命题逻辑复习题及答案
考试题逻辑推理题及答案
![考试题逻辑推理题及答案](https://img.taocdn.com/s3/m/73d5b16d0a4c2e3f5727a5e9856a561253d32174.png)
考试题逻辑推理题及答案一、选择题1. 如果所有的苹果都是水果,而有些水果是绿色的,那么可以推断出:A. 所有的苹果都是绿色的。
B. 有些苹果可能是绿色的。
C. 没有苹果是绿色的。
D. 所有的水果都是苹果。
答案:B2. 假设在一个逻辑系统中,P代表“下雨”,Q代表“地面湿”,如果P导致Q,并且Q为真,那么根据这个逻辑系统,我们可以推断:A. P一定为真。
B. P可能为真。
C. P一定为假。
D. 无法确定P的真假。
答案:B二、判断题1. 如果所有的猫都怕水,而小明的宠物是猫,那么小明的宠物一定怕水。
答案:正确2. 如果一个人是医生,那么他一定有医学学位。
但是,如果一个人有医学学位,他不一定是医生。
答案:错误三、简答题1. 描述逻辑推理中的“演绎推理”和“归纳推理”的区别。
答案:演绎推理是从一般到特殊的推理过程,即从一个普遍的前提出发,通过逻辑推导得出特定情况下的结论。
归纳推理则是从特殊到一般的推理过程,即通过观察多个特定情况,总结出一个普遍性的结论。
2. 解释“逆否命题”在逻辑推理中的作用。
答案:逆否命题是原命题的否定形式,它在逻辑推理中的作用是帮助我们通过否定结论来检验原命题的真伪。
如果逆否命题为真,则原命题也为真;如果逆否命题为假,则原命题也为假。
四、案例分析题1. 某公司规定,只有获得优秀评价的员工才能获得年终奖。
张三获得了年终奖,根据这个规定,请分析张三是否获得了优秀评价。
答案:根据规定,获得年终奖的条件是获得优秀评价。
由于张三获得了年终奖,我们可以推断张三一定获得了优秀评价。
2. 如果在一个逻辑系统中,A导致B,B导致C,那么A是否一定导致C?答案:在逻辑系统中,如果A导致B,B导致C,那么在没有其他干扰因素的情况下,A确实会导致C。
这是因为A导致B,B又导致C,形成了一个因果链。
但是,如果系统中存在其他因素影响B到C的逻辑关系,那么A不一定导致C。
逻辑考试题目及答案解析
![逻辑考试题目及答案解析](https://img.taocdn.com/s3/m/5cbda40c3d1ec5da50e2524de518964bce84d243.png)
逻辑考试题目及答案解析一、单项选择题1. 以下哪个选项是逻辑推理中的演绎推理?A. 归纳推理B. 类比推理C. 演绎推理D. 反证法答案:C2. 以下哪个命题是真命题?A. 如果今天是星期一,那么明天是星期二。
B. 所有的猫都会飞。
C. 有些学生不喜欢数学。
D. 世界上没有两片完全相同的叶子。
答案:A二、多项选择题1. 以下哪些是逻辑谬误的例子?A. 偷换概念B. 以偏概全C. 因果倒置D. 循环论证答案:ABCD2. 以下哪些是逻辑推理的基本形式?A. 条件推理B. 选言推理C. 假言推理D. 析取推理答案:ABCD三、简答题1. 请简述演绎推理和归纳推理的区别。
答案:演绎推理是从一般到特殊的推理过程,它基于已知的前提,通过逻辑推导出必然的结论。
归纳推理则是从特殊到一般的推理过程,它基于个别事实或实例,推导出一般性的结论。
2. 请解释什么是逻辑谬误,并给出一个例子。
答案:逻辑谬误是指在推理过程中违反逻辑规则的错误。
例如,偷换概念是一种常见的逻辑谬误,即在论证过程中不恰当地改变概念的定义或范围,导致论证无效。
四、论述题1. 论述逻辑在日常生活和科学研究中的重要性。
答案:逻辑在日常生活和科学研究中具有极其重要的作用。
在日常生活中,逻辑帮助我们进行有效沟通和决策,避免陷入谬误。
在科学研究中,逻辑是构建理论体系和进行科学论证的基础,确保研究的严谨性和可靠性。
五、案例分析题1. 阅读以下案例,并分析其中存在的逻辑问题。
案例:某公司声称他们的产品能够显著提高工作效率,因为所有使用该产品的员工都报告说工作效率有所提升。
答案:该案例中存在的逻辑问题是以偏概全。
公司仅根据部分员工的报告就得出结论,没有考虑到可能存在的偏差,如样本选择偏差、报告偏差等,也没有进行对照实验或统计分析来验证结论的普遍性。
命题逻辑和谓词逻辑习题课的题目及参考答案
![命题逻辑和谓词逻辑习题课的题目及参考答案](https://img.taocdn.com/s3/m/cba5b3b33169a4517623a396.png)
命题逻辑和谓词逻辑习题课的题目及参考答案说明:红色标注题目可以暂且不做命题逻辑和谓词逻辑习题课的题目一、填空1、若P,Q,为二命题,QP→真值为0 当且仅当。
2、命题“对于任意给定的正实数,都存在比它大的实数”令F(x):x为实数,y,(x:)L>yx 则命题的逻辑谓词公式为。
3、谓词合式公式)(xP∃∀的前束范式x→)(xxQ为。
4、将量词辖域中出现的和指导变元交换为另一变元符号,公式其余的部分不变,这种方法称为换名规则。
5、设x是谓词合式公式A的一个客体变元,A的论域为D,A(x)关于y是自由的,则被称为存在量词消去规则,记为ES。
6.设P,Q 的真值为0,R,S的真值为1,则→∨QP⌝∨⌝的真值→∧⌝(S)))(R()PR(= 。
7.公式P∧)()(的主合取范式为∨RSRP⌝∨∧。
8.若解释I的论域D仅包含一个元素,则)(→xP∀∃在I下真值为(x)xPx。
9. P:你努力,Q:你失败。
“除非你努力,否则你将失败”的翻译为;“虽然你努力了,但还是失败了”的翻译为。
10. 论域D={1,2},指定谓词P则公式),(x y∀真值yPx∃为。
11.P,Q真值为0 ;R,S真值为1。
则PSwff∧R∨∧的真值∨→∧P)())Q((R))(S(为。
12. R⌝))((的主合取范式R∧Q∨Pwff→为。
13.设P(x):x是素数,E(x):x 是偶数,O(x):x是奇数N (x,y):x可以整数y。
则谓词)))xPyOywff∧∀的自然语言是→∃x))(N(,y((x(。
14.谓词)),,(yxzPxz∀的前束∀P∃∧→wff∃(u),(,))y(zuQx(y范式为。
二、选择1、下列语句是命题的有()。
A、明年中秋节的晚上是晴天;B、0>x;+yC、0>xy当且仅当x和y都大于0;D、我正在说谎。
2、下列各命题中真值为真的命题有()。
A、2+2=4当且仅当3是奇数;B、2+2=4当且仅当3不是奇数;C、2+2≠4当且仅当3是奇数;D、2+2≠4当且仅当3不是奇数;3、 下列符号串是合式公式的有( )A 、Q P ⇔;B 、Q P P ∨⇒;C 、)()(Q P Q P ⌝∨∧∨⌝;D 、)(Q P ↔⌝。
命题逻辑复习题及答案
![命题逻辑复习题及答案](https://img.taocdn.com/s3/m/78abf94176eeaeaad1f330ed.png)
命题逻辑一、选择题(每题3分)1、下列句子中哪个是命题 ( C )A 、你的离散数学考试通过了吗B 、请系好安全带!C 、 π是有理数D 、 本命题是假的 2、下列句子中哪个不是命题 ( C )A 、你通过了离散数学考试B 、我俩五百年前是一家C 、 我说的是真话D 、 淮海工学院是一座工厂 3、下列联接词运算不可交换的是( C )A 、∧B 、∨C 、 →D 、 ↔ 4、命题公式P Q ⌝→不能表述为( B )A 、P 或QB 、非P 每当QC 、非P 仅当QD 、除非P ,否则Q 5、永真式的否定是 ( B )A 、 永真式B 、永假式C 、可满足式D 、 以上答案均有可能 6、下列哪组赋值使命题公式()P P Q →∧的真值为假( D )A 、P 假Q 真B 、P 假Q 假C 、P 真Q 真D 、P 真Q 假 7、下列为命题公式()P Q R ∧∨⌝成假指派的是( B )A 、100B 、101C 、110D 、111 8、 下列公式中为永真式的是 ( C )A 、()P P Q →∧B 、()P P Q ⌝→∧C 、()P Q Q ∧→D 、()P Q Q ∨→ 9、 下列公式中为非永真式的是( B )A 、 ()P P Q ∧⌝→B 、()P P Q ∨⌝→C 、()P P Q ∧⌝→D 、()P P Q ∨⌝→ 10、下列表达式错误的是( D )A 、()P P Q P ∨∧⇔B 、()P P Q P ∧∨⇔C 、()P P Q P Q ∨⌝∧⇔∨D 、()P P Q P Q ∧⌝∨⇔∨ 11、下列表达式正确的是( D )A 、P P Q ⇒∧B 、P Q P ⇒∨C 、()Q P Q ⌝⇒⌝→D 、Q Q P ⌝⇒→⌝)( 12、下列四个命题中真值为真的命题为( B )(1)224+=当且仅当3是奇数 (2)224+=当且仅当3不是奇数; (3)224+≠当且仅当3是奇数 (4)224+≠当且仅当3不是奇数 A 、(1)与(2) B 、(1)与(4) C 、(2)与(4) D 、(3)与(4)13、设P :龙凤呈祥是成语,Q :雪是黑的,R :太阳从东方升起,则下列假命题为( A ) A 、R Q P ∧→ B 、Q P S →∧ C 、P Q R →∨ D 、 Q P S →∨14、设P :我累,Q :我去打球,则命题:“除非我累,否则我去打球”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝15、设P :我听课,Q :我睡觉,则命题 “我不能一边听课,一边睡觉”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝ 提示:()P Q P Q ⌝∧⇔→⌝16、设P :停机;Q :语法错误;R :程序错误,则命题 “停机的原因在于语法错误或程序错误” 的符号化为( D )A 、R Q P ∧→B 、P Q R →∨C 、Q R P ∧→D 、Q R P ∨→ 17、设P :你来了;Q :他唱歌;R :你伴奏则命题 “如果你来了,那末他唱不唱歌将看你是否伴奏而定” 的符号化为( D ) A 、()P Q R →∧ B 、()P Q R →→ C 、()P R Q →→ D 、()P Q R →↔ 18、在命运题逻辑中,任何非永真命题公式的主合取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定 19、在命题逻辑中,任何非永假命题公式的主析取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定 20、n 个命题变元所产生互不等价的极小项项数为( D )A 、nB 、2nC 、2n D 、2n 21、n 个命题变元所产生互不等价的极大项项数为( D )A 、nB 、2nC 、2n D 、2n二、填充题(每题4分)1、设P :你努力,Q :你失败,则 “虽然你努力了,但还是失败了” 符号化为Q P ∧.2、设P :它占据空间,Q :它有质量,R :它不断运动,S :它叫做物质, 则 “占据空间的,有质量的而且不断运动的叫做物质”符号化为R Q P S ∧∧↔.3、一个命题含有n 个原子命题,则对其所有可能赋值有2n 种.4、推理规则()A A B B ∧→→的名称为假言推理.5、推理规则()B A B A ⌝∧→→⌝的名称为拒取式.6、推理规则()A A B B ⌝∧∨⇒的名称为析取三段论.7、推理规则()()A B B C A C →∧→⇒→的名称为前提三段论.8、当赋予极小项足标相同的指派时,该极小项的真值为1,当赋予极大项足标相同的指派时,该极大项的真值为0.9、任意两个不同极小项的合取式的真值为0,而全体极小项的析取式的真值为1. 10、任意两个不同极大项的析取式的真值为1,而全体极大项的合取式的真值为0. 11、n 个命题变元可构造包括F 的不同的主析取范式类别为22n.12、n 个命题变元可构造包括T 的不同的主合取范式类别为22n.三、问答题(每题6分)1、设A 、B 是任意命题公式,请问,A B A B →⇒分别表示什么其有何关系 答:A B →表示A 蕴含B ,A B ⇒表示A 永真蕴含B ; 其关系表现为:若A B →为永真式,则有A B ⇒.2、设A 、B 是任意命题公式,请问,A B A B ↔⇔分别表示什么其有何关系 答:A B ↔表示A 等值于B ,A B ⇔表示A 与B 逻辑等价; 其关系表现为:若A B ↔为永真式,则有A B ⇔.3、设A 、B 、C 是任意命题公式,若A C B C ∨⇔∨ ,则A B ⇔成立吗为什么 答:不一定有A B ⇔;若A 为真,B 为假,C 为真,则A C B C ∨⇔∨成立,但A B ⇔不成立.4、设A 、B 、C 是任意命题公式,若A C B C ∧⇔∧ ,则A B ⇔成立吗为什么 答:不一定有A B ⇔;若A 为真,B 为假,C 为假,则A C B C ∧⇔∧成立,但A B ⇔不成立. 5、设A 、B 是任意命题公式,()A A B B ∧→→一定为真吗为什么答:一定为真;因()()()()A A B B A A B B A A A B B ∧→→⇔∧⌝∨→⇔∧⌝∨∧→()F A B B A B B T ⇔∨∧→⇔∧→⇔.(用真值表也可证明)6、设A 、B 是任意命题公式,()()A B A B A →∧→⌝↔⌝一定为真吗为什么答:一定为真;因()()()()()A B A B A B A B A B B →∧→⌝⇔⌝∨∧⌝∨⌝⇔⌝∨∧⌝ A F A ⇔⌝∨⇔⌝.(用真值表也可证明)四、填表计算题(每题10分)1、对命题公式 ()()A p q p q =⌝→∧∨,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q p q → ()p q ⌝→p q ∨A0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1111主析取范式(2)A ⇔∑ ;主合取范式(0,1,3)A ⇔∏.2、对命题公式 ()A p q r =→↔,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q rp q → A 0 0 01 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 11111主析取范式(1,3,4,7)A ⇔∑ ;主合取范式(0,2,5,6)A ⇔∏.3、对命题公式 ()()A p q p r =∧∨∧,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q rp q ∧ p r ∧ A0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 111111主析取范式(5,6,7)A ⇔∑ ;主合取范式(0,1,2,3,4)A ⇔∏.4、对命题公式()()A p q p r =⌝→∧→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(2,3,5,7)A ⇔∑ ;主合取范式(0,1,4,6)A ⇔∏.5、对命题公式()A p q r =⌝∨⌝→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(1,3,5,6,7)A ⇔∑ ;主合取范式(0,2,4)A ⇔∏.