为(/)R ω+v ,B 处的人走动的角速度为12/4/2R R ωω⎛⎫-=- ⎪⎝⎭v v 由角动量守恒定律()()()22222201111111/2/4/2222222mR mR m R mR mR R m R R ωωωω⎡⎤⎛⎫++=+++- ⎪⎢⎥⎣⎦⎝⎭v v解出 0ωω= 3.(0232)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点. 小球到B 点时: J 0ω0=(J 0+mR 2)ω ①()22222000111222BJ mgR J m R ωωω+=++v ② 式中Bv 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得: ω=J 0ω0 / (J 0 + mR 2)代入式②得B =v当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即:()22Cm mg R =v, C=v4.解: 把子弹和杆看作一个系统.系统所受的外力有重力和轴对细杆的约束力.在子弹射入杆的极短时间里,重力和约束力均通过轴O ,因此它们对轴O 的力矩均为零,系统的角动量应当守恒.于是有 22()m a m lma ω='+v ①子弹射入杆后,细杆在摆动过程中只有重力做功,所以以子弹、细杆和地球为一系统,则此系统的机械能守恒.于是有222(3)2(2)(1cos30)m l ma mga m gl ω''+=+-o ②解式①和式②,得=v练习九 (第六章 热力学基础)一、1. (4106) (B) 2. (4312) (A) 3. (4582) (B) 4. (4680) (C) 5. (4100) (B)6. (4105) (B)二、1. (4584) 等压 ; 等压 ; 等压2. (0238) 166 J3. (4147) 在等压升温过程中,气体要膨胀而对外作功,所以要比气体等体升温过程多吸收一部分热量.4. (4316) AM ; AM 、BM5. (4472)1123V p ; 0三、1.(4102) 解:(1) 等温过程气体对外作功为⎰⎰===0333ln d d V V V V RT V VRTV p W =8.31×298×1.0986 J = 2.72×103 J(2) 绝热过程气体对外作功为VVV p V p W V V V V d d 000303⎰⎰-==γγRT V p 1311131001--=--=--γγγγ=2.20×103 J2.(4694)解:(1)由等温线 C pV =得V p V p T -=)d d (由绝热线C pV =γ得VpVp Q γ-=)d d (由题意知714.01//)/d (d )/d (d ==--=γγV p V p V p V p QT故 =γ1/0.714=1.4由绝热方程 γγ2211V p V p =可得 421121058.7)(⨯==γVVp p Pa(2) V V Vp V p W V V V V d )(d 2121211γ⎰⎰==5.6012211=--=γV p V p J3.(4117)解:由图可看出 p A V A = p C V C从状态方程 pV =νRT 可知 T A =T C ,因此全过程A →B →C 的∆E =0.B →C 过程是绝热过程,有Q BC = 0.A →B 过程是等压过程,有)(25)( AA B B A B p AB V p V p T T C Q -=-=ν =14.9×105 J .故全过程A →B →C 的 Q = Q BC +Q AB =14.9×p 12p 1ABA B C (m 3) p 2 3.49 81×1054×105 O105 J . 根据热一律Q =W +∆E ,得全过程A →B →C 的W = Q -∆E =14.9×105 J .4.(5547) 解:(1) 由 35=VpC C和 RC C V p =-可解得 R C p25= 和 R C V 23=(2) 该理想气体的摩尔数 ==0RTVp ν 4 mol 在全过程中气体内能的改变量为 △E =ν C V (T 1-T 2)=7.48×103 J全过程中气体对外作的功为 011ln ppRT W ν= 式中 121//p p T T =则 3111006.6ln ⨯==T TRT W ν J .全过程中气体从外界吸的热量为 Q = △E +W =1.35×104 J .5.(4112) 解:(1) p -V 图如图.12(2) T 1=(273+27) K =300 K据 V 1/T 1=V 2/T 2,得 T 2 = V 2T 1/V 1=600 KQ =ν C p (T 2-T 1) =1.25×104 J(3) ∆E =0 (4) 据 Q = W + ∆E∴ W =Q =1.25×104 J练习十 (第六章 热力学基础)一、1.(4084) (C) 2.(4103) (C) 3. (4122) (D) 4。

相关文档
最新文档