管网水力计算
热水管网的水力计算
![热水管网的水力计算](https://img.taocdn.com/s3/m/44563f76172ded630a1cb62a.png)
方法:同冷水,但因水温高, 和粘滞系数小 于冷水,且考虑结垢等因素,水力计算采用热 水水力计算表
二、回水管网的计算 (1) 管网循环流量 管段的热损失:
Ws
DLK (1h)(tc
tz 2
tj)
Ws——计算管段热损失,kJ/h; K——无保温时管道的传热系数, kJ/(m2•h•℃) ;
2 采用蒸汽间接加热:
Gmh
1.1
~
1.2 3.6Qh
h
Gmh——蒸汽间接加热热水时的蒸汽耗量,kg/h;
——蒸汽的气化热,可查表决定;
Qh——设计小时耗热量,W。 3 采用热水间接加热
Gms
1.1
~
1.2
C
B
3.6Qh
tmc t
mz
Gms——蒸汽间接加热热水时的蒸汽耗量,W; tmc——热媒热水供应温度,℃; tmz——热媒热水回水温度,℃;
Q、CB同上。
8-3 加热器及贮存设备的选择计算
一、局部加热设备计算 二、集中热水供应加热设备选择计算 1. 传热面积的计算
Fp——水加热器的传热面积,m2; Qz——制备热水所需的热量,可按设计小时耗热量计算,W; ε——传热效率的修正系数, α——热损失附加系数,一般取α=1.1~1.2 ;
具体算法
6)计算配水管网的热损失,求总循环流量。 将∑Ws代入下式求解热水系统的总循环流量Qx :
7)复核各管段终点的水温
8)计算循环管网的总水头损失 H——循环管网的总水头损失,kPa; 损Hp失—,—k循Pa环;流量通过配水计算管路的沿程、局部 H损x—失—,循kP环a;流量通过回水计算管路的沿程、局部
定时供应旅馆、住宅、医院、集体宿 舍、工业企业卫生间、浴室
管网系统水力计算与仿真分析
![管网系统水力计算与仿真分析](https://img.taocdn.com/s3/m/c329925677c66137ee06eff9aef8941ea66e4b62.png)
管网系统水力计算与仿真分析一、管网系统水力计算与仿真分析概述管网系统是城市基础设施的重要组成部分,负责将水资源从源头输送到各个用户,同时收集和处理污水。
随着城市化进程的加快,管网系统的规模和复杂性不断增加,对水力计算和仿真分析的需求也日益突出。
水力计算与仿真分析是确保管网系统高效、安全运行的关键技术手段。
1.1 管网系统水力计算的重要性管网系统的水力计算是评估系统性能、优化设计和运行管理的基础。
通过水力计算,可以预测水流在管网中的分布、速度和压力,从而为管网的设计、扩建和维护提供科学依据。
1.2 管网系统仿真分析的作用仿真分析是利用计算机技术模拟管网系统的实际运行情况,通过模拟可以发现潜在的问题,优化系统设计,提高运行效率,降低能耗和成本。
二、管网系统水力计算与仿真分析的关键技术管网系统的水力计算与仿真分析涉及到多个关键技术,这些技术是确保计算准确性和仿真效果的关键。
2.1 水力模型的建立水力模型是仿真分析的基础,需要根据管网系统的实际情况建立相应的数学模型。
模型的建立包括确定管网的拓扑结构、节点特性和管道参数等。
2.2 计算流体动力学(CFD)的应用计算流体动力学是一种数值模拟技术,用于模拟流体在管网中的流动。
CFD可以提供详细的水流速度、压力和温度分布等信息,对于分析复杂管网系统的水力特性至关重要。
2.3 管网系统的动态模拟管网系统是一个动态变化的系统,需要考虑时间因素对水流的影响。
动态模拟可以预测管网系统在不同工况下的响应,为系统的实时控制和调度提供支持。
2.4 优化算法的应用在管网系统设计和运行中,优化算法可以帮助找到最优的设计方案或运行策略,以达到提高效率、降低成本和满足环境要求等目标。
三、管网系统水力计算与仿真分析的实施途径实施管网系统的水力计算与仿真分析需要遵循一定的步骤和方法,以确保分析的准确性和有效性。
3.1 数据收集与处理在进行水力计算和仿真分析之前,需要收集管网系统的详细数据,包括管道尺寸、材质、坡度、节点类型等。
给排水管网水力计算方法
![给排水管网水力计算方法](https://img.taocdn.com/s3/m/746383be964bcf84b9d57bd1.png)
FL (q10 , q20 , q30 ,, qP0 ) hL
将闭合差项移到方程组的左边,得到关 于流量误差(校正流量)的线性方程组:
F1 q1
q1
F1 q2
q2
F1 qP
水塔 600
水泵
0 300 1
2 450 4
3
650
8
5
6
7
205
1.总用水量 设计最高日生活用水量:
50000×0.15=7500m3/d=86.81L/s 工业用水量:
400÷16=25m3/h=6.94L/s 总水量为:
ΣQ=86.81+6.94=93.75L/s 2.管线总长度:ΣL=2425m,其中水塔 到节点0的管段两侧无用户不计入。 3.比流量:
(m) (m) (m) (m) 力坡度
1~3 26.70 21.00
5.70
400 0.01425
4~7 24.95 21.00
3.95
625 0.00632
管段 流量(L/s) 管径(mm) 水力坡度 水头损失(m)
1~2 11.64 150(100) 0.00617 1.85(16.8)
2~3 4.48
FL (q1, q2 , q3,, qP ) 0
初步分配的流量一般不满足能量方程:
F1(q10 , q20 , q30 ,, qP0 ) 0 F2 (q10 , q20 , q30 ,, qP0 ) 0
FL (q10 , q20 , q30 ,, qP0 ) 0
初步分配流量与实际流量的的差额为 Δq,实际流量应满足能量方程:
管网水力计算
![管网水力计算](https://img.taocdn.com/s3/m/d97fc1f50242a8956bece45a.png)
1 Q j Q j y qi 2 q j j点大用户用水量( l / s)
例:
57
1
沿线流量60(L/S)
2
24
3
4
13
24
5
9
9
6
30
7
11
10
8
5
8
9
试计算各点的节点流量. 5点的节点流量:1/2(24+13+9+10)=28(L/S)
【例题】某城市最高时总用水量为260L/s,其中
2.配水干管比流量
qcb Qh qi
l
260 120 4400 0.03182 l / s m
3.沿线流量:
qy qcb li
(l / s)
各 管 段 沿 线 流 量 计 算
管段编号 1-2 2-3 3-4 1-5 3-5 4-6 5-6 6-7
合 计
管段计算总长度 ( m) 800 0.5×600=300 0.5×600=300 0.5×600=300 800 800 600 500
(1)管网图形简化可分为分解、合并、省略 ①分解:只由一条管线连接的两管网,都可以把连 接管线断开,分解成为两个独立的管网。由两条 管线连接的分支管网,如它位于管网的末端且连 接管线的流向和流量可以确定,也可进行分解, 管网经分解后即可分别计算。 ②合并:管径较小、相互平行且靠近的管线可考虑 合并。 ③省略:管线省略时,首先是略去水力条件影响较 小的管线,也就是省略管网中管径相对较小的管 线,管线省略后的计算结果是偏于安全的。
4.5 管段流量、管径和水头损失
内 容:求出所有管道的直径、水头损 失、水泵扬程和水塔高度。并对事故时、消 防时、最大转输时的水泵扬程进行较核。
给水管网的水力计算
![给水管网的水力计算](https://img.taocdn.com/s3/m/e4d21147b207e87101f69e3143323968011cf4a7.png)
根据公式(gōngshì)(2-7)先求出平均出流概率U0,查表找 出对应的αc值代入公式(gōngshì)(2-6)求出同时出流概率U,再 代入公式(gōngshì)(2-5)就可求得该管段的设计秒流量qg,重复 上述步骤可求出所有管段的
第十三页,共30页。
回到本章目录 回到总目录
2.4 给水管网的水力计算 2.4.3 水表和特殊附件的局部(júbù)水头损失
水表口径 当用水较均匀时水表口径应以安装水表管段(ɡuǎn
duàn)的设计秒流量不大于水表的常用流量来确定,因为常用 流量是水表允许在相当长的时间内通过的流量。
当用水不均匀,且连续高峰负荷每昼夜不超过2~3h时, 螺翼式水表可按设计秒流量不大于水表的过载(guòzài)流量 确定水表口径,因为过载(guòzài)流量是水表允许在短时间 内通过的流量。
回到本章目录 回到总目录
2.4 给水管网的水力(shuǐlì)计算
2.4.4 求定给水系统(xìtǒng)所需压力
确定给水计算 管路水头损失、 水表和特殊附 件的水头损失 之后,
即可根据公式 (2-1)求得 建筑内部给水 系统所需压力。
公式(gōngshì)(2-1):
第十九页,共30页。
回到本章目录 回到总目录
表2-
14
第十一页,共30页。
回到本章目录 回到总目录
2.4 给水管网的水力计算(jì suàn) 2.4.2 给水管网和水表水头损失的计算(jì suàn)
三通分水与分水器分水的局部(júbù)水头损失估算值 表 2-15
* 此表只适用于配水管,不适(bùshì)用于给水干管.