五、证明题(每题10分)1、证明下列逻辑恒等式:()()()P Q R Q P R Q →∧→⇔∨→. 证明 : 左()()()P Q R Q P R Q ⇔⌝∨∧⌝∨⇔⌝∧⌝∨()P R Q P R Q ⇔⌝∨∨⇔∨→⇔右.(用真值表也可证明) 2、证明下列逻辑恒等式: P Q R R Q P ⌝∧⌝→⌝⇔→∨. 证明:左()P Q R P Q R ⇔⌝⌝∧⌝∨⌝⇔∨∨⌝()R Q P R Q P ⇔⌝∨∨⇔→∨⇔右.(用真值表也可证明)3、证明下列逻辑恒等式:()()()P Q P Q P Q ⌝↔⇔∨∧⌝∧. 证明:左()()()()()P Q P Q P Q P Q ⇔⌝∨⌝∧⌝∨⇔⌝∨⌝∨⌝⌝∨()()()()()()Q Q P Q Q P P P Q P Q P ⌝∨∧∨∧⌝∧⌝∧⌝∨⇔⌝∧∨∧⌝⇔()()⇔⌝∨⌝∧∨⇔Q P Q P ()()P Q P Q ∨∧⌝∧右⇔.(用真值表也可证明)4、用逻辑推理规则证明: ()a b c ∧→ ,d ⌝ ,c d ⌝∨ ⇒ a b ⌝∨⌝ . 证明:(1) c d ⌝∨ P(2) d ⌝ P(3)c ⌝ T (1),(2) (析取三段论) (4) ()a b c ∧→ P (5)()a b ⌝∧ T (3),(4) (拒取式) (6) a b ⌝∨⌝ T (5) (德.摩根律) .5、用逻辑推理规则证明: , ,p q p s s r r q ∨→→⇒⌝→. 证明: (1) p s →P (2) s r → P(3) p r →T (1),(2) (前提三段论)(4)r p ⌝→⌝ T (3) (逆反律) (5)p q ∨ P (6)p q ⌝→ T (5) (蕴含表达式) (7)r q ⌝→ T (4),(6) (前提三段论) .6、用逻辑推理规则证明:p q →,p r ∧, q r ⌝∨,r ⌝,s p s ⌝∨⇒⌝. 证明: (1) r ⌝ P(2) q r ⌝∨ P(3) q ⌝ T (1),(2) (析取三段论) (4)p q → P(5) p ⌝ T (3),(4) (拒取式) (6) s p ⌝∨ P (7) s ⌝ T (5),(6) (析取三段论) .7、用逻辑推理规则证明:()()p q r s ⌝→→⌝∨,()q p r →∨⌝, r p q ⇒↔. 证明: (1) r P(2) ()q p r →∨⌝ P(3) q p → T (1),(2) (析取三段论) (4) r s ∨ T (1) (加法式)(5) ()()p q r s ⌝→→⌝∨ P (6) p q → T (4),(5) (拒取式) (7) ()()p q q p →∧→T (3),(6) (合取式)(8) p q ↔ T (7) (等值表达式) .8、用逻辑推理规则证明: , ,s p p r q r s q ⌝∨→∧⇒→.证明: (1) s P(2) s p ⌝∨ P(3) p T (1),(2) (析取三段论) (4) p r q →∧ P(5) r q ∧ T (3),(4) (假言推理) (6) q T (5)(简化式) (7) s q → CP .9、用逻辑推理规则证明:()()p q r p q r ∨→⇒∧→ 证明:(1) p q ∧ P (附加前提)(2) p T (1)(简化式)(3) p q ∨ T (2)(加法式) (4) ()p q r ∨→ P(5) r T (3),(4)(假言推理) (6) ()()p q r p q r ∨→⇒∧→ CP .10、用逻辑推理规则证明:,,p q q r r s p s ⌝∨⌝∨→⇒→. 证明:(1)p P (附加前提)(2) p q ⌝∨ P(3) q T (1),(2) (析取三段论) (4)q r ⌝∨ P(5) r T (3),(4) (析取三段论) (6) r s → P(7) s T (5),(6) (假言推理) (8) p s → CP .11、用逻辑推理规则证明:()()p q r s ∨→∧,()r s t p t ∨→⇒→ . 证明:(1)p P (附加前提) (2)p q ∨ T (1)(加法式) (3)()()p q r s ∨→∧ P(4)r s ∧ T (2),(3)(假言推理) (5)r T (4)(简化式) (6)r s ∨ T (5)(加法式)(7)()r s t ∨→ P (8)t T (6),(7)(假言推理)(9)p t → CP . 12、用逻辑推理规则证明:(),,t w s q s t s q t →⌝→⌝⌝∨→⌝⇒→ 证明:(1)q P (附加前提)(2) q s ⌝∨ P(3) s T (1),(2) (析取三段论) (4) ()t w s →⌝→⌝ P(5)()t w ⌝→⌝ T (3),(4) (拒取式)(6)()t w ⌝⌝∨⌝ T (5) (蕴含表达式) (7) t w ∧ T (6) (德.摩根律) (8) t T (7) (简化式)(9)q t → CP .13、用逻辑推理规则证明:a b c →∧,()e f c →⌝→⌝,()b a s →∧⌝⇒b e →. 证明:(1) b P (附加前提) (2)()b a s →∧⌝ P(3) a s ∧⌝ T (1),(2) (假言推理) (4) a T (3) (简化式) (5) a b c →∧ P(6) b c ∧ T (4),(5) (假言推理)(7) c T (6) (简化式) (8)()e f c →⌝→⌝ P(9) ()e f ⌝→⌝ T (7),(8) (拒取式) (10)()e f ⌝⌝∨⌝ T (9) (蕴含表达式) (11) e f ∧ T (10) (德.摩根律) (12) e T (11) (简化式) (13) b e → CP .14、用逻辑推理规则证明:p q →,p q q ⌝→⇒. 证明:(1) q ⌝ P (附加前提) (2) p q → P(3) p ⌝ T (1),(2) (拒取式) (4) p q ⌝→ P(5) q T (3),(4) (假言推理) (6) q q ⌝∧ T (1),(5) (合取式)由(6)得出矛盾式,故原命题有效.15、用逻辑推理规则证明: p q ∧ ,()()p q t s ↔→∨ ⇒ t s ∨ . 证明:(1)()t s ⌝∨ P (附加前提)(2) ()()p q t s ↔→∨ P(3)()p q ⌝↔ T (1),(2) (拒取式)(4) (()())p q p q ⌝⌝∨∧∨⌝ T (3)(等值与蕴含表达式) (5) ()()p q p q ∧⌝∨⌝∧ T (4) (德.摩根律)(6) ()()p q p q ⌝∨⌝∧∨ T (5) (结合律或范式等价) . (7) p q ⌝∨⌝ T (7) (简化式) (8) ()p q ⌝∧ T (4) (德.摩根律) (9) p q ∧ P(10) ()()p q p q ⌝∧∧∧ T (9),(10) (合取式) 由(10)得出矛盾式,故原命题有效.16、用逻辑推理规则证明:p q →,p r ∧, ()q r ⌝∨不能同时为真. 证明:(1) p r ∧ P(2) p T (1) (简化式) (3) p q → P(4) q T (2),(3) (假言推理) (5) ()q r ⌝∨ P(6) q r ⌝∧⌝ T (5) (德.摩根律) (7) q ⌝ T (6) (简化式)(8) q q ⌝∧ T (4),(7) (合取式)由(8)得出矛盾式,故原命题有效.17、证明下列命题推得的结论有效:或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学.因此,如果许多学生喜欢逻辑,那么数学并不难学. 证明:设p :逻辑难学;q :有少数学生不喜欢逻辑学;r :数学容易学.该推理就是要证明:, p q r p q r ∨→⌝⇒⌝→⌝. (1) p q ∨ P(2) p q ⌝→ T (1) (蕴含表达式) (3) r p →⌝ P(4) r q → T (2),(3) (前提三段论)(5) q r ⌝→⌝ T (4) (逆反律) .18、证明下列命题推得的结论有效:如果今天是星期三,那么我有一次离散数学或数字逻辑测验;如果离散数学课老师有事,那么没有离散数学测验;今天是星期三且离散数学老师有事.所以,我有一次数字逻辑测验.证明:设p :今天是星期三;q :我有一次离散数学测验;r :我有一次数字逻辑测验;s :离散数学课老师有事. 该推理就是要证明:(), , p q r s q p s r →∨→⌝∧⇒. (1) p s ∧ P(2) p T (1) (简化式) (3) s T (1) (简化式) (4) s q →⌝ P(5) q ⌝ T (3) ,(4) (假言推理)(6) ()p q r →∨ P(7) q r ∨ T (2) ,(6) (假言推理) (8) r T (5) ,(7) (析取三段论) .19、证明下列命题推得的结论有效:如果马会飞或羊吃草,则母鸡就会是飞鸟;如果母鸡是飞鸟,那么烤熟的鸭子还会跑;烤熟的鸭子不会跑.所以,羊不吃草。
逻辑测试题及答案
![逻辑测试题及答案](https://img.taocdn.com/s3/m/66a6c45bb42acfc789eb172ded630b1c59ee9bec.png)
逻辑测试题及答案一、选择题1. 如果所有的苹果都是水果,那么以下哪个陈述是正确的?A. 所有的水果都是苹果B. 一些水果是苹果C. 没有水果是苹果D. 一些苹果不是水果答案:B2. 如果“如果下雨,那么地面会湿”,并且事实上地面湿了,那么以下哪个结论是正确的?A. 一定是下雨了B. 可能是下雨了C. 地面湿了,但不是因为下雨D. 地面湿了,但无法确定是否下雨答案:B二、判断题1. 如果所有的猫都怕水,那么一只怕水的动物一定是猫。
()答案:错误2. 如果“如果今天是星期三,那么明天是星期四”,并且今天是星期三,那么明天是星期四。
()答案:正确三、逻辑推理题1. 在一个班级里,如果一个学生是班长,那么他/她一定是数学成绩最好的学生。
现在我们知道小明是班长,那么小明的数学成绩是班级中最好的吗?答案:根据题目信息,我们可以推断小明的数学成绩是班级中最好的。
2. 一个逻辑学家说:“如果所有的天鹅都是白色的,那么所有非白色的鸟都不是天鹅。
”现在我们发现一只黑色的鸟,这只鸟是天鹅吗?答案:根据逻辑学家的陈述,我们可以推断这只黑色的鸟不是天鹅。
四、解答题1. 请解释“逆否命题”的概念,并给出一个例子。
答案:逆否命题是一个命题的逆命题的否定形式。
例如,如果原命题是“如果A,则B”,那么逆否命题是“如果非B,则非A”。
例如,原命题是“如果今天是周末,那么我不上班”,逆否命题则是“如果我上班,那么今天不是周末”。
2. 请解释“充分条件”和“必要条件”的区别。
答案:充分条件是指当一个条件存在时,必然导致某个结果发生;必要条件是指为了某个结果发生,必须存在的条件。
例如,对于命题“如果下雨,那么地面会湿”,“下雨”是“地面湿”的充分条件,而“地面湿”是“下雨”的必要条件。
逻辑思维训练500题(带答案)
![逻辑思维训练500题(带答案)](https://img.taocdn.com/s3/m/abfa0a27a31614791711cc7931b765ce05087aa8.png)
逻辑思维训练500题(带答案)逻辑思维是一个人所具备的最基本的思维能力之一。
通过逻辑思维的训练,我们可以更好地理解事物的本质和关系,提高自己的分析和判断能力。
下面是一份逻辑思维训练500题的列表,带答案供大家参考:一、命题逻辑1.下列命题中,哪些是命题,哪些不是?a.今天天气不错。
b.小明是男孩。
c.数学是一门有趣的学科。
d.鱼是一种动物。
答案:a和c不是命题,b和d是命题。
2.下列哪些是合式公式,哪些是命题?a.p∨qb.p∧qc.∼pd.如果p,则q。
答案:a、b、c是合式公式,d是命题。
3.如果在已知p→q和q→r的前提下,能否推出p→r?答案:可以。
4.下列哪几个式子是等价的?a.∼(p∧q)b.∼p∨∼qc.∼(p∨q)d.∼p∧∼q答案:a、b、c、d都是等价的。
5.下列命题组合中,哪些是蕴涵,哪些是等价,哪些是矛盾?a.p→q,q→r,p→rb.p∨q,p→r,q→rc.p∨q,∼p→∼q答案:a是蕴涵,b是矛盾,c是等价。
二、谬误样式1.设一个人认为女人不懂汽车,他遇到了一位女性机械师,便认为她一定是个男人。
这是哪种谬误?答案:以偏概全谬误。
2.一个人认为男性智商高于女性智商。
这是哪种谬误?答案:无证据谬误。
3.有人认为,因为三次抛掷硬币结果为正面,所以下一次一定会是反面。
这是哪种谬误?答案:赌徒谬误。
4.有一个人认为,他在决策时总是能够预测将来的情况。
这是哪种谬误?答案:自高谬误。
5.有人认为,如果天上有云朵,那么一定会下雨。
这是哪种谬误?答案:因果无关谬误。
三、归纳推理1.一条小河里只有红色和蓝色的石子,但已失去记忆。
如果随机捡起一个石子,发现它是红色的,请问另一个石子很可能是什么颜色?答案:蓝色。
2.某人去逛市场,看到了一个水果摊,发现所有的苹果都是红色的,于是他得出结论说,所有苹果都是红色的。
这种推理是正确的吗?答案:不正确,因为他没有掌握足够的数据。
3.有一组数据:A、B、C、D、E、F、G、H。
(完整版)命题逻辑复习题及答案
![(完整版)命题逻辑复习题及答案](https://img.taocdn.com/s3/m/83c5f1b92af90242a995e55a.png)
