有理数混合运算易错题及考点题综合训练

合集下载

有理数的混合运算练习题集(大综合17套)

有理数的混合运算练习题集(大综合17套)

有理数的混合运算练习题有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′) (1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯- (2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中()A.甲刚好亏盈平衡;B.甲盈利1元;C.甲盈利9元; D.甲亏本1.1元.有理数的四则混合运算练习第2套◆warmup知识点有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||aa=1,则a____0;若||aa=-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是()A.1a<1bB.ab<1 C.ab<1 D.ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10=_______.◆Exersising7.(1)若-1<a<0,则a______1a ; (2)当a>1,则a_______1a ; (3)若0<a ≤1,则a______1a. 8.a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,则||4a b m+2m 2-3cd 值是( ) A .1 B .5 C .11 D .与a ,b ,c ,d 值无关 9.下列运算正确的个数为( )(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A .3个B .4个C .2个D .1个10.a ,b 为有理数,在数轴上的位置如右上图所示,则( )A .1a >1b >1 B .1a >1>-1bC .1>-1a >1bD .1>1a >1b11.计算: (1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________o ba有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3 C.-4 D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。

(易错题精选)初中数学有理数综合练习(1)

(易错题精选)初中数学有理数综合练习(1)

(易错题精选)初中数学有理数综合练习(1)一、选择题1.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 2a .2.2019-的倒数是( )A .2019B .-2019C .12019D .12019- 【答案】C【解析】 【分析】先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】 2019-=2019,2019的倒数为12019故选C【点睛】 本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.3.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】 直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.4.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=,则23a +=,解得:1a =, Q 3tan 60︒=()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.6.下列说法错误的是( )A .2 a 与()2a -相等B ()2a -2a -C .3 a 3a -D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B ()22a a -=()2a -2a -B 正确;C 、3 a 3a -C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.7.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.8.已知一个数的绝对值等于2,那么这个数与2的和为( )A .4B .0C .4或—4D .0或4【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a ,则这个为±a9.若x <2,化简()22x -+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】分析:本题利用绝对值的化简和二次根式()2a a = 的化简得出即可. 解析:∵x <2,∴()22x -+|3﹣x|=2352x x x -+-=- .故选D.10.下列说法中不正确的是( )A .-3 表示的点到原点的距离是|-3|B .一个有理数的绝对值一定是正数C .一个有理数的绝对值一定不是负数D .互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A 、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A 选项正确,不符合题意;B 、若这个有理数为0,则0的绝对值还是0,故B 选项错误,符合题意;C 、根据绝对值的意义,|a|的绝对值表示在数轴上表示a 的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C 选项正确,不符合题意;D 、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D 选项正确,不符合题意, 故选B .【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a 的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.11.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案. 【详解】 由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误;∵a c >,∴C 错误;∵d c >,c>0,∴c d <,故D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.12.7-的绝对值是 ( )A .17-B .17C .7D .7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.13.数轴上A ,B ,C 三点所表示的数分别是a ,b ,c ,且满足||||||c b a b a c ---=-,则A ,B ,C 三点的位置可能是( )A .B .C .D .【答案】C【解析】【分析】由A 、B 、C 在数轴上的位置判断出a 、b 、c 的大小关系,根据绝对值性质去绝对值符号,判断左右两边是否相等即可.【详解】当a c b <<时,||||c b a b b c a b a c ---=-+-=-,180°-66?38=113?22′′,此选项错误;B 、当a <b <c 时,||||2c b a b c b a b c a b ---=-+-=+-,44A-mB=,此项错误;C 、当c <a <b 时,||||c b a b b c a b a c ---=-+-=-,||a c a c -=-,此项正确D 、当c <b <a 时,||||2c b a b b c a b c a b ---=--+=--+,||a c a c -=-,此选项错误;故选C.【点睛】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.14.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为( )A .()2019,0B .()2019,1C .()2019,2D .()2020,0【答案】C【解析】【分析】 分析点P 的运动规律,找到循环次数即可.【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位. ∴2019=4×504+3, 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.15.67-的绝对值是( ) A .67 B .76- C .67- D .76【答案】A【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A. 【点睛】本题考查了绝对值的定义.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示﹣2和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.17.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b+-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3【答案】A【解析】【分析】 根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数, 则a b c a b c b c a c a b a b c +-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3. 故选:A .【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数. 18.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.19.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010-【答案】D【解析】【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =, 101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a =-+=--+=-,767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a =-,故选:D .【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.20.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤ 【答案】D【解析】【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【详解】如果||a a =-,即一个数的绝对值等于它的相反数,则0a ≤.故选D .【点睛】本题考查绝对值,熟练掌握绝对值的性质是解题关键.。

有理数混合运算易错题

有理数混合运算易错题

有理数混合运算易错题
摘要:
一、概述有理数混合运算的概念
二、分析有理数混合运算的易错点
三、解决有理数混合运算错误的方法
四、总结
正文:
有理数混合运算包括同一级运算的连乘、连除、加减运算,以及不同级运算的乘除与加减的混合。

例如:2a + 3b、4c × 5d、6e ÷ 3f 等。

但在实际运算过程中,许多学生容易犯错。

以下是有关有理数混合运算的易错点分析及解决方法。

一、概述有理数混合运算的概念
有理数混合运算是指在数学计算中,涉及到有理数(包括整数、分数、小数等)的加、减、乘、除等运算。

二、分析有理数混合运算的易错点
1.符号错误:在有理数混合运算中,负号的运用容易出错,如误将负数与正数相乘得到负数。

2.运算顺序错误:没有按照先乘除后加减的顺序进行计算,导致结果错误。

3.括号使用错误:在需要使用括号时没有使用,或者滥用括号,导致运算顺序混乱。

4.绝对值运算错误:在处理绝对值运算时,忽略符号的影响,导致结果错误。

三、解决有理数混合运算错误的方法
1.牢记运算顺序:先进行乘除运算,再进行加减运算。

当有括号时,先计算括号内的运算。

2.正确使用符号:注意正负数的乘除法则,符号要正确地传递。

3.合理使用括号:在需要的地方使用括号,确保运算顺序正确。

4.掌握绝对值运算法则:了解绝对值的性质,注意符号的变化。

四、总结
有理数混合运算虽然看似简单,但掌握好运算顺序、符号使用、括号运用和绝对值运算等关键点,才能避免出错。

七年级-有理数混合运算及易错题练习

七年级-有理数混合运算及易错题练习

有理数混合运算练习题一、选择题:1、近似0。

036490有______个有效数字( )A、6 B。

5 C。

4 D.32。

下面关于0得说法正确得就是( ):①就是整数,也就是有理数②就是正数,不就是负数③不就是整数,就是有理数④就是整数,也就是自然数A、①②B。

②③C.①④D。

①③3.用四舍五入法把0、06097精确到千分位得近似值得有效数字就是( )A。

0,6,0 B.0,6,1,0 C。

0,6,1 D、6,14。

如果一个近似数就是1、60,则它得精确值x得取值范围就是( )A.1。

594<x〈1、605B.1。

595≤x〈1.605 C、1。

595<x≤1、604 D、1。

601〈x<1、6055。

乐乐学了七年级数学第二章《有理数及其运算》之后,总结出下列结论:①相反数等于本身得有理数只有0;②倒数等于本身得有理数只有1;③0与正数得绝对值都就是它本身;④立方等于本身得有理数有3个、其中,您认为正确结论得有几个 ( ) A。

1 B、2 C.3 D.46、实数a,b,c在数轴上得位置如图所示,下列式子正确得就是( )A、b+c>0B、a+b<a+c C。

ac〉 D。

ab>ac7。

已知abc>0,a>c,ac〈0,下列结论正确得就是( )A。

a<0,b〈0,c>0 ﻩB。

a>0,b〉0,c<0 C、a>0,b<0,c〈0ﻩD、a<0,b>0,c>0 8。

对于两个非零有理数a、b定义运算*如下:a*b=,则(-3)*()=( )A。

-3 B、 C.3 D。

—9、若“!”就是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算正确得就是( )A.2012B.2011 C。

D.2012×201110.若a与b互为相反数,c与d互为倒数,则代数式—得值就是( )A.0 B 、1 C 。

有理数混合运算易错题及考点题综合训练

有理数混合运算易错题及考点题综合训练

有理数及其运算易错及考点题训练专训一:有理数中的七种易错类型类型1 对有理数有关概念理解不清造成错误1.下列说法正确的是( )A .最小的正整数是0B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a2.已知|a|=7,则a = .类型2 误认为|a|=a ,忽略对字母a 分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()A .负数B .负数或零C .正数或零D .正数4.已知a =8,|a|=|b|,则b 的值等于( )A .8B .-8C .0D .±8类型3 对括号使用不当导致错误5.计算:-7-5.6.计算:2-⎝ ⎛⎭⎪⎫-15+14-12.类型4 忽略或不清楚运算顺序7.计算:3×42+43÷2.8.计算:-81÷94×49÷(-16).类型5混淆-a n 与(-a )n的意义 9.计算-24正确的是( )A .8B .-8C .16D .-1610.计算:-24÷(-2)2+2×(-2)3.类型6乘法运算中确定符号与加法运算中的符号规律相混淆11.计算:⎝ ⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345.12.计算:-36×⎝⎛⎭⎪⎫712-56-1.类型7 除法没有分配律13.计算:24÷⎝ ⎛⎭⎪⎫13-18-16.专训二:有理数中的几种热门考点考点1 有理数的定义、分类1.在下列各数中:+6,-8.25,-0.49,-23,-18,负有理数有( ) A .1个 B .2个 C .3个 D .4个考点2 相反数、倒数、绝对值2.(1)化简下列各式:⎪⎪⎪⎪⎪⎪-12= ;|+(-3)|= ;-⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-35= (2)-5的相反数是 ;-13的绝对值是 ;54的倒数是 . 3.式子|m -3|+5的值随m 的变化而变化,当m = 时,|m -3|+5有最小值,最小值是 .4.已知a ,b 分别是两个不同的点A ,B 所表示的有理数,且|a|=5,|b|=2,它们在数轴上的位置如图所示.(1)试确定数a ,b.(2)表示a ,b 两数的点相距多远?(3)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数. (第4题)考点3 有理数的大小比较5.在-12,-13,-2,-1这四个数中,最大的数是( ) A .-12 B .-13C .-2D .-16.如图,数轴上A ,B 两点分别对应有理数a ,b ,则下列结论正确的是( )(第6题)A .a <bB .a +b <0C .a -b >0D .ab >07.已知a ,b 是有理数,且a ,b 异号,则|a +b|,|a -b|,|a|+|b|的大小关系为________________________________________________________________________.8.比较a 与a 3的大小.考点4有理数的运算9.下列等式成立的是( )A .|-2|=2B .-(-1)=-1C .1÷(-3)=13D .-2×3=610.若四个有理数之和的14是3,其中三个数分别是-10,+8,-6,则第四个数是()A .+8B .-8C .+20D .+1111.计算下列各题:(1)17-23÷(-2)×3;(2)2×(-5)+23-3÷12;(3)10+8÷(-2)2-(-4)×(-3);(4)(-24)÷⎝ ⎛⎭⎪⎫2232+512×⎝ ⎛⎭⎪⎫-16-(0.5)2.考点5 非负数性质的应用12.当a 为有理数,下列说法中正确的是( )A .⎝ ⎛⎭⎪⎫a +12 0162为正数 B .-⎝ ⎛⎭⎪⎫a -12 0162为负数 C .a +⎝ ⎛⎭⎪⎫12 0162为正数 D .a 2+12 016为正数 13.若|a +1|+(b -2)2=0,求(a +b )9+a 6的值.考点6 科学记数法的应用14.今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为126万m 2.用科学记数法表示126万为( )A .126×104B .1.26×105C .1.26×106D .1.26×10715.若一个数等于5.8×1021,则这个数的整数位数是( )A .20B .21C .22D .2316.把390 000用科学记数法表示为 ,用科学记数法表示的数 5.16×104的原数是W.17.太阳的半径约为696 000 km ,用科学记数法表示为 .考点7 数学思想方法的应用类型1 数形结合思想18.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c.根据图中各点位置,下列式子正确的是( )(第18题)A .(a -1)(b -1)>0B .(b -1)(c -1)>0C .(a +1)(b +1)<0D .(b +1)(c +1)<0类型2 转化思想19.下列各式可以写成a -b +c 的是( )A .a -(+b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )20.计算:⎣⎢⎡⎦⎥⎤113-⎝ ⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712.类型3 分类讨论思想21.比较2a 与-2a 的大小.考点8 有理数中的探究与创新22.一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为( )A .8B .9C .13D .1523.按一定规律排列的一列数:21,22,23,25,28,213,…,若x ,y ,z 表示这列数中的连续三个数,猜测x ,y ,z 满足的关系式是 .24.观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 . 25.填在下面各正方形(如图)中的四个数之间都有一定的规律,据此规律得出a +b +c = .(第25题)26.如图是某种细胞分裂示意图,这种细胞每过30 min 便由1个分裂成2个.(第26题)根据此规律求:(1)这样的一个细胞经过第四个30 min 后可分裂成多少个细胞?(2)这样的一个细胞经过3 h 后可分裂成多少个细胞?(3)这样的一个细胞经过n (n 为正整数)h 后可分裂成多少个细胞?。

专题01有理数的混合运算40道重难点题型专训(原卷版+解析)

专题01有理数的混合运算40道重难点题型专训(原卷版+解析)
(1)(﹣72)﹣(﹣37)﹣(﹣22)﹣17;
(2) ;
(3)(﹣2)3﹣(﹣3)2;
(4) ;
(5) ;
(6) ;
(7) ;
(8) (用简便方法计算).
7.(2023春·黑龙江哈尔滨·六年级统考期中)计算:
(1)
(2)
(3)
8.(2023·全国·七年级假期作业)计算:
(1) ;
(2) ;
(3)
(4)

(2)解:原式

(3)解:原式=
=
=3.
(4)解:原式

【点睛】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.
5.(2023秋·山东日照·七年级日照市新营中学校考阶段练习)计算:
(1)
(2)
(3)
(4)99 ×(-4)-( - - )×24
(5)计算:
【答案】(1)24
(2)-60
【详解】(1)解:

(2)

【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和法则.
11.(2023·上海·六年级假期作业)计算
(1)
(2)
【答案】(1)
(2)
【详解】(1)解:原式

(2)解:原式

【点睛】本题考查有理数四则混合运算的简便运算,解题的关键是熟练掌握有理数运算的各个法则.
【详解】(1)解:

(2)

(3)

(4)

