电流互感器检查变比电流电压方法
电流互感器变比检验的简便方法(三篇)
电流互感器变比检验的简便方法电流互感器是一种专门用作变换电流的特种变压器,在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。
电流互感器作为电力系统中的重要设备,对其进行电气性能试验是很重要的,对于电流互感器而言,变比试验是绝不可少的试验项目,电流互感器变比关系到计量的准确性与保护的可靠性。
电流互感器现场变比检验一般采用电流法,用电流法测量电流互感器变比,实际上是模拟在额定电流情况下的实际运行条件,是一种很理想的试验方法,测量的精度高,但随着电力系统的不断发展,单台发电机的容量越来越大,其出口电流已经达到数万安培。
例如800MW的发电机组,额定电压为20kV,额定电流为:800/(2031/2)=23.094kA,相应使用的电流互感器一次电流很大,若用电流法测量一次电流为几万安培的电流互感器变比,在现场很难做到:其一,额定大电流很难达到(需大容量调压器);其二,需要的标准电流互感器或升流器的体积大,造价高,若降低被测电流互感器一次电流进行试验,那么其变比误差会很大,试验就毫无意义。
所以电流法测量电流互感器变比的方法,在施工现场越来越受到限制。
笔者在电流法的基础上介绍另一种电流互感器变比的试验方法电压法。
该方法适用于施工现场对电流互感器变比检验。
电压法具有适用范围广,使用设备少,设备简单的优点,是一种简单方便试验方法。
1电压法测量电流互感器变比的原理电压法测量电流互感器变比的方法适合现场试验,其优点是设备少,线路简单,易操作。
试验接线图如图1所示。
电压表V监测被测电流互感器二次电压,毫伏表mV监测被测电流互感器一次侧电压,此方法类似于测量铁芯感应电势的方法。
理想电流互感器的变比:K=N2/N1=E2/E1,而实际测量变比:K实=U2/U1=E2/U1,由上式可见,理想电流互感器变比与实际变比之间的误差,近似地认为U2=E2的结果。
实际上,如图2所示,由于角差很小,可以认为U2与线段OC在长度上是相等的。
电流电压互感器变比试验
电流电压互感器变比试验
《规程》规章要查看互感器各分接头的变比,并需求与铭牌对比没有显着不同。
1. 电流互感器变比的查看
查看电流互感器的变比,选用与标示电流互感器对对比的方法。
其试验接线如图1所示。
图1 电流互感器变比查看试验接线图
TI—单相调压器;T2—升流器;
TAN—规范电流互感器;TAX—被试电流互感器
试验时,将被试电流互感器与规范电流互感器一次测串联,二次侧各接一只0.5级电流表,用调压器和升流器供应一次侧一相宜电流,当电流升至互感器的额外电流值时(或在30%~70%额外电流范围内多选几点),一同记载两只电流表的读数,则被试电流互感器的实践变比为
K=KNIN/I
变比差错为
△K=[(K-KxN)/KxN]×100%
以上式中KN、IN——规范电流互感器的变比和二次电流值;
K、I——被试电流互感器的变比和二次电流值;
KxN——被试电流互感器的额外变比。
试验时应留意,应将非被试电流互感器二次绕组短路,谨防开路;
应尽量选择使规范电流互感器与被试电流互感器变比一样,若是变比正确的话,其二次绕组电流表读数也应一样。
2. 电压互感器的变比查看
关于变比在变比电桥测试范围内的电压互感器,可直接选用变比测验仪测试其变比。
关于变对比大的电压互感器,查看其变比可选用双电压表法或选用图2所示用与规范电压互感器对对比的方法。
用图2所示方法对电压互感器进行变比测试时,应留意通常经过调压器和试验变压器向高压侧施加电压,在二次侧测试。
图2 电压互感器变比查看试验接线图
T1—单相调压;T2—试验变压器;
TVN—规范电压互感器;T—被试电压互感器。
互感器变比极性测试仪使用方法
互感器变比极性测试仪互感器变比极性测试仪使用方法1、电流互感器变比测量使用方法:接线方法:红,黑两芯线对应接仪器面板的一,二次插孔,另一端分别接电流互感器对应的一,二次。
红线接极性端(P1或L1),黑线接电非极性端。
若互感器一次为穿心形式,则红色线从极性端(P1或L1)穿进,再与黑线短接。
接好线后,打开电源开关。
点击触摸屏,进入下一界面:互感器变比极性测试仪根据被试互感器的二次电流,在“电流互感器”上点击相关项,进入测量:点击“测量”后,开始测量,等待测量结果。
如果要重复测量时,直接点击“测量”,即可进行再次测量。
2、电压互感器变比测量使用方法:互感器变比极性测试仪接线方法:红,黑两芯线对应接仪器面板的一,二次插孔,另一端分别接电压互感器对应的一次和二次。
红线极性端(A),黑线非极性端;测量方法请参照电流互感器的操作方法。
3、界面提示:显示此界面,说明仪器电量不足,不能进行测量,必须对仪器进行充电。
4、按键以及充电接口:“CT”、“PT”、“复位”按键,其中“CT”、“PT”是在触摸失效,或触摸屏破裂之后的备用键,也可以作为测量按键使用。
按“CT”键,默认参考二次电流为5A,按“PT”键,默认参考二次电压为100V。
充电接口,对仪器充电时,仪器将停止工作。
