Maple 大作业

Maple 大作业
Maple 大作业

一、Maple 程序编写实例

1. 如图中1所示单自由度弹簧质量系统在,质量块质量为m ,当质量块下拉弹簧处于平衡位置时,静变

形为40mm 。求此弹簧质量系统的振动规律。

解:●建模

图1 系统受力:mg,回复力kx 。物体作上下的自由振动运动。 ● Maple 程序

> restart: #清零

> eq:=m*diff(x(t),t$2)=m*g-k* #

∑=F x m x ..

(delta[st]+x):

> eq:=lhs(eq)-rhs(eq)=0: #移项

> eq:=subs(diff(x(t),t$2)=DDx, #代换

delta[st]=m*g/k,eq):

> eq:=expand(eq/m): #展开

> eq:=subs(k=m*omega[0]^2,eq): #代换

> X:=A*sin(omega[0]*t+beta): #系统通解

> k:=m*g/delta[st]: #弹簧刚度系数

> omega[0]:=sqrt(k/m): #固有频率

> x[0]:=-delta[st]: #初位移

> v[0]:=0: #初速度

> A:=sqrt(x[0]^2+v[0]^2/omega[0]^2): #振幅

> beta:=-Pi/2: #初相角

> delta[st]:=0.04:g:=9.8: #已知条件

> omega[0]:=eval(omega[0]): #已知条件

> A:=eval(A): #振幅数值

> X:=evalf(X,4); #系统振动规律 := X -.04000()cos 15.65t

答:此弹簧质量系统的振动规律x=-0.04cos(15.65t)。

2. 一个质量为m 的物体在一根抗弯刚度为EJ ﹑长为l 的简支梁上作自由振动。若此物体在梁未变形的位

置无初速度释放,求系统自由振动的频率。

图2

解:●建模

系统受力:mg,F 。物体作直线运动。

● Maple 程序

> restart: #清零

> eq:=m*diff(x(t),t$2)=m*g- #∑=F x m x ..

k*(delta[st]+x):

> eq:=lhs(eq)-rhs(eq)=0: #移项

> eq:=subs(diff(x(t),t$2)=DDx, #代换 delta[st]=m*g/k,eq):

> eq:=expand(eq/m): #展开

> eq:=subs(k=m*omega[0]^2,eq); #代换

:= eq = + DDx ω02x 0

> X:=A*sin(omega[0]*t+beta): #系统的通解

> k:=m*g/delta[st]: #梁的刚度系数

> omega[0]:=sqrt(k/m): #固有频率

> omega[0]:=subs(delta[st]=(mgl^3)

/(48*E*J),omega[0]); #代换 := ω048

g E J mgl 3 答:系统自由振动的频率为 := ω048

g E J

mgl 3。 3. 如图3所示一质量为m 、半径为r 的圆柱铁桶, 在半径为R 的圆弧上作无滑动的滚动。求圆柱铁桶在

平衡位置附近作微小振动的固有频率。

解:●建模

系统受主动力:mg,F 1,F 2。圆桶运动为定轴转动。 图3

● Maple 程序

> resart: #清零

> J[O1]:=1/2*m*r^2: #圆桶的转动惯量

> v[O1]:=(R-r)*Dtheta: #圆桶中心O 1 线的速度v o1

> omega:=(R-r)*Dtheta/r: #作纯滚动角速度ω

> T:=1/2*m*v[O1]^2+1/2*J[O1]*omega^2: #系统的动能

> V:=m*g*(R-r)*(1-cos(theta)): #系统的势能

> V:=subs(cos(theta)=1-1/2*theta^2,V): #微动时,势能

> theta:=A*sin(omega0*t+beta): #θ的变化规律

> Dtheta:=diff(theta,t): #θ的导数

> Tmax:=subs(cos(omega0*t+beta)=1,T): #系统的最大动能

> Vmax:=subs(sin(omega0*t+beta)=1,V): #系统的最大势能

> eq:=Tmax=Vmax: #机械能守恒

> solve({eq},{omega0}); #解方程 ,{} = ω0-() - 6r 6R g - 3r 3R {} = ω0--() - 6r 6R g - 3r 3R 答:圆桶在平衡位置附近作微小振动的固有频率为R r g

R 336r 6-0

--=)(ω 4. 如图4所示弹簧质量系统,作水平方向的自由振动,求小车的固有频率。

图4

解:●建模

系统受回复力:Kx 。小车作自由振动。

● Maple 程序

> restart: #清零

> x:=A*sin(omega0*t+beta): #小车运动的变化规律

> Dx:=diff(x,t): #x 的导数

> T:=1/2*m*(Dx)^2: #系统的动能

> V:=1/2*K*x^2: #系统的势能

> Tmax:=subs(cos(omega0*t+beta)=1,T): #系统的最大动能

> Vmax:=subs(sin(omega0*t+beta)=1,V): #系统的最大势能

> eq1:=Tmax=Vmax: #机械能守恒

> solve({eq1},{omega0}); #解方程

,{} =

ω0m K m {} = ω0-m K m 答:小车在作往复运动的固有频率为m K m 0=

ω 5. 某精密设备用橡胶隔振器隔振,如图5所示。已知系统的固有频率为3.8Hz 。橡胶隔振器的相对阻尼

系数ζ=0.125。如地面振动的垂直分量是正弦振动,振幅为0.002mm,最大振动速度为0.1256m/s 。试

求设备的振幅。

解:●建模 图5

设备受力:mg,F e 。设备作曲线运动。

● Maple 程序

> restart: #清零

>B:=a*sqrt(((1+(2*zeta*lambda)^2) #振幅

/9(1-lambda^2)^2+(2*lambda*zeta)^2)):

> omega:=v/a: #地面振动频率

> p:=2*Pi*f: #系统振动频率

> lambda:=omega/p: #频率比

> v:=0.1256:a:=0.002: #已知条件

f:=3.8:zeta:=0.125:

> B:=evalf(B,4); #垂直振幅数值

:= B .001342

答:此设备的振幅为1.342mm.

