山东省济南市七年级上学期数学期中考试试卷
山东省济南市2023--2024学年七年级上学期数学期中模拟试卷(含答案)
2023—2024年第一学期七年级期中模拟试卷时间120分钟满分150分一、选择题(每题4分,共40分)1.通过望远镜,人类在宇宙中已经发现近18600000亿个星系,每一个星系中又有约2000亿颗星球,但所有这些加起来仅占整个宇宙的4%.把18600000精确到十万位的近似数是( )A .1.9×107B .1.86×106C .1.86×107D .1.86×1082.下列关于单项式―2x 2y 3的说法中,正确的是( )A .系数是―23,次数是3.B .系数是―2,次数是3.C .系数是―23,次数是2.D .系数是23,次数是3.3.下列生活实例中,应用到的数学原理解释错误的一项是( )A .在两个村庄之间修一条最短的公路,原理是:两点之间线段最短B .从一条河向一个村庄引一条最短的水渠,原理是:在同一平面内,过一点有且只有一条直线与已知直线垂直C .把一根木条固定到墙上需要两个钉子,原理是:两点确定一条直线D .从一个货站向一条高速公路修一条最短的路,原理是:连结直线外一点与已知直线上各点的所有线段中,垂线段最短4.将一副直角三角尺如图放置,若∠AOD=22°,则∠BOC 的大小为( )A .152°B .168°C .148°D .158°5.如图所示,下列四个图形中不是正方体的平面展开图的是( )A .B .C .D .6.点A 在数轴上距离原点3个单位长度,且位于原点左侧,若将点A 移动5个单位长度到点B ,此时点B 表示的数是( )A .8B .2C .―8D .―8或27.a 、b 两数在数轴上位置如图所示,将a 、b 、―a 、―b 用“<”连接,其中正确的是( )A .a <―a <b <―bB .―b <a <―a <bC .―a <b <―b <aD .―b <a <b <―a 8.如果|x +1|=3,|y |=5,―y x>0,那么y ―x 的值是( )A .2或0B .―2或0C .―1或3D .―7或99.若单项式9x m-2y 2与-3x 3 y n+1的差是单项式,则n-m 的值( )A .4B .-4C .2D .-210.如图,C 是AB 的中点,D 是BC 的中点,下列等式中,错误的是( )A .CD=AD-ACB .CD=AD-BC C .CD=12AB-12ACD .CD=13AB 二、填空题(每题4分,共24分)11.A 、B 为同一数轴上两点AB =3,且,若点A 所表示的数是-1,则点B 所表示的数是 .12.若一个棱柱有7个面,那么这个棱柱有 条棱.13.已知2x ﹣3y ﹣5=0,则6x ﹣9y+15= .14.已知a ,b ,c 是三个有理数,它们在数轴上的位置如图所示,化简|a ﹣b|+|c ﹣a|﹣|b+c|= .15.已知单项式﹣3x 3y n 与5x m+4y 3是同类项,则m ﹣n 的值为 .16.设[x ]表示不超过x 的整数中最大的整数,如:[1.99]=1,[―1.02]=―2,根据此规律计算:[4.5]―[―0.3]= .三、计算题(每题8分,共16分)17.计算:(1)―557÷(―5)×15;(2)(―61)―(―71)―|―8|―(―2);(3)(―14+16―12)×(―12);(4)―16÷(―2)3―22×|―12|+(―1)202318.先化简,再求值:(1)(-x 2+5+4x)+(5x-4+2x 2),其中x=- 2.(2)-a 2b+(3ab 2-a2b)-2(2ab 2-a 2b),其中a=-3,b=-1.四、作图题(6分)19.如图,是由7个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.正面(1)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.从正面看从左面看从上面看(2)直接写出这个几何体的表面积(包括底部)五、解答题(共64分)20.出租车司机小李某天下午的营运全是在南北向的道路上,如果规定向南为正,向北为负,他这天下午的行车情况如下(单位:千米):+15,-6,+14,-11,+10,-12,+4,-15,+16,-17.(1)当小李将最后一名乘客送到目的地时,小李距下午出车地点的距离为多少千米?此时,小李的位置是在出车地点的南面还是北面?(2)若出租车每100千米耗油5升,每升油价格为8元,则小李这天下午的行程需要花费多少油钱?21.(本小题10.0分)若a ,b 互为相反数(b 不为0),c 、d 互为倒数,m 的绝对值为2,求m ―cd +a +b 2023+a b 的值.22.如图,已知线段AB =4,延长AB 到C ,使得BC =12AB ,反向延长AB 到D ,使得AD =12AC .(1)求线段CD 的长;(2)若Q 为AB 的中点,P 为线段CD 上一点,且BP =12BC ,求线段PQ 的长.23.如图,直线AB 与CD 相交于点O ,射线OE 平分∠BOF .(1)∠AOD 的对顶角是 ,∠BOC 的邻补角是 (2)若∠AOD=20°,∠DOF :∠FOB=1:7,求∠EOC 的度数.24.【阅读材料】问题:如何计算11×2+12×3+13×4+⋅⋅⋅+119×20呢?小红带领的数学兴趣小组通过探索完成了这道题的计算.他们的解法如下:解:原式==(1―12)+(12―13)+(13―14)+⋯+(119―120)=1―120=1920.根据材料,请你完成下列计算:(1)计算:21×3+23×5+25×7+27×9+29×11;(2)直接写出结果:13+115+135+163+199= ;(3)计算:11×5+15×9+19×13+⋯+12015×2019+12019×2023.25.如图,三角尺ABP 的直角顶点P 在直线CD 上,点A ,B 在直线CD 的同侧.(1)如图①,若∠APC =40°,求∠BPD 的度数.(2)如图②,若PM 平分∠APC ,PN 平分∠BPD ,求∠MPN 的度数.(3)绕点P 旋转三角尺ABP ,使点A ,B 在直线CD 的异侧,如图③,当∠APC =4∠BPD 时,求∠BPC 的度数.答案解析部分1.【答案】C2.【答案】A3.【答案】B4.【答案】D5.【答案】A6.【答案】D7.【答案】B8.【答案】D9.【答案】B10.【答案】D11.【答案】2或-412.【答案】1513.【答案】3014.【答案】2a15.【答案】-416.【答案】517.【答案】(1)解:835(2)解:4(3)解:7(4)解:-118.【答案】(1)解:原式=(-x2+5+4x) +(5x-4+ 2x2 )=-x2+5+4x+5x-4+ 2x2=x2+9x+1,∵x=-2,∴原式=(-2)2+9×(-2)+1=4-18+1=- 13;(2)解:原式=-a2b+ (3ab2-a2b)- 2(2ab2-a2b)=-a2b+3ab2-a2b-4ab2 + 2a2b=-ab2∵a=-3,b=-1,∴原式=-(-3)×(-1)2= 3.19.【答案】(1)(2)(1×1)×(5×4+2×3+2)=1×28=28(c m2).故这个几何体的表面积是28c m2.故答案为:28c m2.20.【答案】(1)解:15-6+14-11+10-12+4-15+16-17=-2(千米).∴小李距下午出车地点的距离为2千米,此时,在出车地点的北面.(2)解:|15|+|―6|+|14|+|―11|+|10|+|―12|+|4|+|―15|+|16|+|―17| =15+6+14+11+10+12+4+15+16+17=120(千米),120100×5×8=48(元).答:小李这天下午的行程需要花费油钱48元.21.【答案】解:∵a,b互为相反数,c,d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,ab=―1,当m=2时,m―cd+a+b2023+ab=2―1+0―1=0,当m=―2时,m―cd+a+b2023+ab=―2―1+0―1=―4,∴m―cd+a+b2023+ab的值为0或―4.22.【答案】(1)解:∵AB=4,BC=12AB,∴BC=12×4=2.∴AC=AB+BC=4+2=6.∵AD=12AC,∴AD=12×6=3.∴CD=AD+AC=3+6=9.(2)解:∵AB =4,Q 为AB 的中点,∴QB =12AB =12×4=2.∵BC =2.∴BP =12BC =12×2=1.当点P 在点B 右侧时,PQ =QB +BP =2+1=3;当点P 在点B 左侧时,PQ =QB ―BP =2―1=1.即PQ 的长为1或3.23.【答案】(1)∠ BOC ;∠ AOC ,∠BOD(2)∵∠DOF :∠FOB=1 : 7,∠AOD= 20° ,∴∠DOF= 18∠BOD= 18×(180°- 20°)= 20°.∴∠BOF=140°,∵OE 平分∠BOF ,∴∠BOE= 12∠BOF= 12×140°=70°,∴∠EOC=∠BOE+∠BOC=70°+20°=90°.24.【答案】(1)原式==1―13+13―15+15―17+17―19+19―111=1―111=1011;(2)原式=11×3+13×5+15×7+17×9+19×11=12×(1―13+13―15+15―17+17―19+19―111)=12×(1―111)=511;故答案为:511;(3)11×5+15×9+19×13+⋯+12015×2019+12019×2023=14×[(1―15)+(15―19)+⋯+(12015―12019)+(12019―12023)] = 14×[1―12023] = 10114046.25.【答案】(1)解:∵∠APB =90°,∠APC =40°∴∠BPD =180°―∠APB ―∠APC =180°―90°―40°=50°(2)解:∵PM 平分∠APC ,PN 平分∠BPD ,∴∠APM =∠CPM ,∠BPN =∠DPN∵∠APB =90°,∴2∠APM +2∠BPN =90°,∴∠APM +∠BPN =45°,∴∠MPN=∠APM+∠APB+∠BPN=45°+90°=135°(3)解:设∠BPD=x,则∠APC=4x,∵∠APB=90°,∴∠APD=90°―x,由题意可知:4x+(90°―x)=180°,得3x=90°,解得x=30°,∴∠BPC=180°―∠BPD=180°―30°=150°。
山东省济南七年级上学期数学期中试卷四套解析版
【分析】根据单项式和多项式系数及次数的定义对各选项进行逐一分析即可.
10.【答案】 A
【解析】【解答】依题意有 c<a<0<b,|c|>|a|>|b|,
A、
,故符合题意;
B、
,故不符合题意;
C、
,故不符合题意;
D、
,故不符合题意;
故答案为:A.
【分析】根据数轴表示数的方法得到 c<a<0<b,|c|>|a|>|b|,可对 A、B 进行判断;根据有理数的加
如何转化为乘方运算呢?
例如:(幂的形式)试一试:将下列除方运算直接写成幂的形式.56________ ;
=________ ;
(4)算一算:
31.如图:在数轴上 点表示数 , 点表示数 , 点表示数 ,且 , 满足
,
,
(1) ________, ________; (2)若将数轴折叠,使得 点与 点重合,则点 与数________表示的点重合. (3)在(1)(2)的条件下,若点 为数轴上一动点,其对应的数为 ,当代数式 取得最小值时,此时 ________,最小值为________. (4)在(1)(2)的条件下,若在点 处放一挡板,一小球甲从点 处以 个单位 秒的速度向左运动; 同时另一小球乙从点 处以 个单位 秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看做一 点)以原来的速度向相反的方向运动,设运动的时间为 (秒),请表示出甲、乙两小球之间的距离 (用 的代数式表示)
答案解析部分
一、单选题
1.【答案】 B 【解析】【解答】解:根据绝对值的概念可知:|-2020|=2020, 故答案为:B. 【分析】根据绝对值的定义直接进行计算. 2.【答案】 C
【解析】【解答】解:
小数点后的
山东省济南市七年级(上)期中数学试卷
答案和解析 1.【答案】D
【解析】
【解答】解:如果温度上升10℃记作+10℃,那么下降5℃记作-5℃,故 ABC错误, D 正确. 故选 D. 【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下 降 就记为负,直接得出结论即可. 此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定 哪一个为正,则和它意义相反的就为负.
值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动 的位数相同.当原数绝对值>10 时,n 是正数;当原数的绝对值<1 时,n 是负 数.
此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n的形式,其
中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
解:S 扇形= 故选:B.
(m2),
根据扇形的面积公式 S 扇形=
,代入计算即可得出答案.
本题考查了扇形的面积计算,解答本题的关键是熟练掌握扇形的面积公式.