给水管网水力计算-给水管网水力计算
![给水管网水力计算-给水管网水力计算](https://img.taocdn.com/s3/m/18aaad9ef46527d3250ce037.png)
点击查看
1.7 给水管网的水力计算
1.7.3 水表和特殊附件的局部水头 损失
(一) 水表的分类及比较 1. 水表的分类 (1)按计量元件运动原理分类:
a. 容积式水表 b.速度式水表
速 度 旋翼式 式 水 螺翼式 表
单流束 多流束 水平螺翼式 垂直螺翼式
阀门和螺纹管件的摩阻损失的 当量长度表点击查看
1.7 给水管网的水力计算
1.7.2 给水管网和水表水头损失的计算
按管网沿程水头损失的百分数取值法 不同材质管道、三通分水与分水器分水管内径大小的局
部水头损失占沿程水头损失百分数的经验取值,分别见不同 材质管道的局部水头损失估算值表和三通分水与分水器分水 的局部水头损失估算值表。
qg 0.2 U Ng
[解]
配水最不利点为低水箱坐便器,故计算管路为0、1、 2、……9。该建筑为普通住宅Ⅱ类,
选用公式 qg 0.2 U 计 N算g 各管段设计秒流量。
由住宅最高日生活用水定额及小时变化表查:
用 按
水
定
额
q0=
2
0
0
L/
(
人
·d
)
,小时变
化
系
数
K
h=
2.
5
,
每
户
3.5人计。
1.7 给水管网的水力计算
1.7.4 求给水系统所需压力
确定
给水计算管路水头损之失后 水表和特殊附件的水头损失
根据公式
H H1 H2 H3 H4 H5 求得建筑内部给水系统所需压力 H
1.7 给水管网的水力计算
首 先1根. 据7 .建5 筑 平水面力图 和计初算定的的 给方水法方步式 ,骤绘 给 水 管 道 平
管网水力计算
![管网水力计算](https://img.taocdn.com/s3/m/eef15fd49e314332396893a7.png)
n
s s
s1 sd 2
2 s 1 p d
0.96s1 sd s s p sd
2010/4/14
16
6.5 应用计算机解管网问题
2010/4/14
10
正常工作时:
Q
正常工作时水头损失为:
3 2 Q h 2 1 sQ 4 2
2
事故时:
Q
损坏段
2010/4/14
11
一段损坏时水头损失为: 2 2 Q Q h s 2 s 2 2 1
s 2 3 2 s Q sQ 2 2
Qa
Hb H0 1 s s p sd ( s1 sd ) n
事故和正常时的流量比例:
Qa Q
s s p sd 1 s s p sd ( s1 sd ) n
按事故用水量为设计用水量的70%,即α=0.7的要求, 所需分段数等于:
2010/4/14 15
2010/4/14
6
73.20 73 1 74.50 4
73.20 2 75.30 5
75.80
76.10 3 76.70 6
72
77.30 8 9 77 76
7
74 75
管网等压水线
2010/4/14 7
1
Ⅰ
2
Ⅱ
3
Ⅲ
4
hI
5
Ⅳ
hII
6 7
hIII
Ⅵ 8
hIV
9 10
hV
Ⅴ
hVI
11
2010/4/14
3
6.2.2 节点方程组解法 节点方程是用节点水压H(或管段水头损失)表示管段 流量q的管网计算方法。在计算之前,先拟定各节点的水压、 此时已经满足能量方程∑hij=0的条件。管网平差时,是使 连接在节点i的各管段流量满足连续性方程,即J-1个
管网水力计算
![管网水力计算](https://img.taocdn.com/s3/m/ec67499cf18583d0496459db.png)
环方程组解法
L个非线性能量方程的求解
F1q1,q2,,qh0
F2 qg,qg1,,qj 0
FL qm,qm1,,qp 0
方程数等于环每 数环 ,一 即个方程,该 它环 包的 括各管段流程 量 组, 组方 包
了管网中的全部量 管。段 函流 F数有相同形式s的 i qi n-1qi项,两环公共管段
,
,
q
0
p
q p
0
环方程组解法
L个非线性能量方程的求解过程
将函数F展开,保留线性项得:
F1
q10
,
q
0
2
,
,
q
0
h
F1 q1
q1
F2 q 2
q 2
Fh q h
q h
0
F2
q 0 , q 0 , , q 0
g
g 1
j
Fg q g