6. 一汽车在波形路面上行驶,其模型可以简化为如图6所示的图形。路面的波形可以用函数

x l

d y π2s in =表示,其中振幅mm d 50=,波长m l 8=。汽车的质量kg m 2500=,弹簧的

刚度系数为m kN k /300 。忽略阻尼,求汽车以15m/s 匀速前进时,车体的垂直振幅?

解:●建模

汽车受主动力:mg,F e 。汽车作曲线运动。 图6

● Maple 程序

> restart: #清零

> x:=y*t: #汽车匀速行驶位移

> y[1]:=d*sin(2*Pi*x/l): #路面波形方程

> y[1]:=subs(v=(omaga*l)/(2*Pi),y[1]): #代换

> omega:=(2*Pi*v)/l: #位移激振频率

> omega0:=sqrt(k/m): #系统的固有频率

> s:=omega/omega0: #频率比

> etal:=sqrt(1/(1-s^2)^2): #位移传递率

> b:=etal*d: #车体垂直振幅

> k:=300000:m:=2500:l:=8: #已知条件

> d:=0.050:v:=15: #已知条件

> b:=evalf(b,4); #振幅数值 := b .3184

答:车体的垂直振幅为31.84cm 。

7. 龙门起重机设计中,为避免在连续启动制动过程中引起的振动,要求每一次由于启动过程中或制动过

程中引起的振动的衰减时间不得过长。有如下规定:起重质量不大于50吨的龙门起重机,在纵向水平

振动时,振幅衰减到最大振幅的5%所需的时间应在25~30秒的范围。如图7所示为一15吨的龙门起

重机的示意图,在作纵向水平振动时,等效质量m=27.9kg.s 2

/cm 。水平方向刚度K=2000kg/cm.有实测

得到对数减幅=0.10.试计算衰减时间,问是否符合要求。

解:●建模图7

系统受力:mg,F d。物体作上下的自由振动运动。

●Maple程序

> restart: #清零

> T[d]:=((1/f*delta)*Lambda): #衰减时间

> Lambda:=ln(A[1]/A[j+1]): #对数缩减

> Lambda:=subs((A[1] #代换

/A[j+1]=y,Lambda)):

> f:=(1/(2*Pi))*sqrt(K/m): #固有频率

> K:=2000:m:=27.9: #已知条件

delta:=0.10:y:=100/5:

> f:=evalf(f,4); #固有频率数值

f 1.347

:=

> T[d]:=evalf(T[d],4); #衰减时间

.2224

T

:=

d

答:所求的时间为22.24s在所求区间内满足要求,所以是符合要求的。

8.一个均质的细杆质量为m,长为l,如图所示,两个刚度系数皆为k的弹簧对称的作用在轻质细杆上。试求该系统的固有频率和固有振型。

解:●建模图8

已平衡位置为原点,只考虑沿铅垂方向的位移,分别以弹簧的两个支点的位移X1,X2为系统的两个坐标。

细杆受力mg,F e1和F e2。细杆作平面运动。

●Maple程序

> restart: #清零

> J[C]:=m*l^2/12: #均值细杆绕质心的转动惯量> F[1]:=k*x[1]: #弹簧恢复力F e1

> F[2]:=k*x[2]: #弹簧恢复力F e2

> x[C]:=(x[1]+x[2])/2: #细杆质心的坐标

> phi:=(x[1]-x[2])/d: #细杆绕质心的微小转动

> DDx[C]:=(DDx[1]+DDx[2])/2: #细杆质心加速度

> DDphi:=(DDx[1]-DDx[2])/d: #细杆绕质心微小角加速度

> eq1:=m*DDx[C]=-F[1]-F[2]: #细杆的平面运动微分方程一> eq2:=J[C]*DDphi=-F[1] #细杆的平面运动微分方程二*d/2+F[2]*d/2:

> eq1:=lhs(eq1)-rhs(eq1)=0: #移项

> eq2:=lhs(eq2)-rhs(eq2)=0: #移项

> eq1:=expand(2*eq1/m): #展开

> eq2:=expand(d*eq2/J[C]): #展开

> eq1:=subs(k=m*b/2,eq1): #代换

> eq2:=subs(k=c*(m*l^2)/(6*d^2),eq2): #代换

> x[1]:=A*sin(omega*t+theta): #设解

> x[2]:=B*sin(omega*t+theta): #设解

> DDx[1]:=diff(x[1],t$2): # X1对t的二阶导

> DDx[2]:=diff(x[2],t$2): # X2对t的二阶导

> eq3:=simplify(eq1/sin(omega*t+theta)): #化简

> eq4:=simplify(eq2/sin(omega*t+theta)): #化简

> eq3:=subs(B=A*nu,eq3): #代换

> eq4:=subs(B=A*nu,eq4): #代换

> eq3:=expand(eq3/A): #展开

> eq4:=expand(eq4/A): #展开

> b:=2*k/m: #方程系数

> c:=(6*k*d^2)/(m*l^2): #方程系数

> solve({eq3,eq4},{nu,omega^2}); #解方程

,{}, = ν-1 = ω26k d 2m l 2{}, = ν1 = ω22k m 答:系统的固有频率m k 21=ω,2226ml kd =ω,对称主振型11

11==A B γ和反对称主振型

1-2

22==A B γ。

9. 已知:vt l l -=0,求如图10摆的运动方程。

解:●建模 图9

小球作平面运动自由度f=1

取广义坐标φ

● Maple 程序

> restart: #清零

> x[rho]:=l: #初始状态

> x[phi]:=l*phi: #角度为φ时的位移

> x[rho]:=subs(l=l(t),x[rho]): #代换

> x[phi]:=subs(phi=phi(t),x[phi]): #代换

> v[rho]:=diff(x[rho],t): #关于t 的导数

> v[phi]:=diff(x[phi],t): #关于t 的导数

> V:=vector([v[rho],v[phi]]): #表示为矢量

> v[A]:=sqrt(v[rho]^2+v[phi]^2): #任意点A 速度大小

> T:=1/2*m*v[A]^2: #A 点动能 > T:=subs(diff(phi(t),t)=Dphi, #代换

phi(t)=phi,T):

> T:=collect(T,Dphi): #整理

> T[Dphi]:=diff(T,Dphi): #φ的导数对T 求导

> T[phi]:=diff(T,Dphi): #φ的导数对T 求导

> T[Dphi]:=subs(l=l[0]-v*t, #代换

Dphi=Dphi(t),T[Dphi]): > V:=-m*g*(l[0]-v*t)*cos(phi): #速度表达式

> Q[phi]:=-diff(V,phi): #φ对V 的导数

> eq:=diff(T[Dphi],t)-T[phi]-Q[phi]=0: #微分表达式一般式 > eq:=subs(diff(Dphi(t),t)=DDphi, #代换后的表达式

Dphi(t)=Dphi,eq):

> eq:=(l[0]-v*t)*DDphi-2*v*Dphi

+g*sin(phi)=0; #最终形式

答:摆的运动方程为

()0)sin(2.

