一次函数与二元一次方程组
17-5-1 一次函数与二元一次方程(组)课件2022-2023学年华东师大版八年级数学下册
对应
二元一次方程
一次函数
对应
一条直线
即为
即为
二元一次方程的解
一次函数两变量的值
直线上的点的坐标
例1 在平面直角坐标系中画出方程2x-y+3=0所对应的直线.
导引:将二元一次方程化为一次函数的形式,再确定两个点的坐标,在平面 直角坐标系中描出两点,过这两点的直线就是这个方程对应的直线.
解:将方程2x-y+3=0转化为y=2x+3,有
-2 -4
l2:y= 3 x 1 . 2
l1:y=
3 2
x
1
作出l1和l2的图象,如图所示,两条直线平行,故方程组无解.
思考
上述例题直观地说明二元一次方程组的解有三种情况.
当把其中的各个二元一次方程组化为标准形式:
aa12
x x
b1 b2
y y
c1 c2
比较一下每例中两个方程中x的系数之比、y的系数之比以 及常数项之比,从中你发现怎样的规律?
们看到,两个一次函数图象的交点处,自变量和对应的函数值同时满足
两个函数的关系式.而这两个关系式可以看成关于x、y 的两个方程,所
以交点的坐标就是这两个方程组成的方程组的解.
根据图象回答:
y(元)
600
(甲)
(3)如果每月复印页数在1200页 400
(乙)
左右,那么应选择哪个复印社? 200
O 200 400 600 800 1000 1200 x(页)
区别: 1.二元一次方程有两个未知数,而一次函数有两个变量; 2.二元一次方程是用一个等式表示两个未知数的关系,而一次函数既可 以用一个等式表示两个变量之间的关系,又可以用表格或图象来表示两 个变量之间的关系. 联系:
二元一次方程组与一次函数2
5 60k b, 10 90k b.
解得
k , 6 b 5.
1 y x 5. 6
(2)当x=30时,y=0.
所以旅客最多可免费携带30千克的行李.
例3 某市自来水公司为鼓励居民节约用水,采取按 月用水量分段收费办法,若某户居民应交水费 y (元)与用水量x(吨)的函数关系如图所示. Y(元) (1)分别写出当0≤x≤15
小彬
小明
小颖
例2 某长途汽车客运站规定,乘客可以免费 携带一定质量的行李,但超过该质量则需购 买行李票,且行李费y(元)是行李质量x (千克)的一次函数.现知李明带了60千克 的行李,交了行李费5元;张华带了90千克的 行李,交了行李费10元. (1)写出y与x之间的函数表达式; (2)旅客最多可免费携带多少千克的行李?
s/千米
图象表示
120
100 (B) 80 60 40 20
可以分别作出两人 s 与t 之间的关系图象,找 出 小明 交点的横坐 标就行了!
(A)0
1
2
2.8
3
4 t/时
用方程 解 行程问题
A,B两地相距100千米, 1 时后乙距A地 甲、乙两人骑自行车分别从A, 80千米,即乙的 B两地同时相向而行.假设他 小彬 速度是 20千米/时, 们都保持匀速行驶,则他们各 2 时后甲距A 地 30千米, 自到A地的距离s(千米)都是骑 故甲的速度是 15千米/时,
这节课你有什么收获?
利用二元一次方程组求一次函数表达 式的一般步骤:
1.用含字母的系数设出一次函数的表达 式: y kx b(k 0) ; 2.将已知条件代入上述表达式中得k,b的二元一 次方程组; 3.解这个二元一次方程组得k,b,进而得到一次 函数的表达式.
一次函数与二元一次方程(组)的教学案例和反思
一次函数与二元一次方程(组)的教学案例和反思上周我完成了一次函数与二元一次方程(组)的教学,在教学中,我不断思索,不断创新。
多注重对学生的合作意识和自我探究能力的培养,在课堂中取得了很好的效果。
一、设计意图我校现采用的数学教材是新人教版,早在本教材的第八章,学生就已经学习了有关二元一次方程及方程组的知识,在本学期进入第十四章《一次函数》的学习之后,学生目前已经了解了有关函数的基本概念和表示方法,能根据已知条件确定一次函数的解析表达式及能画出一次函数的图像,了解如何用函数的观点去认识一元一次方程和一元一次不等式,知道一次函数与它们有着密切的关系。
在教学过程中,我发现我班的学生整体有着较好的数学基础且思维活跃,学生对于数学学习的积极性较高且兴趣浓厚,适合开展探究式学习.因此本节内容我决定以引导学生自主学习,通过活动进行分组合作探究学习的形式作为教学方式,来达到教学目的。
二、过程展示Ⅰ.提出问题,创设情境[师]我们知道,方程3x+5y=8可以转化为y=-35x+85,并且直线y=-35x+85上每个点的坐标(x,y)都是方程3x+5y=8的解.由于任何一个二元一次方程都可以转化为y=kx+b的形式.所以每个二元一次方程都对应一个一次函数,也就是对应一条直线.那么解二元一次方程组358 21 x yx y+=⎧⎨-=⎩可否看作求两个一次函数y=-35x+85与y=2x-1图象的交点坐标呢?如果可以,•我们是否可以用画图象的方法来解二元一次方程组呢?我们这节课就来解决这些问题.Ⅱ.导入新课[活动一]活动内容设计:一家电信公司给顾客提供两种上网收费方式:方式A以每分钟0.1•元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0.05元的价格按上网时间计算.如何选择收费方式能使上网者更合算?活动设计意图:通过这个活动,熟悉巩固用一次函数知识求二元一次方程组问题的方法,进一步提高把实际问题转化为数学问题的能力.教师活动:引导学生从实际问题中抽象出具体的数学问题,并应用所学方法求解.学生活动:在教师引导下建立两种计费方式的函数模型,然后比较求解.各小组合作探究。
一次函数与二元一次方程组课件
y
50 40 30 20 10
y =0.1x方式A 方式B y =0.05x+20
当x=400时,两者均可。
当x>400时,直线 y=0.05x+20在直线y=0.1x的下 方, 0.05x+20 < 0.1x ,选B种 方式合算
-1
y
y=-x+5 5
4 3
2 1
-4 -3 -2 -1 0 1 -1
y=2x-1
P(2,3)
x+y=5 2x -y=1
的解
X=2
2 3 4 5x
Y=3
1、一次函数y=5-x与y=2x-1图象的交点为(2,3),
则方程组
x y 5 2x y 1
x 2
的解为y 3.
2、若二元一次方程组
x 2y 2x y
x(分)
时间(分) x
方式A(元) 方式B(元)
y=o.1x y=0.05x+20
0 200 1000
0 20 100 20 30 70
解:设上网时间为x分,若按方式A则收费y=0.1x元;若 按方式B则收费y=0.05x+20元
在同一直角坐标系中分别画出这两个函数的图象
两图象交于点(400,40)
14.3.1一次函数与一元一次方程 1嵩4.3明.2县一牛次栏函江数镇与一一中元一包次睿不晶等式
x+y=5是什么?