12.【答案】C
【解析】
解:
= + + +…+ =1- + - + - +…+ =1=, 故选:C. 根据求和符号的意义得出
= + + +…+
,再利
)
D. 2021
)
D. 16
A. 54πm2
B. 27πm2
C. 18πm2
D. 9πm2
12. 式子“1+2+…+100”表示从 1 开始的 100 个连续自然数的和,为了简便将其表示为 n=1100n,这里“∑”是求和符号,通过以上材料,计算 n=1991n(n+1)=( )
山东省济南市 七年级(上)期中数学试卷-(含答案)
七年级(上)期中数学试卷题号 一 二 三 四 总分 得分一、选择题(本大题共15小题,共60.0分) 1. 下列各数中,在-2和0之间的数是( )A. −1B. 1C. −3D. 32. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A.B.C.D.3. 下面各对数中互为相反数的是( )A. 2与−|−2︳B. −2与−|2|C. |−2|与|2|D. 2与−(−2)4. 下列有理数的大小关系判断正确的是()A. −(−19)>−|−110| B. 0>|−10| C. |−3|<|+3|D. −1>−0.015. 下列说法正确的是( )A. 23表示2×3B. −32与(−3)2互为相反数C. (−4)2中−4是底数,2是幂D. a 3=(−a)3 6. 在数轴上表示-2的点与表示3的点之间的距离是( )A. 5B. −5C. 1D. −17. 2015年初,一列CRH 5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为( )A. 3×106B. 3×105C. 0.3×106D. 30×1048. 如图是由4个大小相同的正方体组合而成的几何体,其主视图是( )A.B.C.D.9. 下列说法中正确的是( )A. 5不是单项式B.x+y 2是单项式C. x 2y 的系数是0D. x −32是整式10. 当x =7与x =-7时,代数式3x 4-2x 2+1的两个值( )A. 相等B. 互为倒数C. 互为相反数D. 既不相等也不互为相反数 11. 如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是( ) A. 遇 B. 见 C. 未 D. 来12. 若|a +3|+|b -2|=0,则a b 的值为( )A. −6B. −9C. 9D. 613.若x是有理数,则x2+1一定是()A. 等于1B. 大于1C. 不小于1D. 不大于114.已知a2+2a=1,则代数式2a2+4a-1的值为()A. 0B. 1C. −1D. −215.如图所示是一个运算程序的示意图,若开始输入的x值为81,则第2016次输出的结果为()A. 3B. 27C. 9D. 1二、填空题(本大题共5小题,共15.0分)16.单项式-5x2y的系数是______ .617.数轴上点A表示-2,从A出发,沿数轴移动4个单位长度到达点B,则点B表示的数是______ .18.观察下列单项式:x,-3x2,5x3,-7x4,9x5,…按此规律,可以得到第2016个单项式是______ .19.规定一种新运算:a△b=a•b-a-b+1,如3△4=3×4-3-4+1,则(-2)△5= ______ .20.已知a,b互为相反数,m,n互为倒数,且m不等于1、-1,x的绝对值为2,计−x2=________算:−2mn+a+bm−n三、计算题(本大题共3小题,共26.0分)21.为节约用水,某市对居民用水规定如下:大户(家庭人口4人及4人以上者)每月用水15m3以内的,小户(家庭人口3人及3人以下者)每月用水10m3以内的,按每立方米收取4.8元的水费;超过上述用量的,超过部分每立方米水费加倍收取.某用户5口人,本月实际用水25m3,则这户本月应交水费多少元?22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,-3,+10,-8,-6,+12,-10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23. 初一年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m 名学生,用代数式表示两种优惠方案各需多少元? (2)当m =70时,采用哪种方案优惠? (3)当m =100时,采用哪种方案优惠?四、解答题(本大题共4小题,共46.0分)24. 在数轴上表示下列各数,并把下列各数用“>”号连接起来-12,-2,12,-|-5|,-(-5)25. 计算下列小题(1)-12+12÷83 (2)(-9)2-2×(-9)+12 (3)(12-59+712)×(-36) (4)(-45)÷910×3-22+3×(-1)2008 (5)-12+3×(-2)3+(-6)÷(-13)2.26. 邮递员骑摩托车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km 到达B 村,然后向北骑行9km 到C 村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每100km耗油3升,这趟路共耗油多少升?27.问题:你能比较两个数20122013与20132012的大小吗为了解决这个问题,我们先把它抽象成这样的问题:写成它的一般形式,即比较n n+1和(n+1)n的大小(即是自然数).然后,我们分析n=1,n=2,n=3…这些简单情形入手,从而发现规律,经过归纳,才想出结论.(1)通过计算,比较下列各组中两个数的大小①12______ 21②23______ 32③34______ 43④45______ 54 ⑤56______ 65⑥67______ 76(2)从第(1)题的结果经过归纳,可以猜想n n+1和(n+1)n的大小关系;(3)根据下面归纳猜想得到的一般结论,试比较下列两个数的大小:20162017______ 20172016.答案和解析1.【答案】A【解析】解:A、-2<-1<0,故本选项正确;B、1>0,1不在-2和0之间,故本选项错误;C、-3<-2,-3不在-2和0之间,故本选项错误;D、3>0,3不在-2和0之间,故本选项错误;故选A.根据有理数的大小比较法则比较即可.本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2.【答案】C【解析】解:∵|-0.6|<|+0.7|<|+2.5|<|-3.5|,∴-0.6最接近标准,故选:C.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.本题考查了绝对值以及正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.3.【答案】A【解析】解:∵-|-2|=-2,它与2互为相反数.所以四个答案中,互为相反数的是2与-|-2|.故选A.相反数的概念:只有符号不同的两个数互为相反数,0的相反数是0.在本题中要注意理解求-|-2|的相反数就是求-2的相反数,不要受绝对值符号的影响.4.【答案】A【解析】解:A、-(-)=,-|-|=-,所以-(-)>-|-|;B、0<|-10|=10;C、|-3|=3=|+3|=3;D、-1<-0.01.所以选A.根据有理数比较大小的方法:化简后比较即可.比较两个有理数的大小时,需先化简,再比较.有理数大小比较的法则:(1)正数都大于0;(2)负数都小0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小.5.【答案】B【解析】解:A、23表示2×2×2,故本选项错误;B、-32=-9,(-3)2=9,-9与9互为相反数,故本选项正确;C、(-4)2中-4是底数,2是指数,故本选项错误;D、a3=-(-a)3,故本选项错误.故选B.根据有理数的乘方的定义对各选项分析判断后利用排除法求解.本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.6.【答案】A【解析】解:3-(-2)=2+3=5.所以在数轴上表示-2的点与表示3的点之间的距离为5.故选A根据正负数的运算方法,用3减去-2,求出在数轴上表示-2的点与表示3的点之间的距离为多少即可.此题主要考查了正负数的运算方法,关键是根据在数轴上表示-2的点与表示3的点之间的距离列出式子.7.【答案】B【解析】解:将300000用科学记数法表示为:3×105.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.【答案】C【解析】解:根据图形可得主视图为:故选:C.根据几何体的三视图,即可解答.本题考查了几何体的三视图,解决本题的关键是画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.9.【答案】D【解析】解:A、根据单项式的概念,5是单项式;故A错误.B、=,所有此代数式是单项式的和,是多项式;故B错误.C、x2y的系数是1,而不是0;故C错误.D、x-是多项式,属于整式;故D正确.故选D.根据单项式和多项式的有关概念解答即可,单项式的系数是单项式中的数字因数,单项式的次数是单项式所有字母的指数和.单项式和多项式统称为整式,单项式是指只含乘法的式子,单独的字母或数字也是单项式;若干个单项式的代数和组成的式子是多项式.10.【答案】A【解析】解:∵当x=7或-7时,x2=49,x4=(x2)2=492,∴代数式3x4-2x2+1的两个对应值相等.故选A.当x=7或-7时,x2=49,x4=(x2)2=492,故对代数式3x4-2x2+1的两个值没有改变.本题考查了代数式的求值问题.关键是明确相反数的偶数次方的值相等.11.【答案】D【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“遇”与“的”是相对面,“见”与“未”是相对面,“你”与“来”是相对面.故选D.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.【答案】C【解析】解:∵|a+3|+|b-2|=0,∴a+3=0,b-2=0,∴a=-3,b=2,∴a b=(-3)2=9.故选C.先根据非负数的性质求出a、b的值,再根据有理数的乘方求出a b的值即可.本题考查的是有理数的乘方及非负数的性质,熟练掌握其相关知识是解答此题的关键.13.【答案】C【解析】解:由非负数的性质得,x2≥0,所以,x2+1≥1,所以,x2+1一定是不小于1.故选C.根据平方数非负数的性质解答.此题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).14.【答案】B【解析】解:∵a2+2a=1,∴原式=2(a2+2a)-1=2-1=1,故选B原式前两项提取变形后,将已知等式代入计算即可求出值.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.15.【答案】D【解析】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,从4次运算以后,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2016是偶数,∴第2016次输出的结果为1.故选:D.根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.16.【答案】-56【解析】解:单项式-的系数是-.故答案为:-.单项式中的数字因数叫做单项式的系数,由此可得出答案.本题考查了单项式的知识,属于基础题,关键是掌握单项式系数的定义.17.【答案】-6或2【解析】解:当B点在A的左边,则B表示的数为:-2-4=-6;若B点在A的右边,则B表示的数为-2+4=2.显然,点B可以在A的左边或右边,即-2-4=-6或-2+4=2.此题要考虑两种情况,熟练计算有理数的加减法.18.【答案】4031x2016【解析】解:x,-3x2,5x3,-7x4,9x5,…按此规律,可以得到第2016个单项式是4031x2016,故答案为:4031x2016.根据观察,可发现规律:系数是(-1)n+1(2n-1),字母部分是x n,可得答案.本题考查了单项式,观察发现规律是解题关键.19.【答案】-12【解析】解:根据题中的新定义得:(-2)△5=-10+2-5+1=-12.故答案为:-12根据题中的新定义计算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】-6【解析】解:由a、b互为相反数,m、n互为倒数,且m不等于1,-1,x的绝对值为2,得a+b=0,mn=1,|x|=2.-2mn+-x2=-2-4=-6,故答案为:-6.根据乘积为1的两个数互为倒数,互为相反数的和为零,可得答案.本题考查了倒数,利用乘积为1的两个数互为倒数,互为相反数的和为零得出a+b=0,mn=1,|x|=2是解题关键.21.【答案】解:根据题意得:15×4.8+(25-15)×4.8×2=72+96=168(元),答:这户本月应交水费168元.【解析】根据用水的收费标准列出算式,计算即可得到结果.此题考查了有理数的混合运算,弄清题中的收费标准是解本题的关键.22.【答案】解:(1)∵(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10),=5-3+10-8-6+12-10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【解析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.【答案】解:(1)甲方案:m ×30×810=24m ,乙方案:(m +5)×30×7.510=22.5(m +5);(2)当m =70时,甲方案付费为24×70=1680元,乙方案付费22.5×75=1687.5元, 所以采用甲方案优惠;(3)当m =100时,甲方案付费为24×100=2400元,乙方案付费22.5×105=2362.5元, 所以采用乙方案优惠.【解析】(1)甲方案:学生总价×0.8,乙方案:师生总价×0.75; (2)把m=70代入两个代数式求得值进行比较;(3)把m=100代入两个代数式求得值进行比较.解决问题的关键是读懂题意,找到所求的量的等量关系.根据关系式列出式子后再代值计算是基本的计算能力,要掌握.24.【答案】解:-|-5|=-5,-(-5)=5.各数在数轴上表示为:所以-(-5)>12>-12>-2>-|-5|.【解析】先化简-|-5|和-(-5),然后再将它们在数轴上表示出来,最后依据数轴上右边的数大于左边的数比较即可.本题主要考查的是比较有理数的大小,在数轴上表示出各数是解题的关键.25.【答案】解:(1)-12+12÷83 =-12+4.5 =-7.5;(2)(-9)2-2×(-9)+12=81+18+1=100;(3)(12-59+712)×(-36)=-18+20-21=-19;(4)(-45)÷910×3-22+3×(-1)2008 =83-4+3×1 =53;(5)-12+3×(-2)3+(-6)÷(-13)2=-1+3×(-8)+(-6)×9 =-1-24-54=-79.【解析】(1)先算除法,再算加法即可;(2)先算乘方,再算乘除,最后算加减;(3)利用分配律计算即可;(4)先算乘方,再算乘除,最后算加减;(5)先算乘方,再算乘除,最后算加减.本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.26.【答案】解:(1)依题意得,数轴为:;(2)依题意得:C 点与A 点的距离为:2+4=6km ;(3)依题意得邮递员骑了:2+3+9+4=18km ,×3=0.54升.∴共耗油量为:18100【解析】(1)以邮局为原点,以向北方向为正方向用1cm表示1km,按此画出数轴即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)数轴上这些点的绝对值之和为邮递员所行的路程,继而求出所耗油的量.本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.27.【答案】<;<;>;>;>;>;>【解析】解:(1)①∵12=1,21=2,∴12<21;②∵23=8,32=9,∴23<32;③∵34=81,43=64,∴34>43;④∵45=1024,54=625,∴45>54;⑤∵56=15625,65=7776,∴56>65;⑥∵67=279936,76=117649,∴67>76;(2)n<3时,n n+1<(n+1)n,n≥3时,n n+1>(n+1)n;(3)∵2016>3,∴20162017>20172016.故答案为:(1)①<②<③>④>⑤>⑥>;(3)20162017>20172016.(1)根据有理数的乘方分别计算即可比较出大小;(2)根据n的取值范围讨论解答;(3)根据(2)的结论判断出大小.本题考查了有理数的乘方,有理数的大小比较,熟记乘方的概念并准确计算是解题的关键.。