q g
Fg1 q g1
q g1
Fj q j
q j
树状网计算例题
干管各管段的水力计算
✓ 干管各管段管径D和流速v的确定
首先根据流量并参 准照 管标 径选定一个D, 管然 径后v由 4q 确定流v速 ,
D2
查表5—1,看v是否在经济流速范 ,围 如内 果是,则所选 D、 定v合 的理; 如果否,则重新D, 选在 定看一下新计算 的v所 是得 否符合5表 —1内的经济流速, 直至符合为止。这 们里 可我 以看出,对一 个每 管一 段,可能不止 D、 一v组 个合满足 表5—1中队经济流速的要求。 如管段 1—4,表6—3中所选管径 30为 0m, m如我们选择D管3径50m, m则此时 v 40.030630.63,v0.63m/s也符合5表—1对经济流速的要求。
给水管网水力计算
![给水管网水力计算](https://img.taocdn.com/s3/m/483bae8484868762caaed54a.png)
管网水力计算•管网水力计算都是新建管网的水力计算。
•对于改建和扩建的管网,因现有管线遍布在街道下,非但管线太多,而且不同管径交接,计算时比新设计的管网较为困难。
其原因是由于生活和生产用水量不断增长,水管结垢或腐蚀等,使计算结果易于偏离实际,这时必须对现实情况进行调查研究,调查用水量、节点流量、不同材料管道的阻力系数和实际管径、管网水压分布等。
1§树状网计算❖树状网特点1)管段流量的唯一性•无论从二级泵站起顺水流方向推算或从控制点起向二级泵站方向推算,只能得出唯一的管段流量,或者可以说树状网只有唯一的流量分配。
每一节点符合节点流量平衡条件q i+∑q ij=02)干线与支线的区分•干线:从二级泵站到控制点的管线。
一般是起点(泵站、水塔)到控制点的管线,终点水压已定,而起点水压待求。
•支线:起点的水压标高已知,而支线终点的水压标高等于终点的地而标高与最小服务水头之和。
•划分干线和支线的目的在于两者确定管径的方法不同:•干线——根据经济流速•支线——水力坡度充分利用两点压差⎪⎭⎫⎝⎛=D v f i【例】某城市供水区用水人口5万人,最高日用水量定额为150L/(人·d),要求最小服务水头为16m。
节点4接某工厂,工业用水量为400m3/d,两班制,均匀使用。
城市地形平坦,地面标高为5.00m,管网布置见图。
水泵水塔012348567450300600205650❖总用水量✓设计最高日生活用水量:50000×0.15=7500m3/d=312.5m3/h=86.81L/s✓工业用水量:两班制,均匀用水,则每天用水时间为16h工业用水量(集中流量)=400/16=25m3/h=6.94L/s ✓总水量:∑Q=86.81+6.94=93.75L/s❖比流量✓管线总长度∑L:∑L =2425m (其中水塔到0节点的管段两侧无用户,不配水,因此未计入∑L )✓比流量q s:q s=(Q-∑q)/∑L其中,∑q(集中流量)=6.94L/s, ∑L =2425m则q=(Q-∑q)/∑L=(93.75-6.94)/2425=0.0358L/(m.s)s❖沿线流量✓沿线流量q1=q s L:管段管段长度(m)沿线流量(L/s)0~1 1~2 2~3 1~4 4~8 4~5 5~6 6~7300150250450650230190205300×0.0358=10.74150×0.0358=5.37250×0.0358=8.95450×0.0358=16.11650×0.0358=23.27230×0.0358=8.23190×0.0358=6.80205×0.0358=7.34合计242586.81❖节点流量✓节点流量q i =0.5∑q 1:注:节点4除包括流量23.80L/s 以外,还应包括工业用水集中流量6.94L/s 。
排水管网的水力计算
![排水管网的水力计算](https://img.taocdn.com/s3/m/828f0ed150e2524de5187e98.png)
第5章建筑内部排水系统5.2排水管网的水力计算1. 设计规定为保证管道系统有良好的水力条件,稳定管内气压,防止水封破坏,保证良好的室内环境卫生,在设计计算横支管和横干管时,须满足下列规定:⑴最大设计充满度建筑内部排水横管按非满流设计,以便使污废水释放出的气体能自由流动排入大气,调节排水管道系统内的压力,接纳意外的高峰流量。