..0=+--φ??g v vt l 。 10. 吸引子的仿真。以杜芬方程为例,杜芬方程表示如下:

t A bx

ax x c x Ω=+++cos 3... 解:●建模

把杜芬方程写成标准形式,令.

x y = ??

????????Ω+---==.3...cos t A bx ax cy y y x 求解微分方程

绘制杜芬方程相图

● Maple 程序

> restart: #清零

> with(plots): #加载绘图库

> de1:=diff(x(t),t)=y(t): #杜芬方程标准方程一

>de2:=diff(y(t),t)=-a*x(t) #杜芬方程标准方程二

-b*x(t)^3-c*y(t)+A*cos(Omega*t):

> a:=-1:b:=1:c:=0.15: #给定参数

A:=0.3:Omega:=1:

> duffing:=dsolve({de1,de2,

y(0)=-0.5,x(0)=-1},{x(t),

y(t)},type=numeric,method=lsode): #求解微分方程

>duffplot:=odeplot(duffing, #微分方程求解结果绘图

[x(t),y(t)],0..200,numpoints=4000):

> duffplot; #绘制杜芬方程相图

:= eq = - + () - l 0v t DDphi 2v Dphi g ()sin φ0

二、学习Maple后的心得与体会

Maple是一门非常优秀的计算机数学软件,它在我们的工程学习中用途十分的广泛,特别对于我们学振动的学生来说作用是十分的明显。它涉及到我们的单、双以及多自由度,有阻尼,无阻尼的振动分析,计算中的效果是显著地。

通过学习Maple,我不仅学到了一些编程的思想,以及一些模型的建设,而且还更一步加固了理论力学的学习,同时,Maple中的一些英语,还使我学到了许多英语单词。

虽然现在我刚刚学到了Maple的一点皮毛,但已经对我的学习提供了很大的便利。我相信有Maple结合理论力学这条路是正确的而且是光明的,我一定要坚持下去,利用Maple更好的学习理论力学,而我相信Maple的作用远不止于此,我还要努力学习它的其他的功能,使其能够更好的为我今后的学习工作生活服务。

因而,在此应感谢李老师在这半学年对我们的悉心教诲。

哈工大材料力学性能大作业-铁碳马氏体的强化机制

铁碳马氏体的强化机制 摘要:钢中铁碳马氏体的最主要特性是高强度、高硬度,其硬度随碳含量的增加而升高。马氏体的强化机制是多种强化机制共同作用的结果。主要的强化机制包括:相变强化、固溶强化、时效强化、形变强化和综合强化等。本文介绍了铁碳马氏体及其金相组织和力学特性,着重深入分析马氏体的强化机制。 关键词:铁碳马氏体强化机制 1.马氏体的概念,组织及力学特性 1.1马氏体的概念 马氏体,也有称为麻田散铁,是纯金属或合金从某一固相转变成另一固相时的产物;在转变过程中,原子不扩散,化学成分不改变,但晶格发生变化,同时新旧相间维持一定的位向关系并且具有切变共格的特征。 马氏体最先在淬火钢中发现,是由奥氏体转变成的,是碳在α铁中的过饱和固溶体。以德国冶金学家阿道夫·马登斯(A.Martens)的名字命名;现在马氏体型相变的产物统称为“马氏体”。马氏体的开始和终止温度,分别称为M始点和M终点;钢中的马氏体在显微镜下常呈针状,并伴有未经转变的奥氏体(残留奥氏体);钢中的马氏体的硬度随碳量增加而增高;高碳钢的马氏体的硬度高而脆,而低碳钢的马氏体具有较高的韧性。 1.3马氏体的力学特性 铁碳马氏体最主要的性质就是高硬度、高强度,其硬度随碳含量的增加而增加。但是当碳含量达到6%时,淬火钢的硬度达到最大值,这是因为碳含量进一步提高,虽然马氏体的硬度会提高但是由于残余奥氏体量的增加,使钢的硬度反而下降。 2.铁碳马氏体的晶体学特性和金相形貌 钢经马氏体转变形成的产物。绝大多数工业用钢中马氏体属于铁碳马氏体,是碳在体心立方结构铁中的过饱和固溶体。 铁碳合金的奥氏体具有很宽的碳含量范围,所形成的马氏体在晶体学特性、亚结构和金相形貌方面差别很大。可以把铁碳马氏体按碳含量分为5个组别(见表)【1】。

材料力学上机大作业(哈工大)

H a r b i n I n s t i t u t e o f T e c h n o l o g y 材料力学上机报告 课程名称:材料力学 设计题目:二向应力状态分析 院系:XXXXXX 班级:XXXXXX 设计者:XXXXXX 学号:XXXXXX 设计时间:2013.06.18 哈尔滨工业大学

二向应力状态分析 一:课题要求 1.输入:任意一点的应力状态:(σx、σy、τxy);某截面方位角α 2.输出:输入点的主应力(σ1、σ2、σ3),方位角α斜截面上的应力σ α、τα。 及主方向角α 3.画出应力圆示意图。 4.程序运行时为界面显示形式。 二:程序框图 三:所编程序 x=str2double(get(handles.edit1,'string')); y=str2double(get(handles.edit2,'string')); xy=str2double(get(handles.edit3,'string'));