是函数吗?
?
是方程 吗?
√
这是怎么 回事?
y=-x+5
y
二元一次方程组与一次函数
二元一次方程组与一次函数一、定义和性质:ax + by = cdx + ey = f其中a、b、c、d、e、f是已知的实数,且a和d不同时为0。
在二元一次方程组中,有以下性质:1.若方程组中的两个方程的系数比例相同,则这个方程组无解或有无数多个解。
2.三个线性方程的组合也仍然是满足二元一次方程组性质的。
二、解法:1.消元法:通过将一个方程的任意倍数加到另一个方程上,消去一个未知数的项,从而得到一个关于另一个未知数的一次方程。
根据得到的方程解出一个未知数的值,再带入到另一个方程中求得另一个未知数的值。
2.代入法:将一个方程的一个未知数表达式代入到另一个方程中,从而得到一个只含有一个未知数的方程。
根据这个方程解出一个未知数的值,再带入到另一个方程中求得另一个未知数的值。
3.矩阵法:将方程组的系数和常数项构成矩阵,然后通过矩阵的运算方法(如行列式、逆矩阵等)求解未知数。
解方程组的关键是找到合适的方法和技巧。
对于一些特殊的方程组,还可以利用几何方法进行解答。
三、二元一次方程组与一次函数的关系:从形式上看,二元一次方程组和一次函数都是关于未知数的一次方程。
一次函数是变量的对应关系,而二元一次方程组是未知数之间的关系。
将二元一次方程组写成矩阵形式为:..[ab][x]=[c][de][y][f]可以将这个方程组解释为从二维平面上的两条直线的交点。
其中x和y分别是直线的横坐标和纵坐标,a、b、c、d、e、f是直线的特征系数。
而一次函数可以看作是二维平面上一条直线,其斜率m和常数项c与二元一次方程组的系数有关。
对于方程组中的第一个方程ax + by = c,其可以表示为 y = (-a/b)x + c/b,其中(-a/b)表达了直线的斜率m,c/b表达了直线的截距c。
因此,一次函数和二元一次方程组在形式上和几何意义上都有相似之处,但是在概念上有明显的区别。
总结:本文从定义、性质、解法以及与一次函数的关系等几个方面进行了对二元一次方程组的介绍。
一次函数与二元一次方程
一次函数与二元一次方程我们知道一次函数的解析式就是一个二元一次方程,而任何一个二元一次方程都可以化为一次函数解析式的形式,如:y =2x +3是一次函数解析式,也是一个二元一次方程;而2x -y =-3是二元一次方程,不是函数解析式,但可以将其化为y =2x +3,即为一次函数解析式。
因此一次函数与二元一次方程是既有区别又有联系。
区别在于:(1)二元一次方程有两个未知数,而一次函数则有两个变量;(2)二元一次方程用一个等式表示两个未知数的关系,而一次函数既可以用一个等式表示两个变量之间的关系,又可以用列表或图象来表示两个变量之间的关系.联系在于:(1)在直角坐标系中分别描出以二元一次方程的解为坐标的点,这些点都在相应的一次函数的图象上.(2)在一次函数图象上任取一点,它的坐标都适合相应的二元一次方程.由于二元一次方程可以转化为一次函数,在直角坐标系中可以画出函数的图象,所以将方程组中的两个方程都化为一次函数,再在同一直角坐标系中画两个一次函数图象,它们的交点坐标就是相应的二元一次方程组的解.这种将二元一次方程组转化为一次函数,通过画函数图像确定交点坐标,从而解出方程组的方法,我们称为二元一次方程组的图象解法。
用此方法解二元一次方程组一般有下列几个步骤:(1)将相应的二元一次方程改写成一次函数的解析式;(2)在同一直角坐标系内作出这两个一次函数的图象;(3)观察图象的交点坐标,即得二元一次方程组的解.我们可以总结为“画直线、找交点、确定解”。
例 用作图象的方法解二元一次方程组⎩⎨⎧=+=+.1,523y x y x 解:①由3x +2y =5,得y =-2523+x ,由x +y =1,得y =-x +1.②在同一直角坐标系内作出一次函数y =-2523+x 的图象L 1和y =-x +1的图象L 2, ③如图1,观察图象,得L 1、L 2的交点为(3,-2),即二元一次方程组⎩⎨⎧=+=+.1,523y x y x 的解是⎩⎨⎧-==.2,3y xL 2 图1评注:(1)第一步变形时,要保证移向第一步变形时,要保证移项变号;(2)作图必须非常准确,因为图形的偏差会导致我们获得方程组解的偏差,甚至导致错解。
初二-第16讲-二元一次方程组与一次函数的关系
二元一次方程与一次函数的关系1.掌握二元一次方程组与一次函数的关系。
2.利用二元一次方程组确定一次函数的解析式。
教学建议:教师演变如何将一次函数变为二元一次方程。
分析二元一次方程组与一次函数的关系。
知识概述1、二元一次方程与一次函数的关系任何一个二元一次方程都可化成一次函数表达式的形式.一个二元一次方程的解有无数个,以一个二元一次方程的所有的解为坐标的点组成的图象与这个二元一次方程化成的一次函数的图象相同,是一条直线,如二元一次方程x-y=2有无数个解,以这无数个解为坐标的点组成的图象就是一次函数y=x-2的图象.一般地,以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数的图象相同.2、二元一次方程组与一次函数的关系一般地,从图形的角度看,确定两条直线交点的坐标,相当于求相应的二元一次方程组的解;解一个二元一次方程组相当于确定相应两条直线交点的坐标.即二元一次方程组的解可以看作是两个一次函数的图象的交点;反之两个一次函数的图象的交点坐标可以当作二元一次方程组的解.3、利用二元一次方程组确定一次函数的表达式(1)待定系数法:先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法.(2)利用二元一次方程组确定一次函数的表达式是求一次函数表达式的主要方法,其一般步骤如下:①设出函数表达式:y=kx+b;②把已知条件代入,得到关于k,b的方程组;③解方程组,求出k,b的值;④写出其表达式.注意:待定系数法的步骤可总结为“设、代、解、写”.二、典型例题讲解例1、已知直线y=x与y=-2x+1相交,则其交点坐标为__________.解析:由题意可知两条直线的交点坐标是方程组的解,解此方程组,得所以两条直线的交点坐标为.答案:规律总结:(1)每个二元一次方程组都对应两个一次函数,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.(2)如果方程组无解,那么两图象无交点,反之,如果两图象无交点,那么方程组无解.例2、如图所示,一次函数的图象经过A(2,4)和B(0,2)两点,且与x轴交于C点.(1)求这个一次函数的表达式;(2)求三角形AOC的面积.分析:设定表达式,将A,B两点的坐标代入得方程组可求解.在直角坐标系中求三角形的面积,一般选择比较特殊的线段作为底,如x轴、y轴上的线段或平行于x轴、y轴的线段.解:(1)设一次函数表达式为y=kx+b,因为函数图象经过点A(2,4),B(0,2),则有解得所以该一次函数的表达式为y=x+2.(2)令y=0,则由y=x+2,得x=-2,则点C的坐标为(-2,0),所以OC=|-2|=2.过点A作AD⊥x轴于点D,则AD=4,所以三角形AOC的面积为.方法归纳:确定一次函数y=kx+b(k≠0)的表达式,只要确定k,b的值即可.一般需要两个点的坐标,把两个点的坐标分别代入y=kx+b中,列出关于k,b的二元一次方程组,使问题得到解决.此法对于正比例函数y=kx(k≠0)仍适用,不同的是确定正比例函数表达式只需一个点的坐标就可以解决.