仪器在充电中,互感器变比极性测试仪充电器的指示灯为红。
仪器充满时,充电器的指示灯变绿。
三、技术指标:变比测量范围:5A/5A------25000A/5A;5A/1A-------5000A/1A。
电磁式电压互感器全系列。
测量精度:0.2%体积:280mm*230mm*100mm重量:3Kg。
检查电流互感器的变比和极性试验工艺
检查电流互感器的变比和极性试验工艺一、试验准备1(人员组织表1 序号项目单位数量备注1 工作负责人人 1 全面负责2 试验员人 2 操作、记录 2(仪器、设备及材料配置表2 序号名称型号技术规格单位数量备注1 继电器试验器 TPR-22V 台 12 交流电流表 D26-A 5A,0.5级块 1交流电流表 1A,0.5级块 10- 360? 3 数字相频计 DPF-30N 块 1 1级4 试验连线条 65 开关板块 16 计算器台 17 原始记录本本 1二、操作程序1(试验流程图试验准备选择仪器仪器检查接线测试填写报告记录测试完毕2(试验接线图继电器 ,220V 试验器相频仪L1 k1L2 流互 k2图1 电流互感器变比、极性测试接线图三、试验步骤1(试验准备该项试验应在被试物安装就位后进行,试验准备按表1、表2准备。
2(选择仪器根据试验要求,检查电流互感器变比和极性选用继电器试验器坐电流源、相频仪观察相位、电流表测量一次、二次电流值。
3(仪器检查由于仪器设备到达现场,经过长途运输和装卸,所以试验前必须对仪器作必要的检查工作。
首先检查外观应完好无损,然后作通电检查,检查无误后方可使用。
4(接线试验按图1接线, A1选10A电流表; A2选1A电流表。
5、测试(1)对于电流互感器采用双表法检查变比误差;(2)在互感器的一次侧施加电流,在电流表A1读取一次电流I1。
在电流表A2读取二次电流I2,记录测量的一次值和二次值;同时读取相频仪显示的角度值Ф。
(3)降电流至零,切断电源,进行计算核对变比误差计算:K=I1/I26(记录测试时应记录:仪器型号、编号、被试设备铭牌、试验结果。
记录使用墨水笔,字迹要清晰。
记录本采用专门的原始记录本。
记录测试数据时应复述,操作人确认后方可记录。
7(测试完毕测试完毕后,恢复拆除的外部接线,由工作负责人检查确认。
工作负责人应对原始记录进行审核,内容包括:记录内容是否漏项、测试数据有效数字、单位是否正确、记录人、试验人签字是否完整,检查无误后,审核人应签字。
电流互感器变比检查试验方法
电流互感器变比检查试验方法电流互感器是变压器的一种,主要用于从高压系统中测量电流并将其转换为较小电流,以保护仪表和测量系统。
为确保电流互感器正常工作,需要进行变比检查试验。
以下是电流互感器变比检查试验方法:一、检查工具和设备1.电流互感器2.标准电流互感器或大功率稳压电源3.万用表或示波器4.调整电源5.功率计6.交流电桥7.电压表或数字电压表8.绝缘测试仪二、试验前准备1.检查电流互感器2.设置试验参数3.连接电路4.检查接线5.校准电流互感器三、试验方法1.变比试验连接待测电流互感器和标准电流互感器或大功率稳压电源的交流侧,并设置适当的电压和电流。
利用万用表或示波器测量两个互感器的输出。
通常,变比试验的结果以变比误差表示。
变比误差可以通过下列方程计算:变比误差=(实际输出/标称值)×100%。
2.精度试验连接待测电流互感器和调整电源并设置合适的电压和电流,使用功率计测量输出功率。
然后使用电桥或电压表测量电流和电压,以计算输出功率。
精度试验通常以精度误差表示。
精度误差可以通过下列方程计算:精度误差=(实际输出功率/标称值)×100%。
3.绝缘试验对变压器的低压绕组进行绝缘试验,以确定其绝缘抵抗度是否满足标准。
检查电流互感器的绝缘状态可使用绝缘测试仪。
四、试验后操作1.将测量结果记录在试验记录表上。
2.制定维护计划,以确保电流互感器按标准工作。
3.如果发现问题,需尽快修理或更换电流互感器。
总之,电流互感器的变比检查试验方法需要仔细的操作,检查也应遵循标准规范,并记录和维护记录,以确保试验的可靠性和准确性。
电流互感器变比检验的简便方法范文(二篇)
电流互感器变比检验的简便方法范文电流互感器是一种常见的测量电流的装置,它通过变压器的原理将高电流转换成低电流,便于测量和保护电路。
然而,互感器的变比是否准确对于电力系统的安全运行至关重要。
因此,我们需要进行变比检验,以确保互感器的准确度。
本文将介绍一种简便的方法来进行电流互感器变比检验。
首先,准备好所需的设备和工具。
我们需要一台电流表和一个较大的额定电流,以便经互感器变比后能得到一个较小的电流值。
同时,我们还需要有一个标准的变比电流互感器作为对照。
接下来,按照以下步骤来进行变比检验:1. 首先,将待检的互感器和标准互感器分别连接到电路中。
确保连接的稳固和正确。
2. 接下来,将额定电流通过待检互感器和标准互感器的一侧,并记录下通过标准互感器的电流值。
记为I1。
3. 然后,将额定电流通过待检互感器的另一侧,并记录下通过待检互感器的电流值。
记为I2。
4. 计算互感器的变比。
变比等于I1/I2。
如果变比接近于额定变比,则互感器的变比准确。