山东省济南市七年级数学上学期期中考试题(含答案)
山东省济南市七年级数学上学期期中考试题(含答案)本试题分试卷和答题卡两部分,第I 卷共2页,满分为40分;第Ⅱ卷共6页,满分为110分.本试题共8页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将试卷、答题卡一并交回.本考试不允许使用计算器第I 卷(选择题共40分)注意事项:第I 卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果向东走5米记作+5米,那么-3米表示( ) A .向东5米B .向西5米C .向东走3米D .向西走3米2.2022年上半年国内生产总值约为563000亿元,则数563000用科学记数法可表小为( ) A .356310⨯B .55.6310⨯C .456.310⨯D .65.6310⨯3.下图是由5个相同的小正方体搭成的几何体,其左视图为( )A .B .C .D .4.2022年春季开学后,济南市的天突然降温,2月16的最高'气温是2℃,最低气温是-4℃,那么这天的温差是( ) A .6℃B .-6℃C .2℃D .-2℃5.用一个平面截圆柱,则截面形状不可能是( ) A .圆B .三角形C .长方形D .椭圆6.下列各组数中.值相等的一组是( )A .-3和-(-3)B .13--和-(-3)C .-3和3-D .3和3-7.为了解某校七年级400名学生对烈士纪念日的了解情况,学校组织了烈士纪念日知识测试,并从中随机抽取了100名学生的成绩进行统计分析.下列说法确的是( ) A .400名学生是总体B .100名学生的成绩是样本容量C .被抽取的100名学生是总体的一个样本D .该校七年级每名学生的烈士纪念日测试的成绩是个体8.下列各数:1--,23-,312⎛⎫- ⎪⎝⎭,223⎛⎫- ⎪⎝⎭,()20211--,其中负数有( )A .2个B .3个C .4个D .5个9.如图一条数轴有点A 、B 、C .其中点A 、B 表小的数分别是-14,10,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的离为6,则C 点表示的数是( )A .1B .-3C .1或-5D .1或-410.如图a ,b ,c ,d ,e ,f 均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a b c d e f -+-+-的值为( )A .1B .-3C .7D .8第Ⅱ卷(非选择题共110分)注意事项:所有答案必须用0.5毫米的黑色签字笔(不得使用铅笔和圆珠笔)写在答题卡各题目指定区域内(超出方框无效),不能写在试卷上,不能使用涂改液、修正带等. 不按以上要求作答,答案无效二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.) 11.2022的相反数是______.12.如图,是正方体的一种表面展开图,各面都标有数字,则数字为-4的面与它对面的数字之和是______.13.在一个不透明的口袋中装有红球和白球共8个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有75次摸到红球,则口袋中红球的个数约为______.14.若x ,y 为有理数,且()2320x y ++-=,则y x =______.15.A 、B 为同一数轴上两点,且A 、B 两点间的距离为3个单位长度,若点A 所表示的数是-1,则点B 所表示的数是______.16.如图,将正整数按此规律排列成数表,则2022分布在表中的第______行.三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分6分)在数轴上表示下列各数:5,3.5,122-,-1,并把它们用“<”连接起来. 18.(本小题满分6分) 计算:(1)()1218-- (2)()2617633-+--.19.(本小题满分6分) 计算:()11124263⎛⎫-+⨯-⎪⎝⎭ 20.(本小题满分8分) 计算:()()3322332224⎛⎫÷-+-⨯-- ⎪⎝⎭21.(本小题满分8分)如图是由棱长都为1cm 的6块小正方体组成的简单几何体.(1)请在方格中画出该几何体的三个视图.(2)如果在这个几何体上再添加一些小正方体,并保持主视图和定视图不变,最多可以再添加块______小正方体.(3)直接出添加最多的小正方体后该几何体的表面积(包含底面).22.(本小题满分8分)某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“-”表小出库)+21,-32,-16,+35,-38,-20(1)经过这6天,仓库里的货品是______(填“增多了”还是“减少了”)(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6人要付多少元装卸费?23.(本小题满分10分)如图,有一个长6m,宽4m的长方形纸板,现要求以其组对边中点所在直线为轴旋转180°,可按两种方案进行操作.方案一:以较长的一组对边中点所在直线为轴旋转.如图1.方案二:以较短的一组对边中点所在直线为轴旋转,如图2.(1)上述操作能形成的几何体是______,这个现象用数学知识解释为______.(2)请通过计算说明哪种方案得到的几何体的体积大.24.(本小题满分10分)某社区调查社区居民双休日的学习状况,采取下列调查方式:(1)下列调查方式最合理的是______(填序号).①从一幢高层住宅楼中选取200名居民;②从不同住宅楼中随机选取200名居民;③选取社区内的200名在校学生.(2)将最合理的调查方式得到的数据制成了如下扇形统计图和条形统计图.①补全条形统计图②在这次调查中的200名居民中,在家学习的有______人.25.(本小题满分12分)某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子x=,请计算哪种方案划算;(1)若100x=,请计算哪种方案划算;(2)若250x=,如果两种方案可以组合使用,请帮助学校设计一种最省钱的方案.(3)若30026.(本小题满分12分)现将偶数个不相等的有理数分成个数相同的两排,需满足第一排中的数越来越大,第二排中的数越来越小.例如,轩轩将“1,2,3,4”进行如下分组:第一列第二列第一排 1 2第二排 4 3M值”,M=-+-=.例如,以上分组方式的“M值”为14234(1)另写出“1,2,3,4”的一种分组方式,并计算相应的“M值”:(2)将4个自然数a,6,7,8按照题目要求分为两排,使其“M值”为6,求a的值.参考答案与评分标准一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案DBAABDDCCC11.-2022 12.-7 13.6 14.9 15.2或-4 16.64 三、解答题17.解:正确画出数轴121 3.552-<-<< 18.解:(1)()1218--1218=+ 30=(2)()2617633-+--26(17)(6)(33)=+-+-+- 26(56)=+-30=-19.解:111(24)263⎛⎫-+⨯-⎪⎝⎭111(24)(24)(24)263=⨯--⨯-+⨯- (12)(4)(8)=---+-(12)4(8)=-++- (20)4=-+16=-20.解:()()3322332224⎛⎫÷-+-⨯-- ⎪⎝⎭()1398484⎛⎫⎛⎫=⨯-+-⨯-- ⎪ ⎪⎝⎭⎝⎭9648=-+-928=-+78=21.(1)该儿何体的主视图,左视图和俯视图如下:(2)2. (3)228cm22.解:(1)减少了;(2)21321635382050--+--=-, 46050510+=(吨); (3)213216353820162+++++=吨, 则装卸费为:1625810⨯=元.答:6天前仓库里有货品510吨,这6天要付810元装卸费. 23.解:(1)圆柱体,面动成体; (2)方案一:()233436cm ππ⨯⨯=. 方深:()232424cm ππ⨯⨯=. ∵3624ππ>∴方案一构造的圆柱的体积大 24.解:(1)②; (2)①②12025.解:(1)当100x =时, 方案一:10020020000⨯=(元):方案二:()1002008080%22400⨯+⨯=(元). ∵20000<22400. ∴方案一省钱; (2)当250x =时,方案一:1002001508032000⨯+⨯=(元): 方案二:()1002008025080%32000⨯+⨯⨯=(元), ∵32000=32000.∴方案一和方案二一样省钱: (3)当300x =时、①按方案一购买:1002008020036000⨯+⨯=(元); ②按方案二购买:()1002008030080%35200⨯+⨯⨯=(元):③先按方案购买100张课桌,同时送100把椅子;再按方案二购买200把椅子, 1002008020080%32800⨯+⨯⨯=(元). ∵360003520032800>>,∴先按方案一购买100张桌子,同时送100把椅子; 再按方案二购买200把椅子最省.26.解:(1)将“1,2,3,4”进行如下分组:第一列 第二列 第一排 1 3 第二排42∴以上分组方式的“M 值”为:14324M =--=; (2)①当06a <<时,将4个自然数“a ,6,7,8”按照题目要求进行如下分组:第一列 第二列 第一排 a 6 第二排87∴8766a -+-=. ∴3a =;a>时,②当8将4个自然数“a,6,7,8”按照题要求进行如下分组:第一列第二列第一排 6 7第二排 a 8a-+-=.∴6786a=;∴11a=或11.综上,3。
【6套打包】济南市七年级上册数学期中考试测试题及答案
人教版七年级数学上册期中考试试题及答案一、选择题(每题4分,共48分)1.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.﹣18% B.﹣8% C.+2% D.+8%2.﹣2的相反数是()A.﹣2 B.﹣C.2 D.3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个4.当x<3时,式子|x﹣3|化简为()A.﹣3 B.x C.x﹣3 D.3﹣x5.在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()A.1个B.2个C.3个D.4个6.我市加大农村沼气等清洁能源推广,年产沼气21700000立方米,这个数用科学记数法精确到百万位可表示为()A.217×105B.21.7×106C.2.17×107D.2.2×1077.下列单项式中,系数最大的是()A.﹣2ax3B.﹣xy2C.﹣abc3D.﹣xy28.现有以下四个结论:①任何数都不等于它的相反数;②互为相反数的两个数的同一偶数次方相等;③如果a>b,那么a的倒数小于b的倒数;④倒数等于其本身的有理数只有1.其中正确的有()A.1个B.2个C.3个D.4个9.如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2 10.对于多项式﹣x3﹣3x2+x﹣7,下列说法正确的是()A.最高次项是x3B.二次项系数是3C.多项式的次数是3 D.常数项是711.2012年6月15日,重庆市物价局发出相关通知,从今年7月1日起,我市将开始执行居民生活用电试行阶梯电价方案.方案的具体电价标准为:凡我市实行“一户一表”的城乡居民用户,月用电量200千瓦时(含)以内的为第一档,维持现行电价标准,即每千瓦时0.52元;月用电量201﹣400千瓦时(含)的为第二档,每千瓦时提高5分,即每千瓦时0.57元;月用电量在401千瓦时(含)以上的为第三档,每千瓦时提高0.30元,即每千瓦时0.82元.某居民今年11月用电量为t千瓦时(200<t≤400),则该居民所付电费为()A.0.52tB.0.57tC.0.52×20 0+0.57tD.0.52×200+0.57×(t﹣200)12.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150二、填空题(每题4分,共24分)13.(﹣3)2﹣1=.14.的系数为,次数为.15.关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,则n=.16.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=.17.已知=﹣1,则的值为.18.若规定一种运算:a*b=(a+b)﹣(a﹣b),其中a,b为有理数,则a*b+(b﹣a)*b 等于.三、解答题(每题8分,共16分)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,﹣3,0,2,|﹣3|20.(8分)把下面各数对应的序号填在相应的大括号里.①﹣5,②|﹣|,③0,④﹣3.14,⑤,⑥﹣12,⑦0.1010010001…,⑧+1.99,⑨﹣,⑩﹣(﹣3)2分数集合:(…)负有理数集合:(…)四、解答题(21题12分,22题8分,23-25每题10分,26题12分,共62分)21.(12分)计算(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)(2)(﹣)×(﹣1)÷(﹣2)(3)25×+(﹣25)×+25×(﹣)(4)﹣12﹣[1+(﹣12)÷6]×(﹣)322.(8分)某冰箱销售商,今年四月份销售冰箱(a﹣1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)求五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?23.(10分)先化简再求值:5abc﹣2a2b﹣[3abc+2(ab2﹣a2b)],其中a=﹣,b=﹣1,c =3.24.(10分)已知|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,求代数式a c﹣2c a的值.(要求写出过程)参考答案一、选择题1.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.﹣18% B.﹣8% C.+2% D.+8%【分析】正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变.解:“增加”和“减少”相对,若+10%表示“增加10%”,那么“减少8%”应记作﹣8%.故选:B.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.﹣2的相反数是()A.﹣2 B.﹣C.2 D.【分析】根据只有符号不同的两个数互为相反数,可得答案.解:﹣2的相反数是2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个【分析】分母不含字母的式子即为整式.解:整式有:2x+y,a2b,,0,故选:B.【点评】本题考查分式与整式的概念,注意π不是字母.4.当x<3时,式子|x﹣3|化简为()A.﹣3 B.x C.x﹣3 D.3﹣x【分析】由x<3可得x﹣3<0,再根据绝对值的性质即可求解.解:∵x<3,∴x﹣3<0,∴|x﹣3|=3﹣x.故选:D.【点评】考查了绝对值,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.5.在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方、正数和负数、绝对值的知识对各选项依次计算即可.解:﹣22,=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴是负数的有:﹣4,﹣2.故选:B.【点评】本题考查了有理数的乘方、正数和负数、绝对值的知识,此题比较简单,计算时特别要注意符号的变化.6.我市加大农村沼气等清洁能源推广,年产沼气21700000立方米,这个数用科学记数法精确到百万位可表示为()A.217×105B.21.7×106C.2.17×107D.2.2×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,n的值是这个数的整数部分位数减1.