例3、用作图象的方法解方程组分析:用图象法解二元一次方程组的关键是要作出两个二元一次方程表示的函数的图象,找出它们的交点.解:由2x-3y+3=0得由5x-3y-6=0得.在同一直角坐标系中作出直线和的图象,如图所示,得交点(3,3)所以方程组例4、一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为____________.分析:本题分两种情况讨论:①当k>0时,y随x的增大而增大,则有:当x=-3,y=-5;当x=6时,y=-2,把它们代入y=kx+b中可得∴∴函数解析式为y=x-4.②当k<O时则随x的增大而减小,则有:当x=-3时,y=-2;当x=6时,y=-5,把它们代入y =kx+b中可得∴∴函数解析式为y=-x-3.∴函数解析式为y=x-4,或y=-x-3.答案:y=x-4或y=-x-3.说明:本题充分体现了分类讨论思想,方程思想在一次函数中的应用,切忌考虑问题不全面.1、直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是()A.x=2 B.x=4C.x=8 D.x=102、如图,过点Q(0,3.5)的一次函数的图象与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是()A.3x-2y+3.5=0 B.3x-2y-3.5=0C.3x-2y+7=0 D.3x+2y-7=03、已知一次函数的图象都经过A(-2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A.2 B.3C.4 D.64、小艳用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1,l2,如图所示,她解的这个方程组是()A.B.C. D.5、如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象,下列说法:①买2件时,甲、乙两家售价一样;②买1件时买乙家合算;③买3件时,买甲家的合算;④买乙家的1件售价约为2元,其中正确的说法是()A.①②B.②③④C.②③D.①②③6、已知方程组没有解,则一次函数y=2-x与的图象必定()A.重合B.平行C.相交D.无法判断7、如图,若点P(m,n)的坐标可以通过解关于x、y的方程组求得,则m和n的值最可能为()A.m=-,n=0 B.m=-3,n=-2C.m=-3,n=4 D.m=-,n=28、在同一直角坐标系中,直线l1:y=(k-2)x+k和l2:y=kx的位置可能是()A.B.C.D.答案:ADCAD BCB9、如图,在同一直角坐标系内作出的一次函数y1,y2的图象l1,l2,则两条直线l1,l2的交点坐标可以看做方程组_________的解.答案:解:由图可知:直线l1过(2,3),(0,-1),因此直线l1的函数解析式为:y=2x-1;直线l2过(2,3),(0,1),因此直线l2的函数解析式为:y=x+1;因此所求的二元一次方程组为.10、已知y是x的一次函数,下表给出了部分对应值,则m的值是_____________.x -1 2 5y 5 -1 m答案:-7解:设该一次函数的解析式为y=kx+b.由题意得解得故m的值是-7.【巩固练习】1、已知一次函数y=3x-2k与y=x+k交点的纵坐标为6,求这两个函数图象与x轴、y轴的交点坐标.解:根据题意可列方程组解得所以其中一个一次函数表达式为,当x =0时,,所以与y轴的交点坐标为;当y=0时,,所以与x轴的交点坐标为.另一个一次函数表达式为,所以与y轴交点坐标为;当y=0时,,所以与x轴交点坐标为.所以一次函数与x轴的交点坐标为,与y轴的交点坐标为.一次函数与x轴的交点坐标为,与y轴的交点坐标为.2、如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组请你直接写出它的解;(3)直线l2:y=nx+m是否也经过点P?请说明理由.解:(1)∵P(1,b)在直线y=x+1上,∴当x=1时,b=1+1=2.(2)(3)直线y=nx+m也经过点P.理由:因为点P(1,2)在直线y=mx+n上,所以m+n=2,即2=n×1+m,这说明直线y=nx+m也经过点P.3、请你根据图中图象所提供的信息解答下面问题:(1)分别写出a1、a2中变量y随x变化而变化的情况:(2)求出一个二元一次方程组,使它满足图象中的条件.解:(1)a1:y随x的增大而增大,a2:y随x的增大而减小;(2)直线a1经过点(0,-1)与(1,1),设它的解析式为:y=kx+b;得:解得:k=2,b=-1即它的解析式是:y=2x-1.同理可求直线a2的解析式是,则所求的方程组是4、(南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A、B、C、D、分析:由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.解:设经过图象上的点的坐标(0,-1)和(1,1)的解析式为y=kx+b,将(0,-1)和(1,1)坐标代入得方程组解得所以经过(0,-1)和(1,1)的直线的解析式为y=2x-1,同理求得另一条直线的解析式是y=-x+2,因此所解的二元一次方程组是.故选D.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.5、(上海中考节选并改编)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系如图所示.求y关于x的函数表达式,并写出它的自变量的取值范围.解:设y与x的函数表达式为y=kx+b(k≠0),由图象过点(10,10),(50,6),得所以y关于x的函数表达式为.6、通过电脑拨号上“因特网”的费用是由电话费和上网费两部分组成.以前我市通过“黄冈热线”上“因特网”的费用为电话费0.18元/3min,上网费为7.2元/小时.后根据信息产业部调整“因特网”资费的要求,自1999年3月1日起,我市上“因特网”的费用调整为电话费0.22元/3min,上网费为每月不超过60h,按4元/小时计算,超过60h部分,按8元/小时计算.(1)根据调整后的规定,将每月上“因特网”的费用y(元)表示为上网时间x(h)的函数;(2)资费调整前,网民晓刚在其家庭经济预算中,一直有一笔70h的上网费用支出,“因特网”资费调整后,晓刚要想不超过其家庭经济预算中的上网费用支出,他现在每月至多可上网多少小时?(3)从资费调整前后的角度分析,比较我市网民上网费用的支出情况.解:(1)当0≤x≤60时,当x>60时,y=60×4+4.4x+(x-60)×8=12.4x-240.即调整后,每月上“因特网”的费用y与上网时间t的函数关系是:(2)资费调整前,上网70h所需费用为(3.6+7.2)×70=756(元).资费调整后,若上网60h,则所需费用为8.4×60=504(元).因为756>504元,所以晓刚现在上网时间超过60h.由12.4x-240≤756,解得x≤80.32所以现在晓刚每月至多可上网约80.32h.(3)设调整前所需费用为y1(元),调整后所需费用为y2(元).则y1=10.8x,当0≤x≤60时,y2=8.4x,10.8x>8.4x,故y1>y2;当x>60时,y2=12.4x-240,当y1=y2时,11/ 11。
八年级下册数学-一次函数与二元一次方程组、不等式
