七年级数学上册绝对值练习题

合集下载

人教版七年级上册数学绝对值专题

人教版七年级上册数学绝对值专题

人教版七年级上册数学绝对值专题题目 1:已知x = 5,求x的值。

解析:因为x = 5,所以x = 5或x = -5。

题目 2:若a - 2 = 0,则a = _ ?解析:因为a - 2 = 0,所以a - 2 = 0,a = 2。

题目 3:计算- 3 = _ ?解析:- 3 = 3题目 4:如果m = 4,n = 6,且m < n,求m + n的值。

解析:因为m = 4,所以m = ±4;因为n = 6,所以n = ±6。

又因为m < n,所以当m = 4时,n = 6,m + n = 10;当m = - 4时,n = 6,m + n = 2。

题目 5:化简- ( - 5 ) = _ ?解析:- ( - 5 ) = 5 = 5题目 6:已知x - 1 + y + 2 = 0,求x,y的值。

解析:因为x - 1 ≥ 0,y + 2 ≥ 0,且x - 1 + y + 2 = 0,所以x - 1 = 0,y + 2 = 0,即x = 1,y = - 2。

题目 7:比较- 2 和- ( - 2 )的大小。

解析:- 2 = 2,- ( - 2 ) = 2,所以- 2 = - ( - 2 )题目 8:若x + 3 = 5,则x = _ ?解析:因为x + 3 = 5,所以x + 3 = 5或x + 3 = - 5,解得x = 2或x = - 8题目 9:绝对值小于4的整数有_ ? 个。

解析:绝对值小于4的整数有- 3,- 2,- 1,0,1,2,3,共7个。

题目 10:计算- 7 - - 4 = _ ?解析:- 7 - - 4 = 7 - 4 = 3题目 11:若a = 3,b = 2,且a > b,求a - b的值。

