数学建模会议筹备模型

合集下载

筹备会议方案的论文(类属数学建模)

筹备会议方案的论文(类属数学建模)

筹备会议方案的论文(类属数学建模)会议筹备一、摘要本文通过对与会代表的住宿和开会地点进行优化安排,以保证会议的安全、准时、顺利的举行,从而提高会议效率。

……本问题中主要用到数据统计、筛选、分析。

涉及到概率,平均值,方差。

在解决宾馆的安排问题,我们首先通过统计法、比例法预测出本届实际到会人数为661人,再以661人为据安排宾馆。

具体方案为3号住127人,6号住150人,7号住163人,8号住150人,9号住74人。

(详见表⑥)再以上述宾馆安排方案为依据选择会议室地点,具体为7号140人会议室2间、200人会议室1间,8号160人会议室1间、130人会议室2间。

最后依据会议室选择方案确定乘车路线,具体为接3号宾馆的代表:45座3辆、一个来回;接6号宾馆的代表:45座、36座各一辆、两个来回;接9号宾馆的代表:45座1辆、两个来回。

至此,所以问题得以解决。

关键词:统计分析,筛选列表,比例预测二、问题重述某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。

由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房和会议室数量均有限,所以只能让与会代表分散到若干家宾馆住宿。

为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。

筹备组经过实地考察,筛选出10家宾馆作为备选,它们的名称用代号1至10表示,相对位置见附图,有关客房及会议室的规格、间数、价格等数据见附表1。

且附表2,3都可以作为本届预订宾馆客房的参考!(需要说明的是,若预订房不够住,会引起代表的不满;若预订房过多,筹备组就要承担多出客房一天的租住费用。

)需根据以上条件解决下述问题!会议期间有一天的上下午各安排6个分组会议,筹备组需要在代表下榻的某几个宾馆租借会议室。

由于事先无法知道哪些代表准备参加哪个分组会,筹备组还要向汽车租赁公司租用客车接送代表。

数学建模会议筹备的研究

数学建模会议筹备的研究

数学建模会议筹备的研究数学建模作为连接数学理论与实际应用的重要桥梁,其相关会议对于推动学术交流、促进学科发展具有重要意义。

成功筹备一场数学建模会议需要精心策划和细致安排,涉及到诸多方面的工作。

首先,明确会议的目标和主题是筹备工作的起点。

是侧重于展示最新的研究成果,还是聚焦于解决特定的实际问题?是针对初学者进行基础知识的普及,还是为专业人士提供深入研讨的平台?不同的目标和主题将决定会议的规模、议程设置以及参会人员的范围。

确定会议的时间和地点也是关键环节。

时间要避开重大节假日和其他可能会有冲突的学术活动,以保证尽可能多的相关人员能够参加。

地点的选择则需要考虑交通便利性、场地设施的完备性以及住宿餐饮等配套服务的质量。

比如,选择位于市中心或交通枢纽附近的酒店或会议中心,能够方便参会者的出行;而场地内要有足够的会议室、投影仪、音响设备等,以满足会议的各种需求。

在议程安排方面,要确保内容丰富、紧凑且合理。

可以邀请知名专家进行主题演讲,介绍前沿的研究成果和发展趋势;安排小组讨论环节,让参会者有机会分享自己的经验和见解;设置案例分析和实践操作环节,增强会议的实用性和互动性。

同时,要预留足够的休息时间,让参会者能够放松和交流。

邀请参会人员是一项重要任务。

除了向相关领域的知名学者、专家发送邀请函外,还要广泛通知高校、科研机构、企业等单位的相关人员。

可以通过邮件、网站公告、社交媒体等多种渠道进行宣传和邀请。

为了保证会议的质量和多样性,要对报名参会的人员进行筛选和审核。

会议的组织团队也是筹备工作的重要保障。

需要有负责总体策划和协调的负责人,有专门负责联系嘉宾、安排议程的人员,有负责场地布置、设备调试的技术人员,还有负责接待、注册、后勤保障等工作的服务人员。

团队成员之间要分工明确、密切配合,确保各项工作顺利进行。

经费预算也是不可忽视的环节。

包括场地租赁费用、设备租赁费用、嘉宾差旅费和酬金、参会人员的注册费、餐饮费用、资料印刷费用等。

会议筹备模型的分析和方案设计

会议筹备模型的分析和方案设计

会议筹备模型的分析与方案设计王长伟(计算机控制0801)李翠英(计算机控制0801)程晓晓(检测0801)摘要某市一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为议会代表预定宾馆客房,租借会议室,并用客车接送代表,而会议筹备组要从经济,方便,代表满意等方面考虑,所以设计一套合理性方案是十分必要的。

为了使该家会议服务公司会议筹备组能有一个合理安排,我们用数学建模方法解决预定宾馆,租借会议室,租用客车等相关问题。

通过对以往几届会议代表的回执与会情况表,利用比例分析方法估算出第五届将有662名与会代表参加会议,又综合利用层次分析法和MATLAB程序分别评判出宾馆距中心的距离、宾馆所占价位的段数等因素对选择合理宾馆这一目标层的权重,和入住总人数、会议室租金、每个宾馆会议室的规模种数等因素对选择合理会议室这一目标层的权重。

从结果可以看出在使代表满意的前提下,又使宾馆数量少并且距中心的距离近,可选出与会代表应入住宾馆①②⑤⑦⑧且在其处分别预定客房为72、38、110、120、125和会议筹备组应在宾馆②⑤⑦⑧内安排会议室。

建立线性规划和使用LINGO软件程序计算出与会代表参加会议所需45座、36座、33座三种类型的客车分别为5辆、3辆、8辆,其花费最少费用为10900元。

关键词:层次分析法线性规划 MATLAB软件 LINGO软件指导教师:杨瑞周世兴1. 问题重述某市一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预定宾馆客房,租借会议室,并用客车接送代表。