第17讲 一次函数与二元一次方程组、不等式知识导航二元一次方程组的解实质是求组成方程组的两个方程的公共解,也可以看作是求两条直线的交点坐标. 1.一般地,每个二元一次方程组都对应两个一次函数,因而也对应两条直线;从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这两个函数值是何值;从形的角度看,解方程组相当于确定两条直线的交点的坐标.2.二元一次方程组的解法有代入法,加减消元法和图象法,图象法只是直观地反映了二元一次方程组的解在相应的一次函数图象上的点的坐标之间的关系.3.解一元一次不等式ax +b >0或ax +b <0(a ≠0),相当于是某个一次函数y =ax +b 的值大于0或小于0时,求自变量x 的取值范围.【板块一】一次函数与一元一次方程方法技巧由于任何一元一次方程都可转化为kx +b =0(k ,b 为常数,k ≠0)的形式,所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值;从图象上看,这相当于已知直线y =kx +b 确定它与x 轴交点的横坐标的值.题型一 直线与坐标轴的交点【例1】(1)直线y =kx +b 过点A (0,-3)和点B (2,0),则关于x 的方程kx +b =0的解是( ) A .x =2 B .x =-2 C .x =3 D .x =-3 (2)直线y =k 1x +1和直线y =k 2x -3的交点在x 轴上,则12k k =( ) A . 13 B .-3 C .13D .3【例2】(1)关于x 的方程x +b =-2的解为x =1,则函数y =x +b +2与x 轴交点坐标为______________; (2)一次函数y =kx +b 的图象经过点A (2,1),则直线y =kx +b -1与x 轴交点B 的坐标是______________.针对练习11.一次函数y =kx +b 的图象如图所示,则关于x 的方程kx +b =0的解是_____________,关于x 的方程kxx2.不论m为何值,直线y=(m-1)x+m一定经过一个定点,则这个定点的坐标为______________.3.如图,在口ABCD中,点A(-1,0),B(3,0),D(0,3),AC,BD交于点'O.(1)求点'O的坐标;(2)若直线y=kx-1,将口ABCD的面积分成两等份,求k的值.x板块二一次函数与二元一次方程组题型二求两条直线的交点【例1】用作图象的方法解方程组27 38 x yx y【例2】已知函数y=1(1)1(10)1(00)1(1)x xx xx xx x的图象为“W”型,直线y=kx-k+1与函数y的图象有三个公共点,则k的值是()A.1或12B.0或12C.12D.12或-12题型三直线与直线的交点坐标位置与字母的取值范围【例3】已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)交于点M,且直线l2与x轴的交点为A(-2,0).(1)如图,若点M在第一象限,求k的取值范围;(2)若点M在第二象限,直接写出k的取值范围.针对练习21.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b),不解关于x,y的方程组1,, y xy mx n=+⎧⎨=+⎩请你直接写出它的解.2.无论m为何实数,直线y=x+2m与直线y=-x+4的交点一定不可能在()A.第一象限B.第二象限C.第三象限D.第四象限3.若直线y=kx+3经过直线y=4-3x与y=2x-1的交点,求k的值.4.在夹击直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;(2)如图,一次函数y=132x-+的图象与x轴,y轴分别相交于点A,B,若点P在△AOB的内部,求m的取值范围.【板块三】一次函数与一元一次不等式(组)方法技巧 一元一次不等式求解:从数的角度看,求ax +b >0(a ≠0)的解即求x 为何值时,y =ax +b 的值大于0;从形的角度看,求ax +b >0(a ≠0)的解即确定直线y =ax +b 在x 轴上方的图象所对应的x 的取值范围,数形结合是解一次不等式(组)的重要方法. 题型四 观察图象求不等式的解.【例1】如图,函数y 1=1x -和,y 2=12x +1的图象相交于(0,1),(4,3)两点,当y 1>y 2时,x 的取值范围______.题型五 利用图象求不等式组的解【例2】(1)如图1,直线y =kx +b 经过点A (-1,3),与x 轴交于点B0),则关于x 的不等式组0≤kx +b <-3x 的解集为_______.图1 图2 图3 图4(2)如图2,直线y =kx +b 经过点A (-1,0)和B (3,-1)两点,则不等式组x -4<kx +b ≤0的解集为_____.(3)如图3,直线y =kx +b 交x 轴于(-3,0),且过P (2,-3),则不等式组kx +b ≤-1,5x <0的解集为_____.(4)如图4,直线y =kx +b 经过A (2,0)和P (3,1)两点,则关于x 的不等式组1,3,x b kx kx b ⎧-≤⎪⎨⎪>-⎩ 的解集为____. 【例3】如图,直线y 1=kx +b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),求不等式组mx >kx +b >mx -2的解集.题型六隐藏的交点的运用【例4】(1)如图1,直线y=kx+b过A(2,1),B,0),则不等式组0≤kx+b<12x的解集为_____.(2)如图2,直线y=kx+b经过A(2,1),B(-1,-2)两点,求不等式组12x>kx+b>-2的解集.图1 图2 题型七由不等的解集求交点坐标【例5】不等式kx+b>2x+3的解集为x>1,则方程组,23y kx by x=+⎧⎨=+⎩的解为___.针对练习31.在平面直角坐标系中,直线y=kx向下平移6个单位后刚好过点(-2,0),求不等式kx-6>3x的解集.2.在平面直角坐标系中,将直线y=kx+2沿y轴翻折后刚好经过点(2,1),求不等式kx+2>x+1的解集.3.在平面直角坐标系中,点A,B的坐标分别为(3,m),(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围是_______(用含m的式子表示).4.如图,已知直线y=kx+b过(-2,3)和(-1,0),则x+5>kx+b≥0的解集为_____.5.如图,A(2,1)为直线y=kx+b上一点,则不等式kx+b>x-1>0的解集为____.6.在同一平面直角坐标系中,直线y=kx与函数24,(3),2,(33),28,(3)x xy xx x+<-⎧⎪=--≤≤⎨⎪->⎩的图象恰好有三个不同的交点,则k的取值范围是_______.7.已知关于x的不等式kx+b>0的解集为x>1,下列关于直线y=kx+b与x轴交点坐标与k的符号正确的是()A.(1,0),k>0 B.(1,0),k<0 C.(-1,0),k>0 D.(-1,0),k<0 8.如图,直线y=-x+m与y=nx+4(n≠0)的交点的横坐标为-2,求关于x的不等式组-x+m>nx+4n>0的整数解集.。
19.2.3一次函数与二元一次方程组
分析: 计费与上网时间有关,所以可设上
网时间为x分,分别写出两种计费方 式的函数模型,然后再做比较.