【点睛】本题考查了有理数的混合运算,加法运算律,乘法运算律,熟练掌握相关运算法则是解题关键.
9.(2023·全国·七年级假期作业)简便计算

(易错题精选)初中数学有理数的运算易错题汇编含答案解析(1)

(易错题精选)初中数学有理数的运算易错题汇编含答案解析(1)

(易错题精选)初中数学有理数的运算易错题汇编含答案解析(1)一、选择题1.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示为( )A .8.5×105B .8.5×106C .85×105D .85×106【答案】B【解析】【分析】根据科学记数法的表示形式:a×10n ,其中1≤|a|<10,n 为整数.解答即可.【详解】8500000=8.5×106,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( )A .138.8910⨯B .128.8910⨯C .1288.910⨯D .118.8910⨯【答案】A【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】3.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.4.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A .61.20710⨯B .70.120710⨯C .512.0710⨯D .51.20710⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1207000=1.207×106,故选A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )亿次/秒 A .81.2510⨯B .91.2510⨯C .101.2510⨯D .812.510⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.2018年全国高考报名总人数是975万人,用科学记数法表示为( )A .30.97510⨯人B .29.7510⨯人C .69.7510⨯人D .70.97510⨯人【答案】C【解析】【分析】根据科学计数法的定义进行作答.【详解】A.错误,应该是69.7510⨯;B.错误,应该是69.7510⨯;C.正确;D. 错误,应该是6⨯.综上,答案选C.9.7510【点睛】本题考查了科学计数法的定义:将一个数字表示成(a⨯10的n次幂的形式),其中1≤a<10,n表示整数,熟练掌握科学计数法的定义是本题解题关键.7.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.611.610⨯C.7⨯B.7116101.1610⨯⨯D.81.1610【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:(a+2b)(a+b)=22++,则C类卡片需要3张.a ab b32考点:整式的乘法公式.9.暑期爆款国产动漫《哪吒之降世魔童》票房已斩获4930000000,开启了国漫市场崛起新篇章,4930000000用科学计数法可表示为()A.49.3×108B.4.93×109C.4.933×108D.493×107【答案】B【解析】【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】解:4930000000=4.93×109. 故选B .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.10.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A .861B .863C .865D .867【答案】C【解析】【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【详解】输出数据的规律为2+1n n , 当输入数据为8时,输出的数据为288+1=865. 故答案选:C.【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.11.如图,是一个计算流程图.当16x 时,y 的值是( )A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】解:输入16x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根22是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.12.一根1m长的小棒,第一次截去它的12,第二次截去剩下的12,如此截下去,第五次后剩下的小棒的长度是()A.12m B.15m C.116m D.132m【答案】D【解析】【分析】根据题意和乘方的定义可以解答本题.【详解】解:第一次是12m,第二次是211112224⎛⎫⨯==⎪⎝⎭m,第三次是31111122228⎛⎫⨯⨯==⎪⎝⎭m,第四次是411216⎛⎫=⎪⎝⎭m,…,∴第五次后剩下的小棒的长度是511232⎛⎫= ⎪⎝⎭m , 故选:D .【点睛】本题考查了有理数的乘方运算,此题的关键是联系生活实际,从中找出规律,利用有理数的乘方解答.13.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.14.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.15.6万亿=296000000000000=2.96×1013.故选B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示的关键是要正确确定a的值以及n的值.16.双十一是阿里巴巴打造的年中购物狂欢,从2009年到2018年十年时间,双十一就像一个符号一样,融入到人们的日常生活当中.2018年京东在双十一期间(11月1日﹣11月11日)累计下单金额达1598亿元人民币.用科学记数法表示数1598亿是( )A.1.598×1110B.15.98×101010C.1.598×1010D.1.598×8【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】用科学记数法表示数1598亿是1.598×1011.故选A.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A.0.278 09×105B.27.809×103C.2.780 9×103D.2.780 9×104【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】27 809=2.780 9×410,故选D.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值18.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开展5G网络的商用示范.目前,北京市已经在怀柔试验场对5G进行相应的试验工作.现在4G网络在理想状态下,峰值速率约是100Mbps ,未来5G 网络峰值速率是4G 网络的204.8倍,那么未来5G 网络峰值速率约为( )A .1×102 MbpsB .2.048×102 MbpsC .2.048×103 MbpsD .2.048×104 Mbps 【答案】D【解析】【分析】已知4G 网络的峰值速率,5G 网络峰值速率是4G 网络的204.8倍,可得5G 网络峰值速率,通过化简,用科学计数法表示即可.【详解】解:由题干条件可得,5G 网络峰值速率:100Mbps×204.8=20480 Mbps=2.048×104 Mbps ,故选D.【点睛】本题考查了文字语言转化为数学语言的能力,灵活理解题干的内容并化简是解题的关键.19.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿 【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1【答案】A【解析】试题分析:当n 为奇数时,(n +1)为偶数,n n 1(1)(1)2+-+-=(1)12-+=0; 当n 为偶数时,(n +1)为奇数,n n 1(1)(1)2+-+-=1(1)2+-=0. 故选A .点睛:本题考查有理数乘方,解答本题的关键是明确有理数乘方的计算方法,利用分类讨论的数学思想解答.。

有理数混合运算通关专练(50题)—2024学年七年级数学上册重难考点(人教版)(解析版)

有理数混合运算通关专练(50题)—2024学年七年级数学上册重难考点(人教版)(解析版)

有理数混合运算通关专练(50题)=−1−18×(−8)=−1+1=0【点睛】本题主要考查有理数的混合运算,解答的关键在于对相应的运算法则的掌握.5.(2022秋·七年级课时练习)直接写得数:(1)6-5=(2)-7×(-5)=(3)5+(-3)=(4)-8-8=(5)-3.45×9.98×0=(6)2÷(-12)=(7)-123=(8)-(+3)=(9)3+(-1)2=(10)-24=【答案】(1)1(2)35(3)2(4)-16(5)0(6)-4(7)-4(8)-3(9)4(10)-16【分析】根据有理数的四则混合运算法则和有理数的乘方法则分别计算即可求解.(1)解:6-5=1【分析】(1)按照有理数的加减混合运算法则进行求解即可;(2)按照有理数的混合运算法则进行求解即可;(1)解:17−(−23)−19+(−31)=17+23−19−31=40−50=−10;(2))−|−9|解:−14+(−2)÷(−13=−1+(−2)×(−3)−9=−1+6−9=−4.【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.16.(2023秋·广东广州·七年级广州市天河区汇景实验学校校考期中)计算:(1)(−20)+(+3)−(−5)−(+7).+∣−2∣.(2)−12−(−8)÷22×14【答案】(1)-19;(2)32【分析】(1)先写成省略括号和的形式,再利用同号相加,最后算异号加即可,(2)先计算乘方与绝对值,再计算乘除法,最后计算加减即可.【详解】(1)原式=−20−7+3+5,=−27+8,=-19;+2,(2)原式=−1−(−8)÷4×14=−1+1+2,2.=32【点睛】本题考查有理数的加减乘除乘方混合运算问题,掌握有理数的混合运算法则,和运算顺序是解题关键.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.19.(2023秋·浙江杭州·七年级统考期末)计算−(−2)3;(3);(4)90°-45°58/ ;(5) 38°36/ +72.5°(1)-1+2×3 ;(2)(−3)2÷32(结果用度表示)(4)44°2/ (5)111.1°【答案】(1)5(2)14(3)−12【详解】试题分析:(1)-1+2×3=5 ;−(−2)3=14;(2)(−3)2÷32;(3)=-12(4)90°-45°58/ =44°2/ ;(5) 38°36/ +72.5°=111.1°考点:有理数法则的应用点评:解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数,有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.20.(2023秋·江苏无锡·七年级校联考期末)计算:(1)−1.5+1.4−(−3.6)−1.4+(−5.2))(2)−22×7−(−3)×6−5÷(−15【答案】(1)−3.1(2)15【分析】(1)根据有理数的混合运算法则依次计算即可;(2)根据有理数的混合运算法则依次计算即可.【详解】(1)−1.5+1.4−(−3.6)−1.4+(−5.2)=3.6+(1.4−1.4)−(5.2+1.5))(2)先计算乘方与绝对值,同步进行乘法运算,最后计算加减运算即可得到答案.【详解】解:(1)(−2)3+12×8=−8+4=−4.(2)(−2)2−|−7|+3−2×(−12)=4−7+3−(−1)=7−7+1=1.【点睛】本题考查的是含乘方的有理数的混合运算,绝对值的运算,掌握混合运算的运算方法与运算顺序是解题的关键.27.(2023秋·江苏南通·七年级统考期中)计算(1)(-20)+(-9)-11;(2)(3)(+-)×18(4)【答案】(1)-40;(2)100;(3)8;(4)-32.【详解】试题分析:(1)原式=-29-11=-40;(2)原式=(−4)×5×(−5)=100;(3)原式=6+3−1=8;(4)原式=−10+8÷4−(−8)×(−3)=−10+2−24=−32.考点:有理数的混合运算.28.(2023秋·山东潍坊·七年级统考期中)计算下列各题:(1)−23−(−18)−1−(+15)+23;(2)(13+56−512)÷(−136);(3)−22+[12−(−2)×3]÷(−3).【答案】(1)2;(2)−27;(3)-10(--))15 (3) 2 (4)(2)−12020+|−2|+18×(23−56)【答案】(1)8;(2)-2【分析】(1)先化简符号,再作加减法;(2)先算乘方,绝对值,利用乘法分配律展开计算,再作加减法.【详解】解:(1)12−(−18)+(−7)−15=12+18−7−15=8;(2)−12020+|−2|+18×(23−56)=−1+2+(18×23−18×56)=−1+2+(12−15)=−1+2−3=-2【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.41.(2023春·全国·七年级专题练习)计算:(1)(−13)−2+4×(﹣1)2019﹣|﹣23|+(π﹣5)0(2)3x(2x−3)(3)(a+b)(3a−2b)(4)(4a2−6ab+2a)÷2a【答案】(1)﹣2;(2)6x2−9x;(3)3a2+ab−2b2;(4)2a−3b+1.【分析】(1)根据负整数指数幂、0指数幂的运算法则,运用有理数的混合运算法则计算即可;(2)根据单项式乘以多项式法则计算即可;(3)根据多项式乘以多项式运算法则计算即可;(4)根据多项式除以单项式运算法则计算即可.【详解】(1)(−13)−2+4×(﹣1)2019﹣|﹣23|+(π﹣5)0解:原式=(﹣3)2+4×(﹣1)﹣8+1=9﹣4﹣8+1=﹣2.。

七年级数学有理数混合运算之易错点测试一(含答案)

七年级数学有理数混合运算之易错点测试一(含答案)

七年级数学有理数混合运算之易错点测试一一、单选题(共10道,每道10分)
1.计算的结果为()
A.-4
B.-3
C.-2
D.
答案:B
试题难度:三颗星知识点:有理数混合运算
2.计算的结果为()
A.-9
B.-60
C.3
D.-1
答案:C
试题难度:三颗星知识点:有理数混合运算
3.计算的结果为()
A.-34
B.-35
C.-22
D.-10
答案:A
试题难度:三颗星知识点:有理数混合运算
4.计算的结果为()
A.5
B.-13
C.11
D.-17
答案:A
试题难度:三颗星知识点:有理数混合运算
5.计算的结果为()
A.37
B.-5
C.67
D.2
答案:A
试题难度:三颗星知识点:有理数混合运算
6.计算的结果为()
A. B.0
C. D.
答案:C
试题难度:三颗星知识点:有理数混合运算
7.计算的结果为()
A.-7
B.-53
C. D.-5
答案:D
试题难度:三颗星知识点:有理数混合运算
8.计算的结果为()
A.-14
B.147
C.142
D.
答案:C
试题难度:三颗星知识点:有理数混合运算
9.计算的结果为()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:有理数混合运算
10.计算的结果为()
A. B.-9
C. D.
答案:D
试题难度:三颗星知识点:有理数混合运算。

有理数的混合运算专项训练(100题)

有理数的混合运算专项训练(100题)