解析:因为a = 3,所以a = ±3;因为b = 2,所以b = ±2。

又因为a > b,所以当a = 3时,b = 2或b = - 2,a - b = 1或5;当a = - 3时,不符合a > b。

初中数学七年级上册绝对值练习题含答案

初中数学七年级上册绝对值练习题含答案

初中数学七年级上册绝对值练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 化简−|−3|等于( )A.−3B.−13C.13D.32. 如果一个数的绝对值等于它的相反数,那么这个数一定是( )A.正数B.负数C.非正数D.非负数3. 已知a、b、c都是负数,且|x−a|+|y−b|+|z−c|=0,则xyz是()A.负数B.非负数C.正数D.非正数4. 下列推断正确的是( )A.若|a|=|b|,则a=bB.若|a|=|b|,则a=−bC.若|m|=|−n|,则m=−nD.若m=−n,则|m|=|n|5. 已知x、y、z为有理数,且x+y+z=0,xyz<0,则y−z|x|+x−z|y|+x+y|z|的值为().A.−1B.1C.1或−1D.−36. 下列判断正确的是()A.−14>−15B.−35<−45C.−34>−45D.−1>−0.017. 若关于x的方程|2x−3|+m=0无解,|3x−4|+n=0只有一个解,|4x−5|+k=0有两个解,则m, n, k的大小关系是()A.m>n>kB.n>k>mC.k>m>nD.m>k>n8. 下列四组有理数大小的比较正确的是()A.−12>13B.−|−1|>−|+1|C.12<13D.|−12|>|−13|9. 绝对值大于2,且不大于5的整数有( )10. 以下选项中比|−12|小的数是( )A.2B.32C.12D.−1311. 在数−4,−3,−1,2中,大小在−2和1之间的数是________.12. 已知1<x <2,化简|x −1|+|x −2|=________.13. √3−2的相反数是________,绝对值是________.14. 绝对值小于227的整数有________.15. 若|x −1|=|−3|,那么x =________.16. 当a =________时,代数式|a −4|+3有最小值是________.17. 已知|a −2|+|b −4|=0,则2a +3b =________.18. 已知,则的值可能是________.19. 已知有理数a ,b 在数轴上的位置如图所示,则︱b −a ︱=________.20. 比较大小:−34________−45;−(−2)________−|−2|.21. 已知|x −1|+|y +2|=0,则x −y =________.22. 比较下列各对数的大小:(2)−518和−29.23. 已知|x|=3,|y|=4,且xy <0,求x +y 的值.24.(1)计算:|−6|−√9+(1−√2)0−(−3).(2)如图,BD 是菱形ABCD 的对角线,∠ABF =30∘,EF 为AB 的垂直平分线, 垂足为E ,交AD 于F ,连接BF ,求∠ABD 的度数.25. 某检修小组从A 地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下(单位:千米):(1)求收工时检修小组是否回到A 地?(2)在第________次纪录时距A 地最远.(3)若每千米耗油0.2升,每升汽油需8元,问检修小组工作一天需汽油费多少元?26. 问题:比较 −|65| 与+(−43) 的大小. 解:化简可得−|65|=−65,+(−43)=−43①,因为|65|=65,|−43|=43②又65=1815<2015=43③,所以−65<−43④,所以−|6|<+(−4)⑤(2)请按照上述方法比较 −(+1011)与−|910|的大小.27. 比较下列各数的大小,用“<”连接起来.−1017,−1219,−1523,−3031,−6091.28. 已知a =−4,b =−5,求a −b 的值.29. 已知|a|=2,|b|=3,且a +b <0,求a +b 的值.30. 比较下面两个数的大小.(1)−43与−32(2)比较−(−3.1)与3.2的绝对值.31. 比较有理数的大小.(1)−57与23(2)−8与−5(3)−57与−34(4)已知a >b >0,试比较−a 和−b 的大小.32. 已知a <b <0<c ,化简|a|−|−b|+|c|.33. 有理数a 、b 在数轴上的位置如图,计算|a −b|−2|a −c|−|b +c|.(1)如果甲报的数为x ,则乙报的数为x −1,丙报的数为________,丁报的数为________;(2)若丁报出的答案为2,则甲报的数是多少?35. 大家都知道,|5−(−2)|表示5与−2之差的距离,试探索:若x 表示一个有理数,且|x −2|+|x +4|>6,则有理数x 的取值范围是________.36. 若|a −2|+|b −3|+|c −1|=0,求a +2b +3c 的值.37. 已知x|=|−7|,|y|=|−5|,求x +y 的值.38. 若|x|<1,化简|x +1|+|x −1|.39. 已知下列有理数:−(−3)、−4、0、+5、−12(1)这些有理数中,整数有________个,非负数有________个.(2)画数轴,并在数轴上表示这些有理数.(3)把这些有理数用“<“号连接起来:________.40. 利用绝对值比较大小(1)−3.14与−π(2)−32与−54(3)−56与−57参考答案与试题解析初中数学七年级上册绝对值练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答3.【答案】A【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答4.【答案】D【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答5.【答案】B此题暂无解析【解答】此题暂无解答6.【答案】C【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答7.【答案】A【考点】有理数大小比较非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答8.【答案】D【考点】有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答9.【答案】D【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答10.有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−1【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答12.【答案】1【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答13.【答案】2−√3,2−√3【考点】绝对值的意义相反数的意义【解析】此题暂无解析【解答】此题暂无解答14.【答案】7个【考点】绝对值【解析】此题暂无解析【解答】【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答16.【答案】4,3【考点】绝对值的意义非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答17.【答案】16【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答18.【答案】2或0或−2【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答19.【答案】a−b【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】3【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:(1)∵−(−5)=5,−(+6)=−6,∴−(−5)>−(+6);(2)∵|−518|=518,|−29|=29,∴−518<−29.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答23.【答案】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy<0,∴x=3时,y=−4,x+y=−1,x=−3时,y=4,x+y=−3+4=1,综上所述,x+y的值是1或−1.【考点】绝对值【解析】此题暂无解析【解答】24.【答案】解:(1)原式=6−3+1+3=7.(2)∵ EF 为AB 的垂直平分线,∴ FA =FB ,∴ ∠A =∠ABF =30∘.∵ 四边形ABCD 是菱形,∴ AD =AB ,∴ ∠ABD =180∘−30∘2=75∘.【考点】绝对值的意义零指数幂、负整数指数幂二次根式的性质与化简菱形的性质线段垂直平分线的性质【解析】此题暂无解析【解答】此题暂无解答25.【答案】解:(1)−3+8−9+10+4−6−2=2(千米).∴ 收工时检修小组未回到A 地.五(3)(3+8+9+10+4+6+2)×0.2×8=42×0.2×8=67.2(元)答:检修小组工作一天需汽油费67.2元.【考点】绝对值的意义有理数的混合运算正数和负数的识别【解析】此题暂无解析【解答】此题暂无解答26.【答案】(1)②(2)解:化简可得−(+1011)=−1011,−|910|=−910,因为|−1011|=1011,|−910|=910, 又1011=100110>99110=910,所以−1011<−910, 所以−(+1011)<−|910|.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答27.【答案】解:∵ |−1017|=1017=60102,|−1219|=1219=6095,|−1523|=1523=6092,|−3031|=3031=6062,|−6091|=6091 ∴ −3031<−6091<−1523<−1219<−1017.(各负数绝对值的分子相同,分母越小,其绝对值就越大,本身反而越小)【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答28.【答案】解:因为a =−4,b =−5,所以a −b =−4+5=1.【考点】实数的运算【解析】此题暂无解析【解答】此题暂无解答29.【答案】解:由题意得|a|=2,|b|=3,a +b <0,∴ a =±2 ,b =−3,①当a =2,b =−3时,a +b =−1;②当a =−2,b =−3时,a +b =−5.∴a+b=−1或−5【考点】绝对值的意义绝对值【解析】此题暂无解析【解答】此题暂无解答30.【答案】解:(1)∵|−43|=43=86,|−32|=32=96,∴−43>−32.(2)∵−(−3.1)=3.1,3.2的绝对值是3.2,∴−(−3.1)<3.2的绝对值.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答31.【答案】解:(1)−57<23;(2)−8<−5(3)∵57<34,∴−57>−34;(4)∵a>b>0,∴|a|>|b|>0,又∵−a<0,−b<0,∴−a<−b.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答32.【答案】解:∵a<b<0<c,|a|−|−b|+|c|=−a−(−b)+c=−a+b+c.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答33.【答案】解:根据数轴可知:b<a<0<c,且|a|<|c|<|b|,∴a−b>0,a−c<0,b+c<0,∴|a−b|−2|a−c|−|b+c|=a−b+2a−2c+b+c=3a−c.【考点】有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答34.【答案】|x−1|,|x−1|−1设甲为x,则|x−1|−1=2,解得:x=4或x=−2.所以甲报的数是4或者−2.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答35.【答案】x>2或x<−4【考点】绝对值的意义绝对值【解析】此题暂无解析【解答】此题暂无解答36.【答案】解:根据题意得:{a −2=0b −3=0c −1=0,解得:{a =2b =3c =1,则原式=2+6+3=11.【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答37.【答案】解:∵ |x|=|−7|=7,|y|=|−5|=5, ∴ x =±7,y =±5,∴ 当x =7、y =5时,x +y =12, 当x =7、y =−5时,x +y =2, 当x =−7、y =5时,x +y =−2, 当x =−7、y =−5时,x +y =−12.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答38.【答案】解:∵ 由|x|<1可得−1<x <1, ∴ x −1<0,x +1>0,则|x +1|+|x −1|=x +1+1−x =2.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答39.【答案】4,3解:在数轴上表示这些有理数如图:−4<-12<0<−(−3)<+5【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答40.【答案】解:∵ |−3.14|<|−π|, ∴ −3.14>−π 解:∵ |−32|>|−54|,∴ −32<−54解:∵ |−56|>|−57|,∴ −56<−57【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答。

【初中数学】人教版七年级上册第1课时 绝对值 (练习题)

【初中数学】人教版七年级上册第1课时 绝对值 (练习题)