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:21700000=2.17×107≈2.2×107.故选:D.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.7.下列单项式中,系数最大的是()A.﹣2ax3B.﹣xy2C.﹣abc3D.﹣xy2【分析】根据单项式系数的定义即可求解.解:∵﹣2ax3的系数是﹣2,﹣xy2的系数是﹣,﹣abc3的系数是﹣,﹣xy2的系数是﹣,﹣>﹣2>﹣>﹣,∴单项式中,系数最大的是﹣xy2.故选:B.【点评】考查了单项式,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.8.现有以下四个结论:①任何数都不等于它的相反数;②互为相反数的两个数的同一偶数次方相等;③如果a>b,那么a的倒数小于b的倒数;④倒数等于其本身的有理数只有1.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方法则,相反数、倒数的定义对四个选项进行逐一解答即可.解:①任何数都不等于它的相反数,错误,例如0;②互为相反数的两个数的同一偶数次方相等,正确;③如果a>b,那么a的倒数小于b的倒数,错误,0>﹣1,而0没有倒数;④倒数等于其本身的有理数只有1,错误,还有﹣1;故选:A.【点评】此题主要考查了有理数的乘方以及相反数,正确把握相关定义是解题关键.9.如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2 【分析】要使两个单项式同类项必须使其所含的字母相同且字母的指数也相同,观察可看出其所含的字母相同,则只要使其相同字母的指数相同.可得3n=9,m+4=2n,解方程即可求得.解:∵2x3n y m+4与﹣3x9y2n是同类项,∴3n=9,m+4=2n,∴n=3,m=2,故选:B.【点评】要使两个单项式成为同类项,只要使其满足同类项定义中的两个“相同”即可.10.对于多项式﹣x3﹣3x2+x﹣7,下列说法正确的是()A.最高次项是x3B.二次项系数是3C.多项式的次数是3 D.常数项是7【分析】根据多项式的项和次数的定义,确定各个项和各个项的系数,要带有符号.解:A、多项式﹣x3﹣3x2+x﹣7的最高次项是﹣x3;故A错误.B、多项式﹣x3﹣3x2+x﹣7的二次项系数是﹣3;故B错误.C、多项式﹣x3﹣3x2+x﹣7的次数是3;故C正确.D、多项式﹣x3﹣3x2+x﹣7的常数项是﹣7;故D错误.故选:C.【点评】本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.11.2012年6月15日,重庆市物价局发出相关通知,从今年7月1日起,我市将开始执行居民生活用电试行阶梯电价方案.方案的具体电价标准为:凡我市实行“一户一表”的城乡居民用户,月用电量200千瓦时(含)以内的为第一档,维持现行电价标准,即每千瓦时0.52元;月用电量201﹣400千瓦时(含)的为第二档,每千瓦时提高5分,即每千瓦时0.57元;月用电量在401千瓦时(含)以上的为第三档,每千瓦时提高0.30元,即每千瓦时0.82元.某居民今年11月用电量为t千瓦时(200<t≤400),则该居民所付电费为()A.0.52tB.0.57tC.0.52×20 0+0.57tD.0.52×200+0.57×(t﹣200)【分析】某居民家11月份用电t千瓦时,交电费y元,根据等量关系列出关于y的方程即可.解:设该居民所付电费为y元,则依题意有y=0.52×150+0.57(t﹣200),故选:D.【点评】本题主要考查了列代数式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出代数式即可.12.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150【分析】根据题意将每个图形都看作两部分,一部分是上面的构成规则的矩形的,另一部分是构成下面的近似金字塔的形状,然后根据递增关系得到答案.解:∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选:B.【点评】此题主要考查了图形变化规律,正确得出每个图形中小星星的变化情况是解题关键.二、填空题(每题4分,共24分)13.(﹣3)2﹣1=8 .【分析】根据有理数的运算法则进行计算.解:(﹣3)2﹣1=9﹣1=8.故填8.【点评】本题考查的是有理数的运算能力,注意符号的处理.14.的系数为,次数为 3 .【分析】根据单项式系数、次数的定义来求解.解:的系数为,次数为3.故答案为:,3.【点评】此题考查的是单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,则n= 3 .【分析】由于多项式是关于x的四次多项式,所以n+1=4,解方程可求n的值.解:∵关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,∴n+1=4,解得n=3.故答案为:3.【点评】本题考查了多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.16.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= 2 .【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.17.已知=﹣1,则的值为 1 .【分析】由=﹣1,可得m、n、p两负一正,再去绝对值计算即可求解.解:∵=﹣1,∴m、n、p两负一正,∴==1.故答案为:1.【点评】考查了绝对值的性质,能够根据已知条件正确地判断出m、n、p的值是解答此题的关键.18.若规定一种运算:a*b=(a+b)﹣(a﹣b),其中a,b为有理数,则a*b+(b﹣a)*b 等于4b.【分析】先根据新定义展开,再去括号合并同类项即可.解:a*b+(b﹣a)*b=(a+b)﹣(a﹣b)+(b﹣a+b)﹣(b﹣a﹣b)=a+b﹣a+b+2b﹣a+a=4b.故答案为4b.【点评】本题考查了整式的加减,主要考查学生的理解能力和计算能力,题目比较好,难度适中.三、解答题(每题8分,共16分)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,﹣3,0,2,|﹣3|【分析】先在数轴上表示出各个数,再比较即可.解:﹣3<﹣2.5<0<2<|﹣3|.【点评】本题考查了有理数的大小比较法则和数轴、绝对值等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.20.(8分)把下面各数对应的序号填在相应的大括号里.①﹣5,②|﹣|,③0,④﹣3.14,⑤,⑥﹣12,⑦0.1010010001…,⑧+1.99,⑨﹣,⑩﹣(﹣3)2分数集合:(②,④,⑤,⑧…)负有理数集合:(①,④,⑥,⑩…)【分析】根据有理数的分类填空即可.解:分数集合:(②,④,⑤,⑧,…)负有理数集合:(①,④,⑥,⑩…),故答案为:②,④,⑤,⑧;①,④,⑥,⑩.【点评】本题考查了有理数的分类,解题的关键是正确掌握分类的标准以及注意0既不是正数也不是负数.四、解答题(21题12分,22题8分,23-25每题10分,26题12分,共62分)21.(12分)计算(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)(2)(﹣)×(﹣1)÷(﹣2)(3)25×+(﹣25)×+25×(﹣)(4)﹣12﹣[1+(﹣12)÷6]×(﹣)3【分析】(1)先把减法转化加法,然后根据有理数的加法即可解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据乘法分配律可以解答本题;(4)先算小括号里的,再算中括号里的,最后根据有理数的加减法即可解答本题.解:(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)=(﹣18)+5+7+(﹣11)=﹣17;(2)(﹣)×(﹣1)÷(﹣2)=﹣=﹣;(3)25×+(﹣25)×+25×(﹣)=25×﹣25×+25×(﹣)=25×()=25×=;(4)﹣12﹣[1+(﹣12)÷6]×(﹣)3=﹣1﹣()×(﹣)=﹣1﹣(﹣)×(﹣)=﹣1﹣=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.22.(8分)某冰箱销售商,今年四月份销售冰箱(a﹣1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)求五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?【分析】(1)分别表示出五月份和六月份销售的台数即可;(2)用六月份减去五月份的销量即可求解.解:(1)五月份的销量为:2(a﹣1)﹣1=2a﹣3,六月份的销量为:(a﹣1)+(2a﹣3)+5=3a+1;(2)3a+1﹣(2a﹣3)=3a+1﹣2a+3=a+4.故六月份比五月份多销售冰箱(a+4)台.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.23.(10分)先化简再求值:5abc﹣2a2b﹣[3abc+2(ab2﹣a2b)],其中a=﹣,b=﹣1,c =3.【分析】先将原式化简,然后将a、b、c的值代入原式即可求出答案.解:原式=5abc﹣2a2b﹣[3abc+2ab2﹣2a2b]=5abc﹣2a2b﹣3abc﹣2ab2+2a2b=2abc﹣2ab2,当a=﹣,b=﹣1,c=3时,原式=2×()×(﹣1)×3﹣2×()×9=3+9=12.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.(10分)已知|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,求代数式a c﹣2c a的值.(要求写出过程)【分析】根据非负数的性质、倒数的定义和乘方分别得出a,b,c,d的值,再分别代入计算可得.解:∵|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,∴a=2,b=﹣1,c=3,d=6或d=﹣4,当d=6时,a c﹣2c a=23+﹣2×32=8﹣6﹣18=﹣16;当d=﹣4时,a c﹣2c a=23+﹣2×32=8+4﹣18=﹣6;综上,代数式a c﹣2c a的值为﹣16或﹣6.【点评】本题主要考查代数式的求值,解题的关键是掌握非负数的性质、倒数的定义和乘方的运算法则.人教版数学七年级上册期中考试试题【含答案】一.选择题(共14小题,满分42分)1.﹣2,0,2,﹣3这四个数中是正数的是()A.﹣2 B.0 C.2 D.﹣32.在代数式,0,m,x+y2,,,中,整式共有()A.7个B.6个C.5个D.4个3.下列关于单项式的说法中,正确的是()A.系数是2,次数是2 B.系数是﹣2,次数是3C.系数是,次数是2 D.系数是,次数是34.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.下列说法中正确的是()A.不是整式B.﹣5是单项式C.πr2的系数1,次数是3D.多项式2x2y﹣xy+1是五次三项式6.下列说法正确的个数有()①﹣|a|一定是负数②只有两个数相等时,它们的绝对值才相等③若一个数小于它的绝对值,则这个数是负数④若|a|=b,则a与b互为相反数⑤若|a|+a=0,则a是非正数.A.1个B.2个C.3个D.4个7.已知a﹣b=﹣3,c+d=2,则(a﹣d)﹣(b+c)的值为()A.1 B.5 C.﹣5 D.﹣18.若a≠0,则+1的值为()A.2 B.0 C.±1 D.0或29.下列说法正确的是()A.一个数的立方可能是负数B.一个数的平方一定大于这个数的相反数C.一个数的平方只能是正数D.一个数的立方一定大于这个数的相反数10.已知m﹣n=99,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.100 B.98 C.﹣100 D.﹣9811.实数﹣2019的绝对值是()A.B.﹣2019 C.±2019 D.201912.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0 13.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz214.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|+|b﹣c|+|c﹣a|的结果是()A.a﹣2c B.2c﹣2a C.2a﹣b﹣c D.a﹣2b+c二.填空题(共5小题,满分15分,每小题3分)15.近似数1.5×105精确到位.16.的相反数是,的倒数是.17.写出一个只含有字母x的二次三项式.18.若规定一种运算:a*b=ab+a﹣b,则1*(﹣2)=.19.用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第n个图案需要棋子枚.三.解答题(共7小题,满分63分)20.(5分)把下列各数填入相应的大括号里:﹣7,﹣0.5,﹣,0,﹣98%,8.7,2018.负整数集合:{ };非负整数集合:{ };正分数集合:{ };负分数集合:{ }.21.(15分)计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣)÷(﹣)2(3)20×+(﹣20)×+20×(﹣)(4)﹣|﹣|﹣|﹣|+322.(12分)先化简,再求值:2(6x2﹣9xy+12y2)﹣3(x2﹣7xy+8y2),其中x,y满足|x﹣1|+(y+2)2=0.23.(9分)某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以56元的价格作为标准卖出,超出的记为正数,不足的记为负数,记录如下:﹣3,+7,﹣8,+9,﹣2,0,﹣1,﹣6.当他卖完这8套儿童服装后是盈利还是亏损?24.(10分)如果关于x的多项式5x2﹣(2y n+1﹣mx2)﹣3(x2+1)的值与x的取值无关,且该多项式的次数是三次.求m,n的值.25.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a﹣b|﹣|a+c|26.(12分)列方程解应用题某服装厂生产一种裤子和T恤,裤子每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案,方案一:买一件裤子送一件T恤;方案二:裤子和T恤都按定价的80%付款.现某客户要到该服装厂购买裤子30件,T恤x件(x>30).(1)按方案一,购买裤子和T恤共需付款元(用含x的式子表示);按方案二,购买裤子和T恤共需付款元(用含x的式子表示);(2)计算一下,购买多少件T恤时,两种优惠方案付款一样?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?若能,请写出你的购买方案,并说明理由.参考答案一.选择题1.﹣2,0,2,﹣3这四个数中是正数的是()A.﹣2 B.0 C.2 D.﹣3【分析】根据正数的定义进行判断.解:正数是2,故选:C.【点评】此题考查正数和负数,关键是根据正数的定义进行判断.2.在代数式,0,m,x+y2,,,中,整式共有()A.7个B.6个C.5个D.4个【分析】根据整式的定义求解可得.解:整式有,0,m,x+y2,这5个,故选:C.【点评】本题主要考查整式,解题的关键是掌握整式的定义.3.下列关于单项式的说法中,正确的是()A.系数是2,次数是2 B.系数是﹣2,次数是3C.系数是,次数是2 D.系数是,次数是3【分析】直接利用单项式次数与系数确定方法分析得出答案.解:单项式的系数是,次数是3.故选:D.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列说法中正确的是()A.不是整式B.﹣5是单项式C.πr2的系数1,次数是3D.多项式2x2y﹣xy+1是五次三项式【分析】直接利用单项式的次数与系数确定方法以及多项式的次数确定方法,进而分析得出答案.解:A、是整式,故此选项错误;B、﹣5是单项式,正确;C、πr2的系数π,次数是2,故此选项错误;D、多项式2x2y﹣xy+1是三次三项式,故此选项错误;故选:B.【点评】此题主要考查了单项式与多项式,正确把握单项式的次数与系数确定方法是解题关键.6.