现在要用数学建模的方法对会议筹备模型进行分析与方案设计。

从经济,方便,代表满意等方面,为会议筹备组制定一个预定宾馆客房,租借会议室,租用客车的合理方案。

2. 问题假设(1) 假设在开会期间与会代表没有缺席情况; (2) 假设以十字路口为中心判断宾馆距离的远近; (3) 假设上下午两个时间段的会议与会代表都参加;(4) 假设任何一个代表去向每个会议室(6个会议室)的概率是相等的(61) 3. 名词解释与符号说明3.1价位段数:回执代表对住房价位的要求分为120~160,161~200,201~300三个价位段数。

数学建模-会议筹备的研究

数学建模-会议筹备的研究

数学建模-会议筹备的研究承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): D我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2010年7月11日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):会议筹备的研究摘要本文从搜集有关某市的一家会议服务中心的会议筹备组相关数据开始,从预订宾馆客房、租借会议室和租用客车三个主要方面出发,分别通过对这三个方面的深入研究从而制定出各自有关经济、方便、代表满意等方面的标准,最后再综合考虑这三个主要因素,进一步深入并细化,从而求得最佳合理方案。

模块Ⅰ中,我们将焦点锁定在预测参加会议的人数上,从与会人数由发来回执的代表数量与发来回执但未与会的代表数量之差,再加上未发回执而与会的代表数量之差,可以通过利用最小二乘法并利用MATLAB软件画图,并进行拟合分析。

我们最后得到本届会议发来回执但未与会的代表数量为227人,未发回执而与会的代表数量110人,从而预测出本届会议与会的代表总人数为638人。

模块Ⅱ中,我们从本届会议需要预定宾馆客房数量出发,以10家宾馆各类客房总数和需求量为约束条件,宾馆数量为目标函数,建立0-1规划模型,并利用Lingo软件求解。

第六组会议筹备优化模型

第六组会议筹备优化模型

会议筹备优化模型摘要本文针对某一具体的会议筹备问题,运用数学手段,从经济、方便、代表满意等角度建立了相关优化模型,并利用Lingo 软件求解,给出了会议期间宾馆客房预订、会议室租借、客车租用等相关筹备方案。

首先,预测本届与会人数及相关数据。

根据前几届会议代表回执及与会情况,采用多种预测模型,分别对本届会议相关数据进行预测并作了比对分析,在综合考虑预测误差及预测余量的情况下,得到本届会议与会人数预测值661 p ,结合附表数据可以计算出其他相关数据。

其次,制定宾馆及客房选定方案。

根据题意,除了尽量满足代表在价位等方面的需求外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。

为了从数量上反映选定的各宾馆聚集程度,我们定义聚集指标n C (n C 越小表示选定的n 个宾馆聚集程度越高)。

考虑到多目标优化问题的复杂性,我们首先分别对最小聚集指数和最少宾馆数目这两个单目标规划问题进行求解,在得到各自最优解的后,以最少宾馆数目为优化目标,综合考虑选定宾馆之间的距离因素(将聚集指数小于某设定值C 作为约束条件),得到最少宾馆数目及相对最小聚集指标优化模型,最终决定将与会代表安排在①、③、⑤、⑥、⑦四个宾馆,此解同时满足聚集指数最小和宾馆数目最少两项要求,且从附图上看,结果比较合理。

最后,制定会议室选定及客车租用方案。

我们假定各代表参加各分组会议的概率是平均的、随机的,即每位代表参加任一分会场的概率为1/6。

我们以租借会议室和客车的费用之和最小为优化目标,建立优化模型。

下表为本届会议分组会议会议室租用方案根据该程序可以得出,最终选择在①、③、⑤、⑥、⑦四个宾馆,并根据所给情况基本满足所有与会代表入住要求,不满意度控制在5%左右。

关于车辆租赁关于会场租赁及租车问题,由于需要6个会场,且每个会场与会人数不确定,我们只考虑了一种平均意义下的结果。

利用整数规划模型借助lingo 软件求出最优解,最终选择3号宾馆100人会议室2间,6号宾馆160人会议室1间,7号宾馆140人会议室2间,100人会议室1间。

全国大学生数学建模竞赛2009D题论文 会议筹备

全国大学生数学建模竞赛2009D题论文  会议筹备

会议筹备模型摘要本文以经济、方便、代表满意等方面的要求为约束,建立预订客房、租借会议室和租用客车的优化模型。

首先,通过以往几届会议代表回执和与会的情况,利用线性最小二乘拟合法预测本届发来回执但未与会的代表人数;并建立)1,1(GM灰色预测模型,预测未发回执但到会的代表人数,再对附表1进行统计分析,排除明显不符合要求的宾馆。

然后,在充分满足代表住房要求的前提下,通过制定合理的分配原则,使出现空客房的几率最低,并以各客房到各个宾馆的总距离之和最小为目标,建立预订宾馆客房的线性整数优化模型一。

利用lingo软件编程求得每个宾馆的预订客房详情如下表:花费之和最小为目标的0-1整数规划模型。

利用lingo软件编程求得租车最优级方案为:租用33化,通过合理的假设建立适当的优化模型,运用数学软件求解,得到了比较符合实际的结果。

关键词:线性最小二乘拟合灰色预测统计分析0-1整数规划一、问题重述某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。

由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房和会议室数量均有限,所以只能让与会代表分散到若干家宾馆住宿。