人教版七年级上册第1课时绝对值(150)1.已知点M,N,P,Q在数轴上的位置如图所示,则其中对应的数的绝对值最大的点是()A.MB.NC.PD.Q2.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.−4B.−2C.0D.43.一个数a在数轴上的对应点在原点左边,且|a|=4,则a的值为()A.4或−4B.4C.−4D.以上都不对4.下列判断正确的有()①有理数的绝对值一定是正数; ②如果两个数的绝对值相等,那么这两个数相等; ③绝对值等于它本身的数一定不是负数; ④绝对值等于1的数有两个A.1个B.2个C.3个D.4个5.计算:(1)|−35|+|+21|+|−27|;(2)|−345|−|−45|+|−312|(3)|−49|×|−217|.6.出租车司机小李某天下午的营运全是在东、西走向的人民大街进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,−3,+14,−11,+10,若汽车耗油量为0.06升/千米,则这天下午汽车共耗油多少?7.数学老师出了如下一道计算题,孙良看了看说:“这么多数怎么算啊?”请聪明的你来帮他解决吧!写出你的解题过程.计算:|1−12|+|12−13|+|13−14|+|1 4−15|+…+|12016−12017|+|12017−12018|.8.−2017的绝对值是()A.−2017B.2017C.12017D.−120179.|−15|等于()A.−15B.15C.5D.−510.一个数的绝对值等于3,这个数是()A.3B.−3C.±3D.1311.如图,数轴上有A,B,C,D四个点,其中表示的数的绝对值等于2的点是()A.点AB.点BC.点CD.点D12.下列说法正确的是()A.绝对值等于它本身的数只有0B.绝对值等于它本身的数是正数C.绝对值等于它本身的数有0和正数D.绝对值等于它本身的数的相反数是负数13.求−2,−13,7.2,0,8的绝对值.14.已知x=8,y=−2,求|x|−4|y|的值.15.已知零件的标准直径是100mm,超过标准直径的数量(mm)记作正数,不足标准直径的数量(mm)记作负数,检验员某次抽查了五件样品,检查结果如下:(1)试指出哪件样品的大小最符合要求;(2)如果规定误差的绝对值在0.18mm之内是正品,误差的绝对值在0.18mm~0.22mm之间是次品,误差的绝对值超过0.22mm是废品,那么这五件样品分别属于哪类产品?16.|−13|的相反数是()A.13B.−13C.3D.−317.数轴上表示2的点到原点的距离是,所以|2|=;数轴上表示−2的点到原点的距离是,所以|−2|=;数轴上表示0的点到原点的距离是,所以|0|=.参考答案1.【答案】:D【解析】:因为点Q到原点的距离最远,所以点Q对应的数的绝对值最大2.【答案】:B【解析】:设A,B表示的数分别为a,b,则|a|=|b|=2.又因为a<b,所以a=−2,b=2,所以答案选B3.【答案】:C【解析】:数a在数轴上的对应点在原点的左边,则a为负数,且|a|=4,所以a=-4.4.【答案】:B【解析】:①不正确,因为0的绝对值是0;②不正确,这两个数还可能互为相反数;③正确,因为负数的绝对值等于它的相反数;④正确,因为1和−1的绝对值都等于1.5(1)【答案】原式=35+21+27=83(2)【答案】原式=345−45+312=612(3)【答案】原式=49×157=1056.【答案】:共行驶:|+15|+|−3|+|+14|+|−11|+|+10|=15+3+14+11+10=53(千米),所以共耗油:53×0.06=3.18(升).答:这天下午汽车共耗油3.18升【解析】:共行驶:|+15|+|−3|+|+14|+|−11|+|+10|=15+3+14+11+10=53(千米),所以共耗油:53×0.06=3.18(升).答:这天下午汽车共耗油3.18升7.【答案】:原式=1−12+12−13+13−14+…+12016−12017+12017−12018=1−12018=20172018【解析】:原式=1−12+12−13+13−14+…+12016−12017+12017−12018=1−12018=201720188.【答案】:B【解析】:因为−2017到原点的距离为2017,所以−2017的绝对值为2017.故选 B9.【答案】:B10.【答案】:C【解析】:因为a =3,所以a =±3.故选C .11.【答案】:A【解析】:绝对值等于2的数是−2和2, ∴表示的数的绝对值等于2的点是点A . 故选A12.【答案】:C13.【答案】:|−2|=2,|−13|=13,|7.2|=7.2,|0|=0,|8|=8.【解析】:略14.【答案】:当x =8,y =−2时,|x|−4|y|=|8|−4×|−2|=0【解析】:当x =8,y =−2时,|x|−4|y|=|8|−4×|−2|=015(1)【答案】因为|0.1|=0.1,|−0.15|=0.15,|−0.2|=0.2,|−0.05|=0.05,|−0.25|=0.25, 又因为0.05<0.1<0.15<0.2<0.25, 所以第4件样品的大小最符合要求(2)【答案】因为|0.1|=0.1<0.18,|−0.15|=0.15<0.18,|−0.05|=0.05<0.18,所以第1,2,4件样品是正品; 因为|−0.2|=0.2,0.18<0.2<0.22,所以第3件样品是次品; 因为|−0.25|=0.25>0.22,所以第5件样品是废品16.【答案】:B【解析】:因为|−13|=13,13的相反数是−13,所以|−13|的相反数是−13.故选 B17.【答案】:2;2;2;2;0;0【解析】:根据绝对值的性质即可解答.。

七年级上册数学绝对值练习题

七年级上册数学绝对值练习题

七年级上册数学绝对值练习题练习题一:1. 计算下列各题中的绝对值:a) |-6|b) |9|c) |-3|解答:a) |-6| = 6b) |9| = 9c) |-3| = 3答案:a) 6b) 9c) 32. 根据下列各题中的绝对值,填写空格:a) |7| __ |5|b) |10| __ 10c) |-3| __ |-3|解答:a) |7| > |5|b) |10| = 10c) |-3| = |-3|答案:a) >b) =c) =练习题二:1. 求解下列方程:a) |2x + 3| = 7b) |5x - 1| = 11c) |-4x + 2| = 6解答:a) 当 |2x + 3| = 7,可得两种情况:1) 2x + 3 = 7,解得 x = 22) -(2x + 3) = 7,解得 x = -5所以方程的解为 x = 2 或 x = -5b) 当 |5x - 1| = 11,可得两种情况:1) 5x - 1 = 11,解得 x = 22) -(5x - 1) = 11,解得 x = -2所以方程的解为 x = 2 或 x = -2c) 当 |-4x + 2| = 6,可得两种情况:1) -4x + 2 = 6,解得 x = -12) -(-4x + 2) = 6,解得 x = -4/3 所以方程的解为 x = -1 或 x = -4/3答案:a) x = 2 或 x = -5b) x = 2 或 x = -2c) x = -1 或 x = -4/32. 解下列不等式,并画出数轴表示解集:a) |x - 2| < 5b) |3x + 1| > 2c) |2 - x| ≤ 8解答:a) 当 |x - 2| < 5,可得两种情况:1) x - 2 < 5,解得 x < 72) -(x - 2) < 5,解得 x > -3所以不等式的解集为 -3 < x < 7数轴表示为:-3 2 7----------------○ ○ ○b) 当 |3x + 1| > 2,可得两种情况:1) 3x + 1 > 2,解得 x > 1/32) -(3x + 1) > 2,解得 x < -1所以不等式的解集为 x < -1 或 x > 1/3数轴表示为:-∞ -1 1/3 +∞--------------------------- ○ ○ ○c) 当 |2 - x| ≤ 8,可得两种情况:1) 2 - x ≤ 8,解得x ≥ -62) -(2 - x) ≤ 8,解得x ≤ 10所以不等式的解集为 -6 ≤ x ≤ 10数轴表示为:-6 2 10----------------○ ○ ○答案:a) -3 < x < 7b) x < -1 或 x > 1/3c) -6 ≤ x ≤ 10练习题三:1. 计算下列各题中的值,并判断是否相等:a) |3 - 5| + |7 - 1|b) |2 + 4| - |3 - 5|c) |-2 + 8| - |6 - 3|解答:a) |3 - 5| + |7 - 1| = |-2| + |6| = 2 + 6 = 8b) |2 + 4| - |3 - 5| = |6| - |-2| = 6 - 2 = 4c) |-2 + 8| - |6 - 3| = |6| - |3| = 6 - 3 = 3答案:a) 8b) 4c) 32. 若 a > 0,则下列等式成立吗?说明理由:a) |a + 1| = a + 1b) |a - 1| = a - 1c) |-a| = a解答:a) 当 a > 0 时,|a + 1| 一定不等于 a + 1。