5. 重复上述步骤,使用不同的额定电流值来检验互感器的变比。
确保检验的准确性和可靠性。
此外,为了确保变比检验的精度,我们还可以按照以下方法进行校正:1. 首先,分别将额定电流通过待检互感器和标准互感器,并记录下通过两者的电流值。
2. 计算待检互感器的变比。
变比等于标准互感器电流值除以待检互感器的电流值。
3. 如果待检互感器的变比与标准互感器的变比不一致,则说明待检互感器存在偏差。
我们可以根据偏差值进行校正。
4. 对于电流互感器,我们可以通过调整互感器的匝数或改变磁路的长度来进行校正。
重新计算变比,并进行检验。
总之,电流互感器的变比检验是确保电力系统安全和稳定运行的重要环节。
通过使用上述简便的方法进行检验,我们可以快速准确地判断互感器的变比是否准确,并进行必要的校正。
这将有助于提高变比的精度和准确性,从而保证电力系统的正常运行。
电流互感器变比检验的简便方法范文(二)电流互感器是电力系统中广泛使用的一种电气设备,它主要用于测量电流的变化和传输电流信号。
电流互感器检查变比方法
电流互感器 变比检查 电流法 电压法文摘根据电流互感器的等值电路图,讨论了 2种电流互感器变比检查试验方法(电流法和电压法)的原理和特点,推荐一种简便可靠的电流互感器变比检查现场试验方法——电压法。
不管是老标准还是新规程,都把电流互感器交接时和更换绕组后的现场变比检查试验列为重要试验项目。
虽然电流互感器变比的准确度应由制造部门保证,但由于种种原因,现场试验时偶而也能检查出错误 (大多是抽头引错)。
因此现场变比检查试验成为多年不变的项目。
电流互感器工作原理大致与变压器相同,不同的是变压器铁心内的交变主磁通是由一次线圈两端交流电压所产生,而电流互感器铁心内的交变主磁通是由一次线圈内电流所产生,一次主磁通在二次线圈中感应出二次电势而产生二次电流。
从电流互感器工作原理可知:决定电流互感器变比的是一次线圈匝数与二次线圈匝数之比,影响电流互感器变比误差的主要原因有:(1)电流的大小,比差和角差随二次电流减小而增大;(2) 二次负荷的大小,比差和角差随二次负荷减小而减小;(3)二次负荷功率因数,随着二次负荷功率因数的增大,比差减小而角差增大;(4) 电源频率的影响;(5)其它因素。
电流互感器内部参数也可能引起变比误差,如二次线圈内阻抗、铁心截面、铁心材料、二次线圈匝数等,但这是由设计和制造决定的。
电流互感器变化的误差试验应由制造厂在出厂试验时完成或在试验室进行。
而电流互感器变比现场试验属于检查性质,即不考虑上述影响电流互感器变比误差的原因而重点检查匝数比。
根据电工原理,匝数比等于电压比或电流比之倒数。
因此测量电压比和测量电流比都可以计算出匝数比。
1 试验方法分析现根据试验接线图和等值电路图分别讨论电压法和电流法检查电流互感器变化试验的原理和特点。
1.1 电流法1.1.1 试验原理电流法检查电流互感器变比试验接线图如图1所示。
图 1 电流法的试验接线电流源包括 1 台调压器、1 台升流器;L 1 、L 2 电流互感器一次线圈2个端子;K 1 、K 2 电流互感器二次线圈2个端子;A 1 电流表(测量电流互感器一次电流);A 2 电流表(测量电流互感器二次电流) 电流法检查电流互感器变比等值电路图如图 2所示。
电流互感器变比检验的简便方法
电流互感器变比检验的简便方法电流互感器是一种常用的电力测量设备,用于将高电流转换为低电流,以便于计量、保护和控制等应用。
在使用前,需要进行变比检验来确认电流互感器的变比是否符合要求。
本文将介绍一种简便的电流互感器变比检验方法。
首先,我们需要准备一台标准电流互感器和一台多功能电流表。
标准电流互感器应具有已知的准确变比值,可以来自于已经校验过的电流互感器或者专门用于校验的设备。
多功能电流表应具备较高的精度和稳定性,能够测量变比范围内的电流。
变比检验的步骤如下:1. 将待检电流互感器与标准电流互感器连接起来,确保连接稳固可靠。
2. 调节标准电流互感器的输入电流至某一固定值,可以选择标准电流互感器的额定电流值或者待检电流互感器的额定电流值。
3. 将标准电流互感器的输出接入多功能电流表,记录测量值I1。
4. 将待检电流互感器的输出接入多功能电流表,记录测量值I2。
5. 计算变比,变比=I1/I2。
需要注意的是,在进行变比检验时,应确保待检电流互感器和标准电流互感器的额定电流和额定变比相同,并且待检电流互感器的连接方式与实际使用场景相同。
同时,在进行测量时应注意消除测量误差,如电流表的零点漂移、外部磁场干扰等。
此外,为了提高变比检验的准确性,可以进行多组重复测量,然后取平均值作为最终计算结果。
同时,还可以进行误差分析,比较待检电流互感器和标准电流互感器测量值之间的偏差,并判断变比是否符合要求。
总结起来,电流互感器变比检验的简便方法包括连接标准电流互感器和待检电流互感器,通过多功能电流表测量两者的输出电流,计算得到变比。
在进行检验时应注意保证连接的稳固可靠,消除测量误差,提高准确性。
变比检验是电流互感器质量保证的重要环节,有效的变比检验方法可以保证电流互感器的测量准确性,从而提高电力系统的运行可靠性和安全性。