解法1: 设上网时间为x分,若按A方式则收y=0.1x元;若 按B方式则收y=0.05x+20元. 在同一直角坐标系中分别画出这两个函数的图象 . 解方程组 y=0.1x 得 x=400 y/元 y=0.1x y=0.05x+20 y=40 所以两图象交于点(400,40) 由图象知: 20 当0<x<400时,0.1x<0.05x+20; 当x=400时, 0.1x=0.05x+20; 当x>400时,0.1x>0.05x+20. O
-4 -3 -2 -1O -1 -2 -3
1 2 3 4 5
x
思 二元一次方 考 程-x+y=0.5
转化
对应
一次函数 y=x+0.5
对应
一条直线 一方面,直线上每一点横坐标和纵坐标的值都 是方程-x+y=0.5 的解。 同时,以方程每一组解x、y的值为横坐标和 纵坐标的点都在直线上;
思考:任何一个二元一次方程都可以写成
{
5=60k+b 10=90k+b
解得
{ b=-5
1 k 6
1 x 5 6
当y=0时,x=30
例1:如图,点P的坐标可以看作一个二元一次方程组的解。 (1)请写出这个方程组, (2)求出直线l1,l2与y轴围成的三角形的面积
y
4 B
l1
P
A
-2 -1 O 2
一次函数的形式呢?
归 纳
任何一个的二 元一次方程
一次函数
一条直线
y=-0.6x+1.6
学案:一次函数与二元一次方程(组)_梁世科
14.3.3 一次函数与二元一次方程(组) 学案学习目标:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
能综合应用一次函数、二元一次方程(组)解决相关实际问题。
课前预习:课本第127-128页内容一、感知身边数学情境引入:最近新会古兜温泉进行一系列的元旦优惠活动,还打出了“元旦当晚有神秘嘉宾盛情邀请你共跳水上《江南style 》”的广告语。
新会古兜温泉平时的门票标价100元/张,现优惠活动有两种购票方式:方式A 是团队中每位游客按标价9折购票;方式B 是团队中除5张按标价购票外,其余按标价8折购票。
思考:(1)多少人组团前往游玩时?两种购票方式费用相等;(21将方程思考:(1)直线=y (22、探究一次函数与二元一次方程组的关系:二元一次方程组⎩⎨⎧=-=-12853y x y x 中的两个方程对应着两条直线y =__ _____和y=_______, 在同一直角坐标系中(上图)画出它们的图象。
思考:(1)二元一次方程组⎩⎨⎧=-=-12853y x y x 和的解是 ; 直线y=-35x+85与y=2x-1的交点坐标是 。
(2)观察两直线的交点坐标与方程组的解之间有什么关系?由此猜想:是否任意两个一次函数图象的交点坐标都是它们所对应的二元一次方程组的解?3、知识归纳:(1)从“数”的角度看:解方程组相当于考虑,当 为何值时,两个 相等,以及这个函数值是何值。
(2)从“形”的角度看:解方程组相当于确定两条直线的 ,图象法解二元一次方程组的一般步骤是 。
4、抢答题:(1)、以方程3x-y=2的解为坐标的所有点都在一次函数y = 的图象上。
(2)、如图,方程组⎩⎨⎧-=-=+223y x y x 的解是________。
(3)、方程组⎩⎨⎧=-=+132y x y x 的解是________,由此可知, 一次函数y=-2x+3与y=x-1的图象必有一个交点,且交点坐标是________。
二元一次方程(组)与一次函数(基础)知识讲解
二元一次方程(组)与一次函数(基础)【学习目标】1.理解二元一次方程与一次函数的关系;2.能根据一次函数的图象求二元一次方程组的近似解;3.能利用二元一次方程组确定一次函数的表达式.【要点梳理】要点一、二元一次方程与一次函数的关系1.任何一个二元一次方程(0,)ax by c a b c +=≠、为常数都可以变形为-(0,)a c y x a b c b b=+≠、为常数即为一个一次函数,所以每个二元一次方程都对应一个一次函数.2.我们知道每个二元一次方程都有无数组解,例如:方程5x y +=我们列举出它的几组整数解有0,5;x y =⎧⎨=⎩5,0;x y =⎧⎨=⎩2,3x y =⎧⎨=⎩,我们发现以这些整数解为坐标的点(0,5),(5,0),(2,3)恰好在一次函数y =5+-x 的图像上,反过来,在一次函数x y -=5的图像上任取一点,它的坐标也适合方程5x y +=.要点诠释:1.以二元一次方程的解为坐标的点都在相应的函数图像上;2.一次函数图像上的点的坐标都适合相应的二元一次方程;3.以二元一次方程的解为坐标的所有点组成的图像与相应一次函数的图像相同. 要点二、二元一次方程组与一次函数1. 二元一次方程组与一次函数每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.要点诠释:1.两个一次函数图象的交点与二元一次方程组的解的联系是:在同一直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点.如一次函数5y x =-与21y x =-图象的交点为(2,3),则23x y =⎧⎨=⎩就是二元一次方程组521x y x y +=⎧⎨-=⎩的解. 2.当二元一次方程组无解时,方程组中两方程未知数的系数对应成比例,相应的两个一次函数在直角坐标系中的直线就没有交点,则两个一次函数的直线就平行.反过来,当两个一次函数直线平行时,相应的二元一次方程组就无解.如二元一次方程组无解,则一次函数35y x =-与31y x =+的图象就平行,反之也成立.3.当二元一次方程组有无数解时,则相应的两个一次函数在直角坐标系中的直线重合,反之也成立.2. 图像法解二元一次方程组求二元一次方程组的解,可以转化为求两条直线的交点的横纵坐标(即二元一次方程组的图像解法.)所以,解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.要点诠释:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.相反,求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.要点三、用二元一次方程组确定一次函数表达式待定系数法:先设出函数表达式,再根据所给的条件确定表达式中未知数的系数,从而得到函数表达式的方法,叫做待定系数法.利用待定系数法解决问题的步骤:1.确定所求问题含有待定系数解析式.2.根据所给条件, 列出一组含有待定系数的方程.3.解方程组或者消去待定系数,从而使问题得到解决.【典型例题】类型一、二元一次方程与一次函数1、一次函数的图象如图所示,则与此一次函数对应的二元一次方程为()A.x﹣3y=3 B.x+3y=3 C.3x﹣y=1 D.3x+y=1【答案】A【解析】直线过点(3,0),(0,﹣1).代入y=kx+b,得到二元一次方程组解方程组得到.∴一次函数解析式为,移向,并将系数化为1得到所对应的二元一次方程x ﹣3y=3.【总结升华】每个二元一次方程都对应一个一次函数,因此当求出一次函数的解析式时即也就求出了相应二元一次方程.举一反三:【变式】已知3=x ,2-=y 和0=x ,1=y 是二元一次方程03=++by ax 的两个解,则一次函数b ax y +=的解析式为( )A.、32--=x y B 、x y = C.、3+-=x y D 、 33--=x y【答案】D类型二、二元一次方程组与一次函数2、(2016•临清市二模)如图,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组的解是( )A .B .C .D .【思路点拨】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【答案】C.