七年级数学上册绝对值试题

七年级数学上册绝对值试题

七年级数学上册绝对值试题试题 1:已知x = 5,求x的值。

解析:绝对值为 5 的数有两个,即5和-5,所以x = ±5。

试题 2:若a - 3 = 0,则a的值为多少?解析:因为绝对值为 0 的数只有 0,所以a - 3 = 0,解得a = 3。

试题 3:计算- 8 。

解析:- 8 = 8试题 4:比较- 3 和3的大小。

解析:- 3 = 3,所以- 3 = 3试题 5:若x + 2 = 4,求x的值。

解析:当x + 2 = 4时,x = 2;当x + 2 = - 4时,x = - 6,所以x = 2或x = - 6试题 6:计算- 5 + 2解析:- 5 + 2 = 5 + 2 = 7已知a = 2,b = 3,且a < b,求a、b的值。

解析:因为a = 2,所以a = ±2;因为b = 3,所以b = ±3。

又因为a < b,所以当a = 2时,b = 3;当a = - 2时,b = 3。

试题 8:若x - 1 + y + 2 = 0,求x、y的值。

解析:因为绝对值都是非负数,要使两个非负数的和为 0,则这两个数都为 0,所以x - 1 = 0,y + 2 = 0,解得x = 1,y = - 2试题 9:化简- ( - 7 )解析:- ( - 7 ) = 7 = 7试题 10:比较- 10 和- 9的大小。

解析:- 10 = 10,因为10 > - 9,所以- 10 > - 9试题 11:已知x = 4,y = 6,且xy < 0,求x + y的值。

解析:因为x = 4,所以x = ±4;因为y = 6,所以y = ±6。

又因为xy < 0,所以当x = 4时,y = - 6,x + y = 4 + (-6) = - 2;当x = - 4时,y = 6,x + y = - 4 + 6 = 2。

试题 12:计算- 3 - - 7解析:- 3 - - 7 = 3 - 7 = - 4若a + 1 + (b - 2)^2 = 0,求(a + b)^2020的值。

七年级数学上册绝对值专项练习题

七年级数学上册绝对值专项练习题

七年级数学上册绝对值专项练习题1.绝对值为4的数是()A.±4B.4C.﹣4D.2答案:A解析:绝对值为4的数有两个,即±4.2.当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为()A.﹣12B.﹣2或﹣12C.2D.﹣2答案:B解析:由题意得,a+b的绝对值为a+b,即a+b的值非负,所以a和b符号相同。

又因为|a|=5,|b|=7,所以a和b的值只能是±5和±7,且符号相同。

又因为a+b的值非负,所以a和b 的值只能是±5和±7中绝对值较大的那个数,即a和b的值分别为±5和±7.所以a﹣b的值为﹣2或﹣12.3.下面说法正确的是()A.绝对值最小的数是0B.绝对值相等的两个数相等C.﹣a一定是负数 D.有理数的绝对值一定是正数答案:B解析:A、C、D说法都是错误的。

B说法正确,因为绝对值相等的两个数要么相等,要么互为相反数。

4.下列式子中,正确的是()A。

B.﹣|﹣5|=5 C.|﹣5|=5 D。

答案:A、B、C解析:A、B、C都正确。

D不正确,因为绝对值只能是非负数。

5.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…依此类推,则a2017的值为()A.﹣1009B.﹣1008C.﹣2017D.﹣2016答案:B解析:a1=0,a2=﹣1,a3=﹣3,a4=﹣6,a5=﹣10,a6=﹣15…可得an=﹣n(n﹣1)/2,所以a2017=﹣2017×2016/2=﹣1008×2017.6.下列说法正确的个数是()①|a|一定是正数;②﹣a一定是负数;③﹣(﹣a)一定是正数;④一定是分数.A.1个B.2个C.3个D.4个答案:A解析:只有①正确,其他都是错误的。

②中a可能是0,③中a可能是0或正数,④中a可能是整数或0.所以正确的只有一个。

初一(七年级)数学绝对值练习题及答案解析

初一(七年级)数学绝对值练习题及答案解析

初一(七年级)数学上册绝对值同步练习题基础检测:1.-8的绝对值是,记做。

2.绝对值等于5的数有。

3.若︱a︱= a , 则 a 。

4.的绝对值是2004,0的绝对值是。

5一个数的绝对值是指在上表示这个数的点到的距离。

6.如果x <y <0, 那么︱x ︱︱y︱。

7.︱x - 1 ︱=3 ,则x=。

8.若︱x+3︱+︱y -4︱= 0,则x + y = 。

9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。

10.︱x ︱<л,则整数x = 。

11.已知︱x︱-︱y︱=2,且y =-4,则x = 。

12.已知︱x︱=2 ,︱y︱=3,则x +y = 。

13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。

14.式子︱x +1 ︱的最小值是,这时,x值为。

15.下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值。

19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞)+10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个 乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8 ,记做︱-8︱。