电流互感器原理及测试方法
电流互感器原理及测试方法电流互感器是一种用于测量电流的装置,它通过电流变压器的原理来实现。
电流互感器主要由铁心、一次绕组、二次绕组和磁通计量装置组成。
其工作原理是将待测电流通过一次绕组,产生磁通,从而诱导出二次绕组中的电压信号,通过磁通计量装置来测量二次绕组中的电压信号,从而间接测量出一次绕组中的电流。
1.额定参数测试:包括额定一次电流、二次电流、额定频率、二次负载等参数的测试。
可以通过直接测量或利用仪器设备进行测试。
2.空载测试:将一次绕组接入待测电流,二次绕组不接入任何负载,通过测量二次绕组的电压信号,来判断电流互感器的空载性能。
3.比值测试:将一次绕组接入一定电流,测量二次绕组的电压信号,通过计算得到电流互感器的变比,进而判断电流互感器的准确性。
4.负载特性测试:将一次绕组接入一定电流,将二次绕组接入一定负载,通过测量二次绕组的电压信号和负载电流,计算得到电流互感器的负载特性,包括负载误差、相位角误差等。
5.温升测试:将一次绕组接入一定电流,通过一定时间的加热,测量电流互感器的温升情况,判断电流互感器的热稳定性。
6.绝缘测试:通过测量电流互感器的一次绕组与二次绕组之间的绝缘电阻,来判断电流互感器的绝缘性能。
7.阻抗测试:通过测量电流互感器的一次绕组和二次绕组之间的等效电阻和等效电感,来判断电流互感器的阻抗特性。
在进行电流互感器的测试时,需要使用专门的测试仪器和设备,如电流互感器测试装置、电压表、电流表、负载电阻等。
同时,还需要注意测试环境的稳定性和准确性,避免外界因素对测试结果的影响。
总之,电流互感器的测试方法主要包括额定参数测试、空载测试、比值测试、负载特性测试、温升测试、绝缘测试和阻抗测试等。
通过这些测试可以评估电流互感器的性能和准确性,确保其在实际应用中的可靠性和稳定性。
电压电流互感器的试验方法完整版
电压电流互感器的试验方法HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】电压电流互感器的常规试验方法一、电压、电流互感器的概述典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。
电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。
1.电压互感器的原理电压互感器的原理与变压器相似,如图1.1所示。
一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。
根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为:图1.1 电压互感器原理2.电流互感器的原理在原理上也与变压器相似,如图1.2所示。
与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。
即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。
图1.2 电流互感器的原理3.互感器绕组的端子和极性电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。
常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。
当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。
电流互感器检验项目和试验方法分析
电流互感器检验项目和试验方法分析电流互感器是按照电磁感应原理,通常用闭合的铁心和绕组构成。
它是一种变压器,电力系统供测量仪器、仪表和继电保护等电器采样使用的必不可少的設备。
串接在测量仪表和保护回路中,电流互感器在工作时,始终是闭合的,当电网电压和电流高于一定量值时,电能表和其他测量仪表及继电保护装置必须经过互感器接入电网,才能实现正常测量和保护电力设备的安全。
本文针对电流互感器检验项目和试验方法进行分析。
标签:电流互感器;检验项目;试验方法分析一、电流互感器的定义电流互感器又叫“仪用电流互感器”。
它有一种意义是实验室使用的多电流比精密电流互感器,通常用来扩大仪表的量程。
电流互感器跟变压器一样,都是根据电磁感应的基本原理进行工作,互感器改变的是电流而变压器改变的是电压值。
互感器连接的被测电流的绕组Nl为一次绕组(即初级绕组);连接测量仪表的NZ是二次绕组(即次级绕组)。
在发电,变电,输电,配电和用电的线路中电流大小悬殊上的差距,为方便测量,控制和保护必须得到一致的电流,还有路线上的电压通常很高,不能直接测量其数值。
电流的互感器起到的就是实现电流的变换和隔离的效果。
二、现场检验周期及检验项目(1)新投运或改造后的I,1,m,四类电能的高压测量装置要在30天内进行当场检验。
检验事项通常有:首先,电能计量器具的准确性。
其次,检查电能计量装置的运行状况,及时发现用电异常如:报装容量,变比大小,端子接触,窃电迹象等。
最后,检查二次负荷有无变化,二次回路接线是否正确等。