下列说法正确的个数有()①﹣|a|一定是负数②只有两个数相等时,它们的绝对值才相等③若一个数小于它的绝对值,则这个数是负数④若|a|=b,则a与b互为相反数⑤若|a|+a=0,则a是非正数.A.1个B.2个C.3个D.4个【分析】本题可通过特殊值法、绝对值及相反数的意义,逐一判断得到正确结论.解:﹣|0|=0,不是负数,故①不正确;|﹣3|=|3|,故②不正确;当a=b时,|a|=b,故④不正确;正数和0的绝对值等于它本身,负数小于它的绝对值,故③正确;当a是非正数时,|a|+a=0,故⑤正确.综上正确的是③⑤.故选:B.【点评】本题考查了有理数的相反数和绝对值.理解绝对值、相反数的意义是解决本题的关键.7.已知a﹣b=﹣3,c+d=2,则(a﹣d)﹣(b+c)的值为()A.1 B.5 C.﹣5 D.﹣1【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.解:根据题意:(a﹣d)﹣(b+c)=(a﹣b)﹣(c+d)=﹣3﹣2=﹣5,故选:C.【点评】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案.8.若a≠0,则+1的值为()A.2 B.0 C.±1D.0或2【分析】对a为正和负的不同情况,分类讨论得结果.解:当a>0时,+1=+1=1+1=2;当a<0时,+1=+1=﹣1+1=0.故选:D.【点评】本题考查了绝对值的化简.掌握绝对值的意义是解决本题的关键.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.9.下列说法正确的是()A.一个数的立方可能是负数B.一个数的平方一定大于这个数的相反数C.一个数的平方只能是正数D.一个数的立方一定大于这个数的相反数【分析】利用相反数,乘方的意义判断即可.解:A、一个数的立方可能是负数,正确;B、一个数的平方一定大于等于这个数的相反数,错误;C、一个数的平方可以是正数或0,错误;D、一个数的立方一定大于或等于这个数的相反数,错误,故选:A.【点评】此题考查了有理数的乘方,以及相反数,熟练掌握各自的性质是解本题的关键.10.已知m﹣n=99,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.100 B.98 C.﹣100 D.﹣98【分析】原式去括号整理后,将已知等式代入计算即可求出值.解:∵m﹣n=99,x+y=﹣1,∴原式=﹣(m﹣n)+(x+y)=﹣99﹣1=﹣100,故选:C.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.11.实数﹣2019的绝对值是()A.B.﹣2019 C.±2019 D.2019【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.解:实数﹣2019的绝对值=|﹣2019|=2019,故选:D.【点评】本题主要考查了绝对值,解题时注意:一个负数的绝对值是它的相反数.12.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0 【分析】根据数轴上点的位置判断即可.解:根据题意得:a<﹣1<0<b<1,则a+b<0,ab<0,a﹣b<0,﹣a﹣b>0,故选:D.【点评】此题考查了数轴,以及有理数的加法,熟练掌握运算法则是解本题的关键.13.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz2【分析】根据同类项的定义即可求出答案.解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选:D.【点评】本题考查同类项的定义,解题的关键是正确理解同类项的定义,本题属于基础题型.14.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|+|b﹣c|+|c﹣a|的结果是()A.a﹣2c B.2c﹣2a C.2a﹣b﹣c D.a﹣2b+c【分析】直接利用数轴上a,b,c的位置进而得出a﹣b<0,b﹣c<0,c﹣a>0,再去绝对值即可.解:由数轴可得:a﹣b<0,b﹣c<0,c﹣a>0,故原式=﹣(a﹣b)﹣(b﹣c)+c﹣a=﹣a+b﹣b+c+c﹣a=﹣2a+2c.故选:B.【点评】此题主要考查了数轴以及绝对值,正确得出各式的符号是解题关键.二.填空题(共5小题,满分15分,每小题3分)15.近似数1.5×105精确到万位.【分析】根据近似数的精确度求解.解:近似数1.5×105精确到万位.故答案为:万.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.16.的相反数是﹣,的倒数是 3 .【分析】直接利用相反数以及倒数的定义得出答案.解:的相反数是:﹣,的倒数是:3.故答案为:﹣,3.【点评】此题主要考查了倒数和相反数,正确把握相关定义是解题关键.17.写出一个只含有字母x的二次三项式x2+2x+1(答案不唯一).【分析】二次三项式即多项式中次数最高的项的次数为2,并且含有三项的多项式.答案不唯一.解:由多项式的定义可得只含有字母x的二次三项式,例如x2+2x+1,答案不唯一.【点评】本题考查了多项式的定义,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.18.若规定一种运算:a*b=ab+a﹣b,则1*(﹣2)= 1 .【分析】根据a*b=ab+a﹣b,可以求得所求式子的值,本题得以解决.解:∵a*b=ab+a﹣b,∴1*(﹣2)=1×(﹣2)+1﹣(﹣2)=(﹣2)+1+2=1,故答案为:1.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第n个图案需要棋子3n+2 枚.【分析】观察各图可知,后一个图案比前一个图案多3枚棋子,然后写成第n个图案的通式,再取n=21进行计算即可求解.解:根据图案可知规律如下:图2,2×3+2;图3,2×4+3…图n,2×(n+1)+n=3n+2,故答案为:3n+2.【点评】本题考查了图形的变化类问题,主要考查了学生通过特例分析从而归纳总结出一般结论的能力.三.解答题(共7小题,满分63分)20.(5分)把下列各数填入相应的大括号里:﹣7,﹣0.5,﹣,0,﹣98%,8.7,2018.负整数集合:{ ﹣7 };非负整数集合:{ 0,2018 };正分数集合:{ 8.7 };负分数集合:{ ﹣0.5,﹣,﹣98% }.【分析】利用负整数,非负整数,正分数,负分数的定义判断即可.解:负整数集合:{﹣7,…};非负整数集合:{ 0,2018,…};正分数集合:{ 8.7,…};负分数集合:{﹣0.5,﹣,﹣98%,…}.故答案为:﹣7;0,2018;8.7;﹣0.5,﹣,﹣98%.【点评】此题考查了有理数,熟练掌握各自的定义是解本题的关键.21.(15分)计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣)÷(﹣)2(3)20×+(﹣20)×+20×(﹣)(4)﹣|﹣|﹣|﹣|+3【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式逆用乘法分配律计算即可求出值;(4)原式先计算绝对值运算,再计算加减运算即可求出值.解:(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(12分)先化简,再求值:2(6x2﹣9xy+12y2)﹣3(x2﹣7xy+8y2),其中x,y满足|x﹣1|+(y+2)2=0.【分析】先去括号、合并同类项化简原式,再由非负数的性质得出x和y的值,继而代入计算可得.解:原式=12x2﹣18xy+24y2﹣3x2+21xy﹣24y2=(12x2﹣3x2)+(﹣18xy+21xy)+(24y2﹣24y2)=9x2+3xy.∵|x﹣1|+(y+2)2=0,∴x=1 y=﹣2,则原式=9×12+3×1×(﹣2)=9﹣6=3.【点评】本题主要考查整数的化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则及非负数的性质.23.(9分)某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以56元的价格作为标准卖出,超出的记为正数,不足的记为负数,记录如下:﹣3,+7,﹣8,+9,﹣2,0,﹣1,﹣6.当他卖完这8套儿童服装后是盈利还是亏损?【分析】让所得的正负数相加,再加上预计销售的总价,减去总进价即可得到是盈利还是亏损.解:总售价为:56×8+(﹣3+7﹣8+9﹣2+0﹣1﹣6)=448﹣4=444元,444﹣400=44元.答:盈利44元.【点评】考查有理数的混合运算;得到总售价是解决本题的突破点.。
2023济南市七年级上册期中数学试卷含答案
2023济南市七年级上册期中数学试卷含答案一、选择题1.2020的相反数的倒数是( ) A .2020B .-2020C .12020D .-120202.海王星围绕太阳公转的轨道半长径4500000000km .将数据4500000000用科学记数法表示为______.3.下列计算正确的是( ) A .52a ﹣2a =5 B .﹣3(a ﹣b )=﹣3a +3b C . a 2b +3b 2a =4a 2b D .2a +3b =5ab 4.若多项式3x ﹣y +3的值是4,则多项式6x ﹣2y 的值是( ) A .0B .1C .2D .85.如图是一数值转换机,若输入的 x 为 5,则输出的结果为( )A .21B .﹣21C .9D .49 6.若代数式210k x y x ky +-+-的值与x 、y 的取值无关,那么k 的值为( ) A .0B .±1C .1D .1-7.若有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .2a >-B .a b >-C .0ab <D .a b <8.一种新运算2,a b a b *=-则2(3)*-的值为( ) A .6-B .3C .7D .19.如图,都是由棱长为1的正方体叠成的图形.例如:第①个图形由1个正方体叠成,第②个图形由4个正方体叠成,第③个图形由10个正方体叠成…,低此规律,第10个图形由n 个正方体叠成,则n 的值为( )A.220B.165C.120D.5510.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数, 若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22 B.70 C.182 D.206二、填空题11.若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9分和﹣3分,则第二位学生的实际得分为______分.12.单项式323x y z-的系数是________,多项式320.3251xy x y xy--+是________次________项式.13.如图,是一个数值转换机,若输入数x为一1,则输出数是_________.14.班委会在班会活动中,买苹果m千克,单价x元,买橘子n千克,单价y元,则共需____元.15.已知|a|=5,b2=16,且ab<0,那么a﹣b的值为_____.16.数a,b在数轴上的对应点的位置如图所示,化简|2b+a|﹣|b﹣a|=_____.17.如图是用棋子摆成的“T”字图案.从图案中可以看出,第1个“T”字图案需要4枚棋子,第2个“T”字图案需要7枚棋子,第3个“T”字图案需要10枚棋子.照此规律,摆成第n个“T”字图案需要2020枚棋子,则n的值为_________.18.如图,A 点的初始位置位于数轴上的原点,现对A 点做如下移动:第1次从原点向右移动1个单位长度至B 点,第2次从B 点向左移动4个单位长度至C 点,第3次从C 点向右移动7个单位长度至D 点,第4次从D 点向左移动10个单位长度至E 点,…以此类推,移动5次后该点对应的数为_________,这样移动2019次后该点到原点的距离为_______.三、解答题19.将 1.5-,(2)--,0,13,1--,( 2.5)+-在数轴上表示出来,并用“<”把它们连接起来. 20.计算:(1)()0.9 2.7-+ (2)()7.2 4.8--(3)512.584⎛⎫-÷⨯- ⎪⎝⎭(4)()33215⨯-+21.先化简,再求值:2x 2﹣(﹣2x +3 y )(﹣2x ﹣3y )﹣(x ﹣3y )2,其中x =23,y =12.22.化简:(1)(x 2﹣5x )﹣(x +x 2); (2)221622(3)2a ab a ab --+.23.阅读理解:对于任意一个三位正整数n ,如果n 的各个数位上的数字互不相同,且都不为零,那么称这个正整数n 为“相异数”.将一个“相异数”的三个数位上的数字交换顺序,可以得到5个不同的新的“相异数”,把这6个“相异数”的和与111的商记为()M n .例如213是“相异数”,交换三个数位上的数字后可以得到123、132、231、312、321这5个新的“相异数”,这6个“相异数”的和为1231322132313123211332+++++=,所以()213133211112M =÷=.(1)计算:()125M 和()361M 的值;(2)设s 和t 都是“相异数”,其中4和2分别是s 的十位和个位上的数字,2和5分别是t 的百位和个位上的数字,当()()4M s M t -=时,求s 和t .24.如图,长方形的长为x ,宽和扇形的半径均为y .(1)求阴影部分的面积S ;(用含x 、y 的代数式表示) (2)当8,4x y ==时,求S 的值.(结果保留π). 25.阅读下面的文字,完成解答过程. (1)111122=-⨯,1112323=-⨯,1113434=-⨯,则120182019=⨯ . 并且用含有n 的式子表示发现的规律 . (2)根据上述方法计算:111112233420182019++++⨯⨯⨯⨯(3)根据(1),(2)的方法,我们可以猜测下列结论:1()n n k =+ (其中n k ,均为正整数),并计算111113355720172019++++⨯⨯⨯⨯二26.如图,在数轴上,点O 是原点,点A ,B 是数轴上的点,已知点A 对应的数是a ,点B 对应的数是b ,且a ,b 满足25(6)03a b b ++-=.(1)在数轴上标出点A ,B 的位置. (2)在数轴上有一个点C ,满足92CA CB -=,则点C 对应的数为________. (3)动点P ,Q 分别从A ,B 同时出发,点P 以每秒6个单位长度的速度沿数轴向右匀速运动,点Q 以每秒3个单位长度的速度沿数轴向左匀速运动设运动时间为t 秒(0t >). ①当t 为何值时,原点O 恰好为线段PQ 的中点.②若M 为AP 的中点,点N 在线段BQ 上,且13BN BQ =,若3MN =时,请直接写出t 的值.【参考答案】一、选择题 1.D 解析:D【分析】根据相反数的定义和倒数的定义解答.【详解】解:2020的相反数是-2020,-2020的倒数是1 2020 ,故选D.【点睛】本题考查了倒数的定义,相反数的定义,是基础题,熟记概念是解题的关键.2.5×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1解析:5×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:4500000000=4.5×109.故答案为:4.5×109.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B【分析】根据整式的加减运算法则计算判断即可.【详解】∵52a﹣2a=42a,∴A选项计算不正确;∵﹣3(a﹣b)=﹣3a+3b,∴B选项计算正确;∵a2b与3b2a不是同类项,无法计算,∴C选项计算不正确;∵2a与3b不是同类项,无法计算,∴D选项计算不正确;故选B.【点睛】本题考查了整式的加减,准确判定是否是同类项是计算的关键. 4.C 【分析】直接已知变形进而代入原式求出答案. 【详解】 ∵3x ﹣y +3=4, ∴3x ﹣y =1,则6x ﹣2y =2(3x ﹣y )=2×1=2, 故选:C . 【点睛】此题主要考查了多项式,正确把已知变形是解题关键. 5.B 【分析】根据图示得出式子(x-2)×(-7),把x 的值代入求出即可. 【详解】解:根据图示得出式子(x-2)×(-7), 因为x=5,所以输出的结果是(5-2)×(-7)=3×(-7)=-21. 故选:B 【点睛】本题考查了求代数式的值的应用,主要培养学生的观察能力和分析能力,能否根据程序图得出式子是解题关键.6.D 【分析】直接利用合并同类项得运算法则得出k 的值,进而得出答案. 