《建立反比例函数模型解决实际问题》PPT课件

合集下载

反比例函数的应用PPT课件

反比例函数的应用PPT课件

学习目标
1、能根据实际问题中的条件确定反比例函数 的解析式。 2、能综合利用反比例函数的知识分析和解决 一些简单的实际问题。 3、经历分析实际问题中变量之间的关系,建立 反比例函数模型,进而解决问题的过程。 4、认识数学与生活的密切联系,激发学习数学 的兴趣,增强数学应用意识。
面积中的反比例函数
(1)此蓄电池的电压是 36V , 这一函数的
表达式为
.
(2)当电流为18A时,用电器的电阻为 2Ω ; 当电流为10A时,用电器的电阻为 3.6Ω.
(3)如果以此蓄电池为电源的用电器电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?
答:可变电阻应不小于3.6Ω.
课堂检测,细心的你一定行!
(3)当空气中每立方米的含药量低于1.6mg时,学 生方可进教室,那么从消毒开始, 经过多长时间学生 才能回到教室?
1y 3 x
4
y(mg)
A 6
2y 48
x
O8
x(min)
深层思考,综合应用
1、为了预防“传染病”,某学校订教室采用药熏消 毒法进行消毒, 已知在药物燃烧时段内,室内每立方米 空气中的含药量y(mg)与时间x(min)成正比例.药物燃 后,y与x成反比例,如图所示。 (4)当空气中每立方米的含药量不低于3mg且持 续时间不低于10分钟时,才能有效杀灭空气中病 菌,那么此次消毒是否有效?为什么?
1.一个矩形的面积为20cm2 ,相邻两边的
长分别为xcm和ycm,则y与x之间的函数
关系式为
.
行程中的反比例函数
2.A、B两地间的高速公路长为300km,
一辆汽车行完全程所需的时间t(h)与
行驶的平均速度v(km/h)之间的函数关

建立反比例函数模型解实际问题

建立反比例函数模型解实际问题

(教案)27教学目标:1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题2、能依照实际问题中的条件确定反比例函数的解析式。

3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

教学重点、难点:重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题难点:依照实际问题中的条件确定反比例函数的解析式教学过程:一、情形创设:为了预防“非典”,某学校对教室采纳药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时刻x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,现在室内空气中每立方米的含药量为6mg,请依照题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x 的函数关系式为: ________, 自变量x 的取值范畴是:_______,药物燃烧后y关于x的函数关系式为_______.(2)研究说明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要通过______分钟后,学生才能回到教室;(3)研究说明,当空气中每立方米的含药量不低于3mg且连续时刻不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?什么缘故?二、新授:例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。

(1)假如小明以每分种120字的速度录入,他需要多少时刻才能完成录入任务?[来源:学,科,网][来源:学_科_网](2)录入文字的速度v(字/min)与完成录入的时刻t(min)有如何样的函数关系?(3)小明期望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?例2某自来水公司打算新建一个容积为43410m⨯的长方形蓄水池。

(1)蓄水池的底部S()3m与其深度()h m有如何样的函数关系?(2)假如蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?(3)由于绿化以及辅助用地的需要,通过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)[来源:学_科_网]三、课堂练习1、一定质量的氧气,它的密度ρ(kg/m3)是它的体积V( m3) 的反比例函数, 当V=10m3时,ρ=1.43kg/m3. (1)求ρ与V的函数关系式;(2)求当V =2m3时求氧气的密度ρ.2、某地上年度电价为0.8元/度,年用电量为1亿度.本年度打算将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y (亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8.[来源:Zxxk ](1)求y与x之间的函数关系式;(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%? [收益=(实际电价-成本价)×(用电量)]3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C 重合),设PA=x,点D到PA的距离DE=y.求y与x之间的函数关系式及自变量x的取值范畴.四、小结五、作业教材习题1、2、3[来源:Z&xx&k ]。