(2)I 类电能表要保证每三个月进行一次现场检验,1类电能表要每六个月进行,m类电能表则每年检验一次。
(3)互感器十年进行一次现场检验,当互感器的误差超过标准范围时,要找到原因,重新调整试验的思路和计划,尽快解决,时间要少于最近主设备每次的完成检验时间。
(4)运行中的35千伏及其以上的电压互感器中的二次电路的电压差值,要保证每隔两年进行一次检验。
电压法检查电流互感器变比的试验方法在现场实际工作中的应用
,:艺。
≈、登。
,风电压法检查电流互感器变比的试验方法在现场实际工作中的应用赵丽哑(黄河电力测试科技工程有限公司,青海西宁810007)[摘要]新老授程都把屯流互感器交接时和更换绕纽舌的现场变比检查试验列为重要试验项目。
虽然电流互感器变比的准确度应由制造部门保证.但由于种种原因,现场试验时偶而也能检查出大多是由于抽头引错的产品。
因此现场变比检查试验成为多年不变的项目。
[关键词]电流互感器;电压法检查新老规程都把电流互感器交接时和更换绕组后的现场变比检查试验列为重要试验项目。
虽然电流互感器变比的准确度应由制造部门保证,但由于种种原因,现场试验时1禺而也能检查出大多是由于抽头引错的产品。
因此现场变比检查试验成为多年不变的项目。
1电流互感器变化的误差试验应由制造厂在出厂试验时完成或在试验室进行。
而电流互感器变比现场试验属于检查性质,即不考虑由于设计和制造影响电流互感器变比误差的原因而重点检查匝数比。
电流法的试验特点是基本上模拟了电流互感器在工作中的实际运行状况。
如果电流互感器一次电流小,试验容易,能保证一定的准确度。
但是随着系统容量的增加,电流互感器一次电流越来越大,可达数万安培。
现场加电流至数干安培或数万安培几乎是不可能的。
刚氏试验电流对减小试验容量意义不大,刚氏试验电流太多则电流互感器误差骤增,达不到检查变比的目的。
根据电工原理,匝数比等于电压比或电流比之倒数。
因此测量电压比和;贝9量电流比都可以计算出匝数比。
有关资料介绍了用电压法检查电流互感器变比的试验方法的原理,这里不再赘述。
为了保证测量准确度需控制二次激磁电流I。
不超过1O m A)。
2对某发电厂发电机出口电流互感器用电压法检查变比的试验电流互感器的标准变比为15000A/5A o1)在试验室:用1m m:的短导线穿过电流互感器~次将一块毫伏表接入一次回路中,用1m m2的短导线将一台调压器及一块电压表接入二次回路中。
试验结果如下二砍鹿加电压二谈擞磁电流—竣测量电压测量受此U二C V)It C“)U《nV)R--U/U 背景O D D05210.305.053.41302015.507.005.16000420.208.686.∞3015从所测数据可以看出:电源开关合上时表计的背景值很小,可忽略。
互感器:电流、电压互感器伏安特性测量变比接线方式
互感器:电流、电压互感器伏安特性测量变比接线方式互感器用途及标准介绍互感器伏安特性测试仪是一款多功能全自动化的CT、PT特性测试仪器,采用“电流法”,可用于保护类电流、电压互感器的伏安(励磁)特性、变比、极性、一次通流和交流耐压等综合试验,满足GB 1207-2006《电磁式电压互感器》和GB 1208-2006《电流互感器》的技术标准,采用ARM芯片为处理核心,测量精度高,功能性强,试验完成自动绘制曲线和打印数据报告。
电流互感器变比接线方式变比的接线方式是很简单的,将CT的一次侧开路,在二次侧施加试验电压,同时,将不用的二次绕组短接接地,下面看下SJFA-K互感器伏安特性测试仪的接线方法是如何表现的。
图中,a1,a2是电流互感器一次电流,s1,s2 是电流互感器二次电流,k1,k2是伏安特性的输出端子,需要提醒您的是,测量时该端口有持续电压输出,电压大小有被试的容量决定。
上图中,左侧CT是电流互感器伏安特性的测试数据,I(A)是电流,U(V)是电压,通过数据分析伏安特性关系,同样可以通过曲线分析,测试简单,显示直观,结果可以通过面板打印机输出或者直接储存数据。
电压互感器变比接线方式电压互感器的接线方式与电流互感器同理,需要注意2点,1,测量电压互感器伏安特性时,二次侧电压不要短接;2,在pt柜内最好不要做电压互感器的伏安特性试验,避免安全安全距离对测量造成影响,下面我们看一下PT(电压互感器)的参数设置面板。
上图是PT伏安特性的参数设置界面,左侧是功能的设置与显示,右侧是所有功能模块,上侧是互感器类型的选择。
总结电流、电压互感器伏安特性测量变比接线总体是很简单,一般通过观察接线图说明就能独立完成所有的试验项目,时基电力作为电力试验设备的制造厂家,温馨提醒您,该产品只针对保护用互感器的功能测量。
电流互感器变比检查试验方法
电流互感器变比检查试验方法马继先郭东升文摘根据电流互感器的等值电路图,讨论了2种电流互感器变比检查试验方法(电流法和电压法)的原理和特点,推荐一种简便可靠的电流互感器变比检查现场试验方法——电压法。
关键词电流互感器变比检查电流法电压法不管是老标准还是新规程,都把电流互感器交接时和更换绕组后的现场变比检查试验列为重要试验项目。