为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。

筹备组经过实地考察,筛选出10家宾馆作为备选,它们的名称用代号①至⑩表示相对位置,且给出客房及会议室的规格、间数、价格等数据。

根据这届会议代表回执整理出来的有关住房的信息(见附录1)。

从以往几届会议情况看,有一些发来回执的代表不来开会,同时也有一些与会的代表事先不提交回执,相关数据见附录2。

需要说明的是,虽然客房房费由与会代表自付,但是如果预订客房数量大于实际用房数量,筹备组需要支付一天的空房费,而若出现预订客房不足,则将造成非常被动的局面,引起代表的不满。

会议期间有一天的上下午各安排6个分组会议,筹备组需要在代表下榻的某几个宾馆租借会议室。

数学建模会议筹备

数学建模会议筹备

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): D我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2009 年 9 月 11 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):会议筹备摘要如今,会议筹备成为一个热议的话题,对它进行合理的安排却是比较困难的。

现针对会议筹备组为与会代表预定客房,租借会议室,并租用客车接送代表安排合理的方案,我们分三个步骤进行探讨。

在求解该问题过程中,我们对题目中的数据信息和有关图表进行分析并结合各种条件约束,从经济,方便,代表满意等方面综合考虑,采用线性规划的思想求解会议筹备组为与会代表安排的最优方案。

针对宾馆客房最优,先分析会议筹备组筛选出的10家宾馆的情况,然后根据附表3与附表2,运用表中数据之间所蕴含的关系,通过建立数学比例式模型,应用EXCEL表格求出本届与会最多人数,并且预测出本届与会代表对宾馆客房要求的分布情况,最后构造出费用最优分段模型,并用LINGO代码解出预订宾馆客房的初方案,再次结合约束条件——“所选择的宾馆数量应该尽可能少,并且距离上比较靠近”,确定附图1中各宾馆分布位置的几何中心,列出各宾馆与其几何中心的距离差,然后在原有模型的基础上进行改进与优化,得出预订宾馆的最终方案。

会议筹备问题的数学模型

会议筹备问题的数学模型

∑ ∑ %> - v t - I ∑ ∑ = p

() 2

议 筹备 问题 ,只 需将 一些数 据代入模 型中 , 通 过 编 程 可 求 出解 。
iIl e
i = 12 … , 。 , ,,


z∈ It= 1 2 一, ,
回执中需 要第j 规格k 段价位 房子 的
a rn ∑ ∑ 探 讨 了 会 议 筹 备 过 程 中 预 定 宾 馆 客 房 、租借会 议室等 几个方面 的问题 ,建立 了 既 要 使 代 表 满 意 , 又 要 节 约 成 本 的最 优 化 模 型 。 该 模 型 具 有 普 遍 性 ,对 于 一 个 具 体 的 会
∑∑ ∑ ( 一 ) + ∑∑
eJ 卜 1 ^ .玉
2 2
,t -1
从 筹备组 便于管 理的角度 出发 ,所 选择
的 宾馆 除 了尽 量 满 足 代 表 在 价 位 等 方 面 的 需 求 之 外 ,宾 馆 的 数 量 要 尽 可 能 的 少 , 且 距 离
上 比较 靠 近 。 为 此 , 建 立 了选 取 宾 馆 的 优 化
位 房 子 的数 量 。

( ) 设 有 … 些 发 来 回 执 的 代 表 不 来 开 2假 会 , 同 时 也 有 一 与 会 的 代 表 事 先 不 提 交 回 些
执。
【] 解可新等. 2 最优化方法. 天津. 天津大
学 出版 社 . 8 20. 0
的数 量, 七= 12 … , , , ,。
南 大 学 出版 社 . 6 20. 0
2 2 9

在 这 个 假 设 下 , 与 会 代 表 确 切 的 人 数 是 未 知 的 。 首 先 ,根 据 往 届 会 议 代 表 回 执 及

数学建模模型的准备

数学建模模型的准备

数学建模模型的准备数学建模是一种通过数学方法解决实际问题的技术手段。

在进行数学建模之前,我们需要准备好一些必要的内容,以确保建模过程的顺利进行和结果的准确性。

本文将从问题定义、数据收集、模型选择和模型验证等方面介绍数学建模模型的准备工作。

一、问题定义在进行数学建模之前,首先要明确问题的定义和目标。

问题定义应该具备可量化和可测量的特征,以便我们能够通过数学方法进行分析和求解。

同时,问题定义还应该明确问题的范围和限制条件,以便我们在建模过程中能够遵守相应的约束。

二、数据收集数据是数学建模的重要基础,我们需要收集相关的数据来支持建模过程。

数据的收集可以通过实地调查、文献研究、问卷调查等方式进行。

在收集数据时,我们需要注意数据的准确性和可靠性,并进行相应的数据清洗和处理,以消除数据中的噪声和异常值。

三、模型选择在进行数学建模之前,我们需要选择合适的数学模型。

模型选择应该基于问题的特征和要求,以及现有的数学工具和方法。

常见的数学模型包括线性模型、非线性模型、概率模型等。

在进行模型选择时,我们需要考虑模型的适用性、可解性和计算复杂度等因素。

四、模型验证模型验证是数学建模的重要环节,用于评估模型的准确性和可靠性。

模型验证可以通过实验数据的对比、模拟仿真、灵敏度分析等方式进行。

在进行模型验证时,我们需要注意验证方法的科学性和合理性,并对模型进行修正和优化,以提高模型的预测能力和应用价值。

五、模型求解模型求解是数学建模的核心任务,用于求解问题的最优解或近似解。

模型求解可以通过数值方法、优化算法、统计分析等方式进行。

在进行模型求解时,我们需要选择合适的求解方法和工具,并进行相应的计算和分析,以得到满足问题要求的解决方案。

六、结果分析和报告在完成模型求解后,我们需要对结果进行分析和报告。

结果分析可以通过图表、统计指标、敏感性分析等方式进行。

在进行结果分析时,我们需要对结果进行解释和评价,并提出相应的建议和改进措施。

同时,我们还需要将模型的建立、求解过程和结果进行清晰、准确的报告,以便他人能够理解和复现我们的研究工作。

4会议优化模型

4会议优化模型

2009高教社杯全国大学生数学建模竞赛题目会议筹备某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。

由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房和会议室数量均有限,所以只能让与会代表分散到若干家宾馆住宿。