专题2.4 有理数的混合运算专项训练(100题)参考答案与试题解析一.解答题(共25小题,满分100分,每小题4分)1.(4分)(2022•黄冈开学)计算:(1)(−514)+(−3.5); (2)23+(−15)+(−1)+13;(3)−22÷(−12)−(138+213−334)×48; (4)(﹣2)2×3+(﹣3)3÷9.【分析】(1)先通分,然后根据有理数的加法法则计算即可;(2)根据加法的交换律和结合律解答即可;(3)先算乘方,然后算乘除法,最后算加减法即可;(4)先算乘方,再算乘除法,最后算加法即可.【解答】解:(1)(−514)+(−3.5)=(﹣514)+(﹣324) =﹣834; (2)23+(−15)+(−1)+13=(23+13)+[(−15)+(﹣1)] =1+(﹣115)=−15;(3)−22÷(−12)−(138+213−334)×48 =﹣4×(﹣2)−118×48−73×48+154×48=8﹣66﹣112+180=10;(4)(﹣2)2×3+(﹣3)3÷9=4×3+(﹣27)÷9=12+(﹣3)=9.2.(4分)(2022•垦利区期末)计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34);(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−34)=﹣1×(4﹣9)+3×(−43)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)]=−196×(﹣10)=953.3.(4分)(2022•呼和浩特期末)计算:(1)(﹣8)×(﹣7)÷(−12);(2)(23−34+16)÷(−124);(3)﹣14﹣(1﹣)×13−|1﹣(﹣5)2|;(4)|13−12|÷(−112)−18×(−2)3.【分析】(1)先把除法统一成乘法,按乘法法则计算即可;(2)利用乘法的分配律计算比较简便;(3)先算乘方,再算绝对值和括号里面的,最后算乘法和加减;(4)先算乘方和绝对值里面的,再算乘除,最后算加减.【解答】解:(1)(﹣8)×(﹣7)÷(−12)=﹣8×7×2=﹣112;(2)(23−34+16)÷(−124)=(23−34+16)×(﹣24)=23×(﹣24)−34×(﹣24)+16×(﹣24)=﹣16+18﹣4=﹣2;(3)﹣14﹣(1﹣)×13−|1﹣(﹣5)2|=﹣1−12×13−|1﹣25|=﹣1−16−24=﹣2516;(4)|13−12|÷(−112)−18×(−2)3 =|−16|×(﹣12)−18×(﹣8)=16×(﹣12)+1=﹣2+1=﹣1.4.(4分)(2022•重庆期末)计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34−13−56)×(﹣12); (4)﹣12023﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13 =(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12)=34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12023﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2 =﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.5.(4分)(2022•镇平县校级期末)计算:(1)|﹣2|÷(−12)+(﹣5)×(﹣2); (2)(23−12+56)×(﹣24); (3)15÷(−32+56);(4)(﹣2)2﹣|﹣7|﹣3÷(−14)+(﹣3)3×(−13)2.【分析】(1)首先计算绝对值,然后计算除法、乘法,最后计算加法即可.(2)根据乘法分配律计算即可.(3)首先计算小括号里面的加法,然后计算小括号外面的除法即可.(4)首先计算乘方、绝对值,然后计算除法、乘法,最后从左向右依次计算即可.【解答】解:(1)|﹣2|÷(−12)+(﹣5)×(﹣2)=2×(﹣2)+10=﹣4+10=6.(2)(23−12+56)×(﹣24)=23×(﹣24)−12×(﹣24)+56×(﹣24)=﹣16+12﹣20=﹣24.(3)15÷(−32+56)=15÷(−23)=15×(−32)=﹣.(4)(﹣2)2﹣|﹣7|﹣3÷(−14)+(﹣3)3×(−13)2 =4﹣7﹣3×(﹣4)+(﹣27)×19=4﹣7+12+(﹣3)=﹣3+12+(﹣3)=9+(﹣3)=6.6.(4分)(2022•高青县期末)计算:(1)(14+38−712)÷124; (2)﹣23÷8−14×(﹣2)2;(3)﹣24+(3﹣7)2﹣2×(﹣1)2;(4)[(﹣2)3+43]÷4+(−23). 【分析】(1)运用乘法对加法的分配律,简化计算.(2)先算乘方,再算乘除,最后算加减.(3)先算乘方,再算乘除,最后算加减.(4)先算乘方,再算中括号里的,再算除法,再算加法.【解答】解:(1)原式=(14+38−712)×24=14×24+38×24−712×24=6+9﹣14=1.(2)原式=−8÷8−14×4 =﹣1﹣1=﹣2.(3)原式=﹣16+(﹣4)2﹣2×1=﹣16+16﹣2=﹣2.(4)原式=(−8+43)÷4+(−23) =−203÷4+(−23) =−53+(−23)=−73.7.(4分)(2022•莱西市期末)计算:(1)﹣﹣﹣;(2)(−613)+(−713)﹣5; (3)25×34−(﹣25)×12+25×;(4)5×(﹣6)﹣(﹣4)2÷(﹣8).【分析】(1)利用有理数的加减运算的法则进行求解即可;(2)利用加减运算的法则进行求解即可;(3)先把式子进行整理,再利用乘法的分配律进行求解即可;(4)先算乘方,再算乘法与除法,最后算加法即可.【解答】解:(1)﹣﹣﹣=﹣﹣=﹣=﹣12;(2)(−613)+(−713)﹣5 =﹣1﹣5=﹣6;(3)25×34−(﹣25)×12+25× =25×0.75+25×0.5+25×=25×()=25×=;(4)5×(﹣6)﹣(﹣4)2÷(﹣8)=5×(﹣6)﹣16÷(﹣8)=﹣30+2=﹣28.8.(4分)(2022•越城区校级月考)计算(1)10﹣1÷(16−13)÷112(2)﹣12﹣6×(−13)2+(﹣5)×(﹣3)(3)32÷(﹣22)×(﹣114)+(﹣5)6×(−125)3 (4)[1﹣(38+16−34)×24]÷5.【分析】(1)先算括号里面的,再算除法,最后算减法即可;(2)先算乘方,再算乘法,最后算加减即可;(3)先算乘方,再算除法和乘法,最后算加减即可;(4)先算乘法,再算加减,最后算除法即可.【解答】解: (1)原式=10﹣1÷(−16)×12=10+72=82;(2)原式=﹣1﹣6×19+15 =﹣1−23+15 =1313;(3)原式=32÷(﹣4)×(−54)+(﹣1)=10﹣1=9;(4)[1﹣(38+16−34)×24]÷5.=[1﹣(9+4﹣18)]÷5=[1﹣(﹣5)]÷5=6÷5=.9.(4分)(2022•宜兴市期中)计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(−35)×53; (3)﹣22×7﹣(﹣3)×6+5;(4)(113+18−2.75)×(﹣24)+(﹣1)2014+(﹣3)3. 【分析】(1)根据有理数的加减混合运算进行计算即可;(2)根据有理数的乘除法进行计算即可;(3)根据有理数的混合运算进行计算即可;(4)根据有理数的混合运算进行计算即可.【解答】解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=﹣5×53×53=−1259;(3)原式=﹣4×7+18+5=﹣28+18+5=﹣5;(4)原式=−43×24−18×24+114×24+1﹣27 =﹣32﹣3+66﹣26=5.10.(4分)(2022•镇平县月考)计算:(1)(−58)÷143×(−165)÷(−67)(2)﹣3﹣[﹣5+(1﹣×35)÷(﹣2)](3)(413−312)×(﹣2)﹣223÷(−12) (4)[50﹣(79−1112+16)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=−58×314×165×76=−12; (2)原式=﹣3+5+(1−325)×12=−3+5+1125=21125; (3)原式=−263+7+163=323;(4)原式=(50﹣28+33﹣6)×149=49×149=1.11.(4分)(2022•饶平县校级期中)计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6 (3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417;(3)原式=﹣18×49×49×(−116)=29;(4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315. 12.(4分)(2022•定陶区期中)计算:(1)23﹣6×(﹣3)+2×(﹣4);(2)(﹣134)﹣(+613)﹣+103; (3)214×(−67)÷(12−2);(4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114).【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加法可以解答本题.【解答】解:(1)23﹣6×(﹣3)+2×(﹣4)=23+18+(﹣8)=33;(2)(﹣134)﹣(+613)﹣+103=(﹣134)+(﹣613)+(﹣214)+313 =[(﹣134)+(﹣214)]+[(﹣613)+313] =(﹣4)+(﹣3)=﹣7;(3)214×(−67)÷(12−2) =94×(−67)÷(−32) =94×67×23=97; (4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114)=(﹣125)×(−35)+32÷(﹣4)×(−54)=75+(﹣8)×(−54)=75+10=85.13.(4分)(2022•甘州区期末)计算:(1)(18−13+16)×(−24); (2)|−2|×(−1)2023−3÷12×2;(3)−12−(1−0.5)×13×[2−(−3)]2;(4)7×(−36)×(−87)×16. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算绝对值及乘方运算,再计算乘除运算,最后算加减运算,即可得到结果;(3)原式先计算乘方及括号中的运算,再计算乘法运算,最后算加减运算,即可得到结果;(4)原式约分即可得到结果.【解答】解:(1)原式=18×(﹣24)−13×(﹣24)+16×(﹣24)=﹣3+8﹣4=1;(2)原式=2×(﹣1)﹣3×2×2=﹣2﹣12=﹣14;(3)原式=﹣1−12×13×25 =﹣1+76 =−316; (4)原式=48.14.(4分)(2022•江都区期中)计算(1)0﹣(+3)+(﹣5)﹣(﹣7)﹣(﹣3)(2)48×(−23)﹣(﹣48)÷(﹣8) (3)﹣12×(12−34+112)(4)﹣12﹣(1﹣)×13×[3﹣(﹣3)2].【分析】(1)先将减法转化为加法,再利用加法法则计算;(2)先算乘除,再算加法即可;(3)利用分配律计算即可;(4)先算乘方,再算乘除,最后算加减,有括号,要先做括号内的运算.【解答】解:(1)原式=0﹣3﹣5+7+3=﹣8+10=2;(2)原式=﹣32﹣6=﹣38;(3)原式=﹣12×12+12×34−12×112=﹣6+9﹣1=﹣7+9=2;(4)原式=﹣1−12×13×(3﹣9) =﹣1−12×13×(﹣6) =﹣1+1=0.15.(4分)(2022•铁力市校级期中)计算:(1)25−|−112|−(+214)+(−2.75) (2)[(−12)2+(−14)×16+42]×[(−32)−3](3)−13−(1−0.5)×13×[2−(−3)2](4)(−5)×313+2×313+(−6)×313.【分析】(1)先计算绝对值、将减法转化为加法,再根据法则计算可得;(2)根据有理数混合运算顺序和运算法则计算可得;(3)根据有理数混合运算顺序和运算法则计算可得;(4)逆用乘法分配律提取313,再计算括号内的,最后计算乘法即可得.【解答】解:(1)原式=25−32−94−114=−1110−5=﹣6110;(2)原式=(14−4+16)×(−92)=494×(−92)8(3)原式=﹣1−12×13×(﹣7)=﹣1+76=16;(4)原式=103×(﹣5+2﹣6) =103×(﹣9)=﹣30.16.(4分)(2022•禄丰县校级期中)计算(1)23﹣17﹣(﹣7)+(﹣16)(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)(3)﹣24÷(223)2﹣312×(−14)(4)×(﹣2)3﹣[4÷(−23)2+1]+(﹣1)2022.【分析】(1)根据有理数的加法法则计算即可;(2)先计算乘方、绝对值即可;(3)先算乘方,再算乘除,最后算加减即可;(4)先算乘方,再算乘除,最后算加减即可;【解答】解:(1)23﹣17﹣(﹣7)+(﹣16)=23﹣17+7﹣16=﹣3(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)=﹣4+8﹣27+3=﹣20(3)﹣24÷(223)2﹣312×(−14)=﹣24×964+72×14=−278+788=−52 (4)×(﹣2)3﹣[4÷(−23)2+1]+(﹣1)2022.=﹣2﹣(9+1)+1=﹣1117.(4分)(2022•高新区校级期中)计算:(1)12﹣(﹣18)+(﹣12)﹣15(2)(−13)﹣(−25)+(−23)+35(3)(14−12+16)×(﹣24)(4)﹣14+(﹣2)3×(−12)﹣(﹣32)【分析】(1)减法转化为加法,依据法则计算可得;(2)减法转化为加法,运用加法的交换律和运算法则计算可得;(3)运用乘法分配律计算可得;(4)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=12+18﹣12﹣15=30﹣27=3;(2)原式=−13−23+25+35=−1+1=0;(3)原式=14×(﹣24)−12×(﹣24)+16×(﹣24)=﹣6+12﹣4=2;(4)原式=﹣1+8×12+9=﹣1+4+9=12.18.(4分)(2022•如皋市校级月考)计算:(1)11+(﹣22)﹣3×(﹣11)(2)(−36911)÷9(3)3.52×(−47)+2.48×(−47)−13×(−47) (4)(13−12)×(−6)+(−14)÷(−18).【分析】(1)先计算乘法,再计算加减可得;(2)将除法转化为乘法,再计算乘法可得;(3)逆用乘法分配律提取公因数−47,再计算括号内的,最后计算乘法即可得;(4)先计算乘法、除法,然后计算加减可得.【解答】解:(1)原式=11﹣22+33=22;(2)原式=﹣(36+911)×19=−4−111=−4111;(3)原式=(−47)×(﹣13)=(−47)×(﹣7)=4;(4)原式=﹣2+3+2=3.19.(4分)(2022•郯城县月考)计算(1)1+(﹣2)+|﹣2﹣3|﹣5﹣(﹣9)(2)113×(13−12)×311÷54(3)(512+23−34)×(﹣12)(4)﹣3﹣[﹣5+(1﹣2×35)÷(﹣2)].【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算括号中的运算,再计算乘除运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘除运算,再计算加减运算即可求出值.【解答】解:(1)原式=1﹣2+5﹣5+9=8;(2)原式=113×(−16)×311×45=−215; (3)原式=512×(﹣12)+23×(﹣12)−34×(﹣12)=﹣5﹣8+9=﹣4;(4)原式=﹣3+5−110=.20.(4分)(2022•南川区校级月考)计算(1)(+45)﹣91+5+(﹣9)(2)(−34)×113÷(﹣112) (3)(−74)÷78−23×(−6)(4)[1124−(38+16−34)×24]÷5.【分析】(1)根据加法交换律和结合律简便计算;(2)将除法变为乘法,再约分计算即可求解;(3)先算乘除法,再算加法即可求解;(4)先算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.注意乘法分配律的运用.【解答】解:(1)(+45)﹣91+5+(﹣9)=(45+5)+(﹣91﹣9)=50﹣100=﹣50;(2)(−34)×113÷(﹣112) =34×43×23 =23;(3)(−74)÷78−23×(−6)=﹣2+4=2;(4)[1124−(38+16−34)×24]÷5 =[1124−9﹣4+18]÷5=6124÷5=1524. 21.(4分)(2022•凉州区校级月考)计算:(1)74÷78−23×(﹣6)(2)(−34−59+712)÷136(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|(4)113×(13−12)×311÷54.【分析】(1)根据有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的乘除法和减法可以解答本题.【解答】解:(1)74÷78−23×(﹣6)=74×87+4=2+4=6;(2)(−34−59+712)÷136=(−34−59+712)×36=﹣27﹣15+21=﹣21;(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|=(﹣)+(﹣)+2.5+(﹣)=﹣;(4)113×(13−12)×311÷54=113×(−16)×311×45=−215.22.(4分)(2022•凉州区校级月考)计算:(1)74÷78−23×(﹣6)(2)(−34−59+712)÷136(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|(4)113×(13−12)×311÷54.【分析】(1)根据有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的乘除法和减法可以解答本题.【解答】解:(1)74÷78−23×(﹣6)=74×87+4=2+4=6;(2)(−34−59+712)÷136=(−34−59+712)×36=﹣27﹣15+21=﹣21;(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|=(﹣)+(﹣)+2.5+(﹣)=﹣;(4)113×(13−12)×311÷54=113×(−16)×311×45=−215.23.(4分)(2022•兴隆台区校级月考)计算(1)(1−38+712)×(﹣24)(2)25×16+25×13−25×12(3)(﹣1)4−17×[2﹣(﹣4)2](4)﹣32+16÷(﹣2)×12−(﹣1)2015.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式逆用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解: (1)原式=﹣24+9﹣14=﹣29;(2)原式=25×(16+13−12)=25×0=0;(3)原式=1−17×(﹣14)=1+2=3; (4)原式=﹣9﹣4+1=﹣12.24.(4分)(2022•苏仙区校级期中)计算(1)23+(﹣37)﹣23+7(2)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(3)(23−112−415)×(﹣60).(4)﹣12022+|﹣5|×(−85)﹣(﹣4)2÷(﹣8).【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=23﹣23﹣37+7=﹣30;(2)原式=﹣10+2﹣12=﹣20;(3)原式=﹣40+5+16=﹣19;(4)原式=﹣1﹣8+2=﹣7.25.(4分)(2022•立山区期中)计算题(1)﹣81÷(﹣214)×49÷(﹣16);(2)(−124)÷(123−54+76);(3)﹣32÷(﹣2)3×|﹣113|×6+(﹣2)4;(4)﹣(23)2×18﹣2×(−15)÷25+|﹣8|×2+179×(﹣112)2.【分析】(1)原式从左到右依次计算即可求出值;(2)原式被除式与除式调换求出值,即可求出所求;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣81×49×49×116=﹣1;(2)(123−54+76)÷(−124)=(123−54+76)×(﹣24)=53×(﹣24)−54×(﹣24)+76×(﹣24)=﹣40+30﹣28=﹣38,则原式=−138;(3)原式=﹣9÷(﹣8)×43×6+16=98×43×6+16=9+16=25;(4)原式=−49×18﹣2×(−15)×52+8×+169×94=﹣8+1+2+4=﹣1.。