虽然电流互感器变比的准确度应由制造部门保证,但由于种种原因,现场试验时偶而也能检查出错误(大多是抽头引错)。
因此现场变比检查试验成为多年不变的项目。
电流互感器工作原理大致与变压器相同,不同的是变压器铁心内的交变主磁通是由一次线圈两端交流电压所产生,而电流互感器铁心内的交变主磁通是由一次线圈内电流所产生,一次主磁通在二次线圈中感应出二次电势而产生二次电流。
从电流互感器工作原理可知:决定电流互感器变比的是一次线圈匝数与二次线圈匝数之比,影响电流互感器变比误差的主要原因有:(1)电流的大小,比差和角差随二次电流减小而增大;(2) 二次负荷的大小,比差和角差随二次负荷减小而减小;(3)二次负荷功率因数,随着二次负荷功率因数的增大,比差减小而角差增大;(4) 电源频率的影响;(5)其它因素。
电流互感器内部参数也可能引起变比误差,如二次线圈内阻抗、铁心截面、铁心材料、二次线圈匝数等,但这是由设计和制造决定的。
电流互感器变化的误差试验应由制造厂在出厂试验时完成或在试验室进行。
而电流互感器变比现场试验属于检查性质,即不考虑上述影响电流互感器变比误差的原因而重点检查匝数比。
根据电工原理,匝数比等于电压比或电流比之倒数。
因此测量电压比和测量电流比都可以计算出匝数比。
1 试验方法分析现根据试验接线图和等值电路图分别讨论电压法和电流法检查电流互感器变化试验的原理和特点。
1.1 电流法1.1.1试验原理电流法检查电流互感器变比试验接线图如图1所示。
图1 电流法的试验接线——电流源包括 1 台调压器、1 台升流器;L1、L2——电流互感器一次线圈2 个端子;K1、K2——电流互感器二次线圈2个端子;A1——电流表(测量电流互感器一次电流);A2——电流表(测量电流互感器二次电流)电流法检查电流互感器变比等值电路图如图2所示。
电流互感器变比检验的简便方法范本
电流互感器变比检验的简便方法范本电流互感器变比检验是指对电流互感器的变比进行检测,以确保其输出信号与实际电流的比例关系准确。
本文将介绍电流互感器变比检验的简便方法,并提供一个范本,帮助读者更好地理解和实施检验。
一、检验原理电流互感器变比检验是通过比较电流互感器的输入电流与输出信号之间的比例关系来进行的。
具体而言,可以通过下面的步骤来进行检验:1. 将已知的电流信号输入到电流互感器的一侧(通常是一次侧),并测量输入电流的数值(记为I1);2. 将输出信号接入到测试设备(如示波器或电流表)上,并测量其数值(记为I2);3. 计算变比k,即k = I2 / I1;4. 将变比k与电流互感器的标称变比进行比较,以确定其误差是否在允许范围内。
二、检验步骤1. 准备工作- 确保检验设备(如电流源、示波器、电流互感器标称变比)的准确性;- 确保检验环境符合要求,无外界干扰;- 按照电流互感器的额定参数设置检验电流的大小。
2. 连接电路- 将电流源与电流互感器的一侧相连,并确认连接无误;- 将电流互感器的输出端与测试设备相连接,例如使用示波器进行测试。
3. 输入电流测量- 调节电流源的输出电流至待测电流互感器的定标电流,记为I1;- 使用电流表或电流变送器等设备,通过检测电流源输出的电流值来验证输入电流的准确性。
4. 输出信号测量- 将示波器或电流表等设备连接到电流互感器的输出端,并将设备调至合适的量程;- 记录并测量输出信号的电流值,记为I2。
5. 计算变比- 根据输入电流和输出信号的测量值计算电流互感器的变比,即k = I2 / I1。
6. 误差分析- 将计算得到的变比与电流互感器的标称变比进行比较;- 若变比误差在规定的范围内,则电流互感器变比检验合格;- 若变比误差超出允许范围,则电流互感器变比检验不合格。
三、范本示例电流互感器型号:XXX型号额定一次电流:XXXA额定二次电流:XXXA标称变比:XXX:XXX一、准备工作1. 确保示波器的准确性,并调校至适当量程。
电流互感器变比现场试验的主要测量方法介绍与比较
电流互感器变比现场试验的主要测量方法介绍与比较作者:朱健伟来源:《科技创新与应用》2015年第36期摘要:为保证大型水电电力系统的安全和经济运行,需要对电力系统及其中各电力设备的相关参数进行测量,以便对其进行必需的计量、监控和保护。
因此电流互感器的精确对电力系统重要性是不言而喻的,电流互感器在进现场安装前需电气交接试验,现如今现场校验电流互感器变比主要存在2种方式,目前使用较多的电压测量法原理的仪器(例如PCT200)和常规电流法测量,此次对比两种方法的现场测量结果,可以对比两者之间的优势以及劣势。
供现场试验人员的一些参考。
关键词:沐若水电站;电流互感器;电流法测量;电压法测量PCT2001 概述沐若水电工程位于马来西亚(MALAYSIA)沙捞越州(SARAWAK)境内拉让河(RARANG RIVER)流域的上游。
坝址位于木中(BELAGA)市以东约70公里的沐若(MURUM)河上,电站从上游取水,由输水隧洞、调压井、竖井和引水钢管组成的地下输水系统,安装4台239MW机组。
该工程兼发电、防洪功能,并改善下游供水容量等其它用途。
此次所需要做的CT试验是沐若水电站所用发电机出口及中性点CT均由大连北方互感器厂生产主要包括(表1)。