为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。

筹备组经过实地考察,筛选出10家宾馆作为备选,它们的名称用代号①至⑩表示,相对位置见附图,有关客房及会议室的规格、间数、价格等数据见附表1。

根据这届会议代表回执整理出来的有关住房的信息见附表2。

从以往几届会议情况看,有一些发来回执的代表不来开会,同时也有一些与会的代表事先不提交回执,相关数据见附表3。

附表2,3都可以作为预订宾馆客房的参考。

需要说明的是,虽然客房房费由与会代表自付,但是如果预订客房的数量大于实际用房数量,筹备组需要支付一天的空房费,而若出现预订客房数量不足,则将造成非常被动的局面,引起代表的不满。

会议期间有一天的上下午各安排6个分组会议,筹备组需要在代表下榻的某几个宾馆租借会议室。

由于事先无法知道哪些代表准备参加哪个分组会,筹备组还要向汽车租赁公司租用客车接送代表。

现有45座、36座和33座三种类型的客车,租金分别是半天800元、700元和600元。

请你们通过数学建模方法,从经济、方便、代表满意等方面,为会议筹备组制定一个预订宾馆客房、租借会议室、租用客车的合理方案。

附表1 10家备选宾馆的有关数据说明:表头第一行中的数字1、2、3分别指每天每间120~160元、161~200元、201~300元三种不同价格的房间。

合住是指要求两人合住一间。

独住是指可安排单人间,或一人单独住一个双人间。

附表3 以往几届会议代表回执和与会情况附图(其中500等数字是两宾馆间距,单位为米)会议优化模型一、 问题的提出二、 问题的分析要制定一个代表满意、保障到位、顺畅高效的会议筹备方案,需从以下三方面考虑: 一、需要合理预测实际参会代表的人数。

会议筹备优化数学模型

会议筹备优化数学模型
a: i 第 个宾 馆第 j 种价 格 的双 人 间房 间数 Mi 第 j : 住 种价格 的房 间人数
M 住第 j 种价格并且是单间的房间人数 M 住 第 J 种价格 并且 是双人 间的房 间人 数 bi i 宾馆第 j i第 个 : 种价 格 的会 议 室价格 Y: i会议筹备组选择第 i i 个宾馆第 J 种价格的会 议 室间数 Li第 i 宾馆第 j 价格 的会议 室 间数 i : 个 种 V 第 i 个宾馆第 j 种价格 的会议室所容纳 的 人数
A p i i a i n m o e o he p e a a o y m e tn o tm z to d lf r t r p r t r e i g
S UN - i g. Ye p n 。 YU a -e Xi o f i
( ea o tcncIstt, ayn 7 09,hn ) H nnP l eh i ntu N nag 3 0 C ia y ie 4


() 3 由于 宾 馆 的会议 室最 大规 模 为 20人 , 0 所 以假设 分 组会议 的最 大规模 为 20人 ; 0
根据附表 3的数据分析 , 我们发现人数越 多 , 不确 定性 因素也就越 多 , 以相对来说 实 际与会 的人数 占 所 有回执 ^ 数的比例也就越少, 因此, 我们用数据拟合算 得的实际与会人数 66 3 人是合理 的。按照回执中单 住 、 以及所选不同价 格房间人数 的比例 , 合住 我们把实 际可能到会 的 ^ 数按照 66人也重新 分配 了一 下。如 3 表 5在按照四舍五人的原则 , , 把表 5 修订为表 6 。
合 理方 案 。
1 符号说明与基本模 型假设
1 1 基本 符号 说 明 .

会议筹备问题的优化模型

会议筹备问题的优化模型

送。 送。
认 为参加 任意一 个会 的几率 为 16 /。 5 )假 设上 、 下午分 组 会议 情况 一样 。
房 的数 量大 于实 际用房 数 量 , 会 造成 不必 要 的经 济 则 损失 , 以我 们把 题 目中的数据 带入 ( ) , 后 向上 所 4式 然 取整 得到本 届会 议 的代 表有关住 房要 求的信 息 如表 1
题 相结 合 的一 种优 化问题 。它要 求 把 预订宾 馆 客房 , Y = . 6 0×( 了 丽 282 +1 . 9 ) 599 () 2 租借会 议室 , 用 ‘ 接 送 代 表 相 结 合 , 了尽 量 满 租 除 因为与 会代 表 的数 量 等 于发 来 回执 的代 表 数 量 足代表 在住 宿价位 方面 的需求 之 外 , 要保 证 宾馆 的 减去发 来 回执 但 未 与会 的代 表 的数 量 再 加 上 未 发 回 还 数量尽 可能 少 , 需 消 费尽 可 能 少 , 所 与会 人 员 满 意 度 执而 与会 的代 表 的数量 , 因此 , 与会代表 的数 量为 大等实 际 问题 。 Y= ×( + ) 1一 () 3
化 模 型 , 出 了预 订 宾 馆 客 房 、 借 会 议 室 、 用 客 车 的合 理 方 案 。 给 租 租
关 键 词 : 数 多项 式 拟 合 ; 代 0—1规 划 ; 化 模 型 优 中 图 分 类号 :2 14 O 2 . 文 献 标 识 码 : A 文 章 编 号 :0 8— 0 3 2 1 )5—03 10 2 9 (00 0 02—0 4
1 模 型假 设
将 今 年 发 来 回执 的代 表 数 量 =7 5人 代 入 式 5 1 )不 考虑 意外 因素对与 会代表 人数 的影 响。 ( ) ( ) ( ) 求得 : 1 、 2 、3 可 2 )前 往其 他宾馆 参加 会议 的代 表 都使用 客 车接 Y= . 5 2 084 x () 4 因为在题 目中要 求 尽量 满 足代 表 在 价 位 等 方 面 3 )住 在 同一 宾馆 内的 与会者 被 客 车一 次 全部 接 的要求 , 而式 ( ) 由拟合 得到 的 , 4是 虽然 我们 认 为 比较 接近真 实值 , 是 如 果 出 现预 订 客 房 数 量 不 足 , 将 但 则 4 )与会者 参 加 各 种 会 议 是 随机 的 , 这 里 我 们 造成非 常被 动 的局面 , 在 引起 代表 的不满 。 而若 预订 客