命题逻辑一、选择题(每题3分)1、下列句子中哪个是命题? ( C )A 、你的离散数学考试通过了吗?B 、请系好安全带!C 、 π是有理数D 、 本命题是假的 2、下列句子中哪个不是命题? ( C )A 、你通过了离散数学考试B 、我俩五百年前是一家C 、 我说的是真话D 、 淮海工学院是一座工厂 3、下列联接词运算不可交换的是( C )A 、∧B 、∨C 、 →D 、 ↔ 4、命题公式P Q ⌝→不能表述为( B )A 、P 或QB 、非P 每当QC 、非P 仅当QD 、除非P ,否则Q 5、永真式的否定是 ( B )A 、 永真式B 、永假式C 、可满足式D 、 以上答案均有可能 6、下列哪组赋值使命题公式()P P Q →∧的真值为假( D )A 、P 假Q 真B 、P 假Q 假C 、P 真Q 真D 、P 真Q 假 7、下列为命题公式()P Q R ∧∨⌝成假指派的是( B )A 、100B 、101C 、110D 、111 8、 下列公式中为永真式的是 ( C )A 、()P P Q →∧B 、()P P Q ⌝→∧C 、()P Q Q ∧→D 、()P Q Q ∨→ 9、 下列公式中为非永真式的是( B )A 、 ()P P Q ∧⌝→B 、()P P Q ∨⌝→C 、()P P Q ∧⌝→D 、()P P Q ∨⌝→ 10、下列表达式错误的是( D )A 、()P P Q P ∨∧⇔B 、()P P Q P ∧∨⇔C 、()P P Q P Q ∨⌝∧⇔∨D 、()P P Q P Q ∧⌝∨⇔∨ 11、下列表达式正确的是( D )A 、P P Q ⇒∧B 、P Q P ⇒∨C 、()Q P Q ⌝⇒⌝→D 、Q Q P ⌝⇒→⌝)( 12、下列四个命题中真值为真的命题为( B )(1)224+=当且仅当3是奇数 (2)224+=当且仅当3不是奇数; (3)224+≠当且仅当3是奇数 (4)224+≠当且仅当3不是奇数 A 、(1)与(2) B 、(1)与(4) C 、(2)与(4) D 、(3)与(4)13、设P :龙凤呈祥是成语,Q :雪是黑的,R :太阳从东方升起,则下列假命题为( A ) A 、R Q P ∧→ B 、Q P S →∧ C 、P Q R →∨ D 、 Q P S →∨14、设P :我累,Q :我去打球,则命题:“除非我累,否则我去打球”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝15、设P :我听课,Q :我睡觉,则命题 “我不能一边听课,一边睡觉”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝ 提示:()P Q P Q ⌝∧⇔→⌝16、设P :停机;Q :语法错误;R :程序错误,则命题 “停机的原因在于语法错误或程序错误” 的符号化为( D )A 、R Q P ∧→B 、P Q R →∨C 、Q R P ∧→D 、Q R P ∨→ 17、设P :你来了;Q :他唱歌;R :你伴奏则命题 “如果你来了,那末他唱不唱歌将看你是否伴奏而定” 的符号化为( D ) A 、()P Q R →∧ B 、()P Q R →→ C 、()P R Q →→ D 、()P Q R →↔ 18、在命运题逻辑中,任何非永真命题公式的主合取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定19、在命题逻辑中,任何非永假命题公式的主析取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定 20、n 个命题变元所产生互不等价的极小项项数为( D )A 、nB 、2nC 、2n D 、2n 21、n 个命题变元所产生互不等价的极大项项数为( D )A 、nB 、2nC 、2n D 、2n二、填充题(每题4分)1、设P :你努力,Q :你失败,则 “虽然你努力了,但还是失败了” 符号化为Q P ∧.2、设P :它占据空间,Q :它有质量,R :它不断运动,S :它叫做物质, 则 “占据空间的,有质量的而且不断运动的叫做物质”符号化为R Q P S ∧∧↔.3、一个命题含有n 个原子命题,则对其所有可能赋值有2n 种.4、推理规则()A A B B ∧→→的名称为假言推理.5、推理规则()B A B A ⌝∧→→⌝的名称为拒取式.6、推理规则()A A B B ⌝∧∨⇒的名称为析取三段论.7、推理规则()()A B B C A C →∧→⇒→的名称为前提三段论.8、当赋予极小项足标相同的指派时,该极小项的真值为1,当赋予极大项足标相同的指派时,该极大项的真值为0.9、任意两个不同极小项的合取式的真值为0,而全体极小项的析取式的真值为1. 10、任意两个不同极大项的析取式的真值为1,而全体极大项的合取式的真值为0. 11、n 个命题变元可构造包括F 的不同的主析取范式类别为22n. 12、n 个命题变元可构造包括T 的不同的主合取范式类别为22n .三、问答题(每题6分)1、设A 、B 是任意命题公式,请问,A B A B →⇒分别表示什么?其有何关系? 答:A B →表示A 蕴含B ,A B ⇒表示A 永真蕴含B ; 其关系表现为:若A B →为永真式,则有A B ⇒.2、设A 、B 是任意命题公式,请问,A B A B ↔⇔分别表示什么?其有何关系? 答:A B ↔表示A 等值于B ,A B ⇔表示A 与B 逻辑等价; 其关系表现为:若A B ↔为永真式,则有A B ⇔.3、设A 、B 、C 是任意命题公式,若A C B C ∨⇔∨ ,则A B ⇔成立吗?为什么? 答:不一定有A B ⇔;若A 为真,B 为假,C 为真,则A C B C ∨⇔∨成立,但A B ⇔不成立.4、设A 、B 、C 是任意命题公式,若A C B C ∧⇔∧ ,则A B ⇔成立吗?为什么? 答:不一定有A B ⇔;若A 为真,B 为假,C 为假,则A C B C ∧⇔∧成立,但A B ⇔不成立. 5、设A 、B 是任意命题公式,()A A B B ∧→→一定为真吗?为什么?答:一定为真;因()()()()A A B B A A B B A A A B B ∧→→⇔∧⌝∨→⇔∧⌝∨∧→()F A B B A B B T ⇔∨∧→⇔∧→⇔.(用真值表也可证明)6、设A 、B 是任意命题公式,()()A B A B A →∧→⌝↔⌝一定为真吗?为什么? 答:一定为真;因()()()()()A B A B A B A B A B B →∧→⌝⇔⌝∨∧⌝∨⌝⇔⌝∨∧⌝ A F A ⇔⌝∨⇔⌝.(用真值表也可证明)四、填表计算题(每题10分)1、对命题公式 ()()A p q p q =⌝→∧∨,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q p q → ()p q ⌝→p q ∨A 00 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 111 0 1主析取范式(2)A ⇔∑ ;主合取范式(0,1,3)A ⇔∏.2、对命题公式 ()A p q r =→↔,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q r p q → A 00 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 11111主析取范式(1,3,4,7)A ⇔∑ ;主合取范式(0,2,5,6)A ⇔∏.3、对命题公式 ()()A p q p r =∧∨∧,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q r p q ∧ p r ∧ A 00 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 111111主析取范式(5,6,7)A ⇔∑ ;主合取范式(0,1,2,3,4)A ⇔∏.4、对命题公式()()A p q p r =⌝→∧→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(2,3,5,7)A ⇔∑ ;主合取范式(0,1,4,6)A ⇔∏.5、对命题公式()A p q r =⌝∨⌝→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(1,3,5,6,7)A ⇔∑ ;主合取范式(0,2,4)A ⇔∏.五、证明题(每题10分)1、证明下列逻辑恒等式:()()()P Q R Q P R Q →∧→⇔∨→. 证明 : 左()()()P Q R Q P R Q ⇔⌝∨∧⌝∨⇔⌝∧⌝∨()P R Q P R Q ⇔⌝∨∨⇔∨→⇔右.(用真值表也可证明) 2、证明下列逻辑恒等式: P Q R R Q P ⌝∧⌝→⌝⇔→∨. 证明:左()P Q R P Q R ⇔⌝⌝∧⌝∨⌝⇔∨∨⌝()R Q P R Q P ⇔⌝∨∨⇔→∨⇔右.(用真值表也可证明)3、证明下列逻辑恒等式:()()()P Q P Q P Q ⌝↔⇔∨∧⌝∧. 证明:左()()()()()P Q P Q P Q P Q ⇔⌝∨⌝∧⌝∨⇔⌝∨⌝∨⌝⌝∨()()()()()()Q Q P Q Q P P P Q P Q P ⌝∨∧∨∧⌝∧⌝∧⌝∨⇔⌝∧∨∧⌝⇔()()⇔⌝∨⌝∧∨⇔Q P Q P ()()P Q P Q ∨∧⌝∧右⇔.(用真值表也可证明)4、用逻辑推理规则证明: ()a b c ∧→ ,d ⌝ ,c d ⌝∨ ⇒ a b ⌝∨⌝ . 证明:(1) c d ⌝∨ P(2) d ⌝ P(3)c ⌝ T (1),(2) (析取三段论) (4) ()a b c ∧→ P(5)()a b ⌝∧ T (3),(4) (拒取式) (6) a b ⌝∨⌝ T (5) (德.摩根律) . 5、用逻辑推理规则证明: , ,p q p s s r r q ∨→→⇒⌝→. 证明: (1) p s → P(2) s r → P (3) p r → T (1),(2) (前提三段论) (4)r p ⌝→⌝ T (3) (逆反律) (5)p q ∨ P (6)p q ⌝→ T (5) (蕴含表达式)(7)r q ⌝→ T (4),(6) (前提三段论) .6、用逻辑推理规则证明:p q →,p r ∧, q r ⌝∨,r ⌝,s p s ⌝∨⇒⌝. 证明: (1) r ⌝ P(2) q r ⌝∨ P(3) q ⌝ T (1),(2) (析取三段论) (4)p q → P(5) p ⌝ T (3),(4) (拒取式) (6) s p ⌝∨ P(7) s ⌝T (5),(6) (析取三段论) .7、用逻辑推理规则证明:()()p q r s ⌝→→⌝∨,()q p r →∨⌝, r p q ⇒↔. 证明: (1) r P(2) ()q p r →∨⌝ P(3) q p → T (1),(2) (析取三段论) (4) r s ∨ T (1) (加法式)(5) ()()p q r s ⌝→→⌝∨ P (6) p q → T (4),(5) (拒取式) (7) ()()p q q p →∧→ T (3),(6) (合取式) (8) p q ↔ T (7) (等值表达式) .8、用逻辑推理规则证明: , ,s p p r q r s q ⌝∨→∧⇒→.证明: (1) s P(2) s p ⌝∨ P(3) p T (1),(2) (析取三段论)(4) p r q →∧ P(5) r q ∧ T (3),(4) (假言推理) (6) q T (5)(简化式) (7) s q → CP . 9、用逻辑推理规则证明:()()p q r p q r ∨→⇒∧→ 证明:(1) p q ∧ P (附加前提)(2) p T (1)(简化式)(3) p q ∨ T (2)(加法式) (4) ()p q r ∨→ P(5) r T (3),(4)(假言推理) (6) ()()p q r p q r ∨→⇒∧→ CP .10、用逻辑推理规则证明:,,p q q r r s p s ⌝∨⌝∨→⇒→. 证明:(1)p P (附加前提)(2) p q ⌝∨ P(3) q T (1),(2) (析取三段论) (4)q r ⌝∨ P(5) r T (3),(4) (析取三段论) (6) r s → P(7) s T (5),(6) (假言推理) (8) p s → CP .11、用逻辑推理规则证明:()()p q r s ∨→∧,()r s t p t ∨→⇒→ . 证明:(1)p P (附加前提) (2)p q ∨ T (1)(加法式) (3)()()p q r s ∨→∧ P(4)r s ∧ T (2),(3)(假言推理) (5)r T (4)(简化式) (6)r s ∨ T (5)(加法式)(7)()r s t ∨→ P (8)t T (6),(7)(假言推理)(9)p t → CP . 12、用逻辑推理规则证明:(),,t w s q s t s q t →⌝→⌝⌝∨→⌝⇒→ 证明:(1)q P (附加前提)(2) q s ⌝∨ P(3) s T (1),(2) (析取三段论)(4) ()t w s →⌝→⌝ P(5)()t w ⌝→⌝ T (3),(4) (拒取式) (6)()t w ⌝⌝∨⌝ T (5) (蕴含表达式) (7) t w ∧ T (6) (德.摩根律) (8) t T (7) (简化式)(9)q t → CP .13、用逻辑推理规则证明:a b c →∧,()e f c →⌝→⌝,()b a s →∧⌝⇒b e →. 证明:(1) b P (附加前提) (2)()b a s →∧⌝ P(3) a s ∧⌝ T (1),(2) (假言推理) (4) a T (3) (简化式) (5) a b c →∧ P(6) b c ∧ T (4),(5) (假言推理)(7) c T (6) (简化式) (8)()e f c →⌝→⌝ P(9) ()e f ⌝→⌝ T (7),(8) (拒取式) (10)()e f ⌝⌝∨⌝ T (9) (蕴含表达式) (11) e f ∧ T (10) (德.摩根律) (12) e T (11) (简化式) (13) b e → CP .14、用逻辑推理规则证明:p q →,p q q ⌝→⇒. 证明:(1) q ⌝ P (附加前提) (2) p q → P(3) p ⌝ T (1),(2) (拒取式) (4) p q ⌝→ P(5) q T (3),(4) (假言推理)(6) q q ⌝∧ T (1),(5) (合取式)由(6)得出矛盾式,故原命题有效.15、用逻辑推理规则证明: p q ∧ ,()()p q t s ↔→∨ ⇒ t s ∨ . 证明:(1)()t s ⌝∨ P (附加前提)(2) ()()p q t s ↔→∨ P(3)()p q ⌝↔ T (1),(2) (拒取式) (4) (()())p q p q ⌝⌝∨∧∨⌝ T (3)(等值与蕴含表达式) (5) ()()p q p q ∧⌝∨⌝∧ T (4) (德.摩根律)(6) ()()p q p q ⌝∨⌝∧∨ T (5) (结合律或范式等价) . (7) p q ⌝∨⌝ T (7) (简化式) (8) ()p q ⌝∧ T (4) (德.