2 电流测量法基本原理电流测量法即是在电流互感器一次侧输入一个电流,二次侧通过感应一次电流产生的磁通而产生的二次电流。
电流法检查电流互感器变比原理图如图1所示。
试验过程中采用调压器T1,用来将交流电源转变为连续可调的电压。
采用升流变压器T2,用来将调压器输出的高压小电流,转变为低压大电流。
采用标准0.2级变比为100/1的标准电流互感器TAn,A1、A2侧为便携式0.5级标准电流表。
TAx为被测CT,接线图如图2所示。
3 电压测量法基本原理电压测量法即是在电流互感器的二次侧输入一个电压,一次侧通过测量一次的感应电压得到变比。
电压法检查电流互感器变比原理图如图3所示。
PCT200的输出端S1和测量端S1接入被测CT二次侧的一端。
互感器变比测试原理
互感器变比测试原理
互感器变比测试是指检查互感器的一次电流或电压与二次电流或电压的比值是否与铭牌或设计要求相符的试验,也叫比差试验。
互感器变比测试的原理是利用互感器的电磁感应原理,通过在一次侧施加已知的电流或电压,测量二次侧的电流或电压,计算出变比,并与理论值或标准值进行比较,判断互感器的性能是否合格。
互感器变比测试的方法有多种,主要分为电流法和电压法两大类。
电流法是在一次侧注入已知的电流,测量二次侧的电流,计算出变比;电压法是在一次侧施加已知的电压,测量二次侧的电压,计算出变比。
电流法和电压法各有优缺点,电流法适用于一次电流较小的互感器,电压法适用于一次电流较大的互感器,如套管互感器。
电流法需要大电流发生器、升流器等设备,电压法需要调压器、升压器等设备。
电流法的测量精度较高,电压法的测量安全性较高。
除了电流法和电压法,还有一种变频法,是利用低频率的试验电源,通过变换频率来改变互感器的励磁特性,从而测量出变比。
变频法的优点是可以测量高拐点电压的互感器,如暂态互感器,也可以减少试验电压和电流,提高试验安全性和便捷性。
探讨检查电流互感器变比的现场试验方法
到 ( 大 容 量 调压 器 ) 其二 , 要 的标 准 电 需 ; 需 流 互 感 器 或 升 流 器 的 体 积 大 , 价 高 , 降 造 若
低 被 测 电流 互 感 器 一 次 电 流 进 行试 验 , 那
2 试验 方法分析
下 面 根据 试 验 接 线 图和 等值 电路 图分 别 讨 论 电 压法 和 电 流 法 检查 电流 互 感 器变 化 试 验 的原 理 和 特 点 。 2 1 电流 法 . ( ) 验 原 理 。 流 法 检 查 电 流 互 感 器 1试 电
量 电 流 互 感 器 一 次 电 流 ) A, 流 表 ( ; 电 测量 电 流 互 感 器 二 次 电 流 ) 流 法 检 查 电 流 互 电 感 器 变 比等 值 电路 图如 图 2 示 。 所 电 流 源 A一 一 电 流 表 ; 流 互 感 器 的 I电 次 电 流 ,, 折 算 到 一 次 侧 的 电 流 互 感 器 I 表装置设计 规范)G J 3 9 ) ) B 6 - 0的规定 , ( 在额定值 二 次 电 流 ;.x 电 流 互 感 器 一 次 线 圈 电 阻 、 r、 的 运 行 条 件 下 , 表 的 指 示 在 量 程 的 7 %~ l 漏 抗 ;…x 折 算 到 一 次 的 电流 互 感 器 二 次 仪 O 0 r 线 圈 电 阻 、 抗 ; 电流 互 感器 激 磁 抗 。 漏 Zm 当 电流 互 感 器正 常 运 行 时 二次 线 圈处 于 短 路 状 态 , 时铁 心 磁 密很 低 , Z 此 即 m很 大 。 等 从 值 电路 图我们 可 知 , Z 当 m很 大 时 ,. I 。 I= , () 2 电流 法 试 验 的 特点 。 电流 互 感 器 现 场 变 比 检 验 用 电 流 法 进 行 测 量 , 际 上 是 实 模 拟在额定电流情况下的 实际运行条件 ,
检测电流互感器原理的方法
检测电流互感器原理的方法
1. 短路电流法:将电流互感器的二次侧接入到可靠短路的直流电源上,然后测量电感、电流、电压等参数,根据这些参数计算出电流互感器的实际参数。
2. 工频比差法:将待测电流互感器的一次侧与标准电流互感器并联,二次侧通过变比计测出输出的电流,然后利用输出电流和标准电流互感器的输出电流之比来计算待测电流互感器的变比。
3. 磁场法:使用磁场法对电流互感器进行检测,通过施加电流从而产生磁场,利用传感器测量磁场变化,然后计算电流互感器的变比等参数。
4. 空载特性法:在电流互感器的一次侧施加额定电流,然后在二次侧不接负载的情况下测量输出的电压,然后计算出电流互感器的变比等参数。
5. 感应电动势法:通过感应电动势来检测电流互感器的参数,施加电流会在互感器中产生磁场,进而在二次侧产生感应电动势,通过测量感应电动势的大小来计算电流互感器的参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流互感器变比检查电流法电压法
文摘根据电流互感器的等值电路图,讨论了2种电流互感器变比检查试验方法(电流法和电压法)的原理和特点,推荐一种简便可靠的电流互感器变比检查现场试验方法——电压法。