M=str2double(get(handles.edit4,'string')); %将窗口输入值分别赋给x,y,xy,M b=sqrt((x/2-y/2)^2+xy^2);x1=(x+y)/2+b;x3=(x+y)/2-b; x2=0; if x1<0 x2=x1; x1=0; end t=(x1-x3)/2; M=M*pi/180; b1=(x+y)/2+(x-y)*cos(2*M)/2-xy*sin(2*M); b2=(x-y)*sin(2*M)/2+xy*cos(2*M); b3=90*atan((-2*xy)/(x+y))/pi;%计算输出的主切应力大小、方向和截面上的应力并赋值set(handles.edit5,'string',x1); set(handles.edit6,'string',x2); set(handles.edit7,'string',x3); set(handles.edit9,'string',t); set(handles.edit10,'string',b3); set(handles.edit11,'string',b1); set(handles.edit12,'string',b2);%在输出窗口显示主切应力大小、方向和截面上应力 b4=sqrt(b.^2+t.^2); v1=(x+y)/2-b4:0.001:(x+y)/2+b4; b11=sqrt(b4.^2-(v1-(x+y)/2).^2);b12=-sqrt(b4.^2-(v1-(x+y)/2).^2); %绘制应力圆上的点 axes(handles.axes1); %选择应力圆的输出地址 plot(v1,b11,v1,b12);grid on%绘制应力圆 以上程序为在matlab中使用GUI编程时的主代码,界面代码请见m文件。四:运行过程、结果和应力圆 在matlab中打开m文件,按F5使程序运行,显示窗口如下: 左侧为输入窗口,中间为相应的主切应力和斜截面应力的输出窗口,右侧为二向

(2015年更新版)材料力学网上作业题参考答案

东北农业大学网络教育学院 材料力学网上作业题(2015更新版) 绪论 一、名词解释 1.强度 2. 刚度 3. 稳定性 4. 变形 5. 杆件 6.板或壳 7.块体 二、简答题 1.构件有哪些分类? 2. 材料力学的研究对象是什么? 3. 材料力学的任务是什么? 4. 可变形固体有哪些基本假设? 5. 杆件变形有哪些基本形式? 6. 杆件的几何基本特征? 7.载荷的分类? 8. 设计构件时首先应考虑什么问题?设计过程中存在哪些矛盾? 第一章轴向拉伸和压缩 一、名词解释 1.内力 2. 轴力 3.应力 4.应变 5.正应力 6.切应力 7.伸长率 8.断面收缩率 9. 许用应力 10.轴 向拉伸 11.冷作硬化 二、简答题 1.杆件轴向拉伸或压缩时,外力特点是什么? 2.杆件轴向拉伸或压缩时,变形特点是什么? 3. 截面法求解杆件内力时,有哪些步骤? 4.内力与应力有什么区别? 5.极限应力与许用应力有什么区别? 6.变形与应变有什么区别? 7.什么是名义屈服应力? 8.低碳钢和铸铁在轴向拉伸时,有什么样的力学特性? 9.强度计算时,一般有哪学步骤? 10.什么是胡克定律? 11.表示材料的强度指标有哪些? 12.表示材料的刚度指标有哪些? 13.什么是泊松比? 14. 表示材料的塑性指标有哪些? 15.拉压杆横截面正应力公式适用范围是什么? 16.直杆轴向拉伸或压缩变形时,在推导横截面正应力公式时,进行什么假设? 三、计算题 1. 试用截面法求下列各杆指定截面的轴力。

2. 试用截面法求下列各杆指定截面的轴力。 3. 试用截面法求下列各杆指定截面的轴力。 4. 试用截面法求下列各杆指定截面的轴力。 5. 试用截面法求下列各杆指定截面的轴力。 6. 试用截面法求下列各杆指定截面的轴力。 7 高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;

材料力学重修课大作业

一、概念性题型 1.据均匀性假设,可认为构件的下列各量中的某个量在各点处都相同: (A ) 应力; (B )应变; (C ) 材料的弹性常数; (D )位移; 正确答案是 。 2.根据各向同性假设,可认为构件的下列各量中的某一种量在各方向都相同: (A) 应力; (B ) 应变; (C )材料的弹性常数; (D ) 位移; 正确答案是 。 3.关于确定截面内力的截面法的适用范围,有下列四种说法: (A) 仅适用于等截面直杆; (B) 仅适用于直杆承受基本变形; (C) 适用于不论基本变形还是组合变形,但限于直杆的横截面; (D) 适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况; 正确答案是 。 4.判断下列结论的正确性: (A ) 杆件某截面上的内力是该截面上应力的代数和; (B ) 杆件某截面上的应力是该截面上内力的平均值; (C ) 应力是内力的集度; (D ) 内力必大于应力; 正确答案是 。 5.甲、乙两杆,几何尺寸相同,轴向拉力P 相同,材料不同,它们的应力和变形有四种可能: (A ) 应力σ和变形l ?相同; (B ) 应力σ不同和变形l ?相同; (C ) 应力σ相同和变形l ?不同; (D ) 应力σ不同和变形l ?不同; 正确答案是 。 6.关于下列结论: 1) 应变分为线应变和角应变 ; 2) 应变为无量纲量; 3) 若物体的各部分均无变形,则物体内各点的应变均为零; 4) 若物体内各点的应变均为零,则物体无位移; 现有四种答案:(A )1、2对;(B )3、4对; (C )1、2、3对; (D )全对; 正确答案是 。 7.等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为l ,截面积为A ,材料弹性模量为E ,泊松比为ν,拉 伸理论告诉我们,影响该杆横截面上应力的因素是: (A )E 、ν、P ; (B )l 、A 、P ; (C )l 、A 、E 、ν、P ; (D ) A 、P ; 正确答案是 。 8.低碳钢试件拉伸时,其横截面上的应力公式 A N =σ; (A ) 只适用于σp σ≤;(B) 只适用于θσσ≤;(C ) 只适用于s σσ≤; (D ) 在试件拉断前都适用; 正确答案是 。 9.当低碳钢试件的试验应力s σσ=时,试件将: (A ) 完全失去承载能力;(B ) 破断; (C ) 发生局部颈缩现象;(D ) 产生很大的塑性变形;正确答案是 。 10.伸长率(延伸率)公式 ()?-=l l 1δ100% 中 1l 指的是什么? (A ) 断裂时试件的长度; (B ) 断裂后试件的长度; (C ) 断裂时试验段的长度; (D ) 断裂后试验段的长度; 正确答案是 。 11.低碳钢拉伸经过冷作硬化后,以下四种指标中哪种得到提高: (A ) 强度极限; (B ) 比例极限; (C ) 断面收缩率; (D ) 伸长率; 正确答案是 。 12.脆性材料具有以下哪种力学性质: (A ) 试件拉伸过程中出现屈服现象; (B ) 压缩强度极限比拉伸强度极限大得多; (C ) 抗冲击性能比塑性材料好; (D ) 若构件因开孔造成应力集中现象,对强度无明显影响; 正确答案是 。