【详解】 合并同类项得 的值与、无关 解得 故选:D . 【点睛】本题考查了合并同类项以及代数式求值,正确得出x ,y 的系数关系解析:D 【分析】直接利用合并同类项得运算法则得出k 的值,进而得出答案. 【详解】210k x y x ky +-+-合并同类项得()()21110k x k y -++-210+-+-的值与x、y无关k x y x ky210,10∴+=-=k kk=-解得1故选:D.【点睛】本题考查了合并同类项以及代数式求值,正确得出x,y的系数关系是解题的关键.7.C【分析】根据数轴可知a<-2<0<b<2,即可得到a<-b,ab<0,.【详解】由数轴可知:a<-2<0<b<2,∴a<-b,ab<0,,故选:C.【点睛】此题考查利用数轴比较数的解析:C【分析】>.根据数轴可知a<-2<0<b<2,即可得到a<-b,ab<0,a b【详解】由数轴可知:a<-2<0<b<2,>,∴a<-b,ab<0,a b故选:C.【点睛】此题考查利用数轴比较数的大小,判断式子的符号,掌握数轴上数的大小比较法则是解题的关键.8.C【分析】根据规定运算方法转化为有理数的混合运算计算即可.【详解】=22-(-3)=7.【点睛】此题考查有理数的混合运算,理解规定的运算顺序与方法是解决问题的关键. 解析:C【分析】根据规定运算方法转化为有理数的混合运算计算即可.【详解】2(3)*-=22-(-3)=7.【点睛】此题考查有理数的混合运算,理解规定的运算顺序与方法是解决问题的关键.9.A【分析】根据题目给出的正方体的个数规律,可知第n个图形中的正方体的个数为1+3+6+…+,据此可得第10个图形中正方体的个数.【详解】解:由图可得:图①中正方体的个数为1;图②中正方体解析:A【分析】根据题目给出的正方体的个数规律,可知第n个图形中的正方体的个数为1+3+6+…+(1)2n n+,据此可得第10个图形中正方体的个数.【详解】解:由图可得:图①中正方体的个数为1;图②中正方体的个数为4=1+3;图③中正方体的个数为10=1+3+6;图④中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+…+(1)2n n+.第10个图形中正方体的个数为1+3+6+10+15+21+28+36+45+55=220.故选:A.【点睛】本题考查了图形的变化类规律,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+…+(1)2n n+.10.D【分析】根据题意设T字框第一行中间数为,则其余三数分别为,,,根据其相邻数字之间都是奇数,进而得出的个位数只能是3或5或7,然后把T 字框中的数字相加把x代入即可得出答案.【详解】设T字框解析:D【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.二、填空题 11.94,82. 【分析】根据规定高于标准记为正,可得第一位学生的实际的分比平均分高9分,第二位学生的实际的分比平均分低3分,根据此求即可. 【详解】某次数学考试标准成绩定为85分,两位学生的成绩分解析:94,82. 【分析】根据规定高于标准记为正,可得第一位学生的实际的分比平均分高9分,第二位学生的实际的分比平均分低3分,根据此求即可. 【详解】某次数学考试标准成绩定为85分,两位学生的成绩分别记作:+9分和﹣3分, 第一位学生成绩为85+9=94分, 第二位学生成绩为85-3=82分. 故答案为:94;82. 【点睛】本题考查相反意义量中的基准问题,掌握基准量的性质,正表示高于基准,负表示低于基准,会利用基准与正负数,计算实际意义的量是关键.12.四 四 【分析】根据单项式和多项式的定义以及性质求解即可. 【详解】 单项式的系数是 多项式是四次四项式 故答案为:,四,四. 【点睛】本题考查了单项式和多项式的问题,掌握解析:13- 四 四【分析】根据单项式和多项式的定义以及性质求解即可. 【详解】单项式323x y z-的系数是13-多项式320.3251xy x y xy --+是四次四项式故答案为:13-,四,四.【点睛】本题考查了单项式和多项式的问题,掌握单项式和多项式的定义以及性质是解题的关键.13.7 【分析】依题意可以得到x×(-3)-8=-3x-8,代入x=-1计算求解即可. 【详解】 解:∵x=-1, ∴x×(-3)-8=-3x-8,则原式=-3×(-1)-8=3-8=-5<0, ∴解析:7 【分析】依题意可以得到x×(-3)-8=-3x-8,代入x=-1计算求解即可. 【详解】 解:∵x=-1, ∴x×(-3)-8=-3x-8, 则原式=-3×(-1)-8=3-8=-5<0, ∴-3×(-5)-8=15-8=7. 故答案为7. 【点睛】本题考查了代数式求值,解答本题的关键就是弄清楚题图给出的计算程序.14.(mx+ny)【分析】通过单价乘以数量将苹果和橘子的所需费用相加,即可得需要的钱数.【详解】解:买苹果花费mx元,买橘子花费ny元,则共花费(mx+ny)元.故答案为:(mx+ny)【点解析:(mx+ny)【分析】通过单价乘以数量将苹果和橘子的所需费用相加,即可得需要的钱数.【详解】解:买苹果花费mx元,买橘子花费ny元,则共花费(mx+ny)元.故答案为:(mx+ny)【点睛】本题考查了根据实际问题列代数式,掌握实际问题中的费用计算是解题的关键.15.9或﹣9【分析】根据绝对值的性质、乘方的意义分别求出a、b,计算即可.【详解】解:∵|a|=5,b2=16,∴a=±5,b=±4,∵ab<0,∴a=5,b=﹣4或a=﹣5,b=4,则解析:9或﹣9【分析】根据绝对值的性质、乘方的意义分别求出a、b,计算即可.【详解】解:∵|a|=5,b2=16,∴a=±5,b=±4,∵ab<0,∴a=5,b=﹣4或a=﹣5,b=4,则a﹣b=9或﹣9,故答案为9或﹣9.【点睛】本题考查的是乘方和绝对值的性质,掌握乘方法则、绝对值的性质是解题的关键.16.2a+b.【解析】试题分析:首先根据数轴判断出2b+a>0,b﹣a>0,进而去掉绝对值符号,最后合并化简.解:根据数轴可知,a<0,b>0,即2b+a>0,b﹣a>0,则|2b+a|﹣|b解析:2a+b.【解析】试题分析:首先根据数轴判断出2b+a>0,b﹣a>0,进而去掉绝对值符号,最后合并化简.解:根据数轴可知,a<0,b>0,即2b+a>0,b﹣a>0,则|2b+a|﹣|b﹣a|=2b+a﹣b+a=2a+b,故答案为2a+b.考点:整式的加减;数轴;绝对值.17.673【分析】根据前三个“T”字图案需要的棋子的数量,总结规律,根据规律即可推出地n个图案需要的棋子的个数,解方程即可.【详解】解:观察图案可知,后一个图案在前一个图案的基础上分别在左面、右解析:673【分析】根据前三个“T”字图案需要的棋子的数量,总结规律,根据规律即可推出地n个图案需要的棋子的个数,解方程即可.【详解】解:观察图案可知,后一个图案在前一个图案的基础上分别在左面、右面、下面加了1个棋子,即:第一个“T”字需要4枚棋子:3×1+1;第二个“T”字需要7枚棋子:3×2+1;第三个“T”字需要10枚棋子:3×3+1;…则第n个“T”字图案需要(3n+1)枚棋子,设3n+1=2020,则n=673故答案为673.【点睛】本题考查数字规律的探索,正确解读题意,总结规律是解题的关键.18.3028【分析】根据数轴上点的坐标变化和平移规律(左减右加),分别求出点所对应的数,找出规律即可解答;【详解】第1次从原点向右移动1个单位长度至B 点,移动个单位长度;第2次从B 点向解析:3028【分析】根据数轴上点的坐标变化和平移规律(左减右加),分别求出点所对应的数,找出规律即可解答;【详解】第1次从原点向右移动1个单位长度至B 点,移动()13111=⨯-+个单位长度; 第2次从B 点向左移动4个单位长度至C 点,移动()43211=⨯-+个单位长度; 第3次从C 点向右移动7个单位长度至D 点,移动()73311=⨯-+个单位长度; 第4次从D 点向左移动10个单位长度至E 点,…以此类推,移动5次后该点对应的数为14710137-+-+=;故移动5次后该点对应的数为7;由规律可知第n 次移动()32n -个单位长度,n 为奇数时向右移动,n 为偶数时向左移动,第2019次向右移动3201926055⨯-=个单位长度,()201912201821009-÷=÷=,即前2018次移动后该点表示的数为()100933027⨯-=-,302760553028-+=,所以这样移动2019次后该点表示的数为3028,距离原点的距离为3028.故答案为:7,3028.【点睛】本题主要考查了数轴和图形变化规律,准确分析判断是解题的关键.三、解答题19.作图见解析;【分析】根据绝对值、相反数、数轴的性质,在数轴上把各个数表示出来,即可得到答案.【详解】,数轴表示如下:结合数轴,用“<”把它们连接起来如下:.【点睛】本题考查了解析:作图见解析;()1( 2.5) 1.51023+-<-<--<<<-- 【分析】根据绝对值、相反数、数轴的性质,在数轴上把各个数表示出来,即可得到答案.【详解】(2)2--= 11--=-,( 2.5) 2.5+-=-数轴表示如下:结合数轴,用“<”把它们连接起来如下:()1( 2.5) 1.51023+-<-<--<<<--. 【点睛】 本题考查了绝对值、相反数、数轴的知识;解题的关键是熟练掌握绝对值、相反数、数轴的的性质,从而完成求解.20.(1)1.8; (2)12; (3)1; (4)-9.【分析】(1)根据有理数的加法法则计算即可;(2)根据有理数减法法则计算即可;(3)根据有理数乘除法则进行计算即可;(4解析:(1)1.8; (2)12; (3)1; (4)-9.【分析】(1)根据有理数的加法法则计算即可;(2)根据有理数减法法则计算即可;(3)根据有理数乘除法则进行计算即可;(4)先算乘方再算乘法在最后计算加法即可.【详解】(1)()0.9 2.7(2.70.9) 1.8-+=+-=(2)()7.2 4.87.2 4.812--=+=(3)515812.5184254⎛⎫-÷⨯-=⨯⨯= ⎪⎝⎭ (4)()()33215381524159⨯-+=⨯-+=-+=- 【点睛】本题考查有理数的运算,熟记加减乘除乘方运算法则及混合运算顺序是解题的关键. 21.,【分析】先用乘法公式计算,再去括号、合并同类项,代入数值计算即可.【详解】解:2x2﹣(﹣2x+3)(﹣2x ﹣3y )﹣(x ﹣3y )2,=2x2﹣(4x2﹣9y2)﹣(x2﹣6xy +9y解析:263xy x -,23【分析】先用乘法公式计算,再去括号、合并同类项,代入数值计算即可.【详解】解:2x 2﹣(﹣2x +3)(﹣2x ﹣3y )﹣(x ﹣3y )2,=2x 2﹣(4x 2﹣9y 2)﹣(x 2﹣6xy +9y 2),=2x 2﹣4x 2+9y 2﹣x 2+6xy -9y 2,=263xy x -;把x =23,y =12代入,原式=2321263()3232⨯⨯-=⨯. 【点睛】本题考查了整式的化简求值,解题关键是熟练运用公式进行化简,代入数值后准确进行计算.22.(1)﹣6x ;(2)﹣3ab .【分析】(1)根据去括号,合并同类项的法则计算即可;(2)根据去括号,合并同类项的法则计算即可.【详解】解:(1)原式=x2﹣5x ﹣x ﹣x2=﹣6x ;(2解析:(1)﹣6x ;(2)﹣3ab .【分析】(1)根据去括号,合并同类项的法则计算即可;(2)根据去括号,合并同类项的法则计算即可.【详解】解:(1)原式=x 2﹣5x ﹣x ﹣x 2=﹣6x ;(2)原式=6a 2﹣2ab ﹣6a 2﹣ab=﹣3ab .【点睛】本题主要考查了合并同类项,解题的关键在于能够熟练掌握合并同类项的计算法则. 23.(1);;(2)当时,;当时,;当时,.【分析】(1)理解“相异数”的概念,根据的运算法则,求解即可;(2)设,,其中,都是正整数,根据题意列二元一次方程,根据,的范围,即可求解.【详解】解析:(1)()12516M =;()36120M =;(2)当642s =时,235t =;当742s =时,245t =;当942s =时,265t =.【分析】(1)理解“相异数”的概念,根据()M n 的运算法则,求解即可;(2)设10042s x =+,20510t y =+,其中x ,y 都是正整数,根据题意列二元一次方程,根据x ,y 的范围,即可求解.【详解】解:(1)()()12512515221525151252111116M =+++++÷=()()36113616331636161363111120M =+++++÷=(2)设10042s x =+,20510t y =+()(10042100244021042020410240)111212M s x x x x x x x =+++++++++++÷=+ ()20510250100251005250210520()111214y y y y y t y M y =÷++=++++++++++ ∴()212M s x =+,()214M t y =+由()()4M s M t -=得3x y -=19x ≤≤,19y ≤≤,x ,y 都是正整数,且s 和t 都是“相异数”∴当642s =时,235t =;当742s =时,245t =;当942s =时,265t =.【点睛】此题考查了新概念新运算的理解以及二元一次方程的特殊解问题,理解题意明白新运算的定义以及二元一次方程的求解方法是解题的关键.24.(1)S =xy + y2;(2)8+4π.【分析】(1)根据图形可知,阴影部分的面积S =长方形的面积+扇形的面积−三角形的面积,然后代入字母计算即可;(2)将x =8,y =4代入(1)中的S ,计解析:(1)S =12xy +24π- y 2;(2)8+4π.【分析】(1)根据图形可知,阴影部分的面积S =长方形的面积+扇形的面积−三角形的面积,然后代入字母计算即可;(2)将x =8,y =4代入(1)中的S ,计算即可解答本题.【详解】解:(1)由图可得,阴影部分的面积S =xy +14πy 2−12y(x +y)=xy +14πy 2−12xy−12y 2=12xy +24π- y 2 即阴影部分的面积S =12xy +24π- y 2(2)当x =8,y =4时, S =1284168424ππ-⨯⨯+⨯=+ 即当x =8,y =4时,S 的值是8+4π.【点睛】本题考查列代数式及代数式求值,解题的关键是明确题意,准确列出相应的代数式. 25.(1);,(n 为正整数);(2);(3);【分析】(1)根据题目中所给的等式,类比即可解答,观察上述等式结果可知,分子为1,分母为相邻2个自然数的乘积的分数,应等于分子为1,分母分别为这两个自然解析:(1)1120182019-;111(1)1n n n n =-++,(n 为正整数);(2)20182019;(3)111()k n n k -+;10092019【分析】(1)根据题目中所给的等式,类比即可解答,观察上述等式结果可知,分子为1,分母为相邻2个自然数的乘积的分数,应等于分子为1,分母分别为这两个自然数的分数的差,由此即可解答;(2)根据上述所得规律先分别将各个加数写成两数相减的形式,然后逐项相消即可得到答案;(3)根据1111-()⎛⎫= ⎪++⎝⎭n n k k n n k ,即可得出答案,根据上述所得规律先分别将各个加数写成两数相减的形式再乘以12,然后提取12再逐项相消即可得到答案. 【详解】解:∵111-2018201920182019=⨯;用含有n的式子表示发现的规律:()11111n n n n=-++;(n为正整数)故答案为:11-20182019;()11111n n n n=-++,(n为正整数)(2)原式=1111111 1----2234201820193++++=1 1-2019=2018 2019(3)1111-()⎛⎫= ⎪++⎝⎭n n k k n n k故答案为:111-⎛⎫ ⎪+⎝⎭k n n k原式=11111111111 1----23235257220172019⎛⎫⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=11111111 1----23355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦=111-22019⎛⎫ ⎪⎝⎭=2019 128201⨯=1009 2019【点睛】本题考查了有理数的混合运算,根据题目所给的算式,找出规律,利用规律解决问题是解决这类题目的基本思路.二26.(1)见解析;(2);(3)①时,点O恰好为线段PQ的中点;②当MN=3时 ,的值为或秒.【分析】(1)由绝对值和偶次方的非负性质得出,,得出,,画出图形即可;(2)设点C对应的数为x,分两解析:(1)见解析;(2)14;(3)①43t=时,点O恰好为线段PQ的中点;②当MN=3时 ,t的值为194或134秒.【分析】(1)由绝对值和偶次方的非负性质得出53a b+=,60b-=,得出10a=-,6b=,画出图形即可;(2)设点C 对应的数为x ,分两种情况,画出示意图,由题意列出方程,解方程即可; (3)①分相遇前和相遇后两种情况,画出示意图,由题意列出方程,解方程即可; ②根据题意得到点Q 、点N 对应的数,列出绝对值方程即可求解.【详解】(1)∵25(6)03a b b ++-=, ∴503a b +=,60b -=, ∴10a =-,6b =,点A ,B 的位置如图所示:(2)设点C 对应的数为x ,由题意得:C 应在A 点的右侧,∴CA=()10x --=10x +,①当点C 在线段AB 上时,如图所示:则CB=6x -,∵CA-CB=92, ∴()91062x x +--=, 解得:14x =; ②当点C 在线段AB 延长线上时,如图所示:则CB=6x -,∵CA-CB=92, ∴()91062x x +--=,方程无解; 综上,点C 对应的数为14; 故答案为:14; (3)①由题意得:6AP t =,3BQ t =,分两种情况讨论:相遇前,如图:106OP t =-,63OQ t =-,∵点O 恰好为线段PQ 的中点,∴10663t t -=-, 解得:43t =; 相遇后,如图:610OP t =-,36OQ t =-,∵点O 恰好为线段PQ 的中点,∴61036t t -=-,解得:43t =,此时,468103AP =⨯=<,不合题意; 故43t =时,点O 恰好为线段PQ 的中点; ②当运动时间为t 秒时,点P 对应的数为(610t -),点Q 对应的数为(63t -),∵M 为AP 的中点,点N 在线段BQ 上,且13BN BQ =, ∴点M 对应的数为6t 10103t 102--=-, 点N 对应的数为()663t 66t 3---=-,∵3MN =, ∴()3t 106t 3---=,∴4316t =±+,∴194t =或134, 答:当t 的值为194或134秒时,3MN =. 【点睛】 本题考查了一元一次方程的应用、绝对值和偶次方的非负性以及数轴,解题的关键是根据题意正确画出图形,要考虑全面,分类讨论,不要遗漏.。