实际问题与反比例函数-完整版PPT课件

实际问题与反比例函数-完整版PPT课件
2、利用反比例函数解决实际问题的关键: 建立反比例函数模型.
实际问题与反比例函数
1、物理问题转化为与反比例函数有关的数学问题; 2、根据自变量的范围求相应的函数值的范围; 3、注意数形结合.
实际问题与反比例函数
在物理学中,有很多量之间的变化是反比例 函数的关系,因此,我们可以借助于反比例函数 的图象和性质解决一些物理学中的问数
古希腊科学家阿基米德曾 说过:“给我一个支点, 我可以把地球撬动。” 你认为这可能吗?为什么?
阻力
动力
阻力臂
动力臂
阻力×阻力臂=动力×动力臂
实际问题与反比例函数
实际 问题
建立数学模型 运用数学知识解决
反比例 函数
实际问题与反比例函数
小结 1、通过本节课的学习,你有哪些收获?
列实际问题的反比例函数解析式
(1)列实际问题中的函数关系式首先应分析清楚各变 量之间应满足的分式,即实际问题中的变量之间的关系 立反比例函数模型解决实际问题; (2)在实际问题中的函数关系式时,一定要在关系式 后面注明自变量的取值范围。

反比例函数的应用ppt课件

反比例函数的应用ppt课件
如图,一辆汽车匀速通过某段公路,所需时间


解 t(h)与行驶速度 v(km/h)的图象为双曲线的一段,若这
读 段公路行驶速度不得超过80 km/h,则该汽车通过这段公路
最少需要 _____ h.
6.2 反比例函数的图象与性质
[解题思路]





设双曲线的解析式为t= ,∴k=1×4=40,即 t=
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]


∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内

混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2

析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
[易错] B
[错因] 忽略了点(x1,y1),(x3,y3)与(x2,y2
成的一元二次方程
即 k1 和 k2 的符号
的根的判别式 Δ
6.2 反比例函数的图象与性质






k1k2>0 ⟹ 两图象有两
交点 个交点
情况
k1k2<0 ⟹ 两图象没有
交点
启示
Δ>0⟹ 两图象有两个交点
Δ=0⟹ 两图象有一个交点
Δ<0⟹ 两图象没有交点
两 图 象 有 交 点 时 , 两 将 =k2x+b 转化为一元二
6.2 反比例函数的图象与性质

解题通法

解决此类问题需要读懂题目,准确分析出各个量之间的


突 关系,将需要求的量根据等量关系表示出来.

八下数学课件 用反比例函数解决实际问题(第二课时)

八下数学课件 用反比例函数解决实际问题(第二课时)
数学(苏科版)
八年级 下册第十一章 反比例数11.3 用反比例函数解决实际问题
(第二课时)
学习目标
学习目标
1)运用反比例函数的知识解决实际问题。
2)经历“实际问题-建立模型-拓展应用”的过程,发展学生分析、解决问题的能力。
3)经历运用反比例函数解决实际问题的过程,体会数学建模的思想。
重点
运用反比例函数解决实际问题。
数图象的部分,下列选项错误的是( )
A.4月份的利润为50万元
B.污改造完成后每月利润比前一个月增加30万元
C.治污改造完成前后共有4个月的利润低于100万元 D.9月份该厂利润达到200万元
【详解】
治污改造完成前后,1-6月份的利润分别为200万元、100万元、
的利润低于100万元,C选项错误;
9月份的利润为30 × 9 − 70 = 200万元,D选项正确;
(1)动力 F 与动力臂 L 有怎样的函数关系?
(2)当动力臂为1.5米时,撬动石头至少需要多大的力?
(3)若想使动力F不超过题(2)中所用力的一半, 则动力臂至少要加长多少米?
2)把L=1.5带入到函数解析式F=
600

解得,F=400(N)
则对于函数F=
600
,当L=1.5米时,F=400 N,此时

段是恒温阶段,BC段是双曲线 = 的一部分,请根据图中信息解答下列问题:
(1)求k的值;
(2)恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有多少小时?