不管是老标准还是新规程,都把电流互感器交接时和更换绕组后的现场变比检查试验列为重要试验项目。
虽然电流互感器变比的准确度应由制造部门保证,但由于种种原因,现场试验时偶而也能检查出错误(大多是抽头引错)。
因此现场变比检查试验成为多年不变的项目。
电流互感器工作原理大致与变压器相同,不同的是变压器铁心内的交变主磁通是由一次线圈两端交流电压所产生,而电流互感器铁心内的交变主磁通是由一次线圈内电流所产生,一次主磁通在二次线圈中感应出二次电势而产生二次电流。
从电流互感器工作原理可知:决定电流互感器变比的是一次线圈匝数与二次线圈匝数之比,影响电流互感器变比误差的主要原因有:(1)电流的大小,比差和角差随二次电流减小而增大;(2) 二次负荷的大小,比差和角差随二次负荷减小而减小;(3)二次负荷功率因数,随着二次负荷功率因数的增大,比差减小而角差增大;(4) 电源频率的影响;(5)其它因素。
电流互感器内部参数也可能引起变比误差,如二次线圈内阻抗、铁心截面、铁心材料、二次线圈匝数等,但这是由设计和制造决定的。
电流互感器变化的误差试验应由制造厂在出厂试验时完成或在试验室进行。
而电流互感器变比现场试验属于检查性质,即不考虑上述影响电流互感器变比误差的原因而重点检查匝数比。
根据电工原理,匝数比等于电压比或电流比之倒数。
因此测量电压比和测量电流比都可以计算出匝数比。
1试验方法分析
现根据试验接线图和等值电路图分别讨论电压法和电流法检查电流互感器变化试验的原理和特点。
1.1电流法
1.1.1 试验原理
电流法检查电流互感器变比试验接线图如图1所示。
图1电流法的试验接线
电流源包括1 台调压器、1 台升流器;L 1 、L 2 电流互感器一次线圈2 个端子;K 1 、K 2 电流互感器二次线圈2个端子;A 1 电流表(测量电流互感器一次电流);A 2 电流表(测量电流互感器二次电流)
电流法检查电流互感器变比等值电路图如图2所示。
图2电流法的等值电路
电流源;A——电流表;I 1 电流互感器的一次电流;I 2 ′折算到一次侧的电流互感器二次电流;r 1 、x 1 电流互感器一次线圈电阻、漏抗;r 2 ′、x 2 ′折算到一次的电流互感器二次线圈电阻、漏抗;Z m 电流互感器激磁抗。
当电流互感器正常运行时二次线圈处于短路状态,铁心磁密很低,即Z m 很大。
从等值电路图可知,当Z m 很大时,I 1 =I 2 ′。
1.1.2 电流法试验的特点
电流法的优点是基本模拟电流互感器实际运行(仅是二次负荷的大小有差别),从原理上讲是一种无可挑剔的试验方法,同时能保证一定的准确度,也可以说是一种容易理解的试验方法。
但是随着系统容量增加,电流互感器电流越来越大,可达数万安培。
现场加电流至数百安培已有困难,数千安培或数万安培几乎不可能。
降低一些试验电流对减小试验容量没有多大意义,降低太多则电流互感器误差骤增。
1.2电压法
1.3 1.
2.1 电压法试验原理
电压法检查电流互感器变比试验接线图如图3所示。
图3电压法的试验接线图
电压源(1 台调压器);L 1 、L 2电流互感器一次线,圈2个端子;K 1 、K 2电流互感器二次线圈2个端子;V电压表,测量电流互感器二次电压;mV毫伏表,测量电流互感器一次电压。
电压法检查电流互感器变比等值电路图如图4所示。
图4电压法的等值电路电压源;V电压表;mV毫伏表;I 0电流互感器激磁电流;U 1电流互感器一次电压;U 2 折算到一次侧的电流互感器二次电压;r 1 、x 1电流互感器一次线圈电阻、漏抗;r 2 ′、x 2 ′——折算到一次侧的电流互感器二次线圈电阻、漏抗;Z m 电流互感器激磁阻抗。
当电压法测电流互感器变比时,一次线圈开路,铁心磁密很高,极易饱和。
电压U 2 ′稍高,励磁电流I 0 增大很多。
从等值电路图可得下式:
U 2 ′+I 0 ×(r 2 ′+jx 2 ′)=U 1 从式中可知引起误差的是I 0 ×(r 2 ′+jx 2 ′),变比较小、额定电流5A的电流互感器二次线圈电阻和漏抗一般小于1Ω,变比较大、额定电流为1A的电流互感器二次线圈电阻和漏抗一般1~15Ω。
以1台220 kV、2500A/1 A电流互感器现场试验数据为例:二次线圈施加电压250 kV,一次线圈测得电压100 mV,此时二次线圈激磁电流约2mA,二次线圈电阻和漏抗约15Ω,I 0 ×(r 2 ′+jx 2 ′)=3
0 mV。
30mV与250 V相比不可能引起误差。
从上述分析可知:电压法测量电流互感器变比时只要限制激磁电流I 0 为m A级,即可保证一定的测量精度。
1.2.2 电压法试验的特点
电压法的最大的优点是试验设备重量较轻,适合现场试验,只需要1个小调压器、1块电压表、1块毫伏表。
仅仅是要注意限制二次线圈的励磁电流小于10mA,即可保证一定的准确度。
2结论
(1)用电流法检查电流互感器变比的现场试验需要笨重的试验设备,而且达到数
千安培几乎不可能。
若试验电流降低太多,则电流互感器误差骤增。
(2)用电压法检查电流互感器变比的现场试验仅需要1个小调压器、1块电压表、
1块毫伏表,是一种简便可靠的现场试验方法。