山东省济南市七年级上学期数学期中考试试卷
山东省济南市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2017七上·秀洲期中) 在实数,,0,,,中,有理数有()A . 1个B . 2个C . 3个D . 4个2. (1分) (2020七上·延庆期末) 质检员抽查4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的足球是()A .B .C .D .3. (1分) (2019七下·二道期中) 方程的解为()A .B .C .D .4. (1分) (2020七下·鼓楼期末) 下列各式,计算结果为a6的是()A . a2+a4B . a7¸aC . a2×a3D . (a2)45. (1分)下列各数表示正数的是()C . -(-a)D .6. (1分) (2017七上·红山期末) 组成多项式2x2﹣x﹣3的单项式是下列几组中的()A . 2x2 , x,3B . 2x2 ,﹣x,﹣3C . 2x2 , x,﹣3D . 2x2 ,﹣x,37. (1分) (2019七上·南关期末) 已知等式3a=2b+5,则下列等式不一定成立的是()A . 3a﹣5=2bB . 3a+1=2b+6C . 3ac=2bcD . a=8. (1分) (2017七上·萧山期中) 某工厂有煤吨,计划每天用煤吨,实际每天节约用煤吨,那么这些煤可比原计划多用().A . 天B . 天C . 天D . 天9. (1分) (2019七上·兴仁期末) 观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64…,则22018的末位数是()A . 2B . 4C . 6D . 810. (1分)已知,则的值是()A . -3B . 4二、填空题 (共9题;共9分)11. (1分) (2017九上·云南月考) 广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为________.12. (1分) (2019八上·秀洲期中) 如图,正方形中,,以0为圆心,为半径画弧交数轴于点.则点表示的数是________.13. (1分) (2017七上·江津期中) 多项式是________次________项式.14. (1分) (2018七上·孝南月考) 方程(k-2) + 5k=0是关于x的一元一次方程,则k=________15. (1分) (2016七上·泰州期中) 已知|a|=5,a+b=﹣1,则b的值为________.16. (1分)﹣的相反数是________.17. (1分) (2020七上·河南期末) 为有效保护日益减少的水资源,某市提倡居民节约用水,并对该市居民用水采取分段收费:每户每月若用水不超过,每立方米收费3元;若用水超过,超过部分每立方米收费5元.该市某居民家8月份交水费84元,则该居民家8月份的用水量为________ .18. (1分) (2019八下·遂宁期中) 已知an= (n=1,2,3,…),记b1=2(1-a1),b2=2(1-a1)(1-a2),…,bn=2(1-a1)(1-a2)…(1-an),则通过计算推测出表达式bn=________ (用含n的代数式表示).19. (1分)(2018·固镇模拟) 先化简下式,再求值:2x2﹣[3(﹣ x2+ xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x= ,y=﹣1.三、解答题 (共7题;共13分)20. (2分) (2018七上·桥东期中) 计算:(1)(2)21. (2分) (2019七上·淮安月考) 若规定一种运算,(1)计算:;(2),则x是多少?22. (2分) (2019七上·江门期中) 两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是60 km/h,水流的速度是a km/h.请回答:(1)顺水航速=________,逆水航速=________.(2) 3小时后两船相距多远?(3) 3小时后甲船比乙船多航行多少千米?23. (2分) (2019七上·唐河期中) 把下列六个数:(1)分别在数轴上表示出来,并用“ ”把它们按从小到大的顺序连结起来:(2)填入相应的大括号内整数集{ ……}负分数集{ ……}24. (1分) (2020七上·曲阜期末) 解方程:25. (2分)(2020·新昌模拟) 如果一个直角三角形的三边长分别为a-d,a,a+d,(a>d>0),则称这个三角形为均匀直角三角形。
2023-2024学年山东省济南市市中区七年级上学期期中数学试题
2023-2024学年山东省济南市市中区七年级上学期期中数学试题1.−2023的绝对值是()A.−12023B.−2023C.12023D.20232.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.在数−2,−3.14156,−13,−5%,−6.3,2023,200%,0,−0.01001中,负分数有()A.4个B.5个C.6个D.7个4.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为()A.0.358×105B.35×103C.3.58×105D.3.58×1045.妹妹把一密闭且透明的圆柱形水杯中装一半的水,随意转动水杯,水面的形状不可能是()A.三角形B.长方形C.圆形D.椭圆6.下面的说法中,正确的是()A.x+3是多项式B.(−2)3中底数是2C.3ab35的系数是3 D.单项式−ab2的次数是2次7.如图所示的是一个正方体的表面展开图,则原正方体中与“就”字相对的面上的字是()A.知B.是C.力D.量8.有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.a + b> 0 B.a﹣b> 0 C.ab> 0 D.ab< 09.将两边长分别为a和b(a>b)的正方形纸片按图1、图2两种方式置于长方形ABCD中,(图1、图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1上中阴影部分的周长为C1,图2中阴部分的周长为C2,则C1-C2的值()A.0 B.a-b C.2 a-2 b D.2 b-2 a10.已知:m=|a+b|c +2|b+c|a+3|c+a|b,且abc>0,a+b+c=0.则m共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=()A.4 B.3 C.2 D.111.中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作“+50元”,那么亏损30元,记作 ________元.12.《雨不绝》是唐代诗人杜甫的作品,其中有诗句:鸣雨既过渐细微,映空摇飏如丝飞.译文:喧哗的雨已经过去,逐渐变得细微,映着天空摇漾的是如丝的细雨飘飞.诗中描写雨滴滴下来形成雨丝,用数学知识解释为__________.13.已知(m+1)2+|n﹣2|=0,则m n的值为_______.14.若一个棱柱有12个顶点,且所有侧棱长的和为30cm,则每条侧棱长为________cm.15.“整体思想”是中学数学解题中重要的思想方法,在多项式的求值中应用极为广泛.若3a2−a−2=0,则−6a2+2a+3值为 _______.16.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90∘,然后在桌面上按逆时针方向旋转90∘,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成2023次变换后,骰子朝上一面的点数是 _____.17.如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.在数轴上表示下列各数:0,−4.5,,−2,+7,113,并用“<”号连接起来.19.计算:(1)5+(−6)−(−3);(2)−58×(−4)÷(−52);(3)(−16+34−112)×(−24);(4)−14+(−2)3÷4×[5−(−3)2].20.一个几何体的三种视图如图所示.(1)这个几何体的名称是__________.(2)求这个几何体的体积.(结果保留π)21.化简:(1)x2+5y−4x2−y−1;(2)7a+3(a−3b)−(b+3a).22.有30箱红富士苹果,以每箱25kg为标准,其中质量超过或不足的千克数分别用正数或负数来表示,记录如表所示:(2)与标准质量相比,30箱红富士苹果总计超过或不足的质量为多少?(3)若红富士苹果每千克售价6元,则这30箱红富士苹果可卖多少钱?23.如图,某居民小区有一块长为a,宽为2b的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b的扇形花台,其余部分铺设草坪.(1)草坪(阴影部分)的周长为,面积为.(结果用含有a,b,π的式子表示)(2)如果铺设草坪的费用为每平方米50元.当a=6米,b=2米,π取3时,铺设草坪共需多少元?24. 学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式:(1)当有5张桌子时,第一种方式能坐____________人,第二种方式能坐___________人. (2)当有n 张桌子时,第一种方式能坐____________人,第二种方式能坐____________人. (3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,现在请你当一回小老师,你打算选择以下哪种方式来摆放餐桌?为什么?25. 阅读材料,回答问题.材料一:因为23=2×2×2,22=2×2,所以23×22=(2×2×2)(2×2)=25. 材料二:求31+32+33+34+35+36的值. 解:设S =31+32+33+34+35+36① 则3S =32+33+34+35+36+37②用得,3S −S =(32+33+34+35+36+37)−(31+32+33+34+35+36)=37−3,所以2S =37−3,即s =37−32,所以31+32+33+34+35+36=27−32.这种方法我们称为“错位相减法”. (1)填空:5×58=5( ),a 2·a 5=a ( ).(2)“棋盘摆米”是一个著名的数学故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏.阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按这个方法放满整个棋盘就行”国王以为要不了多少粮食,就随口答应了.①国际象棋共有64个格子,则在第64格中应放 粒米.(用幂表示)②设国王输给阿基米德的总米粒数为S,求S.26.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22.(1)写出数轴上点B表示的数______;(2)|5−3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x−3|的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离.试探索:①:若|x−8|=3,则x=______.②:|x+14|+|x−8|的最小值为______.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.求当t为多少秒时?A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒2个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.问当t为多少秒时?P,Q之间的距离为4.。
山东省济南市市中区济南泉景中学2024-2025学年七年级上学期期中数学试题
山东省济南市市中区济南泉景中学2024-2025学年七年级上学期期中数学试题一、单选题1.如果a 与2024-互为相反数,那么a 的值是()A .2024-B .12024C .12024-D .20242.国家级非物质文化遗产之一的东北大鼓是中国北方曲种,流行于辽宁、吉林、黑龙江3省,一度盛行于沈阳,故又称奉天大鼓、奉派大鼓、奉调大鼓、辽宁大鼓.如图是表演情景及乐器之一鼓的立体图形,该立体图形的主视图是()A .B .C .D .3.在0.8-、3.5、2π、0、2a 、3.010010001……(每两个1之间的0个数逐次增加1)中,有理数个数共有()A .4个B .3个C .2个D .1个4.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A .880.1610⨯B .98.01610⨯C .100.801610⨯D .1080.1610⨯5.用一平面去截下列几何体,其截面可能是长方形的几何体个数为()A .1个B .2个C .3个D .4个6.下列的说法中,正确的是()A .单项式2xy -的次数是2次B .3(1)-中底数是1C .335xy -的系数是3-D .23y -是多项式7.如图所示是一个正方体盒的平面展开图,如果在其中的三个正方形A 、B 、C 中分别填入适当的数,使得它们折成正方体后,相对的面上的两个数互为相反数,那么填入A 、B 、C 的三个数依次是()A .1,2-,0B .1-,2,0C .2-,0,1D .2-,1,08.已知有理数a ,b 在数轴上的位置如图所示,则a ,-b ,-a ,b 从大到小的顺序为()A .b a a b >->>-B .a b b a ->->>C .b a a b->>->D .b a a b>>->-9.如图1,小长方形纸片的长为2,宽为1,将4张这样的小长方形纸片按图2所示的方式不重叠的放在大长方形内,未被覆盖的部分恰好被分割为两个长方形Ⅰ和Ⅱ,设长方形Ⅰ和Ⅱ的周长分别为1C 和2C ,则1C 与2C 的大小关系为()A .12C C =B .12C C >C .12C C <D .无法判断10.自定义运算:()()22a b a b a b a b a b ⎧-<⎪=⎨-≥⎪⎩☆例如:()()242248-=⨯--=☆,若m ,n 在数轴上的位置如图所示,且()()7m n m n +-=☆,则622021n m -+的值等于()A .2028B .2035C .2028或2035D .2021或2014二、填空题11.