【解析】解:函数y=ax+b 和y=kx 的图象交于点P (﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.【总结升华】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.举一反三:【变式】(2015春•昌乐)在教学活动中我们知道,任何一个二元一次方程的图象都是一条直线,如图,已知直线y=ax﹣6过点P(﹣4,﹣2),则关于x、y的方程组的解是.【答案与解析】解:∵x=﹣4时,y=x=﹣2,∴点P(﹣4,﹣2)在直线y=x上,∴方程组的解为.故答案为.3、(2014•东莞模拟)在同一坐标系中画出函数y=2x+1和y=﹣2x+1的图象,并利用图象写出二元一次方程组的解.【思路点拨】利用两点法作出两直线的图象,交点坐标即为方程组的解.【答案与解析】解:如图,两直线的交点坐标为(0,1),所以,方程组的解是.【总结升华】用一次函数图象解方程是解二元一次方程组的又一解法,反映了一次函数与二元一次方程组之间的联系,能直观地看到怎样用图形来表示方程组的解.类型三、用二元一次方程组确定一次函数表达式4、某游泳池内现存水1890(m3),已知该游泳池的排水速度是灌水速度的2倍.假设在换水时需要经历“排水﹣﹣清洗﹣﹣灌水”的过程,其中游泳池内剩余的水量y(m3)与换水时间t(h)之间的函数关系如图所示.根据图象解答下列问题:(1)根据图中提供的信息,求排水的速度及清洗该游泳池所用的时间;(2)求灌水过程中的y(m3)与换水时间t(h)之间的函数关系式,写出函数的定义域.【思路点拨】(1)由图象可知,该游泳池5个小时排水1890(m3),根据速度公式求出即可,求出灌水的速度和时间即可求出清洗该游泳池所用的时间;(2)设灌水过程中的y(m3)与换水时间t(h)之间的函数关系式是y=kt+b.将(11,0),(21,1890)代入y=kt+b求出即可.【答案与解析】解:(1)∵由图象可知,该游泳池5个小时排水1890(m3),∴该游泳池排水的速度是1890÷5=378(m3/h),由题意得该游泳池灌水的速度是378×=189(m3/h),由此得灌水1890m3需要的时间是1890÷189=10(h),∴清洗该游泳池所用的时间是21﹣5﹣10=6(h),(2)设灌水过程中的y(m3)与换水时间t(h)之间的函数关系式是y=kt+b.将(11,0),(21,1890)代入y=kt+b,得,解得:k=189,b=﹣2079,即灌水过程中的y(m3)与时间t(h)之间的函数关系式是y=189t﹣2079,(11<t≤21).【总结升华】本题考查了一次函数的应用,主要考查学生能否把实际问题转化成数学问题,题目比较典型,是一道比较好的题目.举一反三:【变式】为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为ycm,椅子的高度为xcm,则y应是x的一次函数,下表列出两套符合条件的课桌椅的高度:第一套第二套椅子高度xcm 40.0 37.0桌子高度ycm 75.0 70.2(1)请确定y与x的函数关系式?(2)现有一把高39cm的椅子和一张高为78.2的课桌,它们是否配套?为什么?【答案】解:(1)设y=kx+b.根据题意得.解得.∴y=1.6x+11;(2)椅子和课桌不配套.∵当x=39时,y=1.6×39+11=73.4≠78.2,∴椅子和课桌不配套.。
一次函数与二元一次方程组教学设计范文(精选3篇)
一次函数与二元一次方程组教学设计范文(精选3篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如教学教案、阅读试题、诗歌鉴赏、教学随笔、日记散文、语录句子、报告总结、故事大全、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as teaching lesson plans, reading questions, poetry appreciation, teaching essays, diary essays, quotations sentences, report summaries, stories, essays, other essays, etc. If you want to know the difference Please pay attention to the format and writing of the sample essay!一次函数与二元一次方程组教学设计范文(精选3篇)一次函数与二元一次方程组教学设计范文(精选3篇)作为一位不辞辛劳的人民教师,常常要写一份优秀的教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
一次函数和二元一次方程组精编整理
【知识要点】知识点一:一次函数(包括正比例函数)图像的特点:两点确定一条直线,我们可以用两点法画一次函数的图像(1)y=kx 取(0,0)(1,k ) (2) y=kx+b 常选(0,b )和)0,(kb-作直线。
知识点二:一次函数y=kx+b 图像及性质(1)k 值决定趋势、增减性: 当k>0,从左到右呈上升趋势y 随x 的增大而增大; 当k<0,从左到右呈下降趋势,y 随x 的增大而减小; (2)b 决定直线与y 轴的交点:当b>0时,交于y 轴正半轴;当b<0时,交于y 轴负半轴 (3)象限:当k>0,b>0,图像经过一、二、三象限, 当k>0,b<0,图像经过一、三、四象限;当k<0,b>0,图像经过一、二、四象限; 当k<0,b<0,图像经过二、三、四象限;(4)两直线的位置关系 : 直线111b x k l +=和直线222b x k l +=⎩⎨⎧≠=相交与则则21212121,//,l l k k l l k k 知识点三:正比例函数图像与一次函数图像的关系直线b kx +=y 可以看作是由直线kx =y 沿y 轴上加下减b 个单位长度平移得到【练习与拓展】第六章 一次函数一、填空题1.函数的三种表示方式分别是 、 、 。
2.在函数y =11x +中,自变量x 的取值范围是______.第11题图3.小明将RMB1000元存入银行,年利率为2%,利息税为20%,那么x 年后的本息和y 元与年数x 的函数关系式是 .4.已知一次函数kx k y )1(-=+3,则k = .5.已知直线经过原点和P (-3,2),那么它的解析式为______.6.函数2+-=x y 中,y 的值随x 值的减小而 ,且函数图像与x 轴、y 轴的交点坐标分别是 .7.已知一次函数1)2(++=x m y ,函数y 的值随x 值的增大而增大,则m 的取值范围是 .8.已知函数y =3x -6,当x =0时,y =______;当y =0时,x =______.9.已知直线6+=x y 与x 轴,y 轴围成一个三角形,则这个三角形面积为 。
二元一次方程组和一次函数的关系
(如:x=2,y=3; x=1,y=4; x=-1,y=6; x=0,y=5; …
因此,方程x+y=5有无数解 ) 问题2:作出函数y=-x+5的图象,并标出 上述这些解为坐标的点,它们在一次函数
y=-x+5的图象上吗?
问题3:再在图象上任取一点,它的坐标 适合方程x+y=5吗?
x-2y=-2 2x-y=2
的解为
x=2 y=2
,
则函数y=0.5x+1与y=2x-2的图象的交点坐标
为 (2,2) .
例题:用图象法解方程组:
2x+y=4 ① 2x-3y=12 ② x
解:由①得: y2x4
由②得: y 2 x 4
3
o
作出图象:
观察图象得:交点(3,-2)
∴方程组的解为 x=3 y=-2
因此 x=2 就是方程组 x+y=5 的解
y=3
2x-y=1
二元一次方程组的解与以 这两个方程所对应的一次函 数图象的交点坐标相对应。
由此可得:
二元一次方程组的图象解法.