摩根律) (9) p q ∧ P(10) ()()p q p q ⌝∧∧∧ T (9),(10) (合取式) 由(10)得出矛盾式,故原命题有效.16、用逻辑推理规则证明:p q →,p r ∧, ()q r ⌝∨不能同时为真. 证明:(1) p r ∧ P(2) p T (1) (简化式) (3) p q → P(4) q T (2),(3) (假言推理) (5) ()q r ⌝∨ P(6) q r ⌝∧⌝ T (5) (德.摩根律) (7) q ⌝ T (6) (简化式) (8) q q ⌝∧ T (4),(7) (合取式)由(8)得出矛盾式,故原命题有效.17、证明下列命题推得的结论有效:或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学.因此,如果许多学生喜欢逻辑,那么数学并不难学. 证明:设p :逻辑难学;q :有少数学生不喜欢逻辑学;r :数学容易学.该推理就是要证明:, p q r p q r ∨→⌝⇒⌝→⌝. (1) p q ∨ P(2) p q ⌝→ T (1) (蕴含表达式) (3) r p →⌝ P(4) r q → T (2),(3) (前提三段论)(5) q r ⌝→⌝ T (4) (逆反律) .18、证明下列命题推得的结论有效:如果今天是星期三,那么我有一次离散数学或数字逻辑测验;如果离散数学课老师有事,那么没有离散数学测验;今天是星期三且离散数学老师有事.所以,我有一次数字逻辑测验.证明:设p :今天是星期三;q :我有一次离散数学测验;r :我有一次数字逻辑测验;s :离散数学课老师有事. 该推理就是要证明:(), , p q r s q p s r →∨→⌝∧⇒. (1) p s ∧ P(2) p T (1) (简化式) (3) s T (1) (简化式) (4) s q →⌝ P(5) q ⌝ T (3) ,(4) (假言推理)(6) ()p q r →∨ P(7) q r ∨ T (2) ,(6) (假言推理)(8) r T (5) ,(7) (析取三段论) .19、证明下列命题推得的结论有效:如果马会飞或羊吃草,则母鸡就会是飞鸟;如果母鸡是飞鸟,那么烤熟的鸭子还会跑;烤熟的鸭子不会跑.所以,羊不吃草。
逻辑学试题及答案期末考试
![逻辑学试题及答案期末考试](https://img.taocdn.com/s3/m/2557e333f4335a8102d276a20029bd64783e629f.png)
逻辑学试题及答案期末考试一、选择题(每题2分,共20分)1. 以下哪个选项是演绎推理的结论?A. 如果下雨,地面就会湿。
现在下雨了,所以地面湿了。
B. 如果下雨,地面可能会湿。
现在下雨了,地面湿了。
C. 如果下雨,地面就会湿。
现在地面湿了,所以下雨了。
D. 如果下雨,地面就会湿。
现在地面湿了,但不确定是否下雨。
答案:A2. 以下哪个命题是假命题?A. 所有的人都是有限的生命。
B. 所有的人都是有限的生命,并且苏格拉底是人。
C. 所有人都是有限的生命,因此苏格拉底是有限的生命。
D. 苏格拉底是有限的生命,因此所有人都是有限的生命。
答案:D3. 以下哪个命题是逻辑上的矛盾?A. 苏格拉底是人。
B. 苏格拉底是人且不是人。
C. 苏格拉底是人或者不是人。
D. 苏格拉底是人,但不是哲学家。
答案:B4. 以下哪个命题是逻辑上的同一律?A. 苏格拉底是哲学家,因此苏格拉底是人。
B. 苏格拉底是哲学家,并且苏格拉底是人。
C. 苏格拉底是哲学家,所以苏格拉底是哲学家。
D. 苏格拉底是人,所以苏格拉底是哲学家。
答案:C5. 以下哪个命题是逻辑上的排中律?A. 苏格拉底是哲学家,或者不是哲学家。
B. 苏格拉底既是哲学家,也不是哲学家。
C. 苏格拉底是哲学家,因此他不是人。
D. 苏格拉底是人,但不是哲学家。
答案:A6. 以下哪个命题是逻辑上的充足理由律?A. 因为苏格拉底是哲学家,所以他是人。
B. 因为苏格拉底是人,所以他是哲学家。
C. 苏格拉底是哲学家,因为他是人。
D. 苏格拉底是哲学家,并且他是人。
答案:A7. 以下哪个命题是逻辑上的因果律?A. 因为苏格拉底是哲学家,所以他是人。
B. 苏格拉底是哲学家,因此他有智慧。
C. 苏格拉底是人,因此他是哲学家。
D. 苏格拉底是哲学家,因此他是人。
答案:B8. 以下哪个命题是逻辑上的非矛盾律?A. 苏格拉底是哲学家,并且不是哲学家。
B. 苏格拉底是哲学家,或者不是哲学家。
C. 苏格拉底是哲学家,因此他不是哲学家。
命题逻辑习题及答案
![命题逻辑习题及答案](https://img.taocdn.com/s3/m/e907640026fff705cc170af3.png)
习题1l.判断下列语句是否命题。
若是,请给出命题的真值。
(1) 离散数学是计算机专业的必修课。
(2) 2是无理数。
(3) 我正在说谎话。
(4) 今天天气好热呀!(5) 整数3 能被2 整除。
(6) 下午开会吗?(7) 三角形有三条边,当且仅当5是素数。
(8) 马有四条腿。
(9) 雪是白的当且仅当太阳从东方升起。
(10) 9+2≤10。
(11) 如果1+1=2,则2+3=5。
(12) 鲁迅获得过诺贝尔文学奖。
解答:(1) 是命题,T。
(2) 是命题,F。
(3) 不是命题。
(4) 不是命题。
(5) 是命题,F。
(6) 不是命题。
(7) 是命题,T。
(8) 是命题,T。
(9) 是命题,T。
(10) 是命题,T/F。
(11) 是命题,T。
(12) 是命题,F。
2.将下列命题符号化。
(1) 太阳高照且气温不高。
(2) 如果明天下雨,我就乘公交车上班。
(3) 我买电脑,仅当我有钱。
(4) 虽然天气很好,老吴还是不来。
(5) 王明不但学习好而且还有运动天赋。
(6) 明天他在广州,或在深圳。
(7) 若两个圆面积相等,则半径相等,反之亦然。
(8) 打印机既可作为输入设备,又可作为输出设备。
(9) 只有我不复习功课, 我才去看电影。
(10) 如果a和b是奇数,则a+b不是奇数。
解答:(1) 设P:太阳高照;Q:气温不高。
则命题可符号化为:P∧Q。
(2) 设P:明天下雨;Q:我乘公交车上班。
则命题可符号化为:P→Q。
(3) 设P:我买电脑;Q:我有钱。
则命题可符号化为:P→Q。
(4) 设P:天气很好;Q:老吴来。
则命题可符号化为:P∧⌝Q。
(5) 设P:王明学习好;Q:王明有运动天赋。
则命题可符号化为:P∧Q。
(6) 设P:明天他在广州;Q:明天他在深圳。
则命题可符号化为:P∨Q。
(7) 设P:两个圆面积相等;Q:两个圆半径相等。
则命题可符号化为:P↔Q。
(8) 设P:打印机可作为输入设备;Q:打印机可作为输出设备。
逻辑学试题及答案
![逻辑学试题及答案](https://img.taocdn.com/s3/m/4524916d6d85ec3a87c24028915f804d2b168724.png)
逻辑学试题及答案一、单项选择题(每题2分,共20分)1. 逻辑学中的“形式逻辑”主要研究的是:A. 逻辑规律B. 逻辑方法C. 逻辑关系D. 逻辑推理答案:A2. 命题逻辑中,下列哪个命题是必然真的?A. 如果下雨,那么地面会湿。
B. 如果下雪,那么地面会干。
C. 如果太阳从西边升起,那么地球是圆的。
D. 如果太阳从东边升起,那么地球是方的。
答案:C3. 以下哪个选项是演绎推理的例子?A. 所有的鸟都会飞,企鹅是鸟,所以企鹅会飞。
B. 有些鸟不会飞,企鹅是鸟,所以企鹅不会飞。
C. 所有的鸟都会飞,企鹅不会飞,所以企鹅不是鸟。
D. 所有的鸟都会飞,企鹅是鸟,所以企鹅不会飞。
答案:C4. 归纳推理的特点是:A. 从个别到一般B. 从一般到个别C. 从个别到个别D. 从一般到一般答案:A5. 以下哪个是有效的三段论?A. 所有的人都是动物,苏格拉底是人,所以苏格拉底是动物。
B. 所有的动物都是人,苏格拉底是动物,所以苏格拉底是人。
C. 所有的人都是动物,苏格拉底是动物,所以苏格拉底是人。
D. 所有的人都是动物,苏格拉底是人,所以苏格拉底是植物。
答案:A6. 以下哪个是逻辑谬误的例子?A. 偷换概念B. 同一律C. 矛盾律D. 排中律答案:A7. 以下哪个命题是自相矛盾的?A. 我正在说谎。
B. 我从不说谎。
C. 你正在说谎。
D. 我正在吃饭。
答案:A8. 以下哪个命题是逻辑上不可能的?A. 所有的人都会死。
B. 有些人不会死。
C. 所有的人都不会死。
D. 有些人会死。
答案:C9. 以下哪个命题是逻辑上可能的?A. 所有的人都是动物。
B. 所有的人都是植物。
C. 所有的人都是无机物。
D. 所有的人都是有机物。
答案:A10. 以下哪个命题是逻辑上必然的?A. 明天会下雨。
B. 明天会下雪。
C. 明天会是晴天。
D. 明天会是今天之后的那一天。
答案:D二、多项选择题(每题3分,共15分)1. 以下哪些是演绎推理的特点?A. 从一般到个别B. 从个别到一般C. 必然性D. 或然性答案:AC2. 以下哪些是归纳推理的特点?A. 从一般到个别B. 从个别到一般C. 必然性D. 或然性答案:BD3. 以下哪些是逻辑谬误?A. 偷换概念B. 同一律C. 以偏概全D. 排中律答案:AC4. 以下哪些命题是自相矛盾的?A. 我正在说谎。
逻辑学试题库及答案详解
![逻辑学试题库及答案详解](https://img.taocdn.com/s3/m/789f3637571252d380eb6294dd88d0d233d43c85.png)
逻辑学试题库及答案详解一、选择题1. 以下哪个命题是真命题?A. 所有天鹅都是黑的。
B. 有些天鹅是白的。
C. 所有天鹅都不是黑的。
D. 有些天鹅不是黑的。
答案: D详解:根据已知事实,天鹅有多种颜色,因此选项A和C都是错误的。
选项B虽然正确,但题目要求的是真命题,即普遍性陈述,而选项B是一个存在性陈述。
选项D是一个正确的普遍性陈述,因为它没有否认存在黑天鹅的可能性。
2. 如果“如果下雨,那么地面湿”为真,且“地面湿”为真,那么以下哪个结论是正确的?A. 下雨了。
B. 可能下雨了。
C. 没有下雨。
D. 无法确定是否下雨。
答案: B详解:根据条件命题的逻辑,如果“如果P,则Q”为真,且Q为真,我们不能直接得出P为真的结论,因为Q可能由其他原因导致。
因此,我们只能得出“可能下雨了”的结论。
二、填空题1. 在逻辑学中,一个命题的否定是______。
答案:既非真也非假详解:一个命题的否定是对该命题真实性的否定,如果原命题为真,则其否定为假;如果原命题为假,则其否定为真。
但在逻辑学中,我们不讨论命题的真假,而是讨论其有效性。
2. 谓词逻辑中的量词“∀”表示______。
答案:所有详解:“∀”是全称量词,表示对所有对象都适用。
例如,“∀x P(x)”表示对于所有x,命题P(x)都成立。
三、简答题1. 解释什么是演绎推理,并给出一个例子。
答案详解:演绎推理是一种从一般到特殊的推理过程,即从已知的前提出发,通过逻辑规则推导出必然的结论。
例如,前提1:“所有人类都是动物”,前提2:“苏格拉底是人”,结论:“苏格拉底是动物”。
这是一个典型的演绎推理过程,因为结论直接从前提中必然地推导出来。
2. 什么是反证法,并简述其步骤。
答案详解:反证法是一种证明方法,通过假设某个命题的否定是真的,然后通过逻辑推导得到矛盾,从而证明原命题是真的。
其步骤通常包括:(1) 假设命题的否定;(2) 从这个假设出发进行逻辑推导;(3) 得到一个逻辑上的矛盾;(4) 由于矛盾的存在,得出原命题的否定是错误的,因此原命题是真的。
3练习与答案 命题逻辑
![3练习与答案 命题逻辑](https://img.taocdn.com/s3/m/2b133b43f7ec4afe04a1dfe2.png)
解析 ⑨G上场。②只有D不上场,G才上场;——D不上场 (必要条件 肯定后件式) ④当且仅当D上场,R才不上场;——R上场 (充要条件 否定前件式) ⑧R和F两人中也只能上场一个。——F不上场 (不相容选言) ⑤只有R不上场,C才不上场;——C上场 (必要条件 否定前件式) ③A和C要么都上场,要么都不上场;—— A上场 (不相容选言) ⑥A和P两人中,只能上场一个; ——P不上场 (不相容选言) ①如果P不上场,则S不上场;——S不上场
3、p→(﹁q→﹁r) 4.请勿在场内吸烟、随地吐痰、乱扔废弃物,违者罚款。 4、﹁ ﹁ (p∨q∨r)→s
九、用真值表方法判定下列真值形式的类型 1.(p→ (q∧﹁q) →﹁p 重言式。
p
q
﹁p ﹁q
q∧﹁q
p→(q∧﹁ q)
(p→(q∧﹁ q)) ﹁p
T TF F F
F
T
以下哪项最能增强上述论证? A.餐馆规定,点粤菜就不能点川菜,反之亦然。 B.餐馆规定,如果点了川菜,可以不点粤菜,但
点了粤菜,一定也要点川菜。 C.张先生是四川人,只喜欢川菜。 D.张先生是广东人,但不喜欢粤菜。 E.张先生是四川人,最不喜欢粤菜。
1、A(把相容选言命题变为不相容选言命题, 用肯定否定式)
7.如果一个推理是有效的,则( )。 A.如果其前提是真实的,则其结论一定是真实的 B.如果其前提是虚假的,则其结论一定是虚假的 7、A 8.对于一个只有两个选言支的相容选言推理来说( )。 A.否定一个选言支,可以肯定另一个选言支 B.肯定一个选言支,可以否定另一个选言支 8、A 9.对于不相容选言推理来说( )。 A.肯定否定式是有效式 B.肯定否定式是无效式 C.否定肯定式是有效式 D.否定肯定式是无效式 9、A、C 10.对于必要条件假言推理来说( )。 A.否定前件可以否定后件 B.肯定后件可以肯定前件 C.肯定前件不能肯定后件 D.否定后件不能否定前件
命题逻辑复习题及答案
![命题逻辑复习题及答案](https://img.taocdn.com/s3/m/46238c87227916888586d79c.png)