材料力学复习题(附答案)

一、填空题 1.标距为100mm的标准试件,直径为10mm,拉断后测得伸长后的标距为123mm,缩颈处的最小直径为6.4mm,则该材料的伸长率δ=23%,断面收缩率ψ=59.04%。 2、构件在工作时所允许产生的最大应力叫许用应力σ,极限应力与许用应力的比叫安全系数n。 3、一般来说,脆性材料通常情况下以断裂的形式破坏,宜采用第一二强度理论。塑性材料在通常情况下 以流动的形式破坏,宜采用第三四强度理论。 4、图示销钉的切应力τ=(P πdh ),挤压应力σbs=( 4P π(D2-d2) ) (4题图)(5题图) 5、某点的应力状态如图,则主应力为σ1=30Mpa,σ2=0,σ3=-30Mpa。 6、杆件变形的基本形式有拉伸或压缩、剪切、扭转和弯曲四种。 7、低碳钢在拉伸过程中的变形可分为弹性阶段、屈服阶段、强化阶段和局部变形阶段四个阶段。 8、当切应力不超过材料的剪切比例极限时,切应变γ和切应力τ成正比。 9、工程实际中常见的交变应力的两种类型为对称循环,脉动循环。 10、变形固体的基本假设是:连续性假设;均匀性假设;各向同性假设。 11、低碳钢拉伸时大致分为以下几个阶段:弹性;屈服;强化;缩颈。 12、通常计算组合变形构件应力和变形的过程是:先分别计算每种基本变形各自引起的应力和变形,然后再叠加。这样做的前提条件是构件必须为线弹性、小变形杆件。 13、剪切胡克定律的表达形式为τ=Gγ。 14、通常以伸长率 <5%作为定义脆性材料的界限。 15、提高梁弯曲刚度的措施主要有提高抗弯刚度EI、减少梁的跨度、改善梁的载荷作用方式。 16、材料的破坏按其物理本质可分为屈服和断裂两类。 二、选择题 1、一水平折杆受力如图所示,则AB杆的变形为(D)。 (A)偏心拉伸;(B)纵横弯曲;(C)弯扭组合;(D)拉弯组合。 2、铸铁试件试件受外力矩Me作用,下图所示破坏情况有三种,正确的破坏形式是(A) 3、任意图形的面积为A,Z0轴通过形心O,Z1轴与Z0轴平行,并相距a,已知图形对Z1轴的惯性矩I1,则 对Z0轴的惯性矩I Z0为:(B)

工程力学大作业1(答案)

大作业(一) 一、填空题 1、杆件变形的基本形式有(轴向拉伸和压缩)、(剪切)、(扭转)和(弯曲) 2、材料力学所研究的问题是构件的(强度)、(刚度)和(稳定性)。 3、脆性材料的抗压能力远比抗拉能力(强)。 4、同一种材料,在弹性变形范围内,横向应变ε/和纵向应变ε之间有如下关系:(ε/= -με) 5、(弹性模量E )是反映材料抵抗弹性变形能力的指标。 6、(屈服点σs )和(抗拉强度σb )是反映材料强度的两个指标 7、(伸长率δ)和(断面收缩率ψ)是反映材料塑性的指标,一般把(δ>5%)的材料称为塑性材料,把(δ<5%)的材料称为脆性材料。 8、应力集中的程度可以用(应力集中因数K )来衡量 9、(脆性材料)对应力集中十分敏感,设计时必须考虑应力集中的影响 10、挤压面是外力的作用面,与外力(垂直),挤压面为半圆弧面时,可将构件的直径截面视为(挤压面) 11、如图所示,铆接头的连接板厚度t=d ,则铆钉剪应力τ= ( 2 2d P πτ= ) ,挤压应力σbs =( td P bs 2=σ )。 P/2 P/2 二、选择题 1、构成构件的材料是可变形固体,材料力学中对可变形固体的基本假设不包括(C ) A 、均匀连续性 B 、各向同性假设 C 、平面假设 D 、小变形假设 2、下列力学性能指标中,(B )是强度指标 A 、弹性模量E B 、屈服强度s σ C 、伸长率δ D 、许用应力σ 3、下列力学性能指标中,(C )是反映塑性的指标 A 、比例极限p σ B 、抗拉强度b σ C 、断面收缩率ψ D 、安全系数n 4、下列构件中,( C )不属于轴向拉伸或轴向压缩 A 、 B 、 C 、 D 、

材料力学试题及答案完整版

材料力学试题及答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

材料力学-模拟试题 一、单项选择题 1. 截面上的全应力的方向( ) A 、平行于截面 B 、垂直于截面 C 、可以与截面任意夹角 D 、与截面无关 2. 脆性材料的延伸率( ) A 、小于5% B 、小于等于5% C 、大于5% D 、大于等于5% 3. 如图所示简支梁,已知C 点转角为θ。在其它条件不变的情况下,若将荷载F 减小一半,则C 点的转角为( ) A 、θ B 、θ C 、θ D 、2θ 4.危险截面是()所在的截面。 A 、最大面积 B 、最小面积 C 、最大应力 D 、最大内力 5. 图示单元体应力状态,沿x 方向的线应变εx 可表示为( ) A 、E y σ B 、)(1 y x E μσσ- C 、)(1x y E μσσ- D 、G τ 6. A 、线位移 B 、转角 C 、线应变 D 7. 塑性材料的名义屈服应力使用( ) A 、σS 表示 B 、σb 表示 C 、σp 表示 D 、σ表示 8.拉(压)杆应力公式A F N =σ的应用条件是() A 、应力在比例极限内 B 、应力在屈服极限内 C 、外力合力作用线必须沿着杆的轴线 D 、杆件必须为矩形截面杆 9.下列截面中,弯曲中心与其形心重合者是() A 、Z 字形型钢 B 、槽钢 C 、T 字形型钢 D 、等边角钢 10. 如图所示简支梁,已知C 点转角为θ。在其它条件不变的情况下,若将杆长增加一倍,则C 点的转角为( ) A 、2θ B 、4θ C 、8θ D 、16θ x