会议安排数学模型

会议安排数学模型

本模型有以下优点:
(1)它相当成功地解决了提出的问题,并能够迅速地 求出一组相当优化的解。
(2)本模型具有普遍的意义,能针对不同情况,根 据不同参数,得到令人满意的结果。
(3)在模型求解过程中,运用了大量的优化思想和数 学技巧,相当好地解决了多变量非线性整数规划问 题,具有较大的应用价值。
Problem B: Mix Well For Fruitful Discussions
我们定义它为相遇矩阵.我们可以得到一个关于分组矩阵 和相遇矩阵的基本定理.
定理: P 若为一个分组矩阵,则其对应的相遇矩阵为
It would be ideal if the algorithm could also be used to make assignments for future meetings involving different levels of participation for each type of attendee.
华东理工大学
East China University of Science And Technology
多次分组会议安排的 数学模型
华东理工大学数学系 鲁习文
内容提纲
一、问题重述 二、假设条件 三、变量及符号说明 四、问题分析和模型建立 五、模型求解 六、调整算法 七、模型推广 八、模型优缺点
摘要
阵.理想的情况是,通过分组矩阵所给出的信息,我们能
得到另一个矩阵,用它来判断元素si和sj是否曾在同一
个小组中,这个新的矩阵为:
q11
q21
q12 q22
q1m
q2m
Q
qm1 qm2 qmm
其中
qi j
1 如果 si 和sj 在同一组中 (i j, 1 i, j m); 0 否则;

数学建模大会策划书3篇

数学建模大会策划书3篇

数学建模大会策划书3篇篇一数学建模大会策划书一、活动主题“创新改变世界,数学建模演绎精彩”二、活动目的本次数学建模大会旨在为广大数学爱好者提供一个学习交流的平台,提高学生的数学建模能力和创新能力,培养学生的团队合作精神和综合素质。

三、活动时间和地点时间:[具体时间]地点:[具体地点]四、活动对象全校学生五、活动内容1. 数学建模讲座:邀请数学建模专家进行数学建模的讲座,介绍数学建模的基本方法和技巧,以及数学建模在实际问题中的应用。

2. 数学建模培训:组织数学建模培训,通过实际案例分析和编程实践,帮助学生掌握数学建模的方法和步骤。

3. 数学建模竞赛:举办数学建模竞赛,要求学生在规定时间内完成一个实际问题的建模和求解,并提交论文。

4. 数学建模展览:展示学生的数学建模作品,包括论文、模型和实物等,同时邀请获奖学生进行现场讲解和演示。

5. 颁奖仪式:举行颁奖仪式,对获奖学生进行表彰和奖励。

六、活动组织1. 活动筹备组:负责活动的策划、组织和协调工作。

2. 专家顾问组:邀请数学建模专家担任顾问,为活动提供指导和支持。

3. 培训教师组:组织数学建模培训教师,负责培训的教学工作。

4. 竞赛评审组:邀请数学教师和专家担任竞赛评审,负责竞赛论文的评审工作。

5. 宣传报道组:负责活动的宣传报道工作,包括制作海报、宣传单、拍摄照片和视频等。

6. 后勤保障组:负责活动的后勤保障工作,包括场地布置、设备调试、物资采购等。

七、活动宣传1. 海报宣传:在学校宣传栏张贴活动海报,宣传活动的时间、地点和内容。

2. 网络宣传:在学校网站、公众号、微博等平台发布活动通知和宣传信息,吸引更多的学生参与。

3. 班级宣传:通过学生会、班级干部等渠道,向学生宣传活动的信息,鼓励学生积极参与。

八、活动预算1. 讲座费用:[X]元2. 培训费用:[X]元3. 竞赛奖品费用:[X]元4. 宣传费用:[X]元5. 其他费用:[X]元九、活动注意事项1. 活动期间要注意安全,确保学生的人身安全和财产安全。

数学建模案例分析-2009年D题“会议筹备”

数学建模案例分析-2009年D题“会议筹备”