命题逻辑一、选择题(每题3分)1、下列句子中哪个是命题 ( C )A 、你的离散数学考试通过了吗B 、请系好安全带!C 、 π是有理数D 、 本命题是假的 2、下列句子中哪个不是命题 ( C )A 、你通过了离散数学考试B 、我俩五百年前是一家C 、 我说的是真话D 、 淮海工学院是一座工厂 3、下列联接词运算不可交换的是( C )A 、∧B 、∨C 、 →D 、 ↔ 4、命题公式P Q ⌝→不能表述为( B )A 、P 或QB 、非P 每当QC 、非P 仅当QD 、除非P ,否则Q 5、永真式的否定是 ( B )A 、 永真式B 、永假式C 、可满足式D 、 以上答案均有可能 6、下列哪组赋值使命题公式()P P Q →∧的真值为假( D )A 、P 假Q 真B 、P 假Q 假C 、P 真Q 真D 、P 真Q 假 7、下列为命题公式()P Q R ∧∨⌝成假指派的是( B )A 、100B 、101C 、110D 、111 8、 下列公式中为永真式的是 ( C )A 、()P P Q →∧B 、()P P Q ⌝→∧C 、()P Q Q ∧→D 、()P Q Q ∨→ 9、 下列公式中为非永真式的是( B )A 、 ()P P Q ∧⌝→B 、()P P Q ∨⌝→C 、()P P Q ∧⌝→D 、()P P Q ∨⌝→ 10、下列表达式错误的是( D )A 、()P P Q P ∨∧⇔B 、()P P Q P ∧∨⇔C 、()P P Q P Q ∨⌝∧⇔∨D 、()P P Q P Q ∧⌝∨⇔∨ 11、下列表达式正确的是( D )A 、P P Q ⇒∧B 、P Q P ⇒∨C 、()Q P Q ⌝⇒⌝→D 、Q Q P ⌝⇒→⌝)( 12、下列四个命题中真值为真的命题为( B )(1)224+=当且仅当3是奇数 (2)224+=当且仅当3不是奇数;(3)224+≠当且仅当3是奇数 (4)224+≠当且仅当3不是奇数 A 、(1)与(2) B 、(1)与(4) C 、(2)与(4) D 、(3)与(4)13、设P :龙凤呈祥是成语,Q :雪是黑的,R :太阳从东方升起,则下列假命题为( A ) A 、R Q P ∧→ B 、Q P S →∧ C 、P Q R →∨ D 、 Q P S →∨14、设P :我累,Q :我去打球,则命题:“除非我累,否则我去打球”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝15、设P :我听课,Q :我睡觉,则命题 “我不能一边听课,一边睡觉”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝ 提示:()P Q P Q ⌝∧⇔→⌝16、设P :停机;Q :语法错误;R :程序错误,则命题 “停机的原因在于语法错误或程序错误” 的符号化为( D ) A 、R Q P ∧→ B 、P Q R →∨ C 、Q R P ∧→ D 、Q R P ∨→ 17、设P :你来了;Q :他唱歌;R :你伴奏则命题 “如果你来了,那末他唱不唱歌将看你是否伴奏而定” 的符号化为( D ) A 、()P Q R →∧ B 、()P Q R →→ C 、()P R Q →→ D 、()P Q R →↔ 18、在命运题逻辑中,任何非永真命题公式的主合取范式都是( A ) A 、 存在并且唯一 B 、存在但不唯一 C 、 不存在 D 、 不能够确定 19、在命题逻辑中,任何非永假命题公式的主析取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定 20、n 个命题变元所产生互不等价的极小项项数为( D )A 、nB 、2nC 、2n D 、2n21、n 个命题变元所产生互不等价的极大项项数为( D )A 、nB 、2nC 、2nD 、2n二、填充题(每题4分)1、设P :你努力,Q :你失败,则 “虽然你努力了,但还是失败了” 符号化为Q P ∧.2、设P :它占据空间,Q :它有质量,R :它不断运动,S :它叫做物质, 则 “占据空间的,有质量的而且不断运动的叫做物质”符号化为R Q P S ∧∧↔.3、一个命题含有n 个原子命题,则对其所有可能赋值有2n种.4、推理规则()A A B B ∧→→的名称为假言推理.5、推理规则()B A B A ⌝∧→→⌝的名称为拒取式.6、推理规则()A A B B ⌝∧∨⇒的名称为析取三段论.7、推理规则()()A B B C A C →∧→⇒→的名称为前提三段论.8、当赋予极小项足标相同的指派时,该极小项的真值为1,当赋予极大项足标相同的指派时,该极大项的真值为0.9、任意两个不同极小项的合取式的真值为0,而全体极小项的析取式的真值为1. 10、任意两个不同极大项的析取式的真值为1,而全体极大项的合取式的真值为0. 11、n 个命题变元可构造包括F 的不同的主析取范式类别为22n. 12、n 个命题变元可构造包括T 的不同的主合取范式类别为22n .三、问答题(每题6分)1、设A 、B 是任意命题公式,请问,A B A B →⇒分别表示什么其有何关系 答:A B →表示A 蕴含B ,A B ⇒表示A 永真蕴含B ; 其关系表现为:若A B →为永真式,则有A B ⇒.2、设A 、B 是任意命题公式,请问,A B A B ↔⇔分别表示什么其有何关系 答:A B ↔表示A 等值于B ,A B ⇔表示A 与B 逻辑等价; 其关系表现为:若A B ↔为永真式,则有A B ⇔.3、设A 、B 、C 是任意命题公式,若A C B C ∨⇔∨ ,则A B ⇔成立吗为什么 答:不一定有A B ⇔;若A 为真,B 为假,C 为真,则A C B C ∨⇔∨成立,但A B ⇔不成立. 4、设A 、B 、C 是任意命题公式,若A C B C ∧⇔∧ ,则A B ⇔成立吗为什么 答:不一定有A B ⇔;若A 为真,B 为假,C 为假,则A C B C ∧⇔∧成立,但A B ⇔不成立. 5、设A 、B 是任意命题公式,()A A B B ∧→→一定为真吗为什么答:一定为真;因()()()()A A B B A A B B A A A B B ∧→→⇔∧⌝∨→⇔∧⌝∨∧→()F A B B A B B T ⇔∨∧→⇔∧→⇔.(用真值表也可证明)6、设A 、B 是任意命题公式,()()A B A B A →∧→⌝↔⌝一定为真吗为什么 答:一定为真;因()()()()()A B A B A B A B A B B →∧→⌝⇔⌝∨∧⌝∨⌝⇔⌝∨∧⌝A F A ⇔⌝∨⇔⌝.(用真值表也可证明)四、填表计算题(每题10分)1、对命题公式 ()()A p q p q =⌝→∧∨,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q p q → ()p q ⌝→p q ∨A 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1111主析取范式(2)A ⇔∑ ;主合取范式(0,1,3)A ⇔∏.2、对命题公式 ()A p q r =→↔,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q rp q → A 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 11111主析取范式(1,3,4,7)A ⇔∑ ;主合取范式(0,2,5,6)A ⇔∏.3、对命题公式 ()()A p q p r =∧∨∧,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q rp q ∧ p r ∧ A 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 111111主析取范式(5,6,7)A ⇔∑ ;主合取范式(0,1,2,3,4)A ⇔∏.4、对命题公式()()A p q p r =⌝→∧→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(2,3,5,7)A ⇔∑ ;主合取范式(0,1,4,6)A ⇔∏.5、对命题公式()A p q r =⌝∨⌝→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(1,3,5,6,7)A ⇔∑ ;主合取范式(0,2,4)A ⇔∏.五、证明题(每题10分)1、证明下列逻辑恒等式:()()()P Q R Q P R Q →∧→⇔∨→. 证明 : 左()()()P Q R Q P R Q ⇔⌝∨∧⌝∨⇔⌝∧⌝∨()P R Q P R Q ⇔⌝∨∨⇔∨→⇔右.(用真值表也可证明)2、证明下列逻辑恒等式: P Q R R Q P ⌝∧⌝→⌝⇔→∨. 证明:左()P Q R P Q R ⇔⌝⌝∧⌝∨⌝⇔∨∨⌝()R Q P R Q P ⇔⌝∨∨⇔→∨⇔右.(用真值表也可证明)3、证明下列逻辑恒等式:()()()P Q P Q P Q ⌝↔⇔∨∧⌝∧. 证明:左()()()()()P Q P Q P Q P Q ⇔⌝∨⌝∧⌝∨⇔⌝∨⌝∨⌝⌝∨()()()()()()Q Q P Q Q P P P Q P Q P ⌝∨∧∨∧⌝∧⌝∧⌝∨⇔⌝∧∨∧⌝⇔()()⇔⌝∨⌝∧∨⇔Q P Q P ()()P Q P Q ∨∧⌝∧右⇔.(用真值表也可证明)4、用逻辑推理规则证明: ()a b c ∧→ ,d ⌝ ,c d ⌝∨ ⇒ a b ⌝∨⌝ .证明:(1) c d ⌝∨ P(2) d ⌝ P(3)c ⌝ T (1),(2) (析取三段论) (4) ()a b c ∧→ P(5)()a b ⌝∧ T (3),(4) (拒取式) (6) a b ⌝∨⌝ T (5) (德.摩根律) . 5、用逻辑推理规则证明: , ,p q p s s r r q ∨→→⇒⌝→.证明: (1) p s →P (2) s r → P(3) p r → T (1),(2) (前提三段论) (4)r p ⌝→⌝ T (3) (逆反律) (5)p q ∨ P(6)p q ⌝→ T (5) (蕴含表达式) (7)r q ⌝→T (4),(6) (前提三段论) .6、用逻辑推理规则证明:p q →,p r ∧, q r ⌝∨,r ⌝,s p s ⌝∨⇒⌝. 证明: (1) r ⌝ P(2) q r ⌝∨ P(3) q ⌝ T (1),(2) (析取三段论) (4)p q → P(5) p ⌝ T (3),(4) (拒取式) (6) s p ⌝∨ P (7) s ⌝T (5),(6) (析取三段论) .7、用逻辑推理规则证明:()()p q r s ⌝→→⌝∨,()q p r →∨⌝, r p q ⇒↔. 证明: (1) r P(2) ()q p r →∨⌝ P(3) q p → T (1),(2) (析取三段论) (4) r s ∨ T (1) (加法式) (5) ()()p q r s ⌝→→⌝∨ P(6) p q → T (4),(5) (拒取式) (7) ()()p q q p →∧→T (3),(6) (合取式)(8) p q ↔ T (7) (等值表达式) .8、用逻辑推理规则证明: , ,s p p r q r s q ⌝∨→∧⇒→.证明: (1) s P(2) s p ⌝∨ P(3) p T (1),(2) (析取三段论) (4) p r q →∧ P(5) r q ∧ T (3),(4) (假言推理) (6) q T (5)(简化式) (7) s q → CP . 9、用逻辑推理规则证明:()()p q r p q r ∨→⇒∧→ 证明:(1) p q ∧ P (附加前提)(2) p T (1)(简化式) (3) p q ∨ T (2)(加法式) (4) ()p q r ∨→ P(5) r T (3),(4)(假言推理) (6) ()()p q r p q r ∨→⇒∧→ CP .10、用逻辑推理规则证明:,,p q q r r s p s ⌝∨⌝∨→⇒→. 证明:(1)p P (附加前提)(2) p q ⌝∨ P(3) q T (1),(2) (析取三段论) (4)q r ⌝∨ P(5) r T (3),(4) (析取三段论) (6) r s → P(7) s T (5),(6) (假言推理) (8) p s → CP .11、用逻辑推理规则证明:()()p q r s ∨→∧,()r s t p t ∨→⇒→ . 证明:(1)p P (附加前提) (2)p q ∨ T (1)(加法式) (3)()()p q r s ∨→∧ P(4)r s ∧ T (2),(3)(假言推理) (5)r T (4)(简化式) (6)r s ∨ T (5)(加法式)(7)()r s t ∨→ P(8)t T (6),(7)(假言推理)(9)p t → CP .12、用逻辑推理规则证明:(),,t w s q s t s q t →⌝→⌝⌝∨→⌝⇒→ 证明:(1)q P (附加前提)(2) q s ⌝∨ P(3) s T (1),(2) (析取三段论) (4) ()t w s →⌝→⌝ P(5)()t w ⌝→⌝ T (3),(4) (拒取式) (6)()t w ⌝⌝∨⌝ T (5) (蕴含表达式) (7) t w ∧ T (6) (德.摩根律) (8) t T (7) (简化式)(9)q t → CP .13、用逻辑推理规则证明:a b c →∧,()e f c →⌝→⌝,()b a s →∧⌝⇒b e →. 证明:(1) b P (附加前提) (2)()b a s →∧⌝ P(3) a s ∧⌝ T (1),(2) (假言推理) (4) a T (3) (简化式) (5) a b c →∧ P(6) b c ∧ T (4),(5) (假言推理)(7) c T (6) (简化式)(8) ()e f c →⌝→⌝ P(9) ()e f ⌝→⌝ T (7),(8) (拒取式) (10)()e f ⌝⌝∨⌝ T (9) (蕴含表达式) (11) e f ∧ T (10) (德.摩根律) (12) e T (11) (简化式) (13) b e → CP . 14、用逻辑推理规则证明:p q →,p q q ⌝→⇒. 证明:(1) q ⌝ P (附加前提) (2) p q → P(3) p ⌝ T (1),(2) (拒取式) (4) p q ⌝→ P(5) q T (3),(4) (假言推理) (6) q q ⌝∧ T (1),(5) (合取式)由(6)得出矛盾式,故原命题有效.15、用逻辑推理规则证明: p q ∧ ,()()p q t s ↔→∨ ⇒ t s ∨ . 证明:(1)()t s ⌝∨ P (附加前提)(2) ()()p q t s ↔→∨ P(3)()p q ⌝↔ T (1),(2) (拒取式) (4) (()())p q p q ⌝⌝∨∧∨⌝ T (3)(等值与蕴含表达式) (5) ()()p q p q ∧⌝∨⌝∧ T (4) (德.摩根律)(6) ()()p q p q ⌝∨⌝∧∨ T (5) (结合律或范式等价) . (7) p q ⌝∨⌝ T (7) (简化式) (8) ()p q ⌝∧ T (4) (德.摩根律) (9) p q ∧ P(10) ()()p q p q ⌝∧∧∧ T (9),(10) (合取式) 由(10)得出矛盾式,故原命题有效.16、用逻辑推理规则证明:p q →,p r ∧, ()q r ⌝∨不能同时为真. 证明:(1) p r ∧ P(2) p T (1) (简化式)(3) p q → P(4) q T (2),(3) (假言推理)(5) ()q r ⌝∨ P(6) q r ⌝∧⌝ T (5) (德.摩根律)(7) q ⌝ T (6) (简化式)(8) q q ⌝∧ T (4),(7) (合取式)由(8)得出矛盾式,故原命题有效.17、证明下列命题推得的结论有效:或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学.因此,如果许多学生喜欢逻辑,那么数学并不难学.证明:设p :逻辑难学;q :有少数学生不喜欢逻辑学;r :数学容易学.该推理就是要证明:, p q r p q r ∨→⌝⇒⌝→⌝.(1) p q ∨ P(2) p q ⌝→ T (1) (蕴含表达式)(3) r p →⌝ P(4) r q → T (2),(3) (前提三段论)(5) q r ⌝→⌝ T (4) (逆反律) .18、证明下列命题推得的结论有效:如果今天是星期三,那么我有一次离散数学或数字逻辑测验;如果离散数学课老师有事,那么没有离散数学测验;今天是星期三且离散数学老师有事.所以,我有一次数字逻辑测验.证明:设p :今天是星期三;q :我有一次离散数学测验;r :我有一次数字逻辑测验;s :离散数学课老师有事.该推理就是要证明:(), , p q r s q p s r →∨→⌝∧⇒.(1) p s ∧ P(2) p T (1) (简化式)(3) s T (1) (简化式)(4) s q →⌝ P(5) q ⌝ T (3) ,(4) (假言推理)(6) ()p q r →∨ P(7) q r ∨ T (2) ,(6) (假言推理)(8) r T (5) ,(7) (析取三段论) .19、证明下列命题推得的结论有效:如果马会飞或羊吃草,则母鸡就会是飞鸟;如果母鸡是飞鸟,那么烤熟的鸭子还会跑;烤熟的鸭子不会跑.所以,羊不吃草。