练习
函数y=-x+4和y=2x+1图象的交点为(1,3),
x=1
则方程组 y+x=4 的解为 y=3 .
y-2x=1
若二元一次方程组
一次函数y=2x-4上有一点坐标为(3,2),
x=3
则方程2x-y=4有一个解为 y=2 .
做一做:
① 解方程组
x+y=5
2x-y=1
将方程组变形,
②在 同一坐标系中画图象
y
y=5-x
5
二元一次方程组和一次函数问题
二元一次方程组(3)教学目标利用二元一次方程组求解一次函数,掌握一次函数与二元一次方程组的关系。
重难点分析:重点:1、利用二元一次方程组求解一次函数表达式;2、二元一次方程组的解与一次函数的关系;难点:1、二元一次方程组与一次函数的关系;2、方案选择问题。
知识点梳理1、二元一次方程与一次函数的关系若k ,b 表示常数且0≠k ,则b kx y =-为二元一次方程,有无数个解;将其变形可得b kx y +=,将x ,y 看作自变量、因变量,则b kx y +=是一次函数.事实上,以方程b kx y =-的解为坐标的点组成的图象与一次函数b kx y +=的图象相同。
结论:(1)以二元一次方程的解为坐标的点都在对应的函数图象上;(2)一次函数的图象上的点的坐标都适合对应的二元一次方程。
2、二元一次方程与对应两条直线的关系(1)方程组的解是对应的两条直线的交点坐标(2)两条直线的交点坐标是对应的方程组的解特别的:(1)两平行直线的k 相等;(2)方程组中两方程未知数的系数对应成比例方程组无解,对应的两直线平行。
3、三元一次方程组的基本概念知识点1:二元一次方程(组)与一次函数的基本关系【例1】图中两直线1l ,2l 的交点坐标可以看作方程组【 】的解。
A .121x y x y -=⎧⎨-=-⎩ B. 121x y x y -=-⎧⎨-=⎩C .321x y x y -=⎧⎨-=⎩ D. 321x y x y -=-⎧⎨-=-⎩【例2】(1)在同一直角坐标系中作出一次函数2+=x y ,3-=x y 的图像。
(2)两者的图像有何关系?(3)你能找出一组数适合方程2-=-y x ,3=-y x 吗?_________________,•这说明方程组2,3,x y x y -=-⎧⎨-=⎩________。
【随堂练习】1、直线83=-y kx ,452-=+y x 交点的纵坐标为0,则k 的值为【 】A .4B .-4C .2D .-22、把方程341x y x +=+化为b kx y +=的形式是________________。
二元一次方程组与一次函数应用题
二元一次方程组与一次函数应用题在数学中,二元一次方程组和一次函数是常见的数学概念,它们在解决实际问题中具有重要的应用。
本文将重点讨论二元一次方程组和一次函数的基本概念,并通过实际的应用题目来展示它们的解题方法和应用场景。
二元一次方程组二元一次方程组是指包含两个未知数的一次方程的组合,通常形式为:$$ \\begin{cases} a_1x + b_1y = c_1 \\\\ a_2x + b_2y = c_2 \\end{cases} $$其中a1,b1,c1,a2,b2,c2为已知系数,并且a1,b1,a2,b2不全为零。
解二元一次方程组的方法有多种,常见的有代入法、消元法和矩阵法。
一次函数一次函数是形如y=kx+b的线性函数,其中k和b为常数,代表函数的斜率和截距。
一次函数在代数中有着重要的地位,它描述了两个变量之间的线性关系。
在图像上,一次函数表现为一条直线。
应用题目题目一某商场举办打折促销活动,商品A的原价为x元,商品B的原价为y元。
现在商场决定对商品A和商品B均进行25%的折扣。
经过折扣后,商品A的价格为180元,商品B的价格为270元。
求商品A和商品B的原价分别是多少元。
题目二某班级共有男生和女生两个班级。
男生的人数比女生人数多20人,总人数为80人。
如果男生和女生队伍分别进行体育比赛,男生队伍比赛时每队人数都相同,女生队伍比赛时每队人数也相同,且两队都不剩余人员。
求男生和女生各自的人数是多少。
题目三某公司制造产品A和产品B,产品A每个单位利润为x元,产品B每个单位利润为y元。
公司共制造了200个单位的产品A和B,总利润为45000元。
已知产品A的利润是产品B利润的1.5倍。
求产品A和产品B的单位利润分别是多少元。
解题过程题目一解答设商品A的原价为a元,商品B的原价为b元,根据题意可列出方程组:$$ \\begin{cases} 0.75a = 180 \\\\ 0.75b = 270 \\end{cases} $$解得a=240,b=360,所以商品A和商品B的原价分别为240元和360元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与二元一次方程(组)的关系(重点) 1:如图 2,已知函数 y=ax+b 和 y=kx 的图象交于点 P,
y ax b 的解是 则根据图象可得,关于 x、y 的二元一次方程组 y kx
x=-4 y=-2
1.已知二元一次方程 x+y=3 与 3x-y=5 有一组公共解 x2 y 1 ,那么一次函数 y=3-x 与 y=3x-5 的图象的交点坐标为 ( B ) A.(1,2) C.(-1,2) B.(2,1) D.(-2,1)
-1
2x-y+1=0 (-2, -3) x-y-1=0
-2 -3
(1,0)
3、某单位准备和一个个体车主或一国有出租车公司其中的一
家签订月租车合同.设汽车每月行驶 x 千米, 应付给个体车主的月费用是 y1元,应付给国
有出租车公司的月费用是 y2元,y1、y2分别
与 x 之间的函数关系图象(两条射线)如图 5, 观察图象回答下列问题:
-5 -4 -3 -2
(0,1)
1 2 3 4 5x
x+y=1 -x+y=1
y=-x+1 y=x+1
(0,1)
参与讨论
两个一次函数关系式可以写成两个二元一次 方程的形式.一次函数y=2x+3和y=1/2x-3/2 的图象,与相应的二元一次方程组 2x-y+3=0 2x-y+3=0 的解有关 即 1/2x-y-3/2=0 x-2y-3=0 系吗? 如果有关系,请说明有怎样的关系?如果 没有关系。请说明理由? 一般地,如果两个一次函数的图象有一个交 点,那么交点的坐标就是相应的二元一次方 程组的一个解。
一次函数与二元一次方程可以相互 转化,从形式到内容它们都是统一的。
二元一次方程组的解与以这两个方 程所对应的一次函数图象的交点坐标 相对应。
归纳总结二
从数的角度看:
求二元一次方程组的解 自变量为何值时,两个函数的 值相等并求函数值 是确定两条直线交点的坐标
从形的角度看:
求二元一次方程组的解
由此可得: 二元一次方程组的图象解法: (1)写函数(2)作图象(3)找交点(4)下结论
化简得 。 在直角坐标系中画出这个函数的图像。
由函数图像得:
y 20
当 0≤x<400
当 X=400 当 X>400
时,y>0,
即选方式 A 省钱;
y=-0.05x+20
时,y=0, 即选方式A、B 一样 ; 时,y<0, 即选方式 B 省钱;
0 400 x
身边的数学: 春节快到了,小明想给妈妈买件礼物, A、B两个商场为迎接春节特推出了优惠活 动: A商场所有货品按八折出售;
把下列二元一次方程写成y=kx+b的形式:
(1)3x+y=7
(2) 3x+4y=13
(2)从图形的角度,二元一次方程2x-y -3=0 与一次函数有什么关系?