(易错题精选)初中数学有理数的运算综合训练

(易错题精选)初中数学有理数的运算综合训练

(易错题精选)初中数学有理数的运算综合训练一、选择题1.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km.用科学记数法表示1.496亿是()A.70.149610⨯1.49610⨯D.81.49610⨯C.8⨯B.714.9610【答案】D【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列运算正确的是()A.a5⋅a3 = a8B.3690000=3.69×107C.(-2a)3 =-6a3D.02016=0【答案】A【解析】【分析】分别根据同底数幂的乘法,科学记数法,幂的乘方和积的乘方,零指数幂求出每个式子的值,再判断即可.【详解】A、结果是a8,故本选项符合题意;B、结果是3.69×106,故本选项不符合题意;C、结果是-8a3,故本选项不符合题意;D、结果是1,故本选项不符合题意;故选:A.【点睛】此题考查同底数幂的乘法,科学记数法,幂的乘方和积的乘方,零指数幂,能正确求出每个式子的值是解题关键.3.9万亿13==⨯,88900000000008.8910故选A.【点睛】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数.)4.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分【答案】A【解析】【分析】 根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a 与b 互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a 与b 互为相反数,故选A .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.5.2018-2019学年度七星关区区级配套“教育精准扶贫”资金约1410000元,1410000用科学计数法表示为( )A .61.4110⨯B .71.4110⨯C .51.4110⨯D .41.4110⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将1410000用科学记数法表示为61.4110⨯,故选:A .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.据民政部网站消息截至2018年底,我国60岁以上老年人口已经达到2.56亿人.其中2.56 亿用科学记数法表示为()A.2.56×107B.2.56×108C.2.56×l09D.2.56×l010【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:2.56亿=256000000=2.56×108,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:(a+2b)(a+b)=2232++,则C类卡片需要3张.a ab b考点:整式的乘法公式.8.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A.81.810⨯D.100.1810⨯⨯C.91810⨯B.81.810【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1800000000=1.8×109,故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣6【答案】A【解析】【分析】由正方体各个面之间的关系知道,它的展开图中相对的两个面之间应该隔一个正方形,可以得到相对面的两个数,相加后比较即可.【详解】解:根据展开图可得,2和﹣2是相对的两个面;0和1是相对的两个面;﹣4和3是相对的两个面,∵2+(﹣2)=0,0+1=1,﹣4+3=﹣1,∴原正方体相对两个面上的数字和的最小值是﹣1.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析解答问题.10.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出 (1)225310417526…那么,当输入数据8时,输出的数据是()A.861B.863C.865D.867【答案】C 【解析】【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【详解】 输出数据的规律为2+1n n , 当输入数据为8时,输出的数据为288+1=865. 故答案选:C.【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.11.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿 【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.按如图所示的运算程序,能使输出结果为10的是( )A.x=7,y=2 B.x=﹣4,y=﹣2 C.x=﹣3,y=4 D.x=12,y=3【答案】D【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】解:A、x=7、y=2时,输出结果为2×7+22=18,不符合题意;B、x=﹣4、y=﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C、x=﹣3、y=4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D、x=12、y=3时,输出结果为2×12+32=10,符合题意;故选:D.【点睛】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.13.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为()A.63.0510⨯B.630.510⨯C.73.0510⨯D.83.0510⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】3050万=30500000=73.0510⨯,故选:C.【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.一根1m长的小棒,第一次截去它的12,第二次截去剩下的12,如此截下去,第五次后剩下的小棒的长度是()A.12m B.15m C.116m D.132m【答案】D【解析】【分析】根据题意和乘方的定义可以解答本题.【详解】 解:第一次是12m ,第二次是211112224⎛⎫⨯== ⎪⎝⎭m ,第三次是31111122228⎛⎫⨯⨯== ⎪⎝⎭m ,第四次是411216⎛⎫= ⎪⎝⎭m ,…, ∴第五次后剩下的小棒的长度是511232⎛⎫= ⎪⎝⎭m , 故选:D .【点睛】本题考查了有理数的乘方运算,此题的关键是联系生活实际,从中找出规律,利用有理数的乘方解答.15.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.6万亿=296000000000000=2.96×1013.故选B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示的关键是要正确确定a 的值以及n 的值.17.12010-的倒数是( )A .2010-B .2010C .12010D .12010- 【答案】A【解析】【分析】 根据倒数的定义求解.【详解】解:根据互为倒数的两个数乘积为1可知:12010-的倒数为-2010. 故选A .【点睛】 本题考查倒数的定义,题目简单.18.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开展5G 网络的商用示范.目前,北京市已经在怀柔试验场对5G 进行相应的试验工作.现在4G 网络在理想状态下,峰值速率约是100Mbps ,未来5G 网络峰值速率是4G 网络的204.8倍,那么未来5G 网络峰值速率约为( )A .1×102 MbpsB .2.048×102 MbpsC .2.048×103 MbpsD .2.048×104 Mbps 【答案】D【解析】【分析】已知4G 网络的峰值速率,5G 网络峰值速率是4G 网络的204.8倍,可得5G 网络峰值速率,通过化简,用科学计数法表示即可.【详解】解:由题干条件可得,5G 网络峰值速率:100Mbps×204.8=20480 Mbps=2.048×104 Mbps ,故选D.【点睛】本题考查了文字语言转化为数学语言的能力,灵活理解题干的内容并化简是解题的关键.19.2019年我省实施降成本的30条措施,全年为企业减负960亿元以上,用科学记数法表示数据960亿为( )A .79.610⨯B .89.610⨯C .99.610⨯D .109.610⨯【答案】D【解析】【分析】科学记数法的表示形式为a 10n ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:960亿=96000000000=109.610故选:D.【点睛】此题主要考查科学记数法,熟练确定a 和n 是解题的关键.20.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n ﹣2)2互为相反数,∴|m+3|+(n ﹣2)2=0,∴m+3=0,n ﹣2=0,解得m=﹣3,n=2,所以,m n =(﹣3)2=9.故选C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.。

精选--初中七年级的有理数混合运算及易错题练习

精选--初中七年级的有理数混合运算及易错题练习

学必迎下有理数混淆运算练习题一、:1. 近似 0.036490 有______个有效数字()A.6B.5C.4D.32. 下边对于 0 的法正确的选项是():①是整数,也是有理数②是正数,不是数③不是整数,是有理数④是整数,也是自然数A. ①②B. ②③C. ①④D. ①③3. 用四舍五入法把 0.06097 精准到千分位的近似的有效数字是()A.0 ,6,0B.0 , 6, 1, 0C.0 ,6,1D.6 ,14. 假如一个近似数是 1.60, 它的精准 x 的取范是()A.1.594<x<1.605B.1.595≤x<1.605C.1.595<x≤1.604D.1.601<x<1.6055.学了七年数学第二章《有理数及其运算》以后,出以下:①相反数等于自己的有理数只有 0;②倒数等于自己的有理数只有 1;③ 0 和正数的都是它自己;④立方等于自己的有理数有 3 个.此中,你正确的有几个()A .1B.2C.3D.46. 数 a, b,c 在数上的地点如所示,以下式子正确的选项是()A.b+c>0B.a+b<a+cC.ac>bcD.ab>ac7. 已知 abc>0, a> c, ac<0,以下正确的选项是()A.a<0 ,b<0,c>0B.a>0, b>0,c<0C.a>0 ,b<0, c<0D.a<0 ,b>0,c>08. 于两个非零有理数 a、b 定运算 * 以下: a*b= ab 2a 3b,(-3 )*(2)=()2b 3A . -3B .3C .3D .-3 2 29.若“ ! ”是一种运算符号,且 1!=1 ,2!=2 ×1,3!=3 ×2×1,4!=4 ×3×2×1,⋯,算2012!正确的选项是()2011!A .2012B . 2011C .2012D.2012× 2011201110. 若 a 与 b 互为相反数, c 与 d 互为倒数,则代数式(ab) 3 - 1 2的值是()100 (cd)A .0B .1C .-1D .没法确立二、填空题:11. 2 ( 2) 2 1 1 __________ ;( 3) ( ) 33 312. 若< 0,< 0,则 ac 0.13. 如有理数 m< n< 0 时,确立( m+n)( m﹣n)的符号为.(填正或负)14.( 0.125)96 ( 8)9515.若│ x-3 │+│y+15│=0,则 3x+2y=_________.16.若│ x│=3,│ y│ =2,且 xy<0,则 x+y 的值等于 ________17.假如规定符号“※”的意义是: a※ b= ab,则 3※( -3 )的值等于 _________a b18.现定义两种运算“ ? ”“ * ”,对于随意两个整数, a? b=a+b-1, a*b=a×b-1 ,则8* ( 3? 5)的结果是 ________19. 若 a 0,b 0 ,ca b c0,求b的可能取值为 ________a c20. ( 1)人体中约有2 万 5 千亿 = 个红细胞(用科学计数法表示)。

有理数的混合运算专项训练(100题)(举一反三)(解析版)

有理数的混合运算专项训练(100题)(举一反三)(解析版)