命题逻辑复习题及答案
![命题逻辑复习题及答案](https://img.taocdn.com/s3/m/51ebc6afccbff121dd3683dd.png)
.命题逻辑一、选择题(每题3分)1、下列句子中哪个是命题?(C)A、你的离散数学考试通过了吗? B 、请系好安全带!C、是有理数 D 、本命题是假的2、下列句子中哪个不是命题?(C)A、你通过了离散数学考试 B 、我俩五百年前是一家C、我说的是真话 D 、淮海工学院是一座工厂3、下列联接词运算不可交换的是(C)A、B、 C 、 D 、4、命题公式P Q不能表述为(B)A、P或Q B 、非P每当QC、非P仅当Q D、除非P,否则Q5、永真式的否定是(B)A、永真式 B 、永假式 C 、可满足式 D 、以上答案均有可能6、下列哪组赋值使命题公式P(P Q)的真值为假(D)A、P假Q真B、P假Q假C 、P真Q真D、P真Q假7、下列为命题公式P (Q R)成假指派的是(B)A、100 B 、101 C 、110 D 、1118、下列公式中为永真式的是(C)A、P(PQ)B、P (PQ)C、(PQ) QD、(PQ)Q9、下列公式中为非永真式的是(B)A、(P P) QB、(P P) QC、P(P Q)D、P(PQ)10、下列表达式错误的是(D)A、P(PQ) P B 、P(PQ) PC、P(PQ)PQ D 、P(PQ)PQ11、下列表达式正确的是(D)A、PPQB、PQPC、Q (P Q)D、(PQ)Q12、下列四个命题中真值为真的命题为(B)(1)2 2 4当且仅当3是奇数(2)2 2 4 当且仅当3不是奇数;(3)2 2 4当且仅当3是奇数(4)2 24当且仅当3不是奇数A、(1)与(2) B 、(1)与(4)C、(2)与(4) D 、(3)与(4)13、设P:龙凤呈祥是成语,Q:雪是黑的,R:太阳从东方升起,则下列假命题为(A)A、P Q R B 、Q P S C、P Q R D 、Q P S14、设P:我累,Q:我去打球,则命题:“除非我累,否则我去打球”的符号化为( B )A、PQ B 、P Q C、PQ D、P Q15、设P:我听课,Q:我睡觉,则命题“我不能一边听课,一边睡觉”的符号化为(B)A、PQ B 、P QC、PQ D、P Q提示:(P Q) P Q16、设P:停机;Q:语法错误;R:程序错误,则命题“停机的原因在于语法错误或程序错误”的符号化为( D)A、PQRB、P QRC、QRPD、QRP17、设P:你来了;Q:他唱歌;R:你伴奏则命题“如果你来了,那末他唱不唱歌将看你是否伴奏而的符号化为(D )定”A、P(QR)B、P (QR)C、P(R Q)D、P(Q R)18、在命运题逻辑中,任何非永真命题公式的主合取范式都是(A)A、存在并且唯一B、存在但不唯一C、不存在 D 、不能够确定..19、在命题逻辑中,任何非永假命题公式的主析取范式都是(A)A、存在并且唯一B、存在但不唯一C、不存在 D 、不能够确定20、n个命题变元所产生互不等价的极小项项数为( D )A、n B 、2n C 、n2 D 、2n21、n个命题变元所产生互不等价的极大项项数为( D )A、n B 、2n C 、n2 D 、2n二、填充题(每题4分)1、设P:你努力,Q:你失败,则“虽然你努力了,但还是失败了”符号化为PQ.2、设P:它占据空间,Q:它有质量,R:它不断运动,S:它叫做物质,则“占据空间的,有质量的而且不断运动的叫做物质”符号化为S PQR.3、一个命题含有n个原子命题,则对其所有可能赋值有2n种.4、推理规则A (A B) B的名称为假言推理.5、推理规则6、推理规则7、推理规则B (A B) A的名称为拒取式.A (A B) B的名称为析取三段论. (A B) (B C)AC的名称为前提三段论.8、当赋予极小项足标相同的指派时,该极小项的真值为1,当赋予极大项足标相同的指派时,该极大项的真值为0.9、任意两个不同极小项的合取式的真值为0,而全体极小项的析取式的真值为 1.10、任意两个不同极大项的析取式的真值为1,而全体极大项的合取式的真值为0.11、n个命题变元可构造包括F的不同的主析取范式类别为22n.12、n个命题变元可构造包括T的不同的主合取范式类别为22n.三、问答题(每题6分)1、设A、B是任意命题公式,请问A B,A B分别表示什么?其有何关系?答:A B表示A蕴含B,A B表示A永真蕴含B;其关系表现为:若 A B为永真式,则有A B.2、设A、B是任意命题公式,请问A B,A B分别表示什么?其有何关系?答:A B表示A等值于B,A B表示A与B逻辑等价;其关系表现为:若 A B为永真式,则有A B.3、设A、B、C是任意命题公式,若 A C BC ,则A B成立吗?为什么?答:不一定有A B;若A为真,B为假,C为真,则A C B C成立,但A B不成立.4、设A、B、C是任意命题公式,若 A C BC ,则A B成立吗?为什么?答:不一定有A B;若A为真,B为假,C为假,则A C B C成立,但A B不成立.5、设A、B是任意命题公式,A(A B) B一定为真吗?为什么?答:一定为真;因 A (AB) B A( AB) B (A A) (AB) BF (AB) B A BB T.(用真值表也可证明)6、设A、B是任意命题公式,(A B) (A B) A一定为真吗?为什么?答:一定为真;因(A B) (A B) ( AB) ( A B) A (B B)A F A.(用真值表也可证明)..四、填表计算题(每题10分)1、对命题公式A(p q)(p q),要求(1)用0 1或填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式.解:p q pq (pq) pq A0 0 10 000 1 10 101 0 0 1 1 11 1 10 10主析取范式A (2) ;主合取范式A (0,1,3).2、对命题公式A(p q)r,要求(1)用0 1或填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式.解:p q r pq A0 00 100 0 1 1 10 10 100 1 1 1 11 00 0 11 0 1 001 10 101 1 1 1 1主析取范式A (1,3,4,7) ;主合取范式A (0,2,5,6).3、对命题公式A(pq) (pr),要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式.解:p q r pq pr A0 0 0 0000 0 1 0000 1 0 0000 1 1 0001 0 0 0001 0 1 0111 1 0 101..1 1 1 1 1 1主析取范式A (5,6,7);主合取范式A (0,1,2,3,4).4、对命题公式A (pq)(pr),要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式.解:p q r p pq pr A0 0 0 1 0 100 0 1 1 0 100 1 0 1 1 1 10 1 1 1 1 1 11 0 0 0 1 001 0 1 0 1 1 11 1 0 0 1 001 1 1 0 1 1 1主析取范式A (2,3,5,7) ;主合取范式A (0,1,4,6).5、对命题公式A( p q) r,要求(1)用0 1或填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式.解:p q r p q pq A0 0 0 1 1 1 00 0 1 1 1 1 10 1 0 1 0 1 00 1 1 1 0 1 11 0 0 0 1 1 01 0 1 0 1 1 11 1 0 0 00 11 1 1 0 00 1..主析取范式 A (1,3,5,6,7) ;主合取范式 A (0,2,4).五、证明题(每题10分)1、证明下列逻辑恒等式:(P Q)(R Q) (P R) Q.证明:左(PQ)(RQ) (P R)Q(P R) Q P R Q 右.(用真值表也可证明)2、证明下列逻辑恒等式:P Q R R Q P.证明:左(P Q) R P Q RR(QP) R Q P 右.(用真值表也可证明)3、证明下列逻辑恒等式:P Q P Q PQ.证明:左P Q P Q P Q PQPQPQ PP PQQPQQPQ P Q P Q P Q 右.(用真值表也可证明)4、用逻辑推理规则证明:(a b) c , d , c d a b.证明:(1) c d P(2)d P(3) c T(1),(2)(析取三段论)(4)(a b) c P(5)(a b) T (3),(4)(拒取式)(6)a b T (5)(德.摩根律).5、用逻辑推理规则证明:p q,p s,s r r q.证明:(1) p s P(2)s r P(3)p r T (1),(2)( 前提三段论)(4)r p T(3)( 逆反律)(5)pq P(6)p q T (5)( 蕴含表达式)(7)r q T(4),(6)( 前提三段论).6、用逻辑推理规则证明:p q,p r,q r,r,sp s.证明:(1) r P(2) qr P(3) q T (1),(2)( 析取三段论)(4) p q P(5) p T (3) ,(4)( 拒取式)(6) s p P(7)s T (5),(6)( 析取三段论).7、用逻辑推理规则证明:(p q) (r s),(q p) r,r pq. 证明:(1) r P(2(q p) r P)(3) q p T (1),(2)( 析取三段论) (4) r s T(1)( 加法式)..(5) (p q) (r s)P(6) p q T(4) ,(5)(拒取式)(7) (p q) (q p) T(3),(6)(合取式)(8) p q T(7)( 等值表达式).8、用逻辑推理规则证明:s p, p rq, r sq. 证明:(1) s P(2) s p P(3) p T(1),(2)(析取三段论)(4) p r q P(5) r q T(3) ,(4)( 假言推理)(6) q T(5) (简化式)(7) s q CP.9、用逻辑推理规则证明:(p q) r (pq) r证明:(1) p q P( 附加前提)(2) p T(1)(简化式)(3) p q T(2)(加法式)(4) (p q) r P(5) r T(3),(4) (假言推理)(6)(pq)r(pq)rCP.10、用逻辑推理规则证明:p q, qr,r s p s.证明:(1)p P(附加前提)(2) p q P(3) q T (1) ,(2)( 析取三段论)(4)q r P(5) r T (3) ,(4)( 析取三段论)(6) r s P(7) s T(5) ,(6)(假言推理)(8) p s CP.11、用逻辑推理规则证明:(pq) (r s),(r s) t p t. 证明:(1)p P(附加前提)(2) p q T(1) (加法式)(3) (p q)(r s) P(4) r s T (2),(3)(假言推理)(5) r T(4) (简化式)(6) r s T (5)(加法式)(7) (r s)t P(8) t T (6) ,(7)(假言推理)(9) p t CP.12、用逻辑推理规则证明:(t w) s,q s,t s q t证明:(1)q P( 附加前提)(2) q s P(3) s T(1) ,(2)( 析取三段论)(4) (t w) s P(5) (t w) T(3),(4)( 拒取式) ..(6) ( t w)(7)tw(8)t(9)qt T(5)( 蕴含表达式) T(6)(德.摩根律)T(7)( 简化式) CP.、用逻辑推理规则证明:a b c ,(e f) c,b (a s)be.13证明:(1)b P(附加前提)(2)b (a s) P(3) a s T(1) ,(2) (假言推理)(4) a T(3)( 简化式)(5) a b c P(6) b c T (4) ,(5)(假言推理)(7) c T (6)(简化式)(8) (e f) c P(9) (e f) T (7) ,(8)( 拒取式)(10) ( e f) T(9)( 蕴含表达式)(11) e f T(10)( 德.摩根律)(12) e T (11)( 简化式)(13) b e CP.14、用逻辑推理规则证明:p q,p q q.证明:(1) q P(附加前提)(2) p q P(3) p T(1),(2)( 拒取式)(4) p q P(5) q T(3),(4)( 假言推理)(6) q q T(1),(5)( 合取式)由(6)得出矛盾式,故原命题有效.15、用逻辑推理规则证明:p q ,(p q)(t s) t s.