(1)把B(12,20)代入 = 中得:k=12×20=240;
(2)设AD的解析式为:y=mx+n.
把(0,10)、(2,20)代入y=mx+n中

《反比例函数》公开课课件PPT6

《反比例函数》公开课课件PPT6

C.y=150 000a2
B.y 150 00识点 2 实际问题中的反比例函数的图象
学校锅炉旁建有一个储煤库,开学时购进一批煤,现 在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚 好用完.若每天的耗煤量为x吨,那么这批煤能维持y 天.
(1)则y与x之间有怎样的函数关系? (2)画函数图象
合作探究
例1 市煤气公司要在地下修建一个容积 为104 m3的圆柱 形煤气储存室.
(1) 储存室的底面积S (单位:m2)与其 深度d(单位:m)有 怎样的函数关系?
(2) 公司决定把储存室的底面积S定为 500 m2,施工队施工 时应该向地下掘进多深?
(3)当施工队按(2)中的计划掘进到地下15 m时,公司临 时改变计划, 把储存室的深度改为15 m.相应地,储 存室的底面积应改为多少(结果保留 小数点后两位)?
公司决定把储存室的底面积S定为 500 m2,施工队施工
积S(单位:m2)与其深度d(单位:m)的函数图象大致
2 m2,则总人口有100人
能够运用二次函数及其图象、性质解决实际问题.

新知小结
针对具体的反比例函数解答实际问题,应明确其 自变量的取值范围,所以其图形是反比例函数图形的 一部分.
合作探究
2.某工厂现有原材料 300 t,平均每天用去 x t,这批原材料能用
y 天,则 y 与 x 之间的函数解析式是( B )
A.y=300x C.y=300-30x0
B.y=30x0 D.y=300-x
3.港珠澳大桥桥隧全长 55 千米,其中主桥长 29.6 千米,张明开
车从主桥通过时,汽车的平均速度 v(单位:千米/时)与时间 t(单
3 【中考·来宾】已知矩形的面积为10,相邻两边的 长分别为x和y,则y关于x的函数图象大致是( C )

关于反比例函数的ppt课件

关于反比例函数的ppt课件


鼓励提问
02
鼓励学生提出自己的疑问和不解,可以是对知识点的理解问题
,也可以是相关应用问题。
问题记录
03
老师或助教将学生的问题记录下来,以便在后续环节中进行解
答。
小组讨论环节组织安排
分组方式
根据学生的座位或者自愿组合,将学生分成若干小组,每 组4-6人。
讨论时间
给每个小组分配5-8分钟的讨论时间,要求学生在规定时 间内围绕主题展开讨论。
标轴是反比例函数的渐近线。
对称性
反比例函数图像关于原点对称,即 如果(x,y)在图像上,那么(-x,-y)也 在图像上。
增减性
在第一象限和第三象限内,随着x的 增大,y的值逐渐减小;在第二象限 和第四象限内,随着x的增大,y的 值逐渐增大。
与正比例函数关系
• 正比例函数与反比例函数的关系:正比例函数y=kx和反比例函数y=k/x的图像都经过原点,但它们的图像形状和性质完全 不同。正比例函数的图像是一条过原点的直线,而反比例函数的图像是一条以原点为中心的双曲线。当k>0时,正比例函数 的图像在第一、三象限,而反比例函数的图像也在第一、三象限;当k<0时,正比例函数的图像在第二、四象限,而反比例 函数的图像也在第二、四象限。因此,我们可以通过观察函数的图像来判断它是正比例函数还是反比例函数。
变化。
弹簧振子运动规律
胡克定律
描述弹簧伸长或压缩量与弹力之间的关系,即F=kx,其中 k为弹簧常数,x为伸长或压缩量。当弹力固定时,伸长或 压缩量与弹簧常数成反比。
振动周期与弹簧常数
弹簧振子的振动周期与弹簧常数成反比,可以用反比例函 数来描述这种关系。
能量与振幅
弹簧振子的振动能量与其振幅的平方成正比,而振幅与弹 簧常数成反比,因此能量与弹簧常数之间具有复杂的反比 例关系。