专题2.13 有理数的混合运算专项训练(100题)参考答案与试题解析一.解答题(共25小题,满分100分,每小题4分)1.(4分)(2021春•道里区期末)计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(−134)×(−112)÷(−214);(3)76÷(16−13)×314÷35;(4)﹣12×(﹣5)÷[(﹣3)2+2×(﹣5)].【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式先计算括号中的减法运算,再计算乘除运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算即可求出值.【解答过程】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=−74×32×49=−76;(3)原式=76÷(−16)×314×53=76×(﹣6)×314×53=−52;(4)原式=﹣1×(﹣5)÷(9﹣10)=﹣1×(﹣5)÷(﹣1)=5÷(﹣1)=﹣5.2.(4分)(2021春•杨浦区校级期中)计算:(1)(﹣413)﹣(﹣212)+(﹣923)+3.5;(2)(﹣1)÷(0.75)×(﹣113)÷3×(﹣0.5)2;(3)(﹣3)2﹣(112)3×39−6÷23;(4)(12−3+56−712)×(﹣62).【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法可以解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、乘法分配律可以解答本题.【解答过程】解:(1)(﹣413)﹣(﹣212)+(﹣923)+3.5=(﹣413)+212+(﹣923)+3.5=[(﹣413)+(﹣923)]+(212+3.5)=(﹣14)+6=﹣8;(2)(﹣1)÷(0.75)×(﹣113)÷3×(﹣0.5)2=(﹣1)×43×(−43)×13×14=1×43×43×13×14=427;(3)(﹣3)2﹣(112)3×39−6÷23=9−278×39−6×32=9−98−9=−98;(4)(12−3+56−712)×(﹣62)=(12−3+56−712)×(﹣36)=12×(﹣36)﹣3×(﹣36)+56×(﹣36)−712×(﹣36)=(﹣18)+108+(﹣30)+21=81.3.(4分)(2020秋•卫辉市期末)计算:(1)|3﹣8|﹣|14|+(−34);(2)(﹣1)2021+2×(−13)2÷16;(3)123×(0.5−23)÷119;(4)(﹣48)×[(−12)−58+712].【解题思路】(1)先计算绝对值,再计算加减即可;(2)先计算乘方、除法转化为乘法,再计算乘法,最后计算加减即可;(3)先计算括号内减法、将除法转化为乘法,再计算乘法即可;(4)利用乘法的交换律计算即可.【解答过程】解:(1)原式=5−14−34=5﹣1=4;(2)原式=﹣1+2×19×6=﹣1+43=13;(3)原式=53×(−16)×910=−14;(4)原式=(﹣48)×(−12)﹣(﹣48)×58+(﹣48)×712=24+30﹣28=26.4.(4分)(2020秋•门头沟区期末)计算:(1)(+4)×(+3)÷(−32);(2)(+10)﹣(+1)+(﹣2)﹣(﹣5);(3)(﹣24)×(23−58+12);(4)﹣12+(﹣6)×(−12)﹣8÷(﹣2)3.【解题思路】(1)先计算乘法、将除法转化为乘法,再计算乘法即可;(2)减法转化为加法,再进一步计算即可;(3)利用乘法分配律展开,再进一步计算即可;(4)根据有理数的混合运算顺序和运算法则计算即可.【解答过程】解:(1)原式=12×(−23)=﹣8;(2)原式=10﹣1﹣2+5=12;(3)原式=(﹣24)×23−(﹣24)×58+(﹣24)×12=﹣16+15﹣12=﹣13;(4)原式=﹣1+3﹣8÷(﹣8)=﹣1+3+1=3.5.(4分)(2020秋•西城区期末)计算:(1)13+(﹣24)﹣25﹣(﹣20);(2)25÷5×(−15)÷(−34);(3)(−79+56−34)×(﹣36);(4)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|.【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=13﹣24﹣25+20=﹣16;(2)原式=25×15×15×43=43;(3)原式=−79×(﹣36)+56×(﹣36)−34×(﹣36)=28﹣30+27=25;(4)原式=﹣1﹣0.5×13×24=﹣1﹣4=﹣5.6.(4分)(2020秋•呼和浩特期末)计算、求解:(1)(﹣8)×(12−114+18);(2)16×(﹣6)÷(−17)×7;(3)(﹣2)3÷45+113×|1﹣(﹣4)2|;(4)﹣12﹣(12−23)÷13×[﹣2+(﹣3)2].【解题思路】(1)原式利用乘法分配律计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=﹣8×12+8×54−8×18=﹣4+10﹣1=5;(2)原式=﹣1×(﹣7)×7=49;(3)原式=﹣8×54+43×|1﹣16|=﹣10+43×15=﹣10+20=10;(4)原式=﹣1+16×3×(﹣2+9)=﹣1+12×7=﹣1+7 2=52.7.(4分)(2020秋•金塔县期末)计算:(1)﹣28+(﹣13)﹣(﹣21)+13;(2)16÷(﹣2)3﹣4×(−1 8);(3)(512+23−34)×(−12);(4)2×(﹣3)2﹣33﹣6÷(﹣2).【解题思路】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方,然后计算乘法、除法,最后计算减法,求出算式的值是多少即可.(3)应用乘法分配律,求出算式的值是多少即可.(4)首先计算乘方,然后计算乘法、除法,最后从左向右依次计算,求出算式的值是多少即可.【解答过程】解:(1)﹣28+(﹣13)﹣(﹣21)+13=﹣41+21+13=﹣20+13=﹣7.(2)16÷(﹣2)3﹣4×(−1 8)=16÷(﹣8)+1 2=﹣2+1 2=−32.(3)(512+23−34)×(−12)=512×(﹣12)+23×(﹣12)−34×(﹣12)=﹣5﹣8+9=﹣4.(4)2×(﹣3)2﹣33﹣6÷(﹣2)=18﹣27+3=﹣9+3=﹣6.8.(4分)(2020秋•二道区期末)计算:(1)(﹣15)﹣(﹣25);(2)|﹣7.5|﹣|−12|;(3)(−34+712−58)×(﹣24);(4)﹣991315×15.【解题思路】(1)先把减法转化为加法,然后根据有理数的加法即可解答本题;(2)先去掉绝对值,然后根据有理数的减法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据乘法分配律可以解答本题.【解答过程】解:(1)(﹣15)﹣(﹣25)=(﹣15)+25=10;(2)|﹣7.5|﹣|−12|=7.5﹣0.5=7;(3)(−34+712−58)×(﹣24)=−34×(﹣24)+712×(﹣24)−58×(﹣24)=18+(﹣14)+15=19;(4)﹣991315×15=(﹣100+215)×15=﹣100×15+215×15=﹣1498.9.(4分)(2020秋•虎林市期末)计算:(1)(﹣8)+(+9)﹣(﹣5)+(﹣3);(2)(23+49−56)×18;(3)(23−12)÷(−76)×145;(4)﹣42+(﹣20)÷(﹣5)﹣6×(﹣2)3.【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算括号中的运算,再计算乘除运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=﹣8+9+5﹣3=1+2=3;(2)原式=23×18+49×18−56×18=12+8﹣15=5;(3)原式=16×(−67)×145=−25;(4)原式=﹣16+4﹣6×(﹣8)=﹣16+4+48=36.10.(4分)(2020秋•北碚区期末)计算下列各题(1)(﹣2)3﹣|2﹣5|﹣(﹣15);(2)(−12+56−38+512)÷(−124);(3)﹣32﹣[(112)3×(−29)﹣6÷|−23|];(4)2×(﹣137)﹣234×13+(﹣137)×5+14×(﹣13).【解题思路】(1)根据有理数的乘方、有理数的加减法可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律可以解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(4)根据乘法分配律可以解答本题.【解答过程】解:(1)(﹣2)3﹣|2﹣5|﹣(﹣15)=(﹣8)﹣3+15=(﹣8)+(﹣3)+15=4;(2)(−12+56−38+512)÷(−124)=(−12+56−38+512)×(﹣24)=−12×(﹣24)+56×(﹣24)−38×(﹣24)+512×(﹣24)=12+(﹣20)+9+(﹣10)=﹣9;(3)﹣32﹣[(112)3×(−29)﹣6÷|−23|]=﹣9﹣[(32)3×(−29)﹣6÷23]=﹣9﹣[278×(−29)﹣6×32]=﹣9﹣(−34−9)=﹣9+34+9=34;(4)2×(﹣137)﹣234×13+(﹣137)×5+14×(﹣13)=(2+5)×(﹣137)+[(﹣234)+(−14)]×13=7×(−107)+(﹣3)×13=(﹣10)+(﹣39)=﹣49.11.(4分)(2020秋•南山区校级期中)计算题(1)12﹣(﹣18)+(﹣7)+(﹣12);(2)(﹣18)×(12−19+16);(3)16÷|﹣2|3﹣|﹣8|×(−14);(4)﹣12﹣(﹣10)÷12×2+(﹣4)2.【解题思路】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)根据乘法分配律可以解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答过程】解:(1)12﹣(﹣18)+(﹣7)+(﹣12)=12+18+(﹣7)+(﹣12)=[12+(﹣12)]+[18+(﹣7)]=0+11=11;(2)(﹣18)×(12−19+16)=(﹣18)×12−(﹣18)×19+(﹣18)×16=(﹣9)+2+(﹣3)=﹣10;(3)16÷|﹣2|3﹣|﹣8|×(−14)=16÷8﹣8×(−14)=2+2=4;(4)﹣12﹣(﹣10)÷12×2+(﹣4)2=﹣1﹣(﹣10)×2×2+16=﹣1+40+16=55.12.(4分)(2020秋•定陶区期中)计算:(1)23﹣6×(﹣3)+2×(﹣4);(2)(﹣134)﹣(+613)﹣2.25+103;(3)214×(−67)÷(12−2);(4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114).【解题思路】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加法可以解答本题.【解答过程】解:(1)23﹣6×(﹣3)+2×(﹣4)=23+18+(﹣8)=33;(2)(﹣134)﹣(+613)﹣2.25+103=(﹣134)+(﹣613)+(﹣214)+313=[(﹣134)+(﹣214)]+[(﹣613)+313]=(﹣4)+(﹣3)=﹣7;(3)214×(−67)÷(12−2)=94×(−67)÷(−32)=94×67×23=97;(4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114)=(﹣125)×(−35)+32÷(﹣4)×(−54)=75+(﹣8)×(−54)=75+10=85.13.(4分)(2020秋•武昌区校级月考)计算:(1)(−813)+(+412)−123;(2)(﹣32)÷(﹣4)﹣(﹣25)×4;(3)(−214)÷412×(−118)÷(−98);(4)[1124−(38+16−34)×24]÷(−5).【解题思路】(1)根据有理数加减法则进行计算,即可得出答案;(2)根据有理数混合运算法则:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,进行计算即可得出答案.(3)解法同(2);(4)解法同(2).【解答过程】解:(1)(−813)+(+412)−123=−253+92−53 =﹣10+92=−112;(2)(﹣32)÷(﹣4)﹣(﹣25)×4=8﹣(﹣100)=8+100=108;(3)(−214)÷412×(−118)÷(−98)=−94÷92×(−98)×(−89) =−12×1 =−12;(4)[1124−(38+16−34)×24]÷(−5)=[2524−(38×24+16×24−34×24)]÷(﹣5)=[2524−(9+4﹣18)]÷(﹣5) =[2524−(﹣5)]÷(﹣5)=2524×(−15)−(−5)×(−15) =−524−1 =−2924.14.(4分)(2020秋•秀洲区月考)计算下列各题:(1)﹣3﹣(﹣9)+5;(2)|−110|×(﹣5)﹣|﹣312|;(3)(−12)×(−8)+(−6)÷(−13);(4)(﹣5)×(﹣7)+(512+23−34)×(﹣12).【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算绝对值运算,再计算乘法运算,最后算减法运算即可求出值;(3)原式先计算乘除运算,再计算加法运算即可求出值;(4)原式先计算乘法运算,再计算加减运算即可求出值.【解答过程】解:(1)原式=﹣3+9+5=﹣3+14=11;(2)原式=110×(﹣5)﹣312=−12−312=﹣4;(3)原式=12×8+6×3=4+18=22;(4)原式=5×7+512×(﹣12)+23×(﹣12)−34×(﹣12)=35﹣5﹣8+9=31.15.(4分)(2020秋•新都区校级月考)(1)(−52)÷(﹣15)×(−115);(2)﹣745×(﹣856)﹣(﹣7.8)×(﹣434)−4912÷539;(3)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣(−12)2];(4)(﹣24)×(18−13+14)+(﹣2)3.【解题思路】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用乘法分配律计算得出答案;(3)直接利用有理数的混合运算法则计算得出答案;(4)直接利用乘法分配律计算得出答案.【解答过程】解:(1)(−52)÷(﹣15)×(−115)=52×115×(−115)=−190;(2)﹣745×(﹣856)﹣(﹣7.8)×(﹣434)−4912÷539=﹣7.8×(﹣856)﹣(﹣7.8)×(﹣434)−4912×7.8=7.8×(856−434−4112)=7.8×(81012−4912−4112)=7.8×0=0;(3)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣(−12)2]=﹣8﹣12×(−14)=﹣8+3=﹣5;(4)(﹣24)×(18−13+14)+(﹣2)3=﹣24×18+(﹣24)×(−13)+(﹣24)×14−8=﹣3+8﹣6﹣8=﹣9.16.(4分)(2020秋•侯马市期中)计算:(1)﹣3.5÷78×(−34);(2)﹣124849×7;(3)25×34−(﹣25)×12+25×(−14);(4)﹣32﹣3×22﹣(﹣3×2)3.【解题思路】(1)原式从左到右依次计算即可求值;(2)原式变形后,利用乘法分配律计算即可求出值;(3)原式逆用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=−72×87×(−34)=72×87×34=3;(2)原式=(﹣13+149)×7=﹣91+17=﹣9067;(3)原式=25×(34+12−14)=25×1=25;(4)原式=﹣9﹣3×4﹣(﹣6)3=﹣9﹣12+216=195.17.(4分)(2020秋•沈北新区期中)计算:(1)[115+(−56)﹣(−712)]×(﹣60);(2)﹣22÷49×(−23)2;(3)﹣1﹣(1﹣0.5)×13×[2﹣(﹣3)2];(4)﹣32﹣(﹣2﹣5)2﹣|−14|×(﹣2)4.【解题思路】(1)利用乘法分配律计算即可;(2)先计算乘方,将除法转化为乘法,再进一步计算即可;(3)根据有理数的混合运算顺序和运算法则计算即可;(4)根据有理数的混合运算顺序和运算法则计算即可.【解答过程】解:(1)原式=(115−56+712)×(−60)=−4+50﹣35=11;(2)原式=−4×94×49=−4;(3)原式=−1+76×(−7)=−1+76=16;(4)原式=−9−49−14×16=−58−4=−62.18.(4分)(2020秋•资中县期中)计算下列各题:(1)23﹣17﹣(﹣7)+(﹣16).(2)(﹣20)×(﹣1)9﹣0÷(﹣4).(3)(﹣36)×(−49+56−712).(4)﹣22﹣(﹣2)2﹣(﹣3)2×(−23)﹣42÷|﹣4|.【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答过程】解:(1)23﹣17﹣(﹣7)+(﹣16)=23+(﹣17)+7+(﹣16)=(23+7)+[(﹣17)+(﹣16)]=30+(﹣33)=﹣3;(2)(﹣20)×(﹣1)9﹣0÷(﹣4)=(﹣20)×(﹣1)﹣0=20﹣0=20;(3)(﹣36)×(−49+56−712)=(﹣36)×(−49)+(﹣36)×56+(﹣36)×(−712) =16+(﹣30)+21=7;(4)﹣22﹣(﹣2)2﹣(﹣3)2×(−23)﹣42÷|﹣4|=﹣4﹣4﹣9×(−23)﹣16÷4=﹣4﹣4+6﹣4=﹣6.19.(4分)(2020秋•广州期中)计算:(1)12﹣(﹣18)﹣21;(2)﹣81÷(﹣214)×49÷(﹣16); (3)(﹣7.03)×40.16+(﹣0.16)×(﹣7.03)+7.03×(﹣60);(4)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2020.【解题思路】(1)从左往右计算即可求解;(2)将带分数变为假分数,除法变为乘法,再约分计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【解答过程】解:(1)12﹣(﹣18)﹣21=30﹣21=9;(2)﹣81÷(﹣214)×49÷(﹣16) =﹣81×(−49)×49×(−116)=﹣1;(3)(﹣7.03)×40.16+(﹣0.16)×(﹣7.03)+7.03×(﹣60)=7.03×(﹣40.16+0.16﹣60)=7.03×(﹣100)=﹣703;(4)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2020=﹣8+6+3﹣1=0.20.(4分)(2020秋•孝义市期中)计算:(1)(﹣15)+(+3)﹣(﹣5)﹣(+7);(2)−12+23+56−34;(3)(−23)×58÷(﹣0.25);(4)﹣12+3×(﹣2)2×(13−1)÷83.【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答过程】解:(1)(﹣15)+(+3)﹣(﹣5)﹣(+7)=(﹣15)+3+5+(﹣7)=[(﹣15)+(﹣7)]+(3+5)=(﹣22)+8=﹣14;(2)−12+23+56−34=−612+812+1012−912=14;(3)(−23)×58÷(﹣0.25)=23×58÷14=23×58×4=53;(4)﹣12+3×(﹣2)2×(13−1)÷83=﹣1+3×4×(−23)×38=﹣1﹣3×4×23×38=﹣1﹣3=﹣4.21.(4分)(2020秋•叶县期中)计算:(1)12+(﹣8)﹣(﹣7)﹣15;(2)(1+23−34)×(﹣12);(3)|﹣5|÷(﹣127)×0.8×214;(4)﹣23÷(−12)2+9×(−13)3﹣(﹣1)2020.【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)根据绝对值、有理数的乘除法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答过程】解:(1)12+(﹣8)﹣(﹣7)﹣15=12+(﹣8)+7+(﹣15)=(12+7)+[(﹣8)+(﹣15)]=19+(﹣23)=﹣4;(2)(1+23−34)×(﹣12)=1×(﹣12)+23×(﹣12)−34×(﹣12)=(﹣12)+(﹣8)+9=(﹣20)+9=﹣11;(3)|﹣5|÷(﹣127)×0.8×214=5×(−79)×45×94=﹣7;(4)﹣23÷(−12)2+9×(−13)3﹣(﹣1)2020=﹣8÷14+9×(−127)﹣1=﹣8×4+(−13)+(﹣1)=﹣32+(−13)+(﹣1)=﹣3313.22.(4分)(2020秋•南岸区校级月考)计算:(1)9+(﹣8)+10﹣2+(﹣9);(2)(−35)×|﹣312|÷45÷7;(3)﹣32÷214×(−23)2+4﹣22×(−13);(4)991225×(﹣2)+(﹣991225)×(﹣27).【解题思路】(1)利用加法运算律,将和为0的数结合,再计算即可;(2)先化简绝对值,再算乘除法即可;(3)先算乘方,再算乘除,最后算加减即可;(4)利用分配律计算即可.【解答过程】解:(1)9+(﹣8)+10﹣2+(﹣9)=[9+(﹣9)]+[(﹣8)+10﹣2]=0+0=0;(2)(−35)×|﹣312|÷45÷7=(−35)×72×54×17=−38;(3)﹣32÷214×(−23)2+4﹣22×(−13)=﹣9×49×49+4﹣4×(−13)=−169+4+43=329;(4)991225×(﹣2)+(﹣991225)×(﹣27)=991225×(﹣2)+991225)×27=991225×(﹣2+27)=(100−1325)×25=2500﹣13=2487.23.(4分)(2020秋•原阳县月考)计算:(1)12﹣(﹣18)+(﹣7)﹣20;(2)6.14+(−234)−(−5.86)−(+14);(3)(−12)×(14−16−12)−|−5|;(4)(29−14+118)÷(−136).【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据乘法分配律和有理数的加减法可以解答本题;(4)先把除法转化为乘法,然后利用乘法分配律即可解答本题.【解答过程】解:(1)12﹣(﹣18)+(﹣7)﹣20=12+18+(﹣7)+(﹣20)=(12+18)+[(﹣7)+(﹣20)]=30+(﹣27)=3;(2)6.14+(−234)−(−5.86)−(+14)=6.14+(﹣234)+5.86+(−14)=(6.14+5.86)+[(﹣234)+(−14)]=12+(﹣3)=9;(3)(−12)×(14−16−12)−|−5|=(﹣12)×14−(﹣12)×16−(﹣12)×12−5=(﹣3)+2+6﹣5=﹣1+6﹣5=5﹣5=0;(4)(29−14+118)÷(−136)=(29−14+118)×(﹣36)=29×(﹣36)−14×(﹣36)+118×(﹣36)=(﹣8)+9+(﹣2)=﹣1.24.(4分)(2020秋•临汾月考)计算:(1)﹣(﹣2.5)+(+2.2)﹣3.1+(﹣0.5)﹣(+1.1);(2)﹣0.5﹣314+(−2.75)+712;(3)(−34−56+78)×(−24);(4)(−8)×(−1137)+(−7)×(−1137)+(−15)×1137.【解题思路】(1)直接根据有理数的加减运算法则即可;(2)先把小数化成分数,然后根据交换律和结合律进行简便运算;(3)利用乘法的分配律进行简便运算;(4)提取公因式进行简便运算.【解答过程】解:(1)原式=2.5+2.2﹣3.1﹣0.5﹣1.1=4.7﹣4.7=0;(2)原式=−12+712−(314+234)=7﹣6=1;(3)原式=−34×(﹣24)−56×(﹣24)+78×(﹣24)=18+20﹣21=17;(4)原式=(﹣8﹣7+15)×(﹣1137)=0.25.(4分)(2020秋•立山区期中)计算题(1)﹣81÷(﹣214)×49÷(﹣16);(2)(−124)÷(123−54+76);(3)﹣32÷(﹣2)3×|﹣113|×6+(﹣2)4;(4)﹣(23)2×18﹣2×(−15)÷25+|﹣8|×0.52+179×(﹣112)2.【解题思路】(1)原式从左到右依次计算即可求出值;(2)原式被除式与除式调换求出值,即可求出所求;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=﹣81×49×49×116=﹣1;(2)(123−54+76)÷(−124)=(123−54+76)×(﹣24)=53×(﹣24)−54×(﹣24)+76×(﹣24)=﹣40+30﹣28=﹣38,则原式=−1 38;(3)原式=﹣9÷(﹣8)×43×6+16=98×43×6+16=9+16=25;(4)原式=−49×18﹣2×(−15)×52+8×0.25+169×94=﹣8+1+2+4=﹣1.。