(完整版)初中数学七年级绝对值练习题

(完整版)初中数学七年级绝对值练习题

《绝对值》练习一.选择题1. -3的绝对值是( )(A )3 (B )-3 (C )13 (D )-13 2. 绝对值等于其相反数的数一定是A .负数B .正数C .负数或零D .正数或零3. 若│x│+x=0,则x 一定是 ( )A .负数B .0C .非正数D .非负数5.绝对值最小的数( )A .不存在B .0C .1D .-16.当一个负数逐渐变大(但仍然保持是负数)时( )A .它的绝对值逐渐变大B .它的相反数逐渐变大C .它的绝对值逐渐变小D .它的相反数的绝对值逐渐变大7.下列说法中正确的是( )A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数8.绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个12.______7.3=-;______0=;______3.3=--;______75.0=+-.(2)若x x =-1,求x .2.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15 -10 +30 -20 -40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?拓展题1.7=x ,则______=x ; 7=-x ,则______=x .2.若2<a<4,化简|2-a|+|a -4|.3. 已知|4-a|+|2-5b|=0, 求a+b5.b <c <0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|四、解答题1.若|x -2|+|y+3|+|z -5|=0,计算:(1)x ,y ,z 的值.(2)求|x|+|y|+|z|的值.2.若2<a<4,化简|2-a|+|a -4|.3.(1)若x x =1,求x .(2)若x x=-1,求x .2.(1)对于式子|x|+13,当x 等于什么值时,有最小值?最小值是多少?(2)对于式子2-|x|,当x 等于什么值时,有最大值?最大值是多少3.阅读下列解题过程,然后答题:(1)如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数, 则必有x+y=0.现已知:|a|+a=0,求a的取值范围。

七年级上册数学绝对值专项训练

七年级上册数学绝对值专项训练

人教版七年级上册数学绝对值专项训练一、绝对值的概念1. 定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|。

2. 性质:-绝对值具有非负性,即|a|≥0。

-互为相反数的两个数的绝对值相等,即若a 与b 互为相反数,则|a| = |b|。

二、典型例题1. 求一个数的绝对值-例1:求|-5|的值。

解:|-5| = 5。

-例2:求|0|的值。

解:|0| = 0。

-例3:求|3.5|的值。

解:|3.5| = 3.5。

2. 已知一个数的绝对值求这个数-例4:已知|a| = 4,求a 的值。

解:因为|a| = 4,所以 a = 4 或 a = -4。

-例5:已知|b| = -2,求b 的值。

解:因为绝对值具有非负性,所以不存在一个数的绝对值为负数,此题无解。

3. 绝对值的化简-例6:化简|2 - 5|。

解:|2 - 5| = |-3| = 3。

-例7:化简|x - 3|(x<3)。

解:因为x<3,所以x - 3<0,那么|x - 3| = 3 - x。

4. 绝对值的运算-例8:计算|3| + |-2|。

解:|3| + |-2| = 3 + 2 = 5。

-例9:计算|5 - 3| - |2 - 4|。

解:|5 - 3| - |2 - 4| = |2| - |-2| = 2 - 2 = 0。

三、专项练习1. 填空题- |-8| = ____。

-若|x| = 6,则x = ____。

-绝对值等于3 的数是____。

- |0 - 5| = ____。

2. 选择题-下列说法正确的是()。

A. 绝对值等于它本身的数只有0B. 绝对值等于它本身的数是正数C. 绝对值等于它本身的数是非负数D. 绝对值等于它本身的数是负数-若|a| = -a,则a 一定是()。

A. 正数B. 负数C. 非正数D. 非负数3. 解答题-已知|a - 2| + |b + 3| = 0,求a、b 的值。

-化简|x - 1| + |x - 3|(1<x<3)。

七年级数学上册《绝对值》 习题及答案

七年级数学上册《绝对值》 习题及答案

七年级数学上册:绝对值习题及答案1.-6的绝对值是()A.6B.-6C.16D.-162.下列各式中,不成立的是()A.|-3|=3B.-|3|=-3C.|-3|=|3|D.-|-3|=33.若|x|=5,则x的值是()A.5B.-5C. 5D.154.一个数a在数轴上的对应点在原点左边,则|a|=4,则a的值为()A.4或-4B.4C.-4D.以上都不对5.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从质量角度看,最接近标准质量的工件是()A.-2B.-3C.3D.56.-2016的绝对值记作,它的值是,它表示的意义为。

7.绝对值最小的有理数是。

8.在-5,-6,-7这三个数中,绝对值最小的数是,表示在数轴上,离原点最远的数是。

9.-8的相反数的绝对值是,-8的绝对值的相反数是。

10.绝对值大于它本身的数是,绝对值等于它本身的数是。

11.计算:(1)|-3|+|-10|-|-1|(2)|-24|÷|-6|×|-3|12.已知a为有理数,则下列四个数中一定为非负数的是()A.aB.-aC.|-a|D.-|-a|13.如果|a|=-a,那么下列成立的是()A.a>0B.a<0C.a≥0D.a≤014.当x=时,代数|x-6|+3有最小值,最小值是。

15.绝对值大于2且小于4.5的整数有()A.2个B.3个C.4个D.5个16.如果一个数的绝对值大于另一个数的绝对值,那么下列说法正确的是()A.这个数必大于另一个数B.这个数必小于另一个数C.这两个数的符号必相反D.无法确定两个数的大小17.下列说法正确的有()①若a=b,则|a|=|b|;②若a=-b,则|a|=|b|;③若|a|=|b|,则a=b;④若|a|=|b|,则a= b;A.0个B.1个C.2个D.3个18.下列说法中错误的个数是()(1)绝对值是它本身的数有两个,它们是1和0;(2)一个有理数的绝对值必为正数;(3)2的相反数的绝对值是2;(4)任何有理数的绝对值都不是负数;A.0B.1C.2D.319.请写出一个x的值,使|x-1|=x-1成立,你写出的x的值是。