2015年4月10日星期五
3.3 确定预定客房的宾馆及各类客房的间数 以宾馆总数最少为目标, 以满足代表在合住或独住及 价位方面的需求, 及各宾馆拥有客房数量等为约束条件, 建立优化模型. 设有 r 家宾馆、每家宾馆独住、合住各有 w 种类型 (价位)的客房供选择, 记
xij1 :第 i 家宾馆第 j种类型的客房独住的预定间数;
大 学 数 学 建 模 竞 赛 系 列 讲 座
案例分析—2009D“会议筹备”
2015年4月10日星期五
3.2 确定要预定客房的数量 按照前面的问题分析, 预定客房数量应该使会议筹备 组在订房上的损失尽量小,为了统一考虑预定客房数超过 实际用量时造成的一天空房费,和预定客房数不够实际用 量时引起代表不满的量化费用,可以建立如下模型. 记
NORTH UNIVERSITY OF CHINA 大 学 数 学 建 模 竞 赛 系 列 讲 座
案例分析—2009D“会议筹备”
2015年4月10日星期五
一些会议的筹备者和宾馆的管理人员反映,诸如上述 这些情况普遍存在、时常发生. 随着经济发展和社会进 步, 各行各业举行大规模会议的频率也在上升, 通过数学 建模方法,从经济、方便、代表满意等方面, 为会议筹备 者制定一个预订宾馆客房、租借会议室、租用客车的合 理方案, 是非常现实且很有实际意义的研究课题,并且这 方面的研究过去几乎没有.
⎧ (m − X ) g / 2, 0 ≤ X ≤ m ⎪ S = ⎨ X −m λ g / 2, m < X ≤ N ⎪ X ⎩ 其中 λ 是一个权重系数(应取相当大的数值), 用以调整
两种损失之间的大小关系. 总的平均损失即 S 的期望为: g m X X E ( S ) = ∑ (m − X )C N p (1 − p ) N − X 2 X =0 g N X −m X X N−X +λ ∑ C N p (1 − p ) (3) 2 X =m+1 X

会议筹备优化模型

会议筹备优化模型

会议筹备优化模型会议筹备优化模型为了有效地组织和顺利完成一场会议,会议筹备团队需要进行充分的规划和准备。

会议筹备的过程中,需要解决一系列问题,并做出决策,以确保会议的成功举办。

因此,建立一个优化模型来帮助会议筹备团队更好地规划和执行任务是非常有必要的。

会议筹备的优化模型主要包括以下几个方面的内容:1. 项目分解和时间安排:首先,会议筹备团队需要将整个会议筹备过程分解为多个可管理的子项目,并确定每个子项目的时间点和时长。

这可以通过使用目标关联网络技术(CPM)或项目评估和评定技术(PERT)等方法来完成。

通过将项目分解为更小的任务,并确定关键路径和关键任务,可以更好地掌握整个会议筹备的进度和时间安排。

2.资源分配和管理:会议筹备需要涉及各种资源的使用,包括人力资源、物资资源和财务资源等。

为了在有限的资源下确保高效利用,会议筹备团队需要对资源进行合理分配和管理。

这可以通过建立资源需求计划、协调资源使用和安排工作时间等方式来实现。

此外,还可以考虑外部资源的运用,如委托给专业机构处理某些事务,以减轻内部员工的负担。

3.风险管理和决策支持:在会议筹备过程中,会面临各种潜在的风险和问题。

为了更好地应对这些风险,会议筹备团队可以建立一个风险管理模型,系统地识别各种风险、评估影响和可能性,并制定相应的风险应对措施。

此外,决策支持模型可以帮助会议筹备团队在面临不同选择和决策时,确定最佳的方案,并评估其可能的结果和影响。

4.沟通与协作:会议筹备涉及多个团队成员和相关利益相关者之间的协作和沟通。

为了优化沟通和协作效率,会议筹备团队可以建立一个沟通与协作模型,明确各个角色的职责和任务,建立有效的沟通渠道和机制,并制定相关沟通和协作策略。

此外,可以采用协作工具和技术,如在线协作平台和团队项目管理工具等,来促进信息共享和协同工作。

5.绩效评估和持续改进:为了不断提高会议筹备的效率和质量,会议筹备团队可以建立一个绩效评估和持续改进模型。

数模-会议筹备优化模型

数模-会议筹备优化模型

数学建模作业小组人员:会议筹备优化模型一、摘要本问题属于优化问题,要求我们从组委会的角度出发制定出预订客房,租借会议室,租用客车的最佳方案。

我们以宾馆数量少,宾馆相对集中为目标,在满足与会代表具体要求的前提下,逐步得到了该问题的相关结果。

具体结果如下:首先我们对附件数据做了必要的分析,采用线性回归和假设数据服从正态分布的两种方法分别计算出了与会人数,但由于往年资料有限,我们排除了线性回归的方法,在用卡方检验出第二种方法更合理,预测出实际与会人数为656人。

然后按回执中各类房间所占的不同比重来确定最终订房类别及数量,具体结果如下:双人间1、双人间2、双人间3、单人间1、单人间2、单人间3预定的数目分别为:99间、69间、22间、142间、88间、54间。

具体在各个宾馆的预定方案可以参见正文部分的表7.其次从满足代表住房要求的原则出发,尽量选择数量最少的宾馆以保证人员相对集中,建立整数规划模型,确定目标、约束条件,选取最优解。

最终选定了1、2、3、7四家宾馆,同时求出了代表满意度。

关于会场租赁及租车问题,由于需要6个会场,且每个会场与会人数不确定,我们只考虑了一种平均意义下的结果。

利用整数规划模型借助LINGO软件求出最优解,最终选择①号宾馆中150人的会议室两间;②号宾馆中180人、130人的会议室各一间;⑦号宾馆中140人的会议室两间。

根据代表入住每个宾馆的人数情况,我们得到需要租45座车2辆,33座车4辆。

优化后两项合计总费用为20000元。

关键词:正态分布卡方检验线性回归整数规划 LINGO 代表满意度二、问题的重述会议服务公司承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。

由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房和会议室数量均有限,所以只能让与会代表分散到若干家宾馆住宿。