2022-2023学年北师大版数学七年级上册《有理数的混合运算》易错精选(解析版)

2022-2023学年北师大版数学七年级上册《有理数的混合运算》易错精选(解析版)

2.11 有理数的混合运算—易错精选—>>>精品解析<<<一、选择题1、[2021·较易]计算:﹣22+(﹣2)3﹣(﹣2)4的值为()A.4B.﹣12C.﹣18D.﹣28[思路分析]原式先算乘方,再算加减即可得到结果.[答案详解]解:原式=﹣4+(﹣8)﹣16=﹣4﹣8﹣16=﹣12﹣16=﹣28.故选:D.[经验总结]此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行.2、[2021·较易]已知a是相反数等于本身的数,b是倒数等于本身的数,则|a﹣2|﹣b2021的值为()A.1B.3C.±1D.1或3[思路分析]根据有理数有关概念得出a=0,b=±1,再分别代入计算即可.[答案详解]解:根据题意知a=0,b=±1,当b=1时,原式=|0﹣2|﹣12021=2﹣1=1;当b=﹣1时,原式=|0﹣2|﹣(﹣1)2021=2+1=3;综上,|a﹣2|﹣b2021的值为1或3,故选:D.[经验总结]本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.3、[2021·较易]定义运算a★b=|ab﹣2a﹣b|,如1★3=|1×3﹣2×1﹣3|=2.若a=2,且a★b=3,则b的值为()A.7B.1C.1或7D.3或﹣3[思路分析]根据新定义规定的运算法则可得|2b﹣4﹣b|=3,再利用绝对值的性质求解可得.[答案详解]解:∵a★b=3,且a=2,∴|2b﹣4﹣b|=3,∴2b﹣4﹣b=3或2b﹣4﹣b=﹣3,解得b=7或b=1,故选:C.[经验总结]本题主要考查有理数的混合运算,解题的关键是根据新定义规定的运算法则得出关于b的方程及绝对值的性质.4、[2021·较易]数学上有很多著名的猜想,“奇偶归一猜想”就是其中之一,它至今未被证明,但研究发现,对于任意一个小于7×1011的正整数,如果是奇数,则乘3加1;如果是偶数,则除以2,得到的结果再按照上述规则重复处理,最终总能够得到1.对任意正整数m,按照上述规则,恰好实施5次运算结果为1的m所有可能取值的个数为()A.8B.6C.4D.2[思路分析]利用第5次运算结果为1出发,按照规则,逆向逐项计算即可求出m的所有可能的取值.[答案详解]解:如果实施5次运算结果为1,则变换中的第6项一定是1,则变换中的第5项一定是2,则变换中的第4项一定是4,则变换中的第3项可能是1,也可能是8.此处第3项若是1,则计算结束,所以1不符合条件,第三项只能是8.则变换中的第2项只能是16.第1项是32或5,则m的所有可能取值为32或5,一共2个,故选:D.[经验总结]本题考查有理数的混合运算,进行逆向验证是解决本题的关键.5、[较易]已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元[思路分析]根据题意列出算式计算,即可得到结果.[答案详解]解:根据题意得:13+(8﹣5)×2=13+6=19(元).则需要付费19元.故选:B.[经验总结]此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6、[2022·中]若,则计算的结果是()A.﹣130B.130C.﹣290D.290[思路分析]利用倒数的意义将已知条件变形后,再利用整体代入的方法解答即可.[答案详解]解:∵,∴163÷()=210,∴原式=80﹣210=﹣130,故选:A.[经验总结]本题主要考查了有理数的混合运算,倒数的意义,利用整体代入的方法解答是解题的关键.7、[2021·中]大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正数n,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1,这个题目在东方称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对7×1011以内的自然数上述结论均为正确的,但却给不出一般性的证明,例如取n=21,则要想算出结果1,共需要经过的运算次数是()A.6B.7C.8D.9[思路分析]依据题干给定的方法计算即可得出结论.[答案详解]解:验算的步数如下:21×3+1=64,64÷2=32,32÷2=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1.由此可知共需要经过的运算次数是7.故选:B.[经验总结]本题主要考查了有理数的混合运算,数学常识.本题是阅读型题目,理解并熟练掌握题干中的方法是解题的关键.8、[2021·中]在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷=36×﹣12×=16丁:(﹣3)2÷×3=9÷1=9A.甲B.乙C.丙D.丁[思路分析]先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.[答案详解]解:甲:9﹣32÷8=9﹣9÷8=7,原来没有做对;乙:24﹣(4×32)=24﹣4×9=﹣12,原来没有做对;丙:(36﹣12)÷=36×﹣12×=16,做对了;丁:(﹣3)2÷×3=9÷×3=81,原来没有做对.故选:C.[经验总结]考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.二、填空题9、[2021·较难]已知a,b,c,d表示4个不同的正整数,满足a+b2+c3+d4=90,其中d>1,则a+2b+3c+4d的最大值是.[思路分析]根据题意,可以先求出a、b、c、d的取值范围,然后即可得到a+2b+3c+4d 的最大值.[答案详解]解:∵a,b,c,d表示4个不同的正整数,且a+b2+c3+d4=90,其中d>1,∴d4<90,则d=2或3,c3<90,则c=1,2,3或4,b2<90,则b=1,2,3,4,5,6,7,8,9,a<90,则a=1,2,3, (89)∴4d≤12,3c≤12,2b≤18,a≤89,∴要使得a+2b+3c+4d取得最大值,则a取最大值时,a=90﹣(b2+c3+d4)取最大值,∴b,c,d要取最小值,则d取2,c取1,b取3,∴a的最大值为90﹣(32+13+24)=64,∴a+2b+3c+4d的最大值是64+2×3+3×1+4×2=81,故答案为:81.[经验总结]本题考查有理数的混合运算,解答本题的关键是求出a、b、c、d的取值范围.10、[较难]如图,定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如,取n=26,第三次“F运算”的结果是11.若n=449,则第449次“F运算”的结果是.[思路分析]解决此类问题的关键在于将新运算转化为学过的数的有关运算法则进行计算,只有转化成功,才能有的放矢.[答案详解]解:本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n=449为奇数应先进行F①运算,即3×449+5=1352(偶数),需再进行F②运算,即1352÷23=169(奇数),再进行F①运算,得到3×169+5=512(偶数),再进行F②运算,即512÷29=1(奇数),再进行F①运算,得到3×1+5=8(偶数),再进行F②运算,即8÷23=1,再进行F①运算,得到3×1+5=8(偶数),…,即第1次运算结果为1352,…,第4次运算结果为1,第5次运算结果为8,…,可以发现第6次运算结果为1,第7次运算结果为8,从第4次运算结果开始循环,且奇数次运算的结果为8,偶数次为1,而第499次是奇数,这样循环计算一直到第449次“F运算”,得到的结果为8.故答案为:8.[经验总结]本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.11、[2022·较易]“五月天山雪,无花只有寒”,反映出地形对气温的影响.大致海拔每升高100米,气温约下降0.6℃.有一座海拔为2350米的山,在这座山上海拔为350米的地方测得气温是6℃,则此时山顶的气温约为℃.[思路分析]表示出山顶的气温的代数式后计算.[答案详解]解:根据题意,山顶比海拔350米高(2350﹣350)米,山顶的气温为:6﹣×0.6=﹣6(℃).答:此时山顶的气温约为﹣6℃.故答案为:﹣6.[经验总结]此题考查了有理数的混合运算,抓住海拔每升高100米,气温就下降0.6℃是解题的关键.12、[2022·较易]五一假期,班主任孙老师带着班级17名同学,去玉渊潭公园划船,项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150若每条船划的时间均为1小时,则租船的总费用最低为元.[思路分析]根据表格可知八人船的人均费用最低,然后计算相应的最低费用即可.[答案详解]解:由表格可得,八人船的人均费用最低,孙老师和学生们一共有1+17=18(人),当租用一条八人船,一条六人船和一条四人船时的花费为:150+130+100=380(元),当租用两条八人船,一条两人船时的花费为:150×2+90=390(元),故最低费用为380元,故答案为:380.[经验总结]本题考查有理数的混合运算,解答本题的关键是明确题意,列出相应的算式.13、[2022·较易]东东家的草莓今年收获600kg,比去年增产二成,去年收获kg.[思路分析]根据题意列出算式,计算即可求出值.[答案详解]解:根据题意得:600÷(1+20%)=500(kg),则去年收获500kg.故答案为:500.[经验总结]此题考查了有理数的混合运算,列出正确的算式是解本题的关键.14、[2022·较易]一次知识竞赛共有20道选择题,规定:答对一道得5分,不答或答错一道扣1分,如果某位学生答对了15道题,则他的成绩为分.[思路分析]根据所得的成绩=答对题目的得分﹣不答或答错的题数的扣分,列式可得结论.[答案详解]解:由题意得:15×5﹣(20﹣15)×1=75﹣5=70(分),故答案为:70.[经验总结]本题主要考查有理数的混合运算,解答的关键是根据题意列出正确的式子.15、[2022·较易]中国是世界上首先使用负数的国家.两千多年前战国时期李悝所著的《法经》中已出现使用负数的实例.《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其加减法运算法则,并给出名为“正负术”的算法,请计算以下涉及“负数”的式子的值:﹣1﹣(﹣3)2=.[思路分析]先算乘方,再算减法,即可解答.[答案详解]解:﹣1﹣(﹣3)2=﹣1﹣9=﹣10,故答案为:﹣10.[经验总结]本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.16、[2021·较易]小方利用计算机设计了一个计算程序,输入和输出的数据如表:输入…12345…输出……那么,当输入数据为8时,输出的数据为.[思路分析]根据题意找出一般性规律,写出即可.[答案详解]解:根据题意得:当输入的数据是n时,输出的数据为,则当输入的数据是8时,输出的数据为=,故答案为:[经验总结]此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三、解答题17、[2022·较易]学校王老师去城里购买50只排球,甲、乙、丙三家商店的优惠办法如表,请你帮王老师算一算到哪家商店购买比较合算,请通过计算说明.店名原价优惠办法甲48打八折乙48买五送一丙48满千元送一百元[思路分析]根据表格中的数据确定出各自的售价,比较即可.[答案详解]解:甲商店:50×48×80%=1920(元);乙商店:42×48=2016(元);丙商店:50×48﹣200=2400﹣200=2200(元),∵1920<2016<2200,∴甲商店比较合算.[经验总结]此题考查了有理数的混合运算,弄清题意是解本题的关键.18、[2022·较易]计算:(﹣1+2)×3+22÷(﹣4).[思路分析]先算乘方,再算括号里面的和乘除法,最后算加减.[答案详解]解:原式=1×3+4÷(﹣4)=3﹣1=2.[经验总结]本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解决本题的关键19、[2021·较易]计算:23×(﹣+1)÷(1﹣3).[思路分析]原式先计算乘方运算,再计算括号内的加减运算,最后算乘除运算即可求出值.[答案详解]解:原式=8×÷(﹣2)=4÷(﹣2)=﹣2.[经验总结]此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20、[2021·较易]计算:|﹣3|+(﹣2)2.[思路分析]原式利用绝对值的代数意义,以及乘方的意义计算即可求出值.[答案详解]解:原式=3+4=7.[经验总结]此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21、[2021·较易]某模具厂规定每个工人每周要生产某种模具280个,平均每天生产40个;但由于种种原因,实际每天生产量与计划量相比有出入.下表是工人小张的生产情况(超产记为正,减产记为负):星期一二三四五六日增减产值+9﹣13﹣4+8﹣1+70(1)根据记录的数据计算小张本周实际生产模具的数量;(2)该厂实行“每日计件工资制”.每生产一个玩具可得工资6元,若超额完成任务,则超过部分每个另奖4元;少生产一个则倒扣2元,那么小张这一周的工资总额是多少元?[思路分析](1)先把增减的量都相加,然后根据有理数的加法运算法则进行计算,再加上计划生产量即可;(2)先计算每天的工资,再相加即可求解.[答案详解]解:(1)∵(+9)+(﹣13)+(﹣4)+(+8)+(﹣1)+(+7)+0=9﹣13﹣4+8﹣1+7=6,∴280+6=286(个).故本周实际生产模具286个;(2)286×6+(9+8+7)×4+(13+4+1)×(﹣2)=1776(元).故小张这一周的工资总额是1776元.[经验总结]本题考查了正数与负数,有理数混合运算,读懂表格数据,根据题意准确列式是解题的关键.22、[较易]在新型冠状病毒疫情期间,某粮店购进标有50千克的大米5袋,可实际上每袋都有误差,若超出部分记为正数,不足部分记为负数,那么这5袋大米的误差如下(单位:千克):+0.2,﹣0.1,﹣0.5,+0.6,+0.3(1)这5袋大米总计超过多少千克或不足多少千克?(2)这5袋大米总重量多少千克?[思路分析](1)由题意可知每袋大米的标准重量为50千克,超过标准重量的记为正数,不足的记为负数,然后相加即可;(2)由题(1)可知5袋大米总计超过0.5千克,列出算式5×50+0.5计算即可求解.[答案详解]解:(1)与标准重量比较,这5袋大米总计超过+0.2﹣0.1﹣0.5+0.6+0.3=0.5(千克).故这5袋大米总计超过0.5千克;(2)5×50+0.5=250.5(千克).故这5袋大米总重量250.5千克.[经验总结]本题主要考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.23、[较易]在“﹣”“×”两个符号中选一个自己想要的符号,填入22+2×(1□)中的□,并计算.[思路分析]添加想要的符号“﹣”,先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算;添加想要的符号“×”,先算乘方,再算乘法,最后算加法;如果有括号,要先做括号内的运算.[答案详解]解:添加想要的符号“﹣”,22+2×(1﹣)=4+2×=4+1=5;添加想要的符号“×”,22+2×(1×)=4+2×=4+1=5.[经验总结]考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.24、[2022·中]观察下列各式:x2﹣1=(x﹣1)(x+1)x3﹣1=(x﹣1)(x2+x+1)x4﹣1=(x﹣1)(x3+x2+x+1)⋯⋯根据上面各式的规律,解答下列问题:(1)填空:=(x﹣1)(x n+x n﹣1+x n﹣2+…+x+1);(2)直接写出结果:22022+22021+22020+…+2+1=;(3)求(﹣2)99+(﹣2)98+…+(﹣2)+1的值.[思路分析](1)根据上面各式的规律,即可解答;(2)原式乘(2﹣1),即可用(1)的规律,进行计算即可解答;(3)原式乘﹣×(﹣2﹣1),即可用(1)的规律,进行计算即可解答.[答案详解]解:(1)x n+1﹣1=(x﹣1)(x n+x n﹣1+x n﹣2+…+x+1).故答案为:x n+1﹣1;(2)22022+22021+22020+…+2+1=(2﹣1)×(22022+22021+22020+…+2+1)=22023﹣1,故答案为:22023﹣1;(3)(﹣2)99+(﹣2)98+…+(﹣2)+1=﹣×(﹣2﹣1)×[(﹣2)99+(﹣2)98+…+(﹣2)+1]=﹣×[(﹣2)100﹣1]=﹣×(2100﹣1).[经验总结]本题考查了规律型:数字的变化类,有理数的混合运算,解此题的关键是根据结果得出规律,题目比较好,有一定的难度.第11页(共11页)。