七年级数学上绝对值专项练题

七年级数学上绝对值专项练题

七年级数学上绝对值专项练题一、绝对值专项练习题。

1. 求下列各数的绝对值:- 5- -3- 0- -(2)/(3)解析:- 根据绝对值的定义,正数的绝对值是它本身,所以|5| = 5。

- 负数的绝对值是它的相反数,所以| - 3|=3。

- 0的绝对值是0,即|0| = 0。

- |-(2)/(3)|=(2)/(3)。

2. 已知| a| = 3,求a的值。

解析:- 因为| a| = 3,根据绝对值的定义,绝对值等于3的数有两个,一个是3,另一个是-3,所以a = 3或a=-3。

3. 比较大小:| - 5|与4。

解析:- 先求出| - 5| = 5。

- 因为5>4,所以| - 5|>4。

4. 计算:| - 2|+|3|。

解析:- 先分别求出绝对值,| - 2| = 2,|3| = 3。

- 然后计算2 + 3=5。

5. 计算:| - 4|-| - 2|。

解析:- 先求绝对值,| - 4| = 4,| - 2| = 2。

- 再计算4-2 = 2。

6. 若| x - 1| = 0,求x的值。

解析:- 因为| x - 1| = 0,根据绝对值的性质,只有0的绝对值是0,所以x - 1 = 0,解得x = 1。

7. 已知| a|=| - 2|,求a的值。

解析:- 先求出| - 2| = 2。

- 因为| a| = 2,所以a = 2或a=-2。

8. 计算:| - 3|×| - 2|。

解析:- 先求绝对值,| - 3| = 3,| - 2| = 2。

- 然后计算3×2 = 6。

9. 计算:(| - 6|)/(|2|)。

解析:- 先求绝对值,| - 6| = 6,|2| = 2。

- 再计算(6)/(2)=3。

10. 若| a| = 5,| b| = 3,且a < b,求a、b的值。

解析:- 因为| a| = 5,所以a = 5或a=-5;因为| b| = 3,所以b = 3或b=-3。

七年级数学上册《绝对值》练习题(附答案解析)

七年级数学上册《绝对值》练习题(附答案解析)

七年级数学上册《绝对值》练习题(附答案解析)一、选择题(共13小题)1. −3的绝对值是( )A. 3B. −3C. −13D. 132. −2的绝对值是( )A. 2B. −2C. ±2D. √23. 绝对值不大于3的正整数有( )A. 1个B. 2个C. 3个D. 4个4. 若∣x∣=∣y∣,则x与y的关系是( )A. 都是零B. 互为相反数C. 相等D. 相等或互为相反数5. 下列大小关系中错误的是( )A. −1<−1.5B. −12<−13C. ∣∣−12∣∣>∣∣−13∣∣ D. π>3.146. 小明和小兰玩游戏,小兰说出一个数,小明要说出它的相反数,如果小兰说出的数是−2021,那么小明要说出的数是( )A. 12021B. −12021C. 2021D. −20217. 如图,数轴上有A,B,C,D四个点,其中表示的数互为相反数的点是( )A. 点A与点DB. 点A与点CC. 点B与点DD. 点B与点C8. 已知∣x∣=3,∣y∣=8,且xy<0,则x+y的值等于( )A. ±5B. ±11C. −5或11D. −5或−119. 在数轴上有两个点,分别表示数x和y,已知∣x∣=1,且x>0,∣y+1∣=4,那么这两个点之间距离为( )A. 2或6B. 5或3C. 2D. 310. 在−3,−1,1,3四个数中,比−2小的数是( )A. −3B. −1C. 1D. 311. 下面两个数互为相反数的是( )A. −(+2015) 与 +(−2015)B. −0.8 和 −(+0.8)C. −1.25 和 45 D. +(−0.02) 与 −(−150)12. −2021 的绝对值是 ( )A. −2021B. 2021C. ±2021D. 1202113. 有理数 a 、 b 、 c 表示的点在数轴上的位置如下图所示,则 ∣a +c∣−∣c −b∣−2∣b +a∣= ( )A. 3a −bB. −a −bC. a +3b −2cD. a −b −2c二、填空题(共7小题)14. −12 的相反数是 .15. 方程 ∣x −3∣=2 的解是 .16. 若 x <y <0,则 −x y ,x −y ,∣x ∣ ∣y ∣.(填“>”“<”或“=”)17. 若 ∣a ∣=5,b =3,且 a <b ,则 a = .18. 数轴上到原点的距离小于 3.2 的点中,表示整数的点共有 个.19. 若有理数 a ,b 满足 ab ≠0,则 m =a∣a∣+∣b∣b 的值为 .20. 如图,在数轴上,点 A 表示的数是 ,其绝对值是 ;点 B 表示的数是 ,其绝对值是 ;点 C 表示的数是 ,其绝对值是 .三、解答题(共5小题)21. 求下列各数的绝对值:−5,4.5,−0.5,+1,0,π−3.22. 若点 A ,B ,C ,D 分别表示 −(−52),−(+12),+(−4),+(+712),点 E ,F 分别表示 +(−4) 与 +(+712) 的相反数,请画出数轴并在数轴上标出点 A ,B ,C ,D ,E ,F .23. 如果 1<x <2,求代数式 ∣x−2∣x−2−∣x−1∣1−x +∣x∣x 的值.24. 已知a>0,b<0,且a+b<0,请利用数轴比较a,b,−a,−b的大小,并用“<”号连接.25. 比较下列每组数的大小:(1)−334和−323;(2)−∣∣212∣∣和−(−314);(3)−1327和−3029;(4)−5.34和−∣∣−513∣∣.参考答案与解析1. A【解析】负数的绝对值是它的相反数,−3的绝对值是3.2. A【解析】负数的绝对值是它的相反数,故−2的绝对值是2.3. C4. D【解析】因为∣x∣=∣y∣,所以x,y在数轴上对应的点到原点的距离相等,则x=y或x=−y.5. A【解析】∵−1>−1.5,故选项A错误;∵∣∣−12∣∣=12,∣∣−13∣∣=13,且12>13,∴−12<−13,选项B和C都是正确的.选项D中π>3.14故选项D正确.故选:A.6. C7. A【解析】由题图可知,点A,B,C,D到原点的距离分别为2,1,0.5,2,到原点的距离相等的点是点A与点D,故选A.8. A【解析】∵∣x∣=3,∣y∣=8,∴x=±3,y=±8.∵xy<0,∴当x=3时,y=−8,当x=−3时,y=8.当x=3,y=−8时,x+y=3+(−8)=−5;当x=−3,y=8时.x+y=−3+8=5.9. A【解析】∵∣x∣=1,且x>0,∴x=1,∵∣y+1∣=4,∴y=−5或3,∴这两个点之间距离为1−(−5)=6或3−1=2.10. A11. D【解析】−(+2015)=−2015,+(−2015)=−2015,两数相等,A不合题意;−(+0.8)=−0.8,两数相等,B不合题意;−1.25和45不是互为相反数,C不合题意;+(−0.02)=−150,−(−150)=150,两个数互为相反数,D符合题意.12. B13. C14. 12【解析】根据只有符号不同的两个数叫做互为相反数,可得一个数的相反数.所以−12的相反数是12.15. x1=1,x2=516. >,<,>17. −5【解析】因为∣a∣=5,所以a=±5.又b=3,且a<b,所以a=−5.18. 719. 2或0或−220. 5.5,5.5,−3,3,−0.5,0.521. 5;4.5;0.5;1;0;π−3.22. −(−52)=52,−(+12)=−12,+(−4)=−4,+(+712)=712,+(−4) 的相反数是 4,+(+712) 的相反数是 −712,画出的数轴及各点在数轴上的位置如图.23. 当 1<x <2 时,x >0,x −1>0,x −2<0,原式=∣x−2∣x−2+∣x−1∣x−1+∣x∣x=−1+1+1=1.24. ∵a >0,b <0,且 a +b <0, ∴∣b ∣>∣a ∣, 在数轴上表示为:b <−a <a <−b . 25. (1) −334<−323;(2) −∣∣212∣∣<−(−314); (3) −1327>−3029;(4) −5.34<−∣∣−513∣∣.。