26.2.2 建立反比例函数的模型解跨学科问题优秀课件

26.2.2  建立反比例函数的模型解跨学科问题优秀课件
1 已知经过闭合电路的电流I (单位:A)与电路的电阻R (单位:Ω)是反比例函 数关系,请填下表(结果保留 小数点后两位
知2-练
2 用电器的输出功率P与通过的电流I、用电器的电
阻R之间的关系式是P=I2R,下列说法正确的是
()
3
A.P为定值时,I与R成反比例
4
B.P为定值时,I2与R成反比例
5
C.P为定值时,I与R成正比例
15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。 16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。 17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者
知2-讲
解:(1)根据电学知识,当U=220时,得
2202 P

R
(2)根据反比例函数的性质可知,电阻越大,功率越
小. 把电阻的最小值R=110代入①式,得到功率的
最大值
2202
P 440(W);
110
把电阻的最大值R= 220代人①式,得到功率的 最
小值
2202 P 220(W).
220
5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。

九年级数学下册第1章反比例函数1.1建立反比例函数模型教学课件湘教版2020032331

九年级数学下册第1章反比例函数1.1建立反比例函数模型教学课件湘教版2020032331
第1章 反比例函数
1.1 建立反比例函数模型
1.经历由实际问题建立反比例函数模型的过程, 领会反比例函数的意义,理解反比例函数的概 念; 2.能判定一个给定函数是否为反比例函数,能 根据实际问题中的条件确定反比例函数的表达 式.
1.下列函数中哪些是正比例函数,并指出相应k的值?
① y = 3x-1
舞台的灯光效果 舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓 云密布的阴天,或由黑夜变成白昼,这样的效果就是通过 改变电阻来控制电流的变化实现的.因为当电流I较小时, 灯光较暗;反之,当电流I较大时,灯光较亮.
京沪高速公路全长约为1 318km,汽车沿京沪高速公 路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶 的平均速度v(km/h)之间有怎样的关系?变量t是v的函数 吗?为什么?
y 20 x
2.某村有耕地346.2公顷,人口数量n逐年发生变化,那 么该村人均占有耕地面积m(公顷/人)是全村人口数n 的函数吗?是反比例函数吗?为什么?
m 346.2 n
3.写出下列函数关系式,并指出它们是什么函数?
(1)当路程s一定时,时间t与速度v的函数关系
s
t= v
是反比例函数
(2)当矩形面积S一定时,长ɑ与宽b的函数关系
1
3 x
, 4y
5 2x
5xy 1 , 6y 5 x, 7y 2a (ɑ为常数,ɑ≠0)
3
x
【例题】
确定反比例函数的关系式
y是x的反比例函数,下表给出了x与y的一些值:
x
-2 -1 - 1
1
1
22
y
2 3
2
-1
2 3
(1)写出这个反比例函数的表达式:

《实际问题与反比例函数》反比例函数PPT优秀课件(第2课时)