七年级有理数混合运算易错题

七年级有理数混合运算易错题

七年级有理数混合运算易错题一、有理数混合运算易错题。

1. 计算:-2^2 (-3)^3×(-1)^2023÷ (-1)^2022解析:先算乘方,这里要注意符号。

对于-2^2,根据乘方运算顺序,先计算指数,再取相反数,所以-2^2=-4;(-3)^3=-27,( 1)^2023=-1,( 1)^2022=1。

原式=-4-(-27)×(-1)÷1接着算乘法(-27)×(-1) = 27。

则原式=-4 27÷1=-4-27=-31。

2. 计算:(-1(1)/(2))^2÷(-(3)/(4))^3×(-1(1)/(3))解析:先将带分数化为假分数,-1(1)/(2)=-(3)/(2),-1(1)/(3)=-(4)/(3)。

然后算乘方,(-(3)/(2))^2=(9)/(4),(-(3)/(4))^3=-(27)/(64)。

原式=(9)/(4)÷(-(27)/(64))×(-(4)/(3))再算除法,除以一个数等于乘以它的倒数,(9)/(4)÷(-(27)/(64))=(9)/(4)×(-(64)/(27))=-(16)/(3)。

最后算乘法-(16)/(3)×(-(4)/(3))=(64)/(9)。

3. 计算:4 5×(-(1)/(2))^3解析:先算乘方,(-(1)/(2))^3=-(1)/(8)。

原式=4 5×(-(1)/(8))再算乘法5×(-(1)/(8))=-(5)/(8)。

最后算减法4-(-(5)/(8)) = 4+(5)/(8)=(32 + 5)/(8)=(37)/(8)。

4. 计算:(-2)^3×0.5 (-1.6)^2÷(-2)^2解析:先算乘方,(-2)^3=-8,(-1.6)^2 = 2.56,(-2)^2 = 4。

七年级数学上册-易错易混淆集训:有理数及运算有关的六大易错(解析版)

七年级数学上册-易错易混淆集训:有理数及运算有关的六大易错(解析版)

专题06易错易混淆集训:有理数及运算有关的六大易错【考点导航】目录【典型例题】 (1)【易错点一与运算相关的符号的判断不准确】 (1)【易错点二乘法运算律应用不熟导致易错】 (3)【易错点三乘除混合运算时,运算顺序错误导致易错】 (8)【易错点四数轴上多解时考虑不全产生漏解】 (9)【易错点五含绝对值化简时考虑不全产生漏解】 (11)【易错点六含乘方运算时符号考虑不全产生漏解】 (13)【典型例题】【易错点一与运算相关的符号的判断不准确】例题:(2023秋·山东泰安·六年级统考期末)在()()()342232,1-----、、这四个有理数中,负数有()个.A .1个B .2个C .3个D .4个【答案】B 【分析】先把每个数化简,再做判断.【详解】解:5(2)32-=-,4(3)81-=,242-=-,()11--=,结果是负数的有2个,故选:B .【点睛】本题考查了有理数的乘方,掌握乘方的运算方法是解题的关键.【变式训练】【易错点二乘法运算律应用不熟导致易错】【变式训练】【易错点三乘除混合运算时,运算顺序错误导致易错】【变式训练】【易错点四数轴上多解时考虑不全产生漏解】【答案】-13或3/3或-13【分析】点A在数轴上平移8个单位长度,可以是向左或向右,即向右平移8个单位,即增加8,向左平移就减少8.-+=,如果A向左平移得到,点B表示的数是:【详解】解:如果A向右平移得到,点B表示的数是:583--=-,5813故点B表示的数是3或−13.故答案为:3或−13.【点睛】此题主要考查了数轴,掌握数轴上的点平移法则是解题关键.数轴上点的平移:向左平移,表示的数减少,向右平移,表示的数增大.【变式训练】【答案】0或6【分析】先根据点A所表示的数,再分两种情况进行讨论,当点A沿数轴向右移动和点A沿数轴向左移动时,列出式子,求出点B表示的数.【详解】解:∵点A表示3,∴从点A出发,沿数轴向右移动3个单位长度到达B点,则点B表示的数是3+3=6;-=;∴从点A出发,沿数轴向左移动3个单位长度到达B点,则点B表示的数是330故答案为:0或6.【点睛】此题考查了数轴,解题的关键根据题意列出式子,再根据有理数的加减法法则进行计算,要考虑两种情况,不要漏掉.【易错点五含绝对值化简时考虑不全产生漏解】【变式训练】【易错点六含乘方运算时符号考虑不全产生漏解】【变式训练】1.(2023秋·吉林松原·七年级统考期末)计算:()()23411832--÷-⨯-.【答案】15【分析】根据有理数的混合运算法则求解即可.【详解】解:()()23411832--÷-⨯-()11898=--÷⨯-()128=--⨯-=++-+(2)原式101263=.10【点睛】本题考查了有理数的混合运算,绝对值,以及乘法分配律,熟练掌握运算法则是解本题的关键.。

(易错题精选)初中数学有理数的运算综合训练(1)

(易错题精选)初中数学有理数的运算综合训练(1)

(易错题精选)初中数学有理数的运算综合训练(1)一、选择题1.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.2.据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( )A .138.8910⨯B .128.8910⨯C .1288.910⨯D .118.8910⨯【答案】A【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】3.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为( )A .2.4×103B .2.4×105C .2.4×107D .2.4×109【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C .此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.23+23+23+23=2n,则n=()A.3 B.4 C.5 D.6【答案】C【解析】【分析】原式可化为:23+23+23+23=4×23235=⨯=,之后按照有理数乘方运算进一步求解即可.222【详解】∵23+23+23+23=4×23235222=⨯=n=,∴5所以答案为C选项.【点睛】本题主要考查了有理数的乘方运算,熟练掌握相关概念是解题关键.5.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为()A.275×104 B.2.75×104 C.2.75×1012 D.27.5×1011【答案】C.【解析】试题解析:将27500亿用科学记数法表示为:2.75×1012.故选C.考点:科学记数法—表示较大的数.6.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A.6⨯D.5⨯1.2071012.07101.20710⨯C.5⨯B.70.120710【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1207000=1.207×106,故选A.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.和﹣的关系是( )A.互为倒数B.互为相反数C.互为负倒数D.以上都不对【答案】C【解析】【分析】根据相反数及倒数的定义求解.【详解】解:∵×(﹣)=-1,∴和﹣互为负倒数,故选C.【点睛】判断两个式子之间的关系,一般有互为相反数、互为倒数和互为负倒数等几种.8.近似数2.864×104精确到( )A.千分位B.百位C.千位D.十位【答案】D【解析】解:2.864×104=28640,数字4在十位上,故选D.9.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】2019-=2019,2019的倒数为1 2019故选C【点睛】本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.10.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.11.如图,是一个计算流程图.当16x =时,y 的值是( )A 2B .2C .2±D .2±【答案】A【解析】【分析】 观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】解:输入16x =后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根22是无理数,数出结果.故A 为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.12.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.14.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5 【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.15.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .16.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开展5G 网络的商用示范.目前,北京市已经在怀柔试验场对5G 进行相应的试验工作.现在4G 网络在理想状态下,峰值速率约是100Mbps ,未来5G 网络峰值速率是4G 网络的204.8倍,那么未来5G 网络峰值速率约为( )A .1×102 MbpsB .2.048×102 MbpsC .2.048×103 MbpsD .2.048×104 Mbps 【答案】D【解析】【分析】已知4G 网络的峰值速率,5G 网络峰值速率是4G 网络的204.8倍,可得5G 网络峰值速率,通过化简,用科学计数法表示即可.【详解】解:由题干条件可得,5G 网络峰值速率:100Mbps×204.8=20480 Mbps=2.048×104 Mbps ,故选D.【点睛】本题考查了文字语言转化为数学语言的能力,灵活理解题干的内容并化简是解题的关键.17.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.用科学记数方法表示0.0000907,得( )A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯ 【答案】B【解析】【分析】【详解】解:根据科学记数法的表示—较小的数为10n a ⨯,可知a=9.07,n=-5,即可求解. 故选B【点睛】本题考查科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.19.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误;∵a c >,∴C 错误;∵d c >,c>0,∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.20.按如图所示的运算程序,能使输出结果为10的是( )A.x=7,y=2 B.x=﹣4,y=﹣2 C.x=﹣3,y=4 D.x=12,y=3【答案】D【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】解:A、x=7、y=2时,输出结果为2×7+22=18,不符合题意;B、x=﹣4、y=﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C、x=﹣3、y=4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D、x=12、y=3时,输出结果为2×12+32=10,符合题意;故选:D.【点睛】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.。

专题01有理数的混合运算易错-2020-2021学年七年级数学寒假温故知新汇编(人教版)

专题01有理数的混合运算易错-2020-2021学年七年级数学寒假温故知新汇编(人教版)