1.基本信息:⑪筹备组已筛选出10 家宾馆作为备选,代号是①至⑩,相对位置见附图,并给出了客房及会议室的规格、间数、价格等数据见附表1。

2009年建模D题会议筹备

2009年建模D题会议筹备

会议筹备摘要会议举办能否取得成功,能否使与会者和主办方满意,很大程度上与会议筹备组的会前筹备有关,会议筹备组主要考虑为与会代表预定宾馆客房,租借会议室,并租用客车接送代表等。

本文通过数学建模的方法,从经济、方便、代表满意出发,建立模型,为会议筹备组计算制定一个预订宾馆客房,租借会议室,租用客车的具体方案。

针对客房的预定问题,先根据前几届的到会人数变化及发回回执未到会,未发回执而到会的概率,运用最小二乘法,预计出本届会议的到会人数为643人。

再根据代表发回的回执的住房要求,使用0-1规划,利用Lingo软件对宾馆选择方案进行优化,最终得出的优化方案是为代表预定①,②,④,⑤,⑧,⑨号宾馆,并求得每个宾馆的各种房间的预定数量:合住1、合住2、合住3、独住1、独住2、独住3分别对应的房间数:134、87、29、19、110、69.针对问题二,如何选择会议室问题。

考虑到要使距离最短,又要考虑费用最低,运用棣莫弗—拉普拉斯定理,计算出0-60,60-100,100-120,120-150,150-200范围内的人参加某场会议的概率,得出所选会议室的容量应在120-150之间最佳,最后选出这六间会议室分别为④号宾馆的150人的会议室两间,⑧号宾馆的130人的会议室两间,⑨号宾馆120人的宾馆两间,租借会议室共需费用10000元。

问题三是为与会人员安排车辆接送,在考虑费用最少的基础上,尽量路程最短,同时要求每辆车都能经过每一个租用了会议室的宾馆,确保能将所有与会代表都送到目标宾馆,据此,制定出了租车方案,即选用5辆45座,3辆33座的客车,费用11600元,并制定出详细的行车路线。

本方案所需总体费用22500元,满意度?关键字:最小二乘法 0-1规划 Lingo软件二、问题重述当前社会,开全国性的会议很普遍,由于规模比较庞大,需要考虑很多问题,所以会议筹备是非常重要的。

会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模会议筹备模型会议筹备模型设计摘要:本文给出了会议筹备策略的数学模型。

对于客房安排我们对数据利用进行MATLAB 进行拟合,得到了实到人数与发回执人数的线性关系,大体估算出实际到的代表数量为639人。

先对发来回执且会到的代表进行客房安排,考虑到经济且令代表满意,我们建立了一个非线性规划模型,再考虑方便管理以及距离远近的因素,对得出的结果进行调整,最后对未发来回执但与会的代表,进行分配。

得到如文表4的住房安排。

对会议室安排,文中先用表格对各宾馆会议室进行排列归类,再用一个简单的规划模型,求解出了最经济的会议选择,即会议室全部选宾馆7的六个会议室。

且花费7000元。

对客车的安排我们同样先用表格对数据进行排列归类,用一个规划模型,利用LINGO 软件进行求解,得客车最优安排,即宾馆①安排33座车3辆;宾馆②安排36座车6辆;宾馆⑤安排45座车3辆,33座车3辆;宾馆⑥安排45座车3辆,33座车3辆,所花钱14800元。

最后得到安排会议室与租赁客车总花费W==+21w w 7000+14800=21800元。

本模型对于此类问题,能够较好的解决,且可解决诸如比赛安排,人员安排等问题。

关键词:拟合,排列归类,数学建模,非线性规划问题的提出某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。

由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房和会议室数量均有限,所以只能让与会代表分散到若干家宾馆住宿。

为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。

筹备组经过实地考察,筛选出10家宾馆作为备选,它们的名称用代号①至⑩表示,相对位置见附图,有关客房及会议室的规格、间数、价格等数据见附表1。

根据这届会议代表回执整理出来的有关住房的信息见附表2。

从以往几届会议情况看,有一些发来回执的代表不来开会,同时也有一些与会的代表事先不提交回执,相关数据见附表3。

附表2,3都可以作为预订宾馆客房的参考。

需要说明的是,虽然客房房费由与会代表自付,但是如果预订客房的数量大于实际用房数量,筹备组需要支付一天的空房费,而若出现预订客房数量不足,则将造成非常被动的局面,引起代表的不满。

会议期间有一天的上下午各安排6个分组会议,筹备组需要在代表下榻的某几个宾馆租借会议室。

由于事先无法知道哪些代表准备参加哪个分组会,筹备组还要向汽车租赁公司租用客车接送代表。

现有45座、36座和33座三种类型的客车,租金分别是半天800元、700元和600元。

请你们通过数学建模方法,从经济、方便、代表满意等方面,为会议筹备组制定一个预订宾馆客房、租借会议室、租用客车的合理方案。

附表1 10家备选宾馆的有关数据宾馆代号客房会议室规格间数价格(天规模间数价格(半)天)①普通双标间50 180元200人1 1500元商务双标间30 220元150人2 1200元普通单人间30 180元60人2 600元商务单人间20 220元②普通双标间50 140元130人2 1000元商务双标间35 160元180人1 1500元豪华双标间A30 180元45人3 300元豪华双标间B35 200元30人3 300元③普通双标间50 150元200人1 1200元商务双标间24 180元100人2 800元普通单人27 150150 1 1000间元人元60人3 320元④普通双标间50 140元150人2 900元商务双标间45 200元50人3 300元⑤普通双标间A35 140元150人2 1000元普通双标间B35 160元180人1 1500元豪华双标间40 200元50人 3 500元⑥普通单人间40 160元160人1 1000元普通双标间40 170元180人1 1200元商务单人间30 180元精品双人间30 220元普通双标50 150140 2 800⑦间元人元商务单人间40 160元60人3 300元商务套房(1床)30 300元200人1 1000元⑧普通双标间A40 180元160人1 1000元普通双标间B40 160元130人2 800元高级单人间45 180元⑨普通双人间30 260元160人1 1300元普通单人间30 260元120人2 800元豪华双人间30 280元200人1 1200元豪华单人间30 280元⑩经济标准房(2床)55 260元180人1 1500元标准房(245 280140 2 1000床)元人元附表2 本届会议的代表回执中有关住房要求的信息(单位:人)合住1 合住2合住3独住1独住2独住3男154 104 32 107 68 41女78 48 17 59 28 19说明:表头第一行中的数字1、2、3分别指每天每间120~160元、161~200元、201~300元三种不同价格的房间。