材料力学大作业-组合截面几何性质计算

Harbin Institute of Technology 材料力学电算大作业 课程名称:材料力学 设计题目:组合截面几何性质计算 作者院系: 作者班级: 作者姓名: 作者学号: 指导教师: 完成时间:

一、软件主要功能 X4,X5,X6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置X与面积的乘积 Y4,Y5,Y6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置Y与面积的乘积 Xc,Yc是总截面的形心坐标 Ix1,Ix2,Ix3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x轴平行的轴的惯性矩 Iy1,Iy2,Iy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与y轴平行的轴的惯性矩 Ixy1,Ixy2,Ixy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x,y轴平行的两轴的惯性积 a是通过形心的主轴与x轴的夹角 Imax,Imin分别是截面对形心主轴的主惯性矩 软件截图: 二、程序源代码 Dim n1 As Double Dim d1(10) As Double Dim X1(10) As Double Dim Y1(10) As Double Dim n2 As Double Dim d2(10) As Double

Dim d3(10) As Double Dim X2(10) As Double Dim Y2(10) As Double Dim n3 As Double Dim h(10) As Double Dim d(10) As Double Dim X3(10) As Double Dim Y3(10) As Double Dim S1 As Double, S2 As Double, S3 As Double Dim X4 As Double, Y4 As Double, X5 As Double, Y5 As Double, X6 As Double, Y6 As Double Dim Xc As Double, Yc As Double Dim Ix1 As Double, Iy1 As Double, Ix2 As Double, Iy2 As Double, Ix3 As Double, Iy3 As Double, Imax As Double, Imin As Double Dim Ixy1 As Double, Ixy2 As Double, Ixy3 As Double Dim a As Double Private Sub Text1_Change() n1 = Val(Text1.Text) For i = 1 To n1 d1(i) = Val(InputBox("输入第" & (i) & "个圆的直径")) X1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n1 S1 = S1 + 3.14159 * d1(i) * d1(i) / 4 X4 = X4 + X1(i) * 3.14159 * d1(i) * d1(i) / 4 Y4 = Y4 + Y1(i) * 3.14159 * d1(i) * d1(i) / 4 Next i End Sub Private Sub Text2_Change() n2 = Val(Text2.Text) For i = 1 To n2 d2(i) = Val(InputBox("输入第" & (i) & "个圆环的外径")) d3(i) = Val(InputBox("输入第" & (i) & "个圆环的内径")) X2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n2 S2 = S2 + 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 X5 = X5 + X2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Y5 = Y5 + Y2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Next i End Sub Private Sub Text3_Change()

材料力学试题及答案

材料力学-模拟试题 一、单项选择题 1. 截面上的全应力的方向( ) A 、平行于截面 B 、垂直于截 面 C 、可以与截面任意夹角 D 、与截面无关 2. 脆性材料的延伸率( ) A 、小于5% B 、小于等于5% C 、大于5% D 、大于等于5% 3. 如图所示简支梁,已知C 点转角为θ。在其它条件不变的情况下,若将荷载F 减小一半,则C 点的转角为( ) A 、θ B 、θ C 、θ D 、2θ 4.危险截面是()所在的截面。 A 、最大面积 B 、最小面积 C 、最大应力 D 、最大内力 5. 图示单元体应力状态,沿x 方向的线应变εx 可表示为( ) A 、 E y σ B 、 )(1 y x E μσσ- C 、)(1 x y E μσσ- D 、G τ 6. 描述构件上一截面变形前后的夹角叫( ) A 、线位移 B 、转角 C 、线应变 D 7. 塑性材料的名义屈服应力使用( ) A 、σS 表示 B 、σb 表示 C 、σp 表示 D 、σ表示 8.拉(压)杆应力公式A F N =σ的应用条件是() A 、应力在比例极限内 B 、应力在屈服极限内 C 、外力合力作用线必须沿着杆的轴线 。 D 、杆件必须为矩形截面杆 9.下列截面中,弯曲中心与其形心重合者是() A 、Z 字形型钢 B 、槽钢 C 、T 字形型钢 D 、等边角钢 10. 如图所示简支梁,已知C 点转角为θ。在其它条件不变的情况下,若将杆长增加一倍,则C 点的转角为( )

A 、2θ B 、4θ C 、8θ D 、16θ . 二、填空题 1. 用主应力表示的第四强度理论的相当应力是 。 2. 已知自由落体冲击问题的动荷系数K d ,对应静载荷问题的最大位移为Δjmax ,则冲击问题的最大位移可以表示为 。 3. 图示木榫联接。横截面为正方形,边长为a ,联接处长度为2t 。则木榫联接处受剪切面 的名义切应力等于 。 ] 4. 主平面上的切应力等于 。 5. 功的互等定理的表达式为 。 6.自由落体冲击问题的动荷系数为j d h K ?+ +=211,其中h 表示 。 : 7. 交变应力循环特征值r 等于 。 8.变截面梁的主要优点是________________。等强度梁的条件是_____________。 9.一受拉弯组合变形的圆截面钢轴,若用第三强度理论设计的直径为3d ,用第四强度理论设计的直径为4d ,则3d ___4d 。 10.若材料服从胡克定律,且物体的变形满足小变形,则该物体的变形能与载荷之间呈现____________关系。 三、计算题 1.水轮机主轴输出功率 P = 37500 kW ,转速n = 150 r /min ,叶轮和主轴共重 W = 300 kN ,轴向推力F = 5000 kN ,主轴内外径分别为 d =350 mm ,D = 750 mm ,[ ] = 100 MPa ,按第四强度理论校核主轴的强度。(12分) ! F F 2t t a