《实际问题与反比例函数》反比例函数PPT优秀课件(第2课时)
人教版 数学 九年级 下册
26.2 实际问题与反比例函数 第2课时
导入新知
给我一个支点,我可以撬动地球!──阿基米德
1.你认为可能吗? 2.大家都知道开啤酒的开瓶器,它蕴含什么科学道理? 3.同样的一块大石头,力量不同的人都可以撬起来,
是真的吗?
学习目标
3. 体会数学建模思想,培养学生数学应用意识.
程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进 行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时 间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数, 在通风后又成反比例,如图所示.下面四个选项中错误的是( C )
A.经过5min集中喷洒药物,室内空气中的含药量最高达到 10mg/m3 B.室内空气中的含药量不低于8mg/m3的持续时间达到了11min C.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分 钟,才能有效杀灭某种传染病毒.此次消毒完全有效 D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的, 所以从室内空气中的含药量达到2mg/m3开始,需经过59min后, 学生才能进入室内
如图所示,重为8牛顿的物体G挂在杠杆的B端,O点为支点,且
OB=20cm.
(1)根据“杠杆定律”写出F与h之间的函数解析式;
(2)当h=80cm时,要使杠杆保持平衡,在A端需要施加多少牛
顿的力?
A
B
O
F
G
课堂检测
解:(1)F•h=8×20=160
所以 F 160
A
h
F
(2)当h=80cm时,
F 160 (2 牛顿) 80
至少要加长多少? 分析:对于函数 F 600 ,F 随 l 的增大而减小. 因此,只要求

反比例函数的应用课件

反比例函数的应用课件

解:根据电学知识,
U~
当 U = 220 时,得
2202 p .
R
新课进行时
(2) 这个用电器功率的范围是多少?
解:根据反比例函数的性质可知,电阻越大,功率 越小. 把电阻的最小值 R = 110 代入求得的表达式, 得到功率的最大值 p 2202 440 ; 110
把电阻的最大值 R = 220 代入求得的表达式,
小. 因此,若想用力不超过 400 N 的一半,则
动力臂至少要加长 1.5 m.
新课进行时
想一想
在物理中,我们知道,在阻力和阻 力臂一定的情况下,动力臂越长就越省力, 你能用反比例函数的知识对其进行解释吗?
新课进行时
练一练 假定地球重量的近似值为 6×1025 牛顿 (即阻力),
阿基米德有 500 牛顿的力量,阻力臂为 2000 千米,请 你帮助阿基米德设计,该用多长动力臂的杠杆才能把 地球撬动? 解: 2000 千米 = 2×106 米,
解:运了8天后剩余的垃圾有
1200-8×60=720 (立方米),
剩下的任务要在不超过6天的时间完成,则每天
至少运
720÷6=120 (立方米),
所以需要的拖拉机数量是:120÷12=10 (辆),
即至少需要增加拖拉机10-5=5 (辆).
新课进行时
例3 一司机驾驶汽车从甲地去乙地,他以 80千米/时的 平均速度用 6 小时到达乙地. (1)甲、乙两地相距多少千米?
( B) y
A.
x
B.
x
y
y
C.
x
D.
x
新课进行时
2. 如图,某玻璃器皿制造公司要制造一种容积为1升
(1升=1立方分米)的圆锥形漏斗.

《实际问题与反比例函数》课件

《实际问题与反比例函数》课件
的增大而减小
解:当 V =60 时,p =100,则 pV=6
000,

A.气压 p 与体积 V 表达式为 p= ,则 k>0,故不符

合题意;
6 000
B.当 p=70时,V=
>80,故不符合题意;
70
C.当体积 V 变为原来的一半时,对应的气压 p 变为原
来的2倍,故不符合题意;
D.当60≤V≤100时,气压 p 随着体积 V 的增大而减小,
600
∴ F 关于l 的函数解析式为F= .

600
当 l=1.5 m 时,F= =400 (N).
1.5
600
对于函数 F=
,当 l =1.5 m时,F

=400 N,此时杠
杆平衡. 因此,撬动石头至少需要400 N的力.
例3 小伟欲用撬棍撬动一块大石头,已知阻力和阻力
臂分别为 1200 N 和 0.5 m.
对地面的压强减小,就不会陷入泥中了.
如果人和木板对湿地地面的压力合计为 600 N,那么,
(1)木板面积 S 与人和木板对地面的压强 p 有怎样的函
数关系?
600
解:(1) p 是 S 的反比例函数, =
,S>0.