合住是指要求两人合住一间。

独住是指可安排单人间,或一人单独住一个双人间。

附表3 以往几届会议代表回执和与会情况第一届第二届第三届第四届发来回执的代表数量315 356 408 711发来回执但未与会的代表数量89 115 121 213 未发回执而与会57 69 75 104的代表数量附图(其中500等数字是两宾馆间距,单位为米)⑤⑦⑧①②④③105030152030⑨⑥⑩307015问题分析通过附表2的分析,我们很容易得到本届发来回执的代表的的数量为755名,再分析附表3,根据所给数据,用MATLAB 进行拟合,可发现往届实际到的代表数以及发了回执而未到的代表数都和发回执代表的数量成一阶线性关系,进而估算出本届与会代表的数量和发了回执而未到的代表数量。

再根据各代表发来的回执情况,先对发来回执估计又会到的代表进行住房安排,建立线性规划模型,列出目标函数和限制条件,用LINGO 规划出最经济且代表满意的一种住房方式,再根据各宾馆的空房情况为未发回执而会来的代表安排住房。

最后由各宾馆间的距离和会议室的情况进行调整。

最终得到最佳住房安排。

模型假设(1) 假设本届实际到的代表数以及发了回执而未到的代表数和过去四届大体满足同一线性关系。

(2) 优先考虑要求合住房的代表的住房情况,再考虑独住房的代表的住房情况。

(3) 假设六组住房情况中,发来回执又到的代表占发来回执的代表的比例,和以往四届总的发来回执又到的代表占发来回执的代表的比例相同。

符号说明y 发来回执的代表数量; x 实到人数;321~x x 对照附表1的顺序依次为在从1到32种房间所定的房间数;a 、b 、α、β 为待求参数。

模型建立与求解第一届 第二届 第三届 第四届 第五届 发来回执的代表数量y 315 356 408 711 755 发来回执但未与会的代表数量89 115 121 213 228 未发回执而与会的代表数5769 75 104 111量实到人数x 283 310 362 602 639 实到人数占发回执人数的比例0.898413 0.870787 0.887255 0.846695 0.846358(1)画出实到人数占发回执人数的的折线图由上图可看出实到人数与发回执人数成一阶线性关系b ax y +=用MATLAB 进行拟合(过程见附录1),得9218.322342.1-==b a ;即 9218.322342.1-=x y进而可得到本届实际到的人数为639人。

(2)再对发来回执但未与会的代表数量和发来回执的代表数量进行分析,假设其满足线性关系,令βα+=x y 用MATLAB 进行拟合(过程见附录2),并作出图如下由上图可看出假设成立,其满足一阶线性关系,且5353.33009.3==βα 即5353.3009.3+=x y也即发来回执且与会的代表数量占发来回执的代表数量的0070。

情形1 情形2 情形3情形4情形5情形6合住1合住2合住3独住1独住2独住3男 108 73 23 75 48 29 女 55 34 12 42 20 14(二) 问题的解答 (1) 安排房间先对发来回执且会到的代表进行住房安排,考虑经济方面让代表花最少钱住符合自己要求的房间,同时如果代表未到,会议筹备组也可少花空房钱,建立非线性规划模型如下:情形1所需房间为82255108≈+;情形4所需房间数为1174275=+; 情形2所需房间为5423473≈+;情形5所需房间为682048=+;情形3所需房间为1821223≈+;情形6所需房间为431429=+。

3231302928272625242322212019181716151413121110987654321280260280280260260180160180300160150220180170160200160140200140150180150200180160140220180220180min x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x +++++++++++++++++++++++++++++++=⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤>=+++++++++>+++++≥++++++++++>+++++++≥++++++++++>+++++++45;55;30;30;30;30;45;40;40;30;40;;50;30;30;40;40;40;35;35;45;50;27;24;50;35;30;35;50;20;30;30;506118122541998232313029282726252423222120191817161514131211109876543213231292720230282343231292720224181613108711693241816131087122171125211514129652521151412965x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x st 用LINGO 计算出结果出结果如下(计算过程见附录3)⎩⎨⎧==202342x x ⎩⎨⎧==145075x x 509=x 5012=x 3514=x ⎪⎩⎪⎨⎧===183040201918x x x 1421=x 3826=x考虑到便于管理选择的宾馆数量应该尽可能少,并且距离上比较靠近,所以对以上结果进行调整,中其509=x ,5012=x ,3826=x 对应的宾馆3、4、8距离其他宾馆较远且其数值较小,可将其安排到1、2、5、6、7几个宾馆中,调整结果如下⎪⎩⎪⎨⎧===203023432x x x ⎪⎩⎪⎨⎧===223550765x x x ⎩⎨⎧==35351514x x⎪⎪⎩⎪⎪⎨⎧====1830402020191817x x x x 1421=x 再把未发回执而又到的代表111人安排房间,由于这部分代表未发来回执,我们不知道他们的需求,但可以根据附表2中信息,给出花钱最少的方案。

相关文档
最新文档