人教版初中七年级上册数学《绝对值》练习题

人教版初中七年级上册数学《绝对值》练习题

第一章 有理数1.2 有理数1.2.4 绝对值第1课时 绝对值1.______7.3=-;______0=;______3.3=--;______75.0=+-. 2.______510=-+-;______36=-÷-;______5.55.6=---.3.绝对值等于4的数是______.4.______5=-;______31.2=-;______=+π.5.7=x ,则______=x ; 7=-x ,则______=x .6.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.7. 若3=x ,则x=___。

8. 化简:=--5 ;=--)5( ;=+-)21( .9. (2009年,广州)绝对值是6的数是 .参考答案1、3.7;0;—3.3;—0.752、15;2;13、±4;4、5;2.31;π;5、±7;±7;6、0;正数;负数7、±38、-5,5,21 (解析:本题考查的是绝对值、相反数的意义.) 9、±6 考查绝对值的意义.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。

有的人会有疑问,小学生的学习任务不大为什么还要制定学习计划?下面就让我们一起来看看小学生制定学习计划的好处。

1、学习的目标明确,实现目标也有保证学习计划就是规定在什么时候采取什么方法步骤达到什么学习目标。

短时间内达到一个小目标。

长时间达到一个大目标。

在长短计划指导下,使学习一步步地由小目标走向大目标。

2、恰当安排各项学习任务,使学习有秩序地进行,有了计划可以把自己的学习管理好,到一定时候对照计划检查总结一下自己的学习,看看有什么优点和缺点,优点发扬,缺点克服,使学习不断进步。

3、对培养良好的学习习惯大有帮助。

人教版初一数学上册绝对值练习题

人教版初一数学上册绝对值练习题

人教版初一数学上册绝对值练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN绝对值练习题一、选择题1.下列说法中正确的个数是( )(1)一个正数的绝对值是它本身;(2)一个非正数的绝对值是它的相反数;(3)•两个负数比较,绝对值大的反而小;(4)一个非正数的绝对值是它本身.A.1个B.2个C.3个D.4个2.若-│a│=-3.2,则a是( )A.3.2B.-3.2C.±3.2D.以上都不对3.若│a│=8,│b│=5,且a+b>0,那么a-b的值是( )A.3或13B.13或-13C.3或-3D.-3或-134.一个数的绝对值等于它的相反数的数一定是( )A.负数B.正数C.负数或零D.正数或零5.a<0时,化简||3a aa结果为( )A.23B.0C.-1D.-2a二、填空题6.绝对值小于5而不小于2的所有整数有_________.7.绝对值和相反数都等于它本身的数是_________.8.已知│a-2│+(b-3)2+│c-4│=0,则3a+2b-c=_________.9.比较下列各对数的大小(用“)”或“〈”填空〉(1)-35_______-23;(2)-116_______-1.167;(3)-(-19)______-|-110|.10.有理数a,b,c在数轴上的位置如图所示:试化简:│a+b│-│b-1│-│a-c│-│1-c│=___________.2b ca1三、解答题11.计算(1)│-6.25│+│+2.7│; (2)|-813|-|-323|+|-20|12.比较下列各组数的大小:(1)-112与-43(2)-13与-0.3;13.已知│a-3│+│-b+5│+│c-2│=0,计算2a+b+c的值.14.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,求代数式x2+(a+b)x-•cd的值.15.求|110-111|+|111-112|+…|149-150|的值.16.化简│1-a│+│2a+1│+│a│(a<-2).317.若│a│=3,│b│=4,且a<b,求a,b的值.18.已知-a<b<-c<0<-d,且│d│<│c│,试将a,b,c,d,0•这五个数由大到小用“>”依次排列出来.答案:一、1.B 2.C 3.A 4.A 5.B二、6.±4,±3,±2 7.0 8.8 9.(1)>;(2)> 10.-2三、11.(1)8.95;(2)32; 12.(1)-12<-43(2)-13<0.3;13.∵│a-3│+│-b+5│+│c-•2│=0,又│a-3│≥0,│-b+5│≥0,│c-2│≥0. ∴a-3=0,-b+5=0,c-2=0,即a=3,b=•5,c=2,4∴2a+b+c=1314.由条件可知:a+b=0,cd=1,x=±1,则x2=1,∴x2+(a+b)x-cd=0 •15.原式=110-111+111-112+…+149-150=110-150=22516.∵a<-2,∴1-a>0,2a+1<0.∴│1-a│+│2a+1│+│a│=1-a+(-2a-1)+(-a)=-4a 17.∵│a│=3,│b│=4∴a=±3,b=±4又a<b,则a=±3,b=418.a>c>0>d>b5。

七年级数学绝对值练习题(精)100道

七年级数学绝对值练习题(精)100道

七年级数学绝对值练习题(精)100道1、有理数的绝对值一定是非负数。

绝对值等于它本身的数有0和1两个。

0的绝对值是0,1的绝对值是1.3、下列说法正确的是:若|a|=|b|,则a与b互为相反数。

4、若有理数在数轴上的对应点如下图所示,则下列结论中正确的是:|a|<|b|。

5、相反数等于-5的数是5,绝对值等于5的数是5.6、-4的倒数的相反数是1/4.7、绝对值小于2的整数有-1,0,1.8、若|-x|=2,则x=-2或x=2;若|x-3|=0,则x=3;若|x-3|=1,则x=2或x=4.10、已知|a|+|b|=9,且|a|=2,求b的值。