材料力学练习题及答案-全

材料力学练习题及答案-全

第2页共52页 学年第二学期材料力学试题(A 卷) 一、 选择题(20分) 1、图示刚性梁AB 由杆1和杆2支承,已知两杆的材料相同,长度不等,横截面积分别为A 1和A 2,若载荷P 使刚梁平行下移,则其横截面面积( )。 A 、A 1〈A 2 B 、A 1 〉A 2 C 、A 1=A 2 D 、A 1、A 2为任意 2、建立圆轴的扭转应力公式τρ=M ρρ/I ρ时需考虑下列因素中的哪几个?答:( ) (1) 扭矩M T 与剪应力τρ的关系M T =∫A τρρdA (2) 变形的几何关系(即变形协调条件) (3) 剪切虎克定律 (4) 极惯性矩的关系式I T =∫A ρ2dA A 、(1) B 、(1)(2) C 、(1)(2)(3) D 、全部 3、二向应力状态如图所示,其最大主应力σ1=( ) A 、σ B 、2σ C 、3σ D 、4σ 4、高度等于宽度两倍(h=2b)的矩形截 题 号 一 二 三 四 五 六 总分 得 分 题一、 题

第3页共52页

第4页共52页 四、电动机功率为9kW ,转速为715r/min ,皮带轮直径D =250mm ,主轴外伸部分长度为l =120mm ,主轴直径d =40mm ,〔σ〕=60MPa ,用第三强度理论校核轴的强度。(15分) 五、重量为Q 的重物自由下落在图示刚架C 点,设刚架的抗弯刚度为EI ,试求冲击时刚架D 处的垂直位移。(15分) 六、结构如图所示,P=15kN ,已知梁和杆为一种材料,E=210GPa 。梁ABC 的惯性矩I=245cm 4,等直圆杆BD 的直径D=40mm 。规定杆BD 的稳定安全系数n st =2。 求○1BD 杆承受的压力。 ○2用欧拉公式判断BD 杆是否失稳。(20分) 六题 五 四题 工程技术学院 _______________专业 班级 姓名____________ 学号

材料力学作业和答案

材料力学课程作业1<本科) 作业涉及教案内容:第一、二章 一、问答题: 1.材料力学的基本任务是什么?答:主要研究构件在外力作用下的变形、受力与破坏或失效的规律,为合理设计构件提供有关强度、刚度与稳定性分析的基本理论与方法。b5E2RGbCAP 2.材料力学对研究对象所做的基本假设是什么?答:1。连续性假设;2。均匀性假设。3。各向同性假设。 3、试简述材料力学中求解内力的基本方法?答:截面法。 4、试画出固体材料低碳钢轴向拉伸实验的应力应变曲线,并标明变形过程中各变 形阶段的极限应力?1。线性阶段的极限应力称为比例极限。用表示;p 2.屈服阶段的极限应力称为屈服应力或屈服极限。s 3.硬化阶段的极限应力称为强度极限。B 4缩径阶段 二、填空题: 1.计算内力的基本方法是_截面法________。 2.圆轴扭转时,轴内除轴线上各点处于________应力状态外,其余各点均处于___________应力状态。p1EanqFDPw 3、由杆件截面骤然变化<或几何外形局部不规则)而引起的局部应力骤然增加的

现象,称为应力聚中。 4.衡量固体材料强度的两个重要指标是轴力与扭矩。 三、选择题: 1.材料力学中内力<即轴力、扭矩)的符号规则是根据构件的 A 来规定的。 A.变形 B.运动 C.平衡 D.受载情况 2.材料力学求内力的基本方法是 C。 A.叠加法 B.能量法 C.截面法 D.解读法 3.材料力学中两个最基本力学要素是 D。 A.力和力偶 B.力和力矩 C.内力和外力 D.应力和应变4.长度和横截面面积相同的两根杆件,一为钢杆,一为铜杆,若在相同的轴向拉力作用下,_____B_______。<杆件的轴线方向为x轴)DXDiTa9E3d A 两杆的应力、应变均相同 B两杆应力相同,应变不同 C两杆的应力,应变均不相同 D两杆应力不同,应变相同 5.材料许用应力,式中为极限应力,对脆性材料应选 ____B________。 A比例极限B弹性极限C屈服极限D强度极限 6.不属于材料力学的基本假设的是 D 。 A. 连续性; B. 均匀性; C. 各向同性; D. 各向异性; 7.以下说法错误的是C 。

材料力学大作业03。

材料力学大作业03 1.压杆稳定是不是就是偏心受压(压弯组合),不是的话,它和大偏心受压,小偏心受压有什么区别。 答:压杆稳定是指当受拉杆件的应力达到屈服极限或强度极限时,将引起塑性变形或断裂。长度较小的受压短柱也有类似的现象,例如低碳碳钢短柱被压扁,铸铁短柱被压碎。这些都是由于强度不足引起的失效。大偏心受压的破坏就是受拉破坏,小偏心就是受压破坏。大小偏心受压破坏原因就是,大偏心由于压力偏离构件轴心比小偏心要远,受压产生的弯矩比较大,构件就相当于是受弯破坏的。小偏心的偏心距比较小,距离轴心近(可以就理解为压力作用在轴心上),构件就是受压破坏的。 2.简述圣维南原理及其应用。 答:圣维南原理是弹性力学的基础性原理,其内容是:分布于弹性体上一小块面积(或体积)内的荷载所引起的物体中的应力,在离荷载作用区稍远的地方,基本上只同荷载的合力和合力矩有关;荷载的具体分布只影响荷载作用区附近的应力分布。还有一种等价的提法:如果作用在弹性体某一小块面积(或体积)上的荷载的合力和合力矩都等于零,则在远离荷载作用区的地方,应力就小得几乎等于零。 圣维南原理在实用上和理论上都有重要意义。在解决具体问题时,如果只关心远离荷载处的应力,就可视计算或实验的方便,改变荷载的分布情况,不过须保持它们的合力和合力矩等于原先给定的值。圣维南原理是定性地说明弹性力学中一大批局部效应的第一个原理。 3.简述应力集中及其应用。 答:应力集中:应力集中是指结构或构件的局部区域的最大应力值比平均应力值高的现象。应用:自行车内胎被刺破后,可用橡胶补块补块一般剪成圆形或椭圆形,而非正方形,且补的边缘剪成斜茬形下面(与内胎粘合面)宽,补块的边缘剪成斜茬形使整个内胎平滑降低应力集中应数,避免在运动中由于应力集中出现补快脱落的情况。 4.简述塑性材料低碳钢受力变形的几个阶段,及其表现。