证明:(1)(ts)P (附加前提)(2)(p q) (t s) P(3) (p q) T(4) (( pq) (p q))T(5) (p q)(p q) T(6) ( p q) (p q) T(7) p q T(8) (p q) T(9)p q P (1),(2)( 拒取式)(3)(等值与蕴含表达式)(4)(德.摩根律)(5)(结合律或范式等价).(7)(简化式)(4)(德.摩根律)(10) (pq)(p q) T(9),(10)( 合取式)由(10)得出矛盾式,故原命题有效.16、用逻辑推理规则证明:p q,p r,(q r)不能同时为真.证明:(1) p r P(2)p T(1)( 简化式)(3)p q P(4)q T(2),(3)( 假言推理)(5)(q r) P..(6)q r T(5)( 德.摩根律)(7)q T(6)( 简化式)(8)q q T(4),(7)(合取式)由(8)得出矛盾式,故原命题有效.17、证明下列命题推得的结论有效:或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学 .因此,如果许多学生喜欢逻辑,那么数学并不难学.证明:设p:逻辑难学;q:有少数学生不喜欢逻辑学;r:数学容易学.该推理就是要证明:p q,r p q r.(1) p q P(2) p q T(1)( 蕴含表达式)(3) r p P(4) r q T (2),(3)( 前提三段论)(5) q r T (4)(逆反律).18、证明下列命题推得的结论有效:如果今天是星期三,那么我有一次离散数学或数字逻辑测验;如果离散数学课老师有事,那么没有离散数学测验;今天是星期三且离散数学老师有事.所以,我有一次数字逻辑测验.证明:设p:今天是星期三;q:我有一次离散数学测验;r:我有一次数字逻辑测验;s:离散数学课老师有事.该推理就是要证明:p (q r),s q,p s r.(1) p s P(2) p T (1)(简化式)(3) s T (1)( 简化式)(4) s q P(5) q T (3) ,(4) (假言推理)(6) p(q r) P(7) q r T(2) ,(6)(假言推理)(8) r T (5) ,(7)( 析取三段论).19、证明下列命题推得的结论有效:如果马会飞或羊吃草,则母鸡就会是飞鸟;如果母鸡是飞鸟,那么烤熟的鸭子还会跑;烤熟的鸭子不会跑.所以,羊不吃草。
高中逻辑学试题及答案
![高中逻辑学试题及答案](https://img.taocdn.com/s3/m/07e56b1168eae009581b6bd97f1922791788be11.png)
高中逻辑学试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是演绎推理的例子?A. 如果下雨,地面就会湿。
今天下雨了,所以地面湿了。
B. 所有苹果都是水果。
这个苹果是苹果,所以它是水果。
C. 多数学生喜欢数学。
小明是学生,所以他可能喜欢数学。
D. 所有猫都会爬树。
这只猫不会爬树,所以它不是猫。
2. 以下哪个命题是假命题?A. 所有的人都是动物。
B. 所有的狗都是哺乳动物。
C. 所有的猫都是狗。
D. 所有的鸟都会飞。
3. 以下哪个选项是有效论证?A. 所有学生都有身份证。
小明有身份证,所以小明是学生。
B. 所有学生都有身份证。
小明是学生,所以小明有身份证。
C. 所有学生都有身份证。
小明不是学生,所以小明没有身份证。
D. 所有学生都有身份证。
小明没有身份证,所以小明不是学生。
4. 以下哪个命题是矛盾命题?A. 这个苹果既是红色的也是绿色的。
B. 这个苹果既是大的也是小的。
C. 这个苹果既是甜的也是酸的。
D. 这个苹果既是硬的也是软的。
5. 以下哪个命题是必然命题?A. 明天可能会下雨。
B. 太阳从东方升起。
C. 明年可能会下雪。
D. 明年可能会有新的科技发明。
6. 以下哪个命题是或命题?A. 这个苹果是红色的。
B. 这个苹果是红色的或者绿色的。
C. 这个苹果是红色的并且是甜的。
D. 这个苹果是红色的,如果它是甜的。
7. 以下哪个命题是条件命题?A. 如果今天是星期一,那么明天是星期二。
B. 今天是星期一,并且明天是星期二。
C. 今天是星期一,明天是星期二。
D. 明天是星期二,如果今天是星期一。
8. 以下哪个命题是逆命题?A. 如果下雨,地面就会湿。
B. 如果地面湿了,那么下雨了。
C. 地面湿了,所以下雨了。
D. 下雨了,所以地面湿了。
9. 以下哪个命题是合取命题?A. 这个苹果是红色的。
B. 这个苹果是红色的并且是甜的。
C. 这个苹果是红色的或者绿色的。
D. 这个苹果是甜的,如果它是红色的。
逻辑学试题及答案
![逻辑学试题及答案](https://img.taocdn.com/s3/m/54cf28895122aaea998fcc22bcd126fff7055d85.png)
逻辑学试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项不是有效的演绎推理?A. 如果下雨,地面就会湿。
今天下雨了,所以地面湿了。
B. 所有的人都是有限的生命体。
苏格拉底是人,所以苏格拉底是有限的生命体。
C. 所有天鹅都是白色的。
这是一只非白色的鸟,所以这不是天鹅。
D. 只有当有风时,树叶才会动。
树叶没有动,所以没有风。
2. 以下哪个命题是假命题?A. 地球是圆的。
B. 2+2=5。
C. 所有的猫都会飞。
D. 太阳从东方升起。
3. 以下哪个是逻辑学中的“逆否命题”?A. 如果下雨,地面就会湿。
B. 如果地面不湿,那么没有下雨。
C. 如果没有下雨,地面就不会湿。
D. 地面湿了,那么下雨了。
4. 以下哪个是逻辑学中的“归谬法”?A. 假设命题P为真,然后通过逻辑推理得出矛盾,从而证明P为假。
B. 假设命题P为假,然后通过逻辑推理得出矛盾,从而证明P为真。
C. 假设命题P为真,然后通过逻辑推理得出另一个命题Q为真。
D. 假设命题P为假,然后通过逻辑推理得出另一个命题Q为假。
5. 下列哪个命题是“条件命题”?A. 所有的人都是有限的生命体。
B. 如果下雨,地面就会湿。
C. 地球是圆的。
D. 2+2=4。
二、简答题(每题10分,共30分)6. 解释什么是“演绎推理”和“归纳推理”的区别。
7. 描述什么是“逻辑谬误”,并给出一个例子。
8. 解释“充分条件”和“必要条件”的区别。
三、论述题(每题25分,共50分)9. 论述逻辑学在日常生活和科学研究中的重要性。
10. 分析一个具体的论证,指出其逻辑结构,并评价其有效性。
四、案例分析题(共30分)11. 阅读以下论证:所有的狗都是哺乳动物。
我的宠物是狗。
因此,我的宠物是哺乳动物。
分析这个论证的有效性,并解释为什么。
逻辑学试题答案一、选择题1. 答案:D(树叶没有动,并不能确定没有风,因为树叶不动也可能是其他原因)2. 答案:C(这是一个假命题,因为并非所有的猫都会飞)3. 答案:B(逆否命题是原命题的否定形式,即如果原命题的结论为假,则前提也为假)4. 答案:A(归谬法是通过假设命题为真,然后推导出矛盾,从而证明命题为假)5. 答案:B(条件命题是如果...则...的形式)二、简答题6. 演绎推理是从一般到特殊的推理,其结论在逻辑上必然由前提得出;归纳推理是从特殊到一般的推理,其结论在逻辑上是或然的。
逻辑思维期末考试题及答案
![逻辑思维期末考试题及答案](https://img.taocdn.com/s3/m/ab8de00a302b3169a45177232f60ddccda38e6e0.png)
逻辑思维期末考试题及答案一、选择题(每题2分,共20分)1. 如果所有的猫都怕水,而Tom是猫,那么Tom怕水吗?A. 是的B. 不一定C. 不怕D. 不可能2. 以下哪个选项是演绎推理的例子?A. 如果下雨,地面就会湿。
现在地面湿了,所以一定下雨了。
B. 每次下雨,地面都会湿。
现在地面湿了,可能下雨了。
C. 如果下雨,地面就会湿。
现在下雨了,所以地面湿了。
D. 每次下雨,地面都会湿。
现在下雨了,地面一定湿了。
3. 以下哪个命题是真命题?A. 所有的人都是动物。
B. 所有的动物都是人。
C. 所有的植物都是动物。
D. 所有的动物都是植物。
4. 如果一个命题的否定是假命题,那么原命题是什么?A. 假命题B. 真命题C. 不确定D. 既不是真命题也不是假命题5. 以下哪个选项正确地描述了逻辑中的“或”?A. 表示两个命题都为真B. 表示两个命题都为假C. 表示两个命题中至少有一个为真D. 表示两个命题中至多有一个为真6. 以下哪个选项是有效的逻辑论证?A. 所有学生都有学习压力。
小明是学生,所以小明有学习压力。
B. 所有学生都有学习压力。
小明有学习压力,所以小明是学生。
C. 所有学生都有学习压力。
小明不是学生,所以小明没有学习压力。
D. 所有学生都有学习压力。
小明没有学习压力,所以小明不是学生。
7. 以下哪个选项是逻辑中的“逆否命题”?A. 如果A,则B。
B. 如果非B,则非A。
C. 如果非A,则非B。
D. 如果B,则A。
8. 以下哪个命题是假命题?A. 所有的苹果都是水果。
B. 所有的水果都是苹果。
C. 所有的水果都是植物的一部分。
D. 所有的植物都是水果。
9. 以下哪个选项是逻辑中的“条件命题”?A. 如果A,则B。
B. A和B同时发生。
C. A或B发生。
D. A和B都不发生。
10. 以下哪个命题是逻辑中的“双条件命题”?A. 如果A,则B。
B. A和B同时发生。
C. A当且仅当B。
D. A或B发生。
计算机命题逻辑试题及答案
![计算机命题逻辑试题及答案](https://img.taocdn.com/s3/m/4e84f04aa517866fb84ae45c3b3567ec102ddcb8.png)
计算机命题逻辑试题及答案(正文开始)一、选择题1. 下列哪个符号表示“或”的逻辑运算?A. ∧B. ∨C. ¬D. →答案:B2. 对于命题 P 和命题 Q,以下哪个是“P 当且仅当Q”的充分条件?A. P → Q 且Q → PB. P → QC. Q → PD. P ∧ Q答案:A3. 对于命题 P 和命题 Q,以下哪个是“P 在 Q 之前发生”的必要条件?A. P → QB. Q → PC. P ∧ QD. ¬P答案:A4. 在命题逻辑中,下列哪个运算符拥有最高的优先级?A. ∨B. ¬C. ∧D. →答案:B5. 对于命题 P、Q 和 R,下面的命题是什么?(P → Q) → RA. P → QB. Q → RC. P → (Q → R)D. (P → Q) ∧ R答案:D二、判断题判断题请在括号中写出“√”(正确)或“×”(错误)。
1. (√)在命题逻辑中,若一个命题的真值表只有一列,则该命题是原子命题。
2. (√)在命题逻辑中,若A → B 和B → A 均成立,则 A 和 B 等价。
3. (×)在命题逻辑中,若A → B 和B → C 成立,则A → C 成立。
4. (√)在命题逻辑中,命题的否定运算可以通过补齐真值表得到。
5. (×)在命题逻辑中,A ∨ B 和 B ∨ A 等价。
三、填空题1. 用合适的运算符填空,使得下面的命题成立。
P ______ Q (将 P 和 Q 进行逻辑运算)答案:∨(或)2. 将下列表达式化简为最简形式。
(P ∧ (¬Q ∨ R)) ∨ (¬P ∧ (Q ∨ ¬R))答案:(P ∧ ¬Q) ∨ (P ∧ R)四、论述题请根据所学知识,回答以下问题。
1. 简要介绍命题逻辑的基本概念和运算符。
答案:命题逻辑是研究命题之间关系的逻辑学科。
在命题逻辑中,命题是指可以确定真值的陈述句,可以是真(True)或假(False)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题逻辑一、选择题(每题3分)1、下列句子中哪个是命题? ( C )A 、你的离散数学考试通过了吗?B 、请系好安全带!C 、 π是有理数D 、 本命题是假的 2、下列句子中哪个不是命题? ( C )A 、你通过了离散数学考试B 、我俩五百年前是一家C 、 我说的是真话D 、 淮海工学院是一座工厂 3、下列联接词运算不可交换的是( C )A 、∧B 、∨C 、 →D 、 ↔ 4、命题公式P Q ⌝→不能表述为( B )A 、P 或QB 、非P 每当QC 、非P 仅当QD 、除非P ,否则Q 5、永真式的否定是 ( B )A 、 永真式B 、永假式C 、可满足式D 、 以上答案均有可能 6、下列哪组赋值使命题公式()P P Q →∧的真值为假( D )A 、P 假Q 真B 、P 假Q 假C 、P 真Q 真D 、P 真Q 假 7、下列为命题公式()P Q R ∧∨⌝成假指派的是( B )A 、100B 、101C 、110D 、111 8、 下列公式中为永真式的是 ( C )A 、()P P Q →∧B 、()P P Q ⌝→∧C 、()P Q Q ∧→D 、()P Q Q ∨→ 9、 下列公式中为非永真式的是( B )A 、 ()P P Q ∧⌝→B 、()P P Q ∨⌝→C 、()P P Q ∧⌝→D 、()P P Q ∨⌝→ 10、下列表达式错误的是( D )A 、()P P Q P ∨∧⇔B 、()P P Q P ∧∨⇔C 、()P P Q P Q ∨⌝∧⇔∨D 、()P P Q P Q ∧⌝∨⇔∨ 11、下列表达式正确的是( D )A 、P P Q ⇒∧B 、P Q P ⇒∨C 、()Q P Q ⌝⇒⌝→D 、Q Q P ⌝⇒→⌝)( 12、下列四个命题中真值为真的命题为( B )(1)224+=当且仅当3是奇数 (2)224+=当且仅当3不是奇数; (3)224+≠当且仅当3是奇数 (4)224+≠当且仅当3不是奇数 A 、(1)与(2) B 、(1)与(4) C 、(2)与(4) D 、(3)与(4)13、设P :龙凤呈祥是成语,Q :雪是黑的,R :太阳从东方升起,则下列假命题为( A ) A 、R Q P ∧→ B 、Q P S →∧ C 、P Q R →∨ D 、 Q P S →∨14、设P :我累,Q :我去打球,则命题:“除非我累,否则我去打球”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝15、设P :我听课,Q :我睡觉,则命题 “我不能一边听课,一边睡觉”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝ 提示:()P Q P Q ⌝∧⇔→⌝16、设P :停机;Q :语法错误;R :程序错误,则命题 “停机的原因在于语法错误或程序错误” 的符号化为( D )A 、R Q P ∧→B 、P Q R →∨C 、Q R P ∧→D 、Q R P ∨→ 17、设P :你来了;Q :他唱歌;R :你伴奏则命题 “如果你来了,那末他唱不唱歌将看你是否伴奏而定” 的符号化为( D ) A 、()P Q R →∧ B 、()P Q R →→ C 、()P R Q →→ D 、()P Q R →↔ 18、在命运题逻辑中,任何非永真命题公式的主合取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定19、在命题逻辑中,任何非永假命题公式的主析取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定 20、n 个命题变元所产生互不等价的极小项项数为( D )A 、nB 、2nC 、2n D 、2n 21、n 个命题变元所产生互不等价的极大项项数为( D )A 、nB 、2nC 、2n D 、2n二、填充题(每题4分)1、设P :你努力,Q :你失败,则 “虽然你努力了,但还是失败了” 符号化为Q P ∧.2、设P :它占据空间,Q :它有质量,R :它不断运动,S :它叫做物质, 则 “占据空间的,有质量的而且不断运动的叫做物质”符号化为R Q P S ∧∧↔.3、一个命题含有n 个原子命题,则对其所有可能赋值有2n 种.4、推理规则()A A B B ∧→→的名称为假言推理.5、推理规则()B A B A ⌝∧→→⌝的名称为拒取式.6、推理规则()A A B B ⌝∧∨⇒的名称为析取三段论.7、推理规则()()A B B C A C →∧→⇒→的名称为前提三段论.8、当赋予极小项足标相同的指派时,该极小项的真值为1,当赋予极大项足标相同的指派时,该极大项的真值为0.9、任意两个不同极小项的合取式的真值为0,而全体极小项的析取式的真值为1. 