6 5 4 3 2
小丽
y
y=2x-3
P(4,5)
1 o 2 4 6 x
小明
你赞同小丽的说法吗?小明的说法呢?你 认为应如何表述? (1)点P在一次函数y=2x-3图象上,那么 它的坐标(4,5),即 x=4 是方程 2x-y-3=0的解吗? y=5
0
300
x
方式二费用:
y2 = 0.4x
两种计费差额为 : y = y1-y2 = -0.1x + 30 当 x <300 分时,y>0 ,y1>y2 ,方式二省钱 当 x = 300 分时,y =0 ,y1 =y2 , 方式一方式二一样 当 x > 300分时,y<0 ,y1<y2 ,方式一省钱
B商场购买5元的优惠卡后,所有商品按七 折出售; 小明如何选择商场购物更经济?
在一元一次方程一章中,我们曾考虑过下 面两种移动电话计费方式:
方式一
月租费 本地通话费 30元/月 0.30元/分
方式二
0 0.40元/分
y
30
用函数方法解答如何选择计费方式更省钱 方式一费用: y1 = 0.3x + 30
-3 y
y=2x-5
1
2
P(2, -1)
3 4
x
y=-1
-4
课堂练习
1.函数y=2x-3的图象任意一点的坐标都一 2x-y=3 定满足二元一次方程是:____________ y l1 2.如右图,两条直线l1 3 l2 和l2的交点可以看作是 2 (0,1 哪个二元一次方程组 ) 1 -3 -2 -1 o 1 2 3 x 的解?
(1)转化 y= -x-2 y= -x+2.5
y
y= -x+2.5
(2)画图 (3)两条直线有什么 位置关系?方程组解的 情况怎样?
0
x
结论:两直线平行,无交点,故方程组无解。
y= -x-2
归纳总结三: a1x+b1y=c1
二元一次方程组
的解的情况有三种:
a2x+b2y=c2
1.当 a1:a2 ≠b1:b2 时 ,方程组有唯一解; 2.当 a1:a2=b1:b2 =c1 :c2时,有无穷多解; 3.当a1:a2=b1:b2 ≠c1 :c2时,无解。
写函数,作图象,找交点,下结论
练习:利用图象法解方程组:
解:由①得: y x 1
由②得: y 2 x 1 作出图象: 观察图象得:交点(0,-1) x=0 ∴方程组的解为 y=-1
O x
x-y=-1 2x+y=1
①
②
y
y=x+1
y=-2x+4
巩固练习
1、以方程2x-y=1的解为坐标的点都在一次函数 y=2x-1 的图像上。 ______
图5
(1)每月行驶的路程在什么范围内时,租国有公司的车合算? (2)每月行驶的路程等于多少时,租两家车的费用相同?
解:(1)每月行驶的路程少于 1 500 km 时,租国有公司的车
合算. (2)每月行驶 1 500 km 时,租两家车的费用相同.
例:老师为了教学,需要在家上网查资料。电信公司 提供了两种上网收费方式:
能力提升: 用图象法解方程组
2x+y=4 2x-3y=12
①
②
x
解: 由①得: y 2 x 4
2 由②得: y x 4 3
作出图象: 观察图象得:交点为(3,-2) x=3 ∴方程组的解为 y=-2
y=2/3x - 4 o
y
y=-2x+4
你能说一说用图像解二元一次 方程组的一般步骤吗?
(2)x=2 是二元一次方程2x-y-3=0的 y=1 解,那么以此解为坐标的点,即点(2,1) 在函数图象上吗?
探究学习一
把二元一次方程y-x=1写成一次函数 y=____________ 的形式 x+1
1、你能找出方程的几组解吗? 2、画出一次函数y=x+1的图像 3、把以这几组解为坐标的点在坐标系上描出来, 你发现了什么?
4、在一次函数y=x+1的图像上点的坐标都 是二元一次方程y-x=1的解吗?
y
7 6 5 4 3 2 1 -5 -4 -3 -2 -1 0 -1 1 2 3 4 5x
y=x+1
归纳
一般地,一次函数y=kx+b图象上任意一点 的坐标 都是二元一次方程kx-y+b=0 的 一个解;以二元一次kx-y+b=0的解为坐 标 的点都在一次函数y=kx+b的图象上。
从形的角度看:
求二元一次方 程组的解
是两条直线的交点 坐标
例 利用图象解方程组
2x-y=5 x+y=1
思路点拨:在两个一次函数图象交点 处,自变量和对应的函数值同时满足两个 函数的关系式,而两个一次函数的关系式 就是方程组中的两个方程,所以交点的坐 标就是方程组的解。据此,我们可以利用 图象求某些方程组的解。两条直线的交点 坐标 就是方程组的解。
x-y= 4 2、方程组 3x-y=16
次函数 y=x+4
的解是
x=6 ,由此可知一 y=2
与 y=-3x+16 的图像必有一个交点
,且交点坐标是 (6,2)。
3、根据下列图象,你能说出它表示哪个方 程组的解?这个解是什么?
y
1
y=2x-1
o
1
x y=-3x+4
思维拓展
图象法: 近似!
x-y=0 你有哪些方法? 解方程组 2x+y=5 y
Hale Waihona Puke 归纳总结一二元一次方程的解与对应的一次函数 图像上的点何关系? 二元一次方程 的解 相应的一次函数 的图像上的点
(数)
(形)
议一议: 问题1: (1)你会解二元一次方程组吗?它的解是什 么? (2)在同一直角坐标系中,两个一次函数图象 的位置有什么关系?有无交点?若有,交点坐标 是什么? 问题2: 二元一次方程组的解与图象交点 的坐标有关系吗?
若按方式 2 则收 y2=0.05x+20 元。
y/元
40 30 20
y1 > y2
当 x = 400 时, y1 = y2 当 0≤x<400 时,
o
200
400
x /分
y1 < y2
解法2:设上网时间为 x 分,方式 B与方式 A两种计费的差额为
y元,则 y 随 x 变化的函数关系式为 y=(0.05x+20) -0.1x . y=-0.05x +20
一次函数与二元一次方程组
探索发现
(1)从形式上看,二元一次方程2x-y-3=0 与一次函数有什么关系? 二元一次方程2x-y-3=0可以写成一次 函数 y=2x-3 的形式; 反过来,一次函数y=2x-3可以写成二元 一次方程 2x-y-3=0 的形式。