(2)当木板面积为 0.2 m2 时,压强是多少?
解:(2)当 S=0.2
m2
时, =


(W 是常数).
(2)当压力 F 一定时,压强 p 与受力面积 S 成反比例,
即=


(F 是常数).
新知探究 跟踪训练
1.有一个可以改变体积的密闭容器内装有
一定质量的二氧化碳,当改变容器的体积
时,气体的密度也会随之改变,密度 ρ (单
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以若要在一个工作日 ( 8 小时 ) 内完成,
则每小时要比原来多加工 15 个零件.
总结
在生活与生产中,如果某些问题的两个量成反 比例关系,那么可以根据这种关系建立反比例函数 模型,再利用反比例函数的有关知识解决实际问 题.
总结
运用反比例函数解决实际问题时常用的两种思路: (1) 通过问题提供的信息,明确变量之间的函数关系, 设出相应的函数表达式,再根据题目条件确定函 数表达式中的待定系数的值; (2) 已知反比例函数模型的表达式,运用反比例函数 的图象及性质解决问题.
你从中发现了什么规律 ? 同样多的橡皮泥,搓的长条越细,得到的长度越长 .
知识点 1 实际问题中的反比例函数关系式
对现实生活中的许多问题,我们都可以通过建立反 比例函数模型来加以解决.
例1 某机床加工一批机器零件, 如果每小时加工 30 个, 那么 12 小时可以完成. (1) 设每小时加工 x 个零件,所需时间为 y 小时,写 出 y 关于 x 的函数表达式; (2) 若要在一个工作日 ( 8 小时 ) 内完成, 则每小时 要比原来多加工几个零件?
1. 《典中点》P13T3 2. 《典中点》P13T4
知识点 2 实际问题中的反比例函数图象
反比例函数的图象在实际生活中的应用问题,体 现了数形结合思想及函数思想, 是初中数学常用的思 想方法.
例2 【中考·宜昌】 某学校要种植一块面积为100 m2 的长 方形草坪,要求相邻两边长均不小于 5 m,则草坪的 一边长 y ( 单位:m ) 随其邻边长 x ( 单位:m ) 的变 化而变化的图象可能是图中的( C )
第一章 反比例函数
1.3 反比例Байду номын сангаас数的应用
第1课时 建立反比例函数模型 解决实际问题
1 课堂讲解 实际问题中的反比例函数关系式
实际问题中的反比例函数图象
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
根据刚刚找到的规律,在下图中画出类似的图形. 取一团橡皮泥,将它搓成圆柱形长条,比一比,谁 搓的长.
解题秘方:紧扣工程问题中“工作量与工作时间、工作效 率”间的关系列方程,变形求出函数表达式 .
解: (1) 由题意得,xy = 30×12 = 360, 所以函数表达式为 y 360 ( x > 0 ).
x
(2) 当 y = 8 时,代入得 8 360 ,解得 x = 45.
x
所以 45 – 30 = 15(个).
解题秘方:本题考查反比例函数的应用,根据反比例函数
表达式确定x的取值范围,熟练掌握实际问 题的反比例函数图象是解题的关键.
解:∵草坪面积为 100 m2, ∴ y 100 .
x
∵相邻两边长均不小于 5 m, ∴ x ≥ 5,y ≥ 5,则5 ≤ x ≤ 20.
总结
判定实际应用中的反比例函数图象要注意: 图象分支的个数; 图象分支中的端点的位置,即需求出自变量、函数
值的范围; 由 x ≥ 5,y ≥ 5 及 y 100 , 可求出
x
5 ≤ x ≤ 20, 5 ≤ y ≤ 20.
1. 《典中点》P13T6 2. 《典中点》P13T8
反比例函数 在实际生活 中的应用
解题过程: 分析实际情境 确数学问题
建立函数模型 明
完成《典中点》剩余部分习题
感谢
聆听
授课老师:xxx
相关文档
最新文档