由|a|+|b|=9,得|b|=9-|a|=9-2=7,因此b=7或b=-7.11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。

由a<b<c,得a=-3,b=2,c=1.12、如果m>0,n<0,m<|n|,那么m,n,-m,-n的大小关系为-n<-m<m<n。

13、如果-1≤x<1,则x的取值范围是C.≤O。

14、绝对值不大于11.1的整数有22个。

15、│a│=-a,a一定是非正数。

16、有理数m,n在数轴上的位置如图,无法看到图,无法回答问题。

17、若|x-1| =0,则x=1;若|1-x |=1,则x=0或x=2.18、如果-2≤x<0,则x^2的取值范围是0≤x^2<4.19、已知│x+y+3│=0,求│x+y│的值。

由│x+y+3│=0,得x+y=-3,因此│x+y│=3.20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21.由│a-2│+│b-3│+│c-4│=0,得a=2,b=3,c=4,因此a+2b+3c=2+2*3+3*4=21.21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,求代数式a+b+2+x+cd的值。

由a,b互为相反数,得a=-b,因此a+b=0;由c、d互为倒数,得cd=1,因此cd=1或cd=-1;由x的绝对值是1,得x=1或x=-1.因此a+b+2+x+cd的值可能为2、0、-2、-4.无法确定具体值。

初一上册数学绝对值专项练习带答案解析

初一上册数学绝对值专项练习带答案解析

绝对值一.选择题(共16小题)1.相反数不大于它本身的数是()A.正数 B.负数C.非正数D.非负数2.下列各对数中,互为相反数的是()A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a 3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)4.下列式子化简不正确的是()A .+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5C.﹣|+3|=﹣3 D .﹣(+1)=15.若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3 B.a2和b2C.﹣a和﹣b D.和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.﹣2a3和﹣2b3 B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣8.﹣2018的相反数是()A.2018B.﹣2018 C.D.﹣9.下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A表示的数是()A.﹣4 B.﹣5 C.﹣6 D.﹣211.化简|a﹣1|+a﹣1=()A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M 与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁C.甲丙 D.乙丁15.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()A.b<aB.|b|>|a| C.a+b>0 D.ab<0 16.﹣3的绝对值是()A.3 B.﹣3 C.D.二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|的值为.18.已知|x|=4,|y|=2,且xy<0,则x﹣y的值等于.19.﹣2的绝对值是,﹣2的相反数是.20.一个数的绝对值是4,则这个数是.21.﹣2018的绝对值是.22.如果x、y都是不为0的有理数,则代数式的最大值是.23.已知+=0,则的值为.24.计算:|﹣5+3|的结果是.25.已知|x|=3,则x的值是.26.计算:|﹣3|=.三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数围,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m ﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m ﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.28.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x﹣y)的值.30.求下列各数的绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是;②数轴上表示﹣2和﹣6的两点之间的距离是;③数轴上表示﹣4和3的两点之间的距离是;(2)归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F 以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P 到点E,点F的距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与﹣2的两点之间的距离是.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3)代数式|x+8|可以表示数轴上有理数x与有理数所对应的两点之间的距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x﹣1007|的最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.36.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求的值;(2)若b≠0,且,求的值.参考答案与试题解析一.选择题(共16小题)1.D.2.B.3.D.4.D.5.B.6.B.7.B .8.A.9.A.10.A.11.C.12.A.13.D.14.C.15.C.16.A.二.填空题(共10小题)17..18.6或﹣6.19.2,2.20.4,﹣4.21.2018.22.1.23.﹣1.24.2.25.±3.26.=3.三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(围不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(围不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7;(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间的距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x ﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P 到点A,点B的距离之和最小,所以x的取值围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为|x﹣7|,(3)代数式|x+8|可以表示数轴上有理数x与有理数﹣8所对应的两点之间的距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|的最小值即|1007﹣(﹣1008)|=2015.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,因为a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,因为a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,因为a﹣b=﹣10<0,符题意;所以a+b=﹣6;④当a=﹣8,b=﹣2时,因为a﹣b=﹣6<0,符题意,所以a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一个0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版数学七年级上册1.2.4绝对值同步训练
一、选择题
1、下列说法不正确的是( ).
A、0既不是正数,也不是负数
B、1是绝对值最小的数
C、一个有理数不是整数就是分数
D、0的绝对值是0
2、下列结论中正确的是().
A、0既是正数,又是负数
B、O是最小的正数
C、0是最大的负数
D、0既不是正数,也不是负数
3、一个有理数的倒数是它本身,这个数是().
A、0
B、1
C、
D、1或
4、- 的绝对值是().
A、-2
B、-
C、2
D、
5、若,则是().
A、0
B、正数
C、负数
D、负数或0
6、下列结论中,正确的有().
①符号相反且绝对值相等的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③两个负数,绝对值大的它本身反而小;④正数大于一切负数;⑤在数轴上,右边的数总大于左边的数。

A、2个
B、3个
C、4个
D、5个
7、绝对值不大于11.1的整数有()个.
A、11个
B、12个
C、22个
D、23个
8、下列化简错误的是().
A、-(-3)= 3
B、+(-3)=-3
C、-[+(-3)]= -3
D、-[-(-3)]=-3
9、数轴上到原点的距离相等的两点表示的数为().
A、互为倒数
B、互为相反数
C、相等
D、没有关系
10、-6|的值是().
A、-6
B、-1/6
C、1/6
D、6
11、下列各式中,不成立的是().
A、|-3|=3
B、-|3|=-3
C、|-3|=|3|
D、-|-3|=3
12、下列式子中错误的是().
A、-3.14>-π
B、3.5>-4
C、-17/3>-23/4
D、-0.21<-0.21
13、若|a|=|b|,则a, b的关系是().
A、a=b
B、a=-b
C、a=b或a=-b
D、a=0且b=0
二、填空题
14、①若,则a与0的大小关系是a ________0.
②若,则a与0的大小关系是a ________0.
15、一个数的绝对值是6,那么这个数是________.
16、化简: ________
17、绝对值等于本身的数是________.相反数等于本身的数是________,绝对值最小的负整数是________, 绝对值最小的有理数是________.
18、已知a=-2,b=1,则得值为________。

三、解答题
19、在数轴上表示下列各数:0,-3,2,-,5.并将上述各数的绝对值
用“<”号连接起来.
20、已知,求x,y的值。

21、求有理数a和的绝对值.
22、,并且a<b求、的值.
23、若|3a—1|+|b—2|=0,求a+b的值.。

相关文档
最新文档