10、任意两个不同极大项的析取式的真值为1,而全体极大项的合取式的真值为0. 11、n 个命题变元可构造包括F 的不同的主析取范式类别为22n.12、n 个命题变元可构造包括T 的不同的主合取范式类别为22n. 三、问答题(每题6分)1、设A 、B 是任意命题公式,请问,A B A B →⇒分别表示什么?其有何关系? 答:A B →表示A 蕴含B ,A B ⇒表示A 永真蕴含B ; 其关系表现为:若A B →为永真式,则有A B ⇒.2、设A 、B 是任意命题公式,请问,A B A B ↔⇔分别表示什么?其有何关系? 答:A B ↔表示A 等值于B ,A B ⇔表示A 与B 逻辑等价; 其关系表现为:若A B ↔为永真式,则有A B ⇔.3、设A 、B 、C 是任意命题公式,若A C B C ∨⇔∨ ,则A B ⇔成立吗?为什么? 答:不一定有A B ⇔;若A 为真,B 为假,C 为真,则A C B C ∨⇔∨成立,但A B ⇔不成立.4、设A 、B 、C 是任意命题公式,若A C B C ∧⇔∧ ,则A B ⇔成立吗?为什么? 答:不一定有A B ⇔;若A 为真,B 为假,C 为假,则A C B C ∧⇔∧成立,但A B ⇔不成立. 5、设A 、B 是任意命题公式,()A A B B ∧→→一定为真吗?为什么?答:一定为真;因()()()()A A B B A A B B A A A B B ∧→→⇔∧⌝∨→⇔∧⌝∨∧→()F A B B A B B T ⇔∨∧→⇔∧→⇔.(用真值表也可证明)6、设A 、B 是任意命题公式,()()A B A B A →∧→⌝↔⌝一定为真吗?为什么? 答:一定为真;因()()()()()A B A B A B A B A B B →∧→⌝⇔⌝∨∧⌝∨⌝⇔⌝∨∧⌝ A F A ⇔⌝∨⇔⌝.(用真值表也可证明)四、填表计算题(每题10分)(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q p q → ()p q ⌝→p q ∨A0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1111主析取范式(2)A ⇔∑ ;主合取范式(0,1,3)A ⇔∏.2、对命题公式 ()A p q r =→↔,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q rp q → A 0 0 01 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 11111主析取范式(1,3,4,7)A ⇔∑ ;主合取范式(0,2,5,6)A ⇔∏.3、对命题公式 ()()A p q p r =∧∨∧,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q rp q ∧ p r ∧ A 0 0 00 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 111111主析取范式(5,6,7)A ⇔∑ ;主合取范式(0,1,2,3,4)A ⇔∏.(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(2,3,5,7)A ⇔∑ ;主合取范式(0,1,4,6)A ⇔∏.5、对命题公式()A p q r =⌝∨⌝→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(1,3,5,6,7)A ⇔∑ ;主合取范式(0,2,4)A ⇔∏.五、证明题(每题10分)1、证明下列逻辑恒等式:()()()P Q R Q P R Q →∧→⇔∨→. 证明 : 左()()()P Q R Q P R Q ⇔⌝∨∧⌝∨⇔⌝∧⌝∨()P R Q P R Q ⇔⌝∨∨⇔∨→⇔右.(用真值表也可证明) 2、证明下列逻辑恒等式: P Q R R Q P ⌝∧⌝→⌝⇔→∨. 证明:左()P Q R P Q R ⇔⌝⌝∧⌝∨⌝⇔∨∨⌝()R Q P R Q P ⇔⌝∨∨⇔→∨⇔右.(用真值表也可证明)3、证明下列逻辑恒等式:()()()P Q P Q P Q ⌝↔⇔∨∧⌝∧. 证明:左()()()()()P Q P Q P Q P Q ⇔⌝∨⌝∧⌝∨⇔⌝∨⌝∨⌝⌝∨()()()()()()Q Q P Q Q P P P Q P Q P ⌝∨∧∨∧⌝∧⌝∧⌝∨⇔⌝∧∨∧⌝⇔()()⇔⌝∨⌝∧∨⇔Q P Q P ()()P Q P Q ∨∧⌝∧右⇔.(用真值表也可证明)4、用逻辑推理规则证明: ()a b c ∧→ ,d ⌝ ,c d ⌝∨ ⇒ a b ⌝∨⌝ . 证明:(1) c d ⌝∨ P(2) d ⌝ P(3)c ⌝ T (1),(2) (析取三段论) (4) ()a b c ∧→ P (5)()a b ⌝∧ T (3),(4) (拒取式) (6) a b ⌝∨⌝ T (5) (德.摩根律) .5、用逻辑推理规则证明: , ,p q p s s r r q ∨→→⇒⌝→. 证明: (1) p s →P (2) s r → P(3) p r →T (1),(2) (前提三段论)(4)r p ⌝→⌝ T (3) (逆反律) (5)p q ∨ P (6)p q ⌝→ T (5) (蕴含表达式) (7)r q ⌝→ T (4),(6) (前提三段论) .6、用逻辑推理规则证明:p q →,p r ∧, q r ⌝∨,r ⌝,s p s ⌝∨⇒⌝. 证明: (1) r ⌝ P(2) q r ⌝∨ P(3) q ⌝ T (1),(2) (析取三段论) (4)p q → P(5) p ⌝ T (3),(4) (拒取式) (6) s p ⌝∨ P (7) s ⌝ T (5),(6) (析取三段论) .7、用逻辑推理规则证明:()()p q r s ⌝→→⌝∨,()q p r →∨⌝, r p q ⇒↔. 证明: (1) r P(2) ()q p r →∨⌝ P(3) q p → T (1),(2) (析取三段论) (4) r s ∨ T (1) (加法式)(5) ()()p q r s ⌝→→⌝∨ P (6) p q → T (4),(5) (拒取式) (7) ()()p q q p →∧→ T (3),(6) (合取式) (8) p q ↔ T (7) (等值表达式) .8、用逻辑推理规则证明: , ,s p p r q r s q ⌝∨→∧⇒→.证明: (1) s P(2) s p ⌝∨ P(3) p T (1),(2) (析取三段论) (4) p r q →∧ P(5) r q ∧ T (3),(4) (假言推理) (6) q T (5)(简化式) (7) s q → CP .9、用逻辑推理规则证明:()()p q r p q r ∨→⇒∧→ 证明:(1) p q ∧ P (附加前提)(2) p T (1)(简化式)(3) p q ∨ T (2)(加法式) (4) ()p q r ∨→ P(5) r T (3),(4)(假言推理) (6) ()()p q r p q r ∨→⇒∧→ CP .10、用逻辑推理规则证明:,,p q q r r s p s ⌝∨⌝∨→⇒→. 证明:(1)p P (附加前提)(2) p q ⌝∨ P(3) q T (1),(2) (析取三段论) (4)q r ⌝∨ P(5) r T (3),(4) (析取三段论) (6) r s → P(7) s T (5),(6) (假言推理) (8) p s → CP .11、用逻辑推理规则证明:()()p q r s ∨→∧,()r s t p t ∨→⇒→ . 证明:(1)p P (附加前提) (2)p q ∨ T (1)(加法式) (3)()()p q r s ∨→∧ P(4)r s ∧ T (2),(3)(假言推理) (5)r T (4)(简化式) (6)r s ∨ T (5)(加法式)(7)()r s t ∨→ P (8)t T (6),(7)(假言推理)(9)p t → CP . 12、用逻辑推理规则证明:(),,t w s q s t s q t →⌝→⌝⌝∨→⌝⇒→ 证明:(1)q P (附加前提)(2) q s ⌝∨ P(3) s T (1),(2) (析取三段论) (4) ()t w s →⌝→⌝ P(5)()t w ⌝→⌝ T (3),(4) (拒取式) (6)()t w ⌝⌝∨⌝ T (5) (蕴含表达式) (7) t w ∧ T (6) (德.摩根律) (8) t T (7) (简化式)(9)q t → CP .13、用逻辑推理规则证明:a b c →∧,()e f c →⌝→⌝,()b a s →∧⌝⇒b e →. 证明:(1) b P (附加前提) (2)()b a s →∧⌝ P(3) a s ∧⌝ T (1),(2) (假言推理) (4) a T (3) (简化式) (5) a b c →∧ P(6) b c ∧ T (4),(5) (假言推理)(7) c T (6) (简化式) (8)()e f c →⌝→⌝ P(9) ()e f ⌝→⌝ T (7),(8) (拒取式) (10)()e f ⌝⌝∨⌝ T (9) (蕴含表达式) (11) e f ∧ T (10) (德.摩根律) (12) e T (11) (简化式) (13) b e → CP .14、用逻辑推理规则证明:p q →,p q q ⌝→⇒.证明:(1) q ⌝ P (附加前提) (2) p q → P(3) p ⌝ T (1),(2) (拒取式) (4) p q ⌝→ P(5) q T (3),(4) (假言推理) (6) q q ⌝∧ T (1),(5) (合取式)由(6)得出矛盾式,故原命题有效.15、用逻辑推理规则证明: p q ∧ ,()()p q t s ↔→∨ ⇒ t s ∨ . 证明:(1)()t s ⌝∨ P (附加前提)(2) ()()p q t s ↔→∨ P(3)()p q ⌝↔ T (1),(2) (拒取式)(4) (()())p q p q ⌝⌝∨∧∨⌝ T (3)(等值与蕴含表达式) (5) ()()p q p q ∧⌝∨⌝∧ T (4) (德.摩根律)(6) ()()p q p q ⌝∨⌝∧∨ T (5) (结合律或范式等价) . (7) p q ⌝∨⌝ T (7) (简化式) (8) ()p q ⌝∧ T (4) (德.摩根律) (9) p q ∧ P(10) ()()p q p q ⌝∧∧∧ T (9),(10) (合取式) 由(10)得出矛盾式,故原命题有效.16、用逻辑推理规则证明:p q →,p r ∧, ()q r ⌝∨不能同时为真. 证明:(1) p r ∧ P(2) p T (1) (简化式) (3) p q → P(4) q T (2),(3) (假言推理) (5) ()q r ⌝∨ P(6) q r ⌝∧⌝ T (5) (德.摩根律) (7) q ⌝ T (6) (简化式) (8) q q ⌝∧ T (4),(7) (合取式)由(8)得出矛盾式,故原命题有效.17、证明下列命题推得的结论有效:或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学.因此,如果许多学生喜欢逻辑,那么数学并不难学. 证明:设p :逻辑难学;q :有少数学生不喜欢逻辑学;r :数学容易学.该推理就是要证明:, p q r p q r ∨→⌝⇒⌝→⌝. (1) p q ∨ P(2) p q ⌝→ T (1) (蕴含表达式) (3) r p →⌝ P(4) r q → T (2),(3) (前提三段论)(5) q r ⌝→⌝ T (4) (逆反律) .18、证明下列命题推得的结论有效:如果今天是星期三,那么我有一次离散数学或数字逻辑测验;如果离散数学课老师有事,那么没有离散数学测验;今天是星期三且离散数学老师有事.所以,我有一次数字逻辑测验.证明:设p :今天是星期三;q :我有一次离散数学测验;r :我有一次数字逻辑测验;s :离散数学课老师有事. 该推理就是要证明:(), , p q r s q p s r →∨→⌝∧⇒. (1) p s ∧ P(2) p T (1) (简化式) (3) s T (1) (简化式) (4) s q →⌝ P(5) q ⌝ T (3) ,(4) (假言推理)(6) ()p q r →∨ P(7) q r ∨ T (2) ,(6) (假言推理) (8) r T (5) ,(7) (析取三段论) .19、证明下列命题推得的结论有效:如果马会飞或羊吃草,则母鸡就会是飞鸟;如果母鸡是飞鸟,那么烤熟的鸭子还会跑;烤熟的鸭子不会跑.所以,羊不吃草。