建筑内部排水横管的最大设计充满度见表5-3。
排水横管最大设计充满度表5-3⑵管道坡度污水中含有固体杂质,如果管道坡度过小,污水的流速慢,固体杂物会在管内沉淀淤积,减小过水断面积,造成排水不畅或堵塞管道,为此对管道坡度作了规定。
建筑内部生活排水管道的坡度有通用坡度和最小坡度两种,见表5-4。
通用坡度是指正常条件下应予保证的坡度;最小坡度为必须保证的坡度。
一般情况下应采用通用坡度,当横管过长或建筑空间受限制时,可采用最小坡度。
标准的塑料排水管件(三通、弯头)的夹角为91.5°,所以,塑料排水横管的通用坡度均为0.026。
生活污水排水横管的通用坡度和最小坡度表5-4工业废水的水质与生活污水不同,其排水横管的通用坡度和最小坡度见表5-5。
工业废水排水管道通用坡度和最小坡度表5-5⑶最小管径为了排水通畅,防止管道堵塞,保障室内环境卫生,规定了建筑内部排水管的最小管径为50mm。
医院、厨房、浴室以及大便器排放的污水水质特殊,其最小管径应大于50mm。
医院洗涤盆和污水盆内往往有一些棉花球、纱布、玻璃渣和竹签等杂物落人,为防止管道堵塞,管径不小于75mm。
厨房排放的污水中含有大量的油脂和泥沙,容易在管道内壁附着聚集,减小管道的过水面积。
为防止管道堵塞,多层住宅厨房间的排水立管管径最小为75mm,公共食堂厨房排水管实际选用的管径应比计算管径大一号,且干管管径不小于100mm,支管管径不小于75mm。
浴室泄水管的管径宜为100mm。
大便器是唯一在排水口没有十字栏栅的卫生器具,瞬时排水量大,污水中的固体杂质多,所以,凡连接大便器的支管,即使仅有1个大便器,其最小管径也为100mm。
给水管网水力计算2
![给水管网水力计算2](https://img.taocdn.com/s3/m/705e0239f342336c1eb91a37f111f18583d00c91.png)
给水方式及管道布置
3.给水管道的敷设
第15页/共63页
给水管道的防护
1)防腐 防腐措施:管道除锈后,在外壁涂刷防腐涂料 进行防腐处理。
明装的焊接钢管和铸铁管外刷防腐漆一道, 银粉面漆两道;
镀锌钢管外刷银粉面漆两道;
暗装和埋地管道均刷沥青漆两道;
第16页/共63页
给水管道的防护
第8页/共63页
给水管道布置与敷设
2.布置要求
2)保证建筑物使用功能和生产安全。 管道不能穿过配电间,以免因渗漏造成电气 设备故障或短路; 不能布置在遇水易引起燃烧、爆炸、损坏的 设备、产品和原料的上方, 应避免在生产设备上面设置管道;
第9页/共63页
返回
给水管道布置与敷设
2.布置要求
3)保证给水管道的正常使用。
第11页/共63页
给水管道布置与敷设
3.给水管道的敷设
敷设要求: (1)引入管埋地敷设 • 在室外埋地敷设时要注意地面动荷载和冰冻的影响,
其管顶覆土厚度不宜小于0.7m,并且管顶埋深应 在冻土线0.2m以下。 • 建筑内埋地管在无动荷载和冰冻影响时,其管顶埋 深不宜小于0.3m。 • 给水横管穿承重墙或基础、立管穿楼板时均应预留 孔洞。暗装管道在墙中敷设时也应预留墙槽。横管 穿过预留洞时,管顶上部净空不得小于建筑物的沉 降量,其净空一般不小于0.1m。
qg——计算管段的给水设计秒流量(L/s); q0——同一类型的1个卫生器具给水额定流量(L/s) n0——同一类型卫生器具/共63页
一、给水设计流量及生活给水设计秒 流量
例:某公共浴池内有淋浴器20个,浴盆8个,洗 脸盆10个,大便器(冲水箱)5套,污水池2个, 求给水进户总管中的设计秒流量。 解:通过查表确定各卫生器具的同时给水百分数 和当量数。
管网水力计算
![管网水力计算](https://img.taocdn.com/s3/m/de423db4f80f76c66137ee06eff9aef8941e488f.png)
水头损失的定义: 水流在管道中流 动时,由于摩擦、 阻力等因素造成 的能量损失
水头损失的类型: 沿程水头损失、 局部水头损失、 水头损失系数
水头损失的计算 方法:采用伯努 利方程进行计算
水头损失的影响 因素:管道直径 、粗糙度、流速 、流体密度等
流量:单位时间内通过管道的流 体量
流量和流速的关系:流量=流速× 管道截面积
收集数据:收集管网系统的相关数据,如水压、流量等