根据《国家学生体质健康标准》的单项指标中“男生立定跳远单项评分表”的规定,九年级男生及格的标准是1.85m ,九年级小贤跳出了2.05m ,记为0.20m +;九年级小明跳出了1.83m ,记为m .12.比较大小:(0.3)--13-(请用“>”“=”“<”填写)13.若一个直棱柱共有10个面,所有侧棱长的和等于64,则每条侧棱的长为.14.如果210x y -+=,那么代数式202424x y -+=.15.已知()2230a b -++=,则()2021a b +=.16.把一根起点为0的数轴弯折成如图所示的样子,虚线最下面第1个数字是0,往上第2个数字是6,第3个数字是21,…,则第10个数字是.三、解答题17.在数轴上表示下列各数,并用“<”连接起来.122,﹣1.5,0,2,﹣3.18.计算:(1)()()2414168+-+-+;(2)()()9481849-÷⨯÷-.(3)()15324368⎛⎫-⨯-+ ⎪⎝⎭;(4)()()241110.5233⎡⎤---⨯⨯--⎣⎦.19.化简下列各式:(1)()632a a b a b +--+;(2)()2222)532(7m n mn m n mn ---.20.先化简再求值:221523563x xy xy x ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦,其中2x =-,12y =.21.观察下面由6个相同的小立方块组成的几何体,请在指定的位置画出从这个几何体的正面,左面、上面看到的形状图.22.某工厂加工一批茶叶罐.设计者给出了茶叶罐的三视图如图所示(单位:mm ).(1)图中的立体图形的名称是:_________.(2)请你按照视图确定制作一个茶叶罐所需铁皮的面积.23.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤):星期一二三四五六日与计划量的差值4+3-5-14+8-21+6-(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售______斤;(2)本周实际销售总量是否达到了计划数量?试说明理由;(3)若冬枣每斤按8元出售,每斤冬枣需要小明支付的平均运费是3元,那么小明本周销售冬枣实际共得多少元?24.如图,两个形状大小相同的长方形ABCD 和长方形AEFG ,点E 在AB 边上,AB a =,BC b =,且0a b >>.(1)试用含a ,b 的代数式表示BE 和GD 的长度,BE =,GD =.(2)请用含a ,b 的代数式表示图中ABD △和DFG 的面积和.(3)当2260a b +=,20ab =.求图中阴影部分的面积.25.如图是编号分别为1,2,3,…,n 的几何图形,这些几何图形都是由若干个互不重叠的三角形组成,例如,编号为1的图形中有1个三角形,编号为2的图形中有4个互不重叠的三角形,编号为3的图形中有7个互不重叠的三角形…,观察图形,解答下列问题:(1)写出编号为n 的图形中互不重叠的三角形的个数(用n 的代数式表示);(2)如果编号为m 的图形中有298个互不重叠的三角形,求m ;(3)编号为1的图形中的三角形的个数记为1S ,编号为2的图形中互不重叠的三角形的个数记为2S ,…,编号为n 的图形中互不重叠的三角形的个数记为n S ,求:234599100S S S S S S -+--+ 的值.26.如图1,已知点A 、B 、C 、D 在数轴上对应的数分别是a 、b 、c 、24,其中a 、b 满足()21280a b ++-=,点C 到原点距离是点B 到原点距离的2倍.(1)填空:a =_____,b =_____,c =_____;(2)如图1,若点A 、B 、C 分别同时以每秒4个单位长度、1个单位长度和()4m m <个单位长度的速度匀速向左运动,假设经过t 秒后,点A 与点D 之间的距离表示为AD .①t 为何值时,3AD BD =?②若32AB AC -的值始终保持不变,求m 的值;(3)如图2,将数轴在原点O 、点B 和点C 处各折一下,得到一条“折线数轴”.动点P 从点A 出发.以每秒3个单位长度的速度沿“折线数轴”的正方向匀速运动至点D ,同时,动点Q 从点D 出发以每秒4个单位长度沿着“折线数轴”的负方向变速运动,该点在平地保持初始速度不变,上坡时速度变为初始速度的一半,下坡时速度变为初始速度的两倍,设运动时间为t 秒.若P 、Q 两点在点M 处相遇,则点M 表示的数为_____.。
山东省济南市七年级上学期数学期中考试试卷
山东省济南市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)最早使用负数的国家是()A . 中国B . 印度C . 英国D . 法国2. (2分)(2019·余姚会考) 在-4,-2.5, 0,1四个数中,比-3小的数是()A . -4B . -2.5C . 0D . 13. (2分) (2020七下·景县期中) 下列说法中错误的有()①一个无理数与一个有理数的和是无理数②一个无理数与一个有理数的积是无理数③两个无理数和是无理数④两个无理数积是无理数.A . 1个B . 2个C . 3个D . 4个4. (2分)北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A . 平方米B . 平方米C . 平方米D . 平方米5. (2分)(2018·滨州模拟) 下列计算正确的是()A . a+a2=a3B . (a3)2=a5C . a•a2=a3D . a6÷a2=a36. (2分)某地11月份某天的最高气温为5℃,最低气温为﹣1℃,则这天的温差为()A . 4℃B . ﹣6℃C . ﹣4℃D . 6℃7. (2分) (2019七上·衢州期中) 已知,则(a+b)2019的值为............ .. ()A . -1B . 1C . 0D . 20198. (2分)若一元二次方程式ax(x+1)+(x+1)(x+2)+bx(x+2)=2的两根为0、2,则之值为何()A . 2B . 5C . 7D . 8二、填空题 (共10题;共11分)9. (1分) (2018七上·沙洋期中) 的相反数的倒数是________10. (1分)购买l个单价为m元的饮料和2个单价为n元的面包,所需钱数为________ 元.11. (1分)若定义新运算:a△b=(﹣2)×a×3×b,请利用此定义计算:(1△2)△(﹣3)=________.12. (1分)如果水位升高3m时,水位变化记作,那么水位下降3m时,水位变化记作________13. (1分) (2019七上·丰台月考) a、b在的位置如图所示,则数a、-a、b、-b的大小关系为________ .14. (1分)某车间生产一批圆柱形机器零件,从中抽出了 6 件进行检验,把标准直径的长记为 0,比标准直径长的记为正数,比标准直径短的记为负数,检查记录如下:123456+0.2﹣0.3﹣0.2+0.3+0.4﹣0.1则第________个零件最符合标准.15. (1分) (2018九上·港南期中) 已知m,n是方程2x2-3x+1=0的两根,则 + =________.16. (1分)若与是同类项,则(m+n)2017=________.17. (1分) (2019七上·福田期中) 某日中午,气温由早晨的零下上升了,傍晚又下降了,这天傍晚气温是________.18. (2分) (2020七下·昌平期末) 观察、归纳:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…请你根据以上等式的规律,完成下列问题:⑴(x﹣1)(xn+…+x2+x+1)=________﹣1;⑵计算:1+2+22+…+22019=________.三、解答题 (共10题;共96分)19. (10分) (2018七上·台安月考) 用简便方法计算:(1);(2) .20. (20分) (2019七上·宁波期中) 计算题:(1)(2)(3)(4)21. (20分)(2017七上·拱墅期中) 计算或解方程(1).(2)(3).(4).22. (5分) (2019八上·右玉期中) 先化简,再求值 x2(x-1)- x(x2+x-1),其中x= .23. (5分) (2019七上·石林月考) 请画一条数轴,把它们在数轴上表示出来,并用“>”连接各数.,-4.5,,0,-1,1.24. (5分)化简求值:(1)已知x=﹣2,y=﹣1,求5xy2﹣{2x2y﹣[3xy2﹣﹙4xy2﹣2x2y)]}的值,(2)关于x,y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,求6m﹣2n+2的值.25. (10分) (2018七上·梁子湖期中) “十一”黄金周期间,某市的在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).若9月30日外出旅游人数记为a日期10.110.210.310.410.510.610.7人数变化+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2单位:万人(1)请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人.(2)如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?26. (10分) (2016七上·黄冈期末) 已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|2a+1|+(2﹣b)2=0,求A﹣2B的值.27. (7分)探索规律:观察由※组成的图案和算式,解答问题:1+3=4=1+3+5=9=1+3+5+7=16=1+3+5+7+9=25=(1)请猜想1+3+5+7+9+ … +29= ________;(2)请猜想1+3+5+7+9+ … +(2n-1)+(2n+1)= ________ ;(3)请用上述规律计算:(6分)41+43+45+ …… +77+7928. (4分)如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1 ,第二次将△QA1B1变换成△OA2B2 ,第三次将△OA2B2变换成△OA3B3 .已知A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0)(1)观察每次变换前后三角形的变化规律,若再将△OA3B3变换成△OA4B4 ,则点A4的坐标为________,点B4的坐标为________;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OAnBn ,则点An的坐标为________,点Bn的坐标为________.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共11分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共96分)19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、21-3、21-4、22-1、23-1、24-1、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省济南市七年级上学期数学期中考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)我市2015年某一天的最高气温为8℃,最低气温为﹣2℃,那么这天的最高气温比最低气温高()
A . ﹣10℃
B . ﹣6℃
C . 6℃
D . 10℃
2. (2分) (2018七上·腾冲期末) 冬天来了,天气冷了,如果温度上升3ºC记作+3ºC,那么温度下降6ºC,记作()
A . +6ºC
B . -6ºC
C . +9ºC
D . -9ºC
3. (2分)如图所示,下列水平放置的几何体中,俯视图是矩形的是()
A .
B .
C .
D .
4. (2分)(2017·丹阳模拟) 下列四个图形中是正方体的平面展开图的是()
A .
B .
C .
D .
5. (2分)超市出售的三种品牌月饼袋上,分别标有质量为(300±5)g,(300±10)g,(300±15)g的字样,从中任意拿出两袋,它们的质量最多相差()
A . 10g
B . 20g
C . 30g
D . 40g
6. (2分)如果a的绝对值是2,那么a是()
A . 2
B . ﹣2
C . ±2
D .
7. (2分) (2019七上·宜兴月考) 给出下列判断:①单项式5×103x2y的系数是5;②x﹣2xy+y是二次三项式;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是()
A . 1个
B . 2个
C . 3个
D . 4个
8. (2分)我市市场交易持续繁荣,市场成交额连续20年居全国各大专业市场榜首. 2010年中国小商品城成交额首次突破450亿元关口.请将数据450亿元用科学记数法表示为()(单位:元)
A . 4.50×102
B . 0.45×103
C . 4.50×1010
D . 0.45×1011
9. (2分)“比a的大1的数”用式子表示是().
A . a+1
B . a+1
C . a
D . a-1
10. (2分)用若干张大小相同的黑白两种颜色的正方形纸片,按下列拼图的规律拼成一列图案,则第6个图案中黑色正方形纸片的张数是()
A . 22
B . 21
C . 20
D . 19
二、填空题 (共4题;共4分)
11. (1分)比较大小:4 ________5
12. (1分) (2018七上·长春期中) 数轴上到原点的距离是3的点表示的数是________.
13. (1分) (2019八上·昆明期末) ﹣2016 的倒数是________.
14. (1分) (2019七上·海淀期中) 用“☆”定义一种新运算:对于任意有理数,,都有
,则 ________.
三、解答题 (共10题;共82分)
15. (20分) (2016七上·芦溪期中) 计算:.
16. (5分)已知|a﹣b+2|+(a﹣2b)2=0,求(﹣2a)2b的值.
17. (5分) (2016八上·宁海月考) 画出右图几何体的三种视图。
18. (10分)
(1)在如图所示的数轴上,把数﹣2,,4,﹣,2.5表示出来,并用“<“将它们连接起来;
(2)假如在原点处放立一挡板(厚度不计),有甲、乙两个小球(忽略球的大小,可看作一点),小球甲从表示数﹣2的点处出发,以1个单位长度/秒的速度沿数轴向左运动;同时小球乙从表示数4的点处出发,以2个单位长度/秒的速度沿数轴向左运动,在碰到挡板后即刻按原来的速度向相反的方向运动,设运动的时间为t(秒).请从A,B两题中任选一题作答.
A.当t=3时,求甲、乙两小球之间的距离.
B.用含t的代数式表示甲、乙两小球之间的距离.
19. (5分) (2017七上·东城月考) 观察下列各等式:
;;;
①你能运用上述规律求的值吗?
②通过上述观察,你能猜想出反映这种规律的一般结论吗?(用含的式子表示,为正整数)
20. (5分) (2017七上·乐清期中) 已知代数式的值与字母x的取值无关,求的值。
21. (5分)已知A=a﹣2(a﹣b2),B=﹣a+.
(1)化简:2A﹣6B;
(2)已知|a+2|+(b﹣3)2=0,求2A﹣6B的值.
22. (10分) (2018七上·无锡月考) 下表记录的是流花河今年某一周内的水位变化情况,上周末(星期六)的水位已达到警戒水位米.(正号表示水位比前一天上升,负号表示水位比前一天下降)
星期日一二三四五六
水位变化
(1)本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于警戒水位之上还是之下?
(2)与上周末相比,本周末河流的水位是上升了还是下降了?
23. (6分) (2019七上·江阴期中) 已知a、b、c在数轴上位置如图所示:
(1)判断正负,用“>”或“<”填空:b-a________0; c-b________0; a+c________0;(2)化简:
24. (11分) (2016七下·泰兴开学考) 回答下列问题:
(1)已知|a|=3,|b|=2,且a<b,求(a+b)2
(2)已知一个角的补角比这个角的4倍大15°,求这个角的余角.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共4题;共4分)
11-1、
12-1、
13-1、
14-1、
三、解答题 (共10题;共82分)
15-1、
16-1、17-1、
18-1、18-2、
19-1、20-1、
21-1、
22-1、22-2、23-1、23-2、
24-1、
24-2、。