20202021学年七年级数学寒假温故知新汇编(人教版)专题01 有理数的混合运算易错【典型例题】1.(2021·二连浩特市第二中学七年级期末)计算:(1)2314(3)13()42⨯--+---; (2)21293()12323-÷+-⨯+.【答案】解:(1)原式=14913()642⨯-+--=13613()642-+--=136(13)()(64)2+-+-+-=136(77)2+-=1412-; (2)原式=123(1212)923-+⨯-⨯+ =3(68)9-+-+=3(2)9-+-+=4. 【点睛】本题考查有理数的混合运算.熟记有理数的混合运算的运算顺序和每一步的运算法则是解题关键.注意运算律的应用.【专题训练】一、解答题1.(2021·桥柱中学七年级期末)计算:233131(2)642⎛⎫⎡⎤-÷⨯--+--- ⎪⎣⎦⎝⎭.原式419(18)632⎛⎫=-⨯⨯---- ⎪⎝⎭6(7)6=---=6+767=. 【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.2.(2021·北京大兴区·七年级期末)计算: 3218234233⎛⎫---⨯-- ⎪⎝⎭.【答案】解:3218234233⎛⎫---⨯-- ⎪⎝⎭181=93833⎛⎫---⨯- ⎪⎝⎭ 119333=-+-12=-. 【点睛】本题考查的是含乘方的有理数混合运算,熟练掌握有理数运算法则是解答本题的关键.3.(2021·沈阳市第一二六中学七年级期末)计算:4211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ 【答案】解:4211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ =[]11(10.5)393---⨯⨯-=111(6)23--⨯⨯-=11-+=0. 【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行计算.4.(2021·辽宁沈阳市·七年级期末)计算:202031(1)(3)(3)3-+-÷-⨯-.解:原式()1112733⎛⎫=+-⨯-⨯⎪⎝⎭13=+4=.【点睛】本题考查有理数的混合运算.理解有理数的混合运算顺序和运算法则是解题关键.5.(2021·前郭尔罗斯蒙古族自治县海勃日戈镇中学七年级期末)计算:()()241110.5123⎡⎤---⨯⨯--⎣⎦【答案】解:()()241110.5123⎡⎤---⨯⨯--⎣⎦()1111423=--⨯⨯-()111323=--⨯⨯-112=-+12=-【点睛】本题考查了有理数混合运算,掌握有理数乘方、乘除、加减法的运算法则并准确进行计算是解题的关键.6.(2021·青海西宁市·七年级期末)计算:32138232⎛⎫--⨯-⨯-- ⎪⎝⎭【答案】解:原式19858⎛⎫=--⨯-⨯ ⎪⎝⎭95=-+4=-.【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数的运算法则.7.(2021·广东潮州市·七年级期末)计算:313(2)|5|34⎛⎫-+--⨯- ⎪⎝⎭【答案】解:原式1854=-++114=- 【点睛】本题考查的是含乘方的有理数的混合运算,绝对值的运算,掌握运算法则与运算顺序是解题的关键.8.(2021·广东揭阳市·七年级期末)计算:32019421(2)63(1)532⎛⎫-÷+⨯--⨯- ⎪⎝⎭【答案】 解:原式518631013646=-⨯+⨯+=-++=-. 【点睛】本题考查了有理数的混合运算,有理数的混合运算顺序是“先做乘方,再做乘除,最后做加减,有括号的按括号指明的运算顺序计算”.9.(2021·江苏连云港市·七年级期末)计算:(1)()()32343⨯--⨯-; (2)21152238⎛⎫⎛⎫-÷÷⨯-⎪ ⎪⎝⎭⎝⎭. 【答案】解:(1)原式=()()22743⨯--⨯-=()()5412---=()5412-+=()5412--=42-;(2)原式=54832⎛⎫-÷⨯- ⎪⎝⎭=54823⎛⎫-⨯⨯- ⎪⎝⎭=53. 【点睛】本题考查有理数的混合运算.熟练掌握有理数的混合运算的运算顺序和每一步的运算法则是解题关键. 10.(2021·北京平谷区·七年级期末)计算:(1)2(1)(14)(12)--++--- ; (2)213(1)(73)224-÷+-⨯--【答案】(1)原式=211412---+=5- (2)原式=11322÷+-=232+-=3 【点睛】本题考查有理数的混合运算,熟练掌握有理数混合运算顺序,并注意符号变化是解题关键. 11.(2021·安徽利辛县教育局七年级期末)计算: (1)7|9|(11)3------; (2)221712()()341212-+--++- 【答案】(1)7|9|(11)3------79113=--+-8=-;(2)221712()()341212-+--++- 21714341212=---+-4883711212121212=---+-5312=-.【点睛】本题考查含乘方的有理数混合运算等知识,是重要考点,难度较易,掌握相关知识是解题关键. 12.(2021·中卫市第二中学七年级期末)计算题. (1)52+(36)×(5511)4612--; (2)23()(34)2-+--÷7∣34∣×(3)2 【答案】解:(1)52+(36)×(5511)4612--=25+5511(36)(36)(36)4612-⨯--⨯--⨯ =2545+30+33=7; (2)23()(34)2-+--÷7∣34∣×(3)2=93+(7)7944-÷-⨯ =927144--=112-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键. 13.(2021·西藏达孜县中学七年级期末)计算(1)()()231524-⨯+-÷ ; (2)3521124228342⎛⎫⎛⎫-⨯+÷-+- ⎪ ⎪⎝⎭⎝⎭【答案】(1)解:原式()11584=⨯+-⨯52=-3=; (2)解:原式=11124222448⎛⎫-⨯+÷-+ ⎪⎝⎭()118224=-+⨯-+1222=--+19=-. 【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序. 14.(2021·河北秦皇岛市·七年级期末)计算:(1)()2153-+----; (2)()()3242323⎡⎤⎛⎫---⨯--- ⎪⎢⎥⎝⎭⎣⎦【答案】(1)()2153-+----2153=-++-1=;(2)()()3242323⎡⎤⎛⎫---⨯--- ⎪⎢⎥⎝⎭⎣⎦()448⎡⎤=----⎣⎦412=--16=-.【点睛】本题考查有理数加减乘除的混合运算,属于基础题,需要有一定的运算求解能力,熟练掌握运算法是解决本题的关键.15.(2021·甘肃定西市·七年级期末)计算 (1)3172(2)3-÷-⨯; (2)()()3201712(2)312-⨯-÷--⨯-【答案】解:(1)3172(2)3-÷-⨯=178÷(2)×3 =17(12)=29; (2)()()3201712(2)312-⨯-÷--⨯-=8×(4)3×(1)=32(3)=35.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键. 16.(2021·天津七年级期末)计算:(1)3571491236⎛⎫--+÷ ⎪⎝⎭; (2)3241(2)(3)(4)212⎡⎤-+-⨯-⨯÷-⎢⎥⎣⎦ 【答案】解:(1)3571491236⎛⎫--+÷ ⎪⎝⎭357364912⎛⎫=--+⨯ ⎪⎝⎭3573636364912=2720+2126=-;(2)3241(2)(3)(4)212⎡⎤-+-⨯-⨯÷-⎢⎥⎣⎦8(3)(16221)=-+-⨯⨯⨯-8189=--197=-.【点睛】本题主要考查了含乘方的有理数混合运算以及运算律的灵活运用,掌握相关运算法则成为解答本题的关键.17.(2021·江阴市周庄中学七年级期末)计算: (1)()150.2584-----; (2)()()224123125---÷+⨯-- 【答案】(1)()150.2584-----150.2584=+--3=- (2)()()224123125---÷+⨯--()5123144=---⨯+⨯-51332=-++⨯ 582=+212=. 【点睛】本题考查了绝对值和有理数运算的知识;解题的关键是熟练掌握绝对值、含乘方的有理数混合运算的性质,从而完成求解.18.(2021·甘肃白银市·七年级期末)计算 (1)4353()(2)24228-+⨯--÷-; (2)1031(1)2()162-÷+-⨯ 【答案】 (1)原式()17=162488-⨯--÷-()17=162488-⨯--÷=343-=31 (2)原式1=12168⎛⎫÷+-⨯ ⎪⎝⎭()1=22+-3=2-【点睛】本题考查有理数的混合运算,解题的关键是熟练掌握有理数混合运算的法则:先算乘方,后算乘除,最后算加减,同级运算应按从左往右的顺序进行计算,有括号的先算括号里面的. 19.(2021·辽宁锦州市·七年级期末)计算:(1)()()()()57320-+-----; (2)()2124232-+-÷⨯--.【答案】(1)解:原式12320122311=-++=-+=. (2)解:原式()11443413822=-+-⨯⨯-=---=-. 【点睛】本题考查有理数的混合计算问题,掌握有理数混合运算法则,特别是乘方的计算要看清底数有没有负号是解题关键.20.(2021·辽宁大连市·七年级期末)计算:(1)1(12)(4)273⎛⎫++-+-⨯ ⎪⎝⎭; (2)103(1)2(2)4-⨯+-÷【答案】解:(1)原式1249=--1=-;(2)原式()1284=⨯+-÷()22=+-0=; 【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题. 21.(2021·黑龙江哈尔滨市·七年级期末)计算下列各题:(1)232(3)36(2)⨯---÷-; (2)117511318126936⎡⎤⎫⎛-+++-÷ ⎪⎢⎥⎝⎭⎣⎦ 【答案】解:(1)232(3)36(2)⨯---÷-2927(3)=⨯---6=-(2)117511318126936⎡⎤⎫⎛-+++-÷ ⎪⎢⎥⎝⎭⎣⎦113673618131213=-⨯+⨯+536136613913⨯-⨯222130413131313=-++-2513=. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 22.(2021·辽宁抚顺市·)计算:(1)()()5328---+-+; (2)()()23122|4|-⨯+-÷-【答案】(1)原式53282284=-+-+=--+= (2)原式1284220=⨯-÷=-= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算. 23.(2021·山东师范大学第二附属中学七年级期末)完成下列各题:(1)计算:()15324368⎛⎫-⨯-+ ⎪⎝⎭; (2)计算:213(12)||6(1)2-+-⨯--÷-.【答案】(1)()15324368⎛⎫-⨯-+ ⎪⎝⎭=8+209=3;(2)213(12)||6(1)2-+-⨯--÷-=96+6=9. 【点睛】此题考查有理数的混合运算,掌握有理数的乘法分配律计算法则,乘方法则,乘除法计算法则是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数混合运算易错题及考点题综合训练
有理数及其运算易错及考点题训练
专训一:有理数中的七种易错类型
类型1对有理数有关概念理解不清造成错误
1.下列说法正确的是()
A.最小的正整数是0
B.-a是负数
C.符号不同的两个数互为相反数
D.-a的相反数是a
2.已知|a|=7,则a=.
类型2误认为|a|=a,忽略对字母a分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()
A.负数
B.负数或零
C.正数或零
D.正数
4.已知a=8,|a|=|b|,则b的值等于()
A.8
B.-8
C.0
D.±8
类型3 对括号使用不当导致错误
5.计算:-7-5.
6.计算:2-⎝ ⎛⎭⎪⎫
-15+14-12.
类型4 忽略或不清楚运算顺序
7.计算:3×42+43÷2.
8.计算:-81÷9
4
×
4
9
÷(-16).
类型5 混淆-a n与(-a)n的意义
9.计算-24正确的是()
A.8
B.-8
C.16
D.-16
10.计算:-24÷(-2)2+2×(-2)3.
类型6 乘法运算中确定符号与加法运算中的符号规律相混淆
11.计算:⎝
⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345.
12.计算:-36×⎝ ⎛⎭
⎪⎫712-56-1.
类型7 除法没有分配律
13.计算:24÷⎝ ⎛⎭⎪⎫
13-18-16.
专训二:有理数中的几种热门考点
考点1 有理数的定义、分类
1.在下列各数中:+6,-8.25,-0.49,-23
,-18,负有理数有( )
A .1个
B .2个
C .3个
D .4个 考点2 相反数、倒数、绝对值
2.(1)化简下列各式:⎪⎪⎪⎪
⎪⎪-12= ;|+(-3)|= ;-⎪⎪⎪⎪
⎪⎪-⎝ ⎛⎭⎪⎫-35= (2)-5的相反数是 ;-13的绝对值是 ;54
的倒数是 . 3.式子|m -3|+5的值随m 的变化而变化,当m
=时,|m-3|+5有最小值,最小值是.
4.已知a,b分别是两个不同的点A,B所表示的有理数,且|a|=5,|b|=2,它们在数轴上的位置如图所示.
(1)试确定数a,b.
(2)表示a,b两数的点相距多远?
(3)若C点在数轴上,C点到B点的距离是C
点到A点距离的1
3
,求C点表示的数.
(第4题)考点3有理数的大小比较
5.在-1
2
,-
1
3
,-2,-1这四个数中,最大的
数是()
A.-1
2
B.-
1
3
C.-2
D.-1
6.如图,数轴上A,B两点分别对应有理数a,b,则下列结论正确的是()
(第6题)
A.a<b
B.a+b<0
C.a-b>0
D.ab>0
7.已知a,b是有理数,且a,b异号,则|a+b|,|a-b|,|a|+|b|的大小关系为_________________________________________ _______________________________.
8.比较a与a
3
的大小.
考点4 有理数的运算
9.下列等式成立的是()
A.|-2|=2
B.-(-1)=-1
C.1÷(-3)=1
3
D.-2×3=6
10.若四个有理数之和的1
4
是3,其中三个数分别
是-10,+8,-6,则第四个数是()
A.+8
B.-8
C.+20
D.+11
11.计算下列各题:
(1)17-23÷(-2)×3;
(2)2×(-5)+23-3÷1
2;
(3)10+8÷(-2)2
-(-4)×(-3);
(4)(-24)÷⎝ ⎛⎭⎪⎫2232+512×⎝ ⎛⎭⎪⎫-16-(0.5)2.
考点5 非负数性质的应用
12.当a 为有理数,下列说法中正确的是( ) A .⎝
⎛⎭⎪⎫a +12 0162为正数
B .-⎝
⎛⎭⎪⎫a -12 0162为负数 C .a +⎝ ⎛⎭
⎪⎫12 0162为正数 D .a 2
+12 016为正数 13.若|a +1|+(b -2)2=0,求(a +b )9+a 6
的值.
考点6 科学记数法的应用 14.今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个
拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为126万m2.用科学记数法表示126万为()
A.126×104
B.1.26×105
C.1.26×106
D.1.26×107
15.若一个数等于5.8×1021,则这个数的整数位数是()
A.20
B.21
C.22
D.23
16.把390 000用科学记数法表示为,用科学记数法表示的数 5.16×104的原数是W.
17.太阳的半径约为696 000 km,用科学记数法表示为.
考点7数学思想方法的应用
类型1 数形结合思想
18.如图,数轴上的A,B,C三点所表示的数分别为a,b,c.根据图中各点位置,下列式子正确的是()
(第18题)
A .(a -1)(b -1)>0
B .(b -1)(c -1)>0
C .(a +1)(b +1)<0
D .(b +1)(c +1)<0
类型2 转化思想
19.下列各式可以写成a -b +c 的是(
) A .a -(+b )-(+c ) B .a -(+b )-(-c ) C .a +(-b )+(-c ) D .a +(-b )-(+
c ) 20.计算:⎣⎢⎡⎦⎥⎤113-⎝ ⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫
-712.
类型3 分类讨论思想
21.比较2a与-2a的大小.
考点8有理数中的探究与创新
22.一组数1,1,2,x,5,y,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()
A.8
B.9
C.13
D.15
23.按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜测x,y,z满足的关系式是.
24.观察下列一组数:1
3

2
5

3
7

4
9

5
11
,…,根
据该组数的排列规律,可推出第10个数是.
25.填在下面各正方形(如图)中的四个数之间都有一定的规律,据此规律得出a+b+c =.
(第25题)
26.如图是某种细胞分裂示意图,这种细胞每过30 min便由1个分裂成2个.
(第26题)
根据此规律求:
(1)这样的一个细胞经过第四个30 min后可分
裂成多少个细胞?
(2)这样的一个细胞经过3 h后可分裂成多少个细胞?
(3)这样的一个细胞经过n(n为正整数)h后可分裂成多少个细胞?。

相关文档
最新文档