建立模型:建立管网系统的水力模型,如水力平衡方程等
求解模型:利用数值方法求解水力模型,如迭代法、有限 元法等
分析结果:分析计算结果,如压力分布、流量分布等
优化设计:根据计算结果对管网系统进行优化设计,如调 整管径、调整泵站等
水力计算软件:如Hydrulic Toolbox、WterCD等 水力计算工具:如流量计、压力表、水泵等 水力计算模型:如管网水力模型、水力平衡模型等 水力计算方法:如伯努利方程、连续方程、能量守恒方程等
管道阻力系数的 取值范围一般为 0.01-0.05
连续方程:描述管道中水流的连续性 伯努利方程:描述管道中水流的能量守恒 雷诺数:描述管道中水流的湍流特性 摩阻系数:描述管道中水流的阻力特性 流量公式:结合以上公式,计算管道中的流量
公式:Hf = K * (Q^2 /
D^5) * L
其中,Hf为 管道水头损 失,K为管道 水头损失系 数,Q为管 道流量,D为 管道直径,L 为管道长度
某大型住宅小区给排水管网水力 计算
添加标题
添加标题
某工业园区排水管网水力计算
添加标题
添加标题
某城市污水处理厂排水管网水力 计算
计算方法:采用水力计算软件进行模拟计算
计算结果:得到管网水力计算结果,包括流量、压力、流速等参数
给水管网水力计算方法步骤
![给水管网水力计算方法步骤](https://img.taocdn.com/s3/m/7d232ad90975f46527d3e1e9.png)
给水管网水力计算
1.确定给水管网各管段的管径
给水管道的流速控制范围:
1、对于生活或生产给水管道,一般采用1.0~1.5m/s,不宜大于2.0m/s,当有防噪声要求,且管径小于或等于25mm时,生活给水管道内的流速可采用0.8~1.0m/s;
2、消火栓给水管道的流速不宜大于2.5m/s;
3、其自动喷水灭火系统给水管道的流速不宜大于5m/s,其配水支管在特殊情况下不得大于10m/s。
2.给水系统水压的确定
H=H1+H2+H3+H4
H1——引入管起点至配水最不利点位置高度所要求的静水压;
H2——引入管起点至配水最不利点的给水管路即计算管路的沿程与局部阻力水头损失之和;
H3——水表的水头损失;
H4——配水最不利点所需的流出水头。
3.水力计算方法和步骤
1、根据综合因素初定给水方式;
2、根据建筑功能、空间布局及用水点分布情况,布置给水管道,并绘制出给水平面图和轴侧草图;
3、绘制水利计算表格;
4、根据轴侧图选择配水最不利点,确定计算管路;
5、以流量变化处为节点,从配水最不利点开始,进行节点编号,并标注两节点间的计算管段的长度;
6、按建筑的性质选择设计秒流量的计算公式,计算各管道的设计秒流量;
7、根据设计秒流量,考虑流速,查水利计算表进行管网的水利计算,确定管径,并求出给水系统所需压力;
8、校核(H0≥H;H0略<H ;H0远<H )
9、确定非计算管路各管径。
02-4给水管网的水力计算
![02-4给水管网的水力计算](https://img.taocdn.com/s3/m/e569af3e4b35eefdc8d333d6.png)
第2章建筑内部给水系统2.4给水管网的水力计算在求得各管段的设计秒流量后,根据流量公式,即可求定管径:给水管网水力计算的目的在于确定各管段管径、管网的水头损失和确定给水系统的所需压力。
υπ42dq g =πυgq d 4=式中 q g ——计算管段的设计秒流量,m 3/s ;d j ——计算管段的管内径,m ;υ——管道中的水流速,m/s 。
(2-12)当计算管段的流量确定后,流速的大小将直接影响到管道系统技术、经济的合理性,流速过大易产生水锤,引起噪声,损坏管道或附件,并将增加管道的水头损失,使建筑内给水系统所需压力增大。
而流速过小,又将造成管材的浪费。
考虑以上因素,建筑物内的给水管道流速一般可按表2-12选取。
但最大不超过2m/s。
工程设计中也可采用下列数值: DN15~DN20,V =0.6~1.0m/s ;DN25~DN40,V =0.8~1.2m/s 。
生活给水管道的水流速度 表2-122.4.2 给水管网和水表水头损失的计算2.4.2 给水管网和水表水头损失的计算给水管网水头损失的计算包括沿程水头损失和局部水头损失两部分内容。
1. 给水管道的沿程水头损失(2-13)——沿程水头损失,kPa;式中 hyL——管道计算长度,m;i——管道单位长度水头损失,kPa/m,按下式计算:2.4 给水管网的水力计算2.4.2 给水管网和水表水头损失的计算式中i——管道单位长度水头损失, kPa/m ;dj——管道计算内径,m;q g——给水设计流量,m3/s;Ch——海澄-威廉系数:塑料管、内衬(涂)塑管C h = 140;铜管、不锈钢管C h = 130;衬水泥、树脂的铸铁管C h = 130;普通钢管、铸铁管Ch = 100。
(2-14)设计计算时,也可直接使用由上列公式编制的水力计算表,由管段的设计秒流量,控制流速在正常范围内,查出管径和单位长度的水头损失。
“给水钢管水力计算表”、“给水铸铁管水力计算表”以及“给水塑料管水力计算表”分别见附表2-1、附表2-2和附表2-3。
给水管网水力计算基础
![给水管网水力计算基础](https://img.taocdn.com/s3/m/3cd793f9bb68a98270fefa1a.png)
为了向更多的用户供水,在给水工程上往往将许多管路组成管网。
管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。
管网内各管段的管径是根据流量Q和速度v来决定的,由于Q Av (d2/4)v所以管径d .. 4Q/ v 1.13 Q/v。
但是,仅依靠这个公式还不能完全解决问题,因为在流量Q一定的条件下,管径还随着流速v的变化而变化。
如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。
反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。
图1管网的形状(a)枝状管网;(b)环状管网因此,在确定管径时,应该作综合评价。
在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。
应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。
但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为:--- 当直径d= 100~400mm 经济流速v= -1.0ms ;--- 当直径d>400mm经济流速v=~1.4m/s。
一、枝状管网枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。
它的特点是管网内任一点只能由一个方向供水。
若在管网内某一点断流,则该点之后的各管段供水就有问题。
因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。
技状管网的水力计算•可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。
1 •新建给水系统的设计对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∑L =2425m(其中水塔到0节点的管段两侧无用户,不 配水,因此未计入∑L )
✓ 比流量qs: qs=(Q-∑q)/∑L
其中, ∑q(集中流量)=6.94L/s, ∑L =2425m 则qs=(Q-∑q)/∑L =(93.75-6.94)/2425=0.0358L/(ms)
树状网计算例题
沿线流量
✓ 管段流量的确定
各管段的管段流量等于该管段后所有节点的节点流 量之和
• q水塔~0 • q0~1 • q1~4 • q4~8
q水塔~0=q0+q1+q2+q3+q4+q5+q6+q7+q8 =93.75L/s q0~1=q1+q2+q3+q4+q5+q6+q7+q8=88.38L/s q1~4=q4+q5+q6+q7+q8=60.63L/s q4~8=q8==11.63L/s
✓ 沿线流量q1=qsL:
树状网计算例题
节点流量
✓ 节点流量qi=0.5∑q1:
节点4除包括流量23.80L/s以外,还应 包括工业用水集中流量6.94L/s。
树状网计算例题
干管各管段的水力计算
✓ 因城市用水区地形平坦,控制点选在离泵站最 远的干管线上的节点8。
树状网计算例题
干管各管段的水力计算
3.14 0.352
树状网计算例题
干管各管段的水力计算
✓ 干管各管段水头损失hij=aLijqij2的确定
以表6 — 3中管段0 — 1为例:
L0—1 300m,q0—1 0.08838m3 / s,v 0.70m / s; 若我们在计算的过程中采用的是舍维列夫公式,则:
v 0.70m / s 1.20m/ s,D 400mm,查表5 — 2则:a 0.2232,
树状网计算例题
• 某城市供水区用水人口5万人,最高日用水量定额为150L /(人·d),要求最小服务水头为157kPa(15.7m)。节点4 接某工厂,工业用水量为400m3/d,两班制,均匀使用。 城市地形平坦,地面标高为5.00m,管网布置见图。
树状网计算例题
总用水量
✓ 设计最高日生活用水量:
树状网计算例题
支管各管段的水力计算
✓ 各支线的允许水力坡度
i1—3
H1 H3 L1—3
H1 L1—2
H3 L2—3
26.70 16 5
150 250
v 0.70m / s,查表5 — 3则:a的修正系数K 1.085,则有:
h 0—1
aKL
0
—1q
2 0—1
0.22321.085 300 0.088382
0.56m
树状网计算例题
支管各管段的水力计算
✓ 干管上各支管接出处节点的水压标高 ✓ 节点8:H8=16.00(最小服务水头15.7m,这里
• 任损一失管hij段。的流量决定后,即可按经济流速ve求出管径D,并求得水头 • 选定一条干线,例如从二级泵站到控制点的任一条干管线,将此干线
上Z所c+各需H管扬c+段程h的或s+水水h头塔c+损所hn失需(m相 的)加 高和, 度式求。H出这t=干里H线,c+的控h总制n-水点(头的Z损选t-失择Z很,c)重即计要可算,按二如式级H果泵p控=站制 点选择不当而出现某些地区水压不足时,应重行选定控制点进行计算。 • 干线计算后,得出干线上各节点包括接出支线处节点的水压标高(等 于节点处地面标高加服务水头)。因此在计算树状网的支线时,起点 的水压标高已知,而支线终点的水压标高等于终点的地面标高与最小 服务水头之和。从支线起点和终点的水压标高差除以支线长度,即得 支参线照的此水水力力坡坡度度(选定i=相(近Hi的-标Hj准)管/L径ij)。,再从支线每一管段的流量并
树状网计算例题
干管各管段的水力计算
✓ 干管各管段管径D和流速v的确定
首先根据流量并参照标准管径选定一个管径D,然后由v 4q 确定流速v,
D 2
查表5 — 1,看v是否在经济流速范围内,如果是,则所选定的D、v合理; 如果否,则重新选定D,在看一下新计算所得的v是否符合表5 — 1内的经济流速, 直至符合为止。这里我们可以看出,对一每一个管段,可能不止一个D、v组合满足 表5 — 1中队经济流速的要求。 如管段1 — 4,表6 — 3中所选管径为300mm,如我们选择管径D 350mm,则此时 v 4 0.03063 0.63, v 0.63m / s也符合表5 — 1对经济流速的要求。
第一节 树状网计算
• 多数小型给水和工业企业给水在建设初期 往往采用树状网,以后随着城市和用水量 的发展,可根据需要逐步连接成为环状网。 村状网的计算比较简单,主要原因是树状 网中每一管段的流量容易确定,且可以得 到唯一的管段流量。
树状网计算
树状网计算步骤
• 在水流每方一节向点推算应或用从节控点流制量点起平向衡二条级件q泵i+站∑方qi向j=推0,算无,只论能从得二出级唯泵一站的起顺管 段流量qij ,或者可以说树状网只有唯一的流量分配。
50000×0.15=7500m3/d=312.5m3/h=86.81L/s
✓ 工业用水量:
两班制,均匀用水,则每天用水时间为16h 工业用水量(集中流量)=400/16=25m3/h=6.94L/s
✓ 总水量:
∑Q=86.81+6.94=93.75L/s
树状网计算例题
比流量
✓ 管线总长度∑L:管网水计算• 我们这里讨论的管网水力计算都是新建管网的水 力计算。
• 对于改建和扩建的管网,因现有管线遍布在街道 下,非但管线太多,而且不同管径交接,计算时 比新设计的管网较为困难。其原因是由于生活和 生产用水量不断增长,水管结垢或腐蚀等,使计 算结果易于偏离实际,这时必须对现实情况进行 调查研究,调查用水量、节点流量、不同材料管 道的阻力系数和实际管径、管网水压分布等。