大学材料力学习题及答案(题库)

一.是非题:(正确的在括号中打“√”、错误的打“×”) (60小题) 1.材料力学研究的主要问题是微小弹性变形问题,因此在研究构件的平衡与运动时,可不计构件的变形。( √ ) 2.构件的强度、刚度、稳定性与其所用材料的力学性质有关,而材料的力学性质又是通过试验测定的。 ( √ ) 3.在载荷作用下,构件截面上某点处分布内力的集度,称为该点的应力。(√ ) 4.在载荷作用下,构件所发生的形状和尺寸改变,均称为变形。( √ ) 5.截面上某点处的总应力p 可分解为垂直于该截面的正应力σ和与该截面相切的剪应力τ,它们的单位相同。( √ ) 6.线应变ε和剪应变γ都是度量构件内一点处变形程度的两个基本量,它们都是无量纲的量。( √ ) 7.材料力学性质是指材料在外力作用下在强度方面表现出来的性能。( ) 8.在强度计算中,塑性材料的极限应力是指比例极限p σ,而脆性材料的极限应力是指强度极限b σ。( ) 9.低碳钢在常温静载下拉伸,若应力不超过屈服极限s σ,则正应力σ与线应变ε成正比,称这一关系为拉伸(或压缩)的虎克定律。( ) 10.当应力不超过比例极限时,直杆的轴向变形与其轴力、杆的原长成正比,而与横截面面积成反比。( √ ) 11.铸铁试件压缩时破坏断面与轴线大致成450,这是由压应力引起的缘故。( ) 12.低碳钢拉伸时,当进入屈服阶段时,试件表面上出现与轴线成45o 的滑移线,这是由最大剪应力max τ引起的,但拉断时截面仍为横截面,这是由最大拉应力max σ引起的。( √ ) 13.杆件在拉伸或压缩时,任意截面上的剪应力均为零。( ) 14.EA 称为材料的截面抗拉(或抗压)刚度。( √ ) 15.解决超静定问题的关键是建立补充方程,而要建立的补充方程就必须研究构件的变形几何关系,称这种关系为变形协调关系。( √ ) 16.因截面的骤然改变而使最小横截面上的应力有局部陡增的现象,称为应力集中。(√ ) 17.对于剪切变形,在工程计算中通常只计算剪应力,并假设剪应力在剪切面内是均匀分布的。( ) 18.挤压面在垂直挤压平面上的投影面作为名义挤压面积,并且假设在此挤压面积上的挤压应力为均匀分布的。( ) 19.挤压力是构件之间的相互作用力是一种外力,它和轴力、剪力等内力在性质上是不同的。( ) 20.挤压的实用计算,其挤压面积一定等于实际接触面积。( ) 21.园轴扭转时,各横截面绕其轴线发生相对转动。( ) 22.薄壁圆筒扭转时,其横截面上剪应力均匀分布,方向垂直半径。( ) 23.空心圆截面的外径为D ,内径为d ,则抗扭截面系数为16 16 3 3 P d D W ππ- = 。( ) 24.静矩是对一定的轴而言的,同一截面对不同的坐标轴,静矩是不相同的,并且它们可以为正,可以为负,亦可以为零。( ) 25.截面对某一轴的静矩为零,则该轴一定通过截面的形心,反之亦然。 ( ) 26.截面对任意一对正交轴的惯性矩之和,等于该截面对此两轴交点的极惯性矩,

材料力学试题及答案

一、一结构如题一图所示。钢杆1、2、3的横截面面积为A=200mm 2,弹性模量E=200GPa ,长度l =1m 。制造时3杆短了△=0.8mm 。试求杆3和刚性梁AB 连接后各杆的内力。(15分) 二、题二图所示手柄,已知键的长度30 mm l =,键许用切应力[]80 MPa τ=,许用挤压应力[σ 三、题三图所示圆轴,受e M 作用。已知轴的许用切应力[]τ、切变模量G ,试求轴直径d 。 (15分) 五、分)

六、如题六图所示,变截面悬臂梁受均布载荷q 作用,已知q 、梁长l 及弹性模量E 。试用积分法求截面A 的挠度w A 和截面C 的转角θC 。(15分) 七、如图所示工字形截面梁AB ,截面的惯性矩672.5610z I -=?m 4,求固定端截面翼缘和腹板交界处点a 的主应力和主方向。(15分) 一、(15分) (1)静力分析(如图(a )) F F F 图(a ) ∑=+=231,0N N N y F F F F (a ) ∑==31,0N N C F F M (b ) (2)几何分析(如图(b ) ) 50kN A B 0.75m

1 l ?2 l ?3 l ? 图(b ) ?=?+?+?3212l l l (3)物理条件 EA l F l N 11= ?,EA l F l N 22=?,EA l F l N 33=? (4)补充方程 ?=++EA l F EA l F EA l F N N N 3212 (c ) (5)联立(a )、(b )、(c )式解得: kN F kN F F N N N 67.10,33.5231=== 二、(15分) 以手柄和半个键为隔离体, S 0, 204000O M F F ∑=?-?= 取半个键为隔离体,bs S 20F F F == 由剪切:S []s F A ττ=≤,720 N F = 由挤压:bs bs bs bs [][], 900N F F A σσ=≤≤ 取[]720N F =。 三、(15分) e A B M M M += 0AB ?=, A B M a M b ?=? 得 e B a M M a b =+, e A b M M a b =+ 当a b >时 d ≥b a >时 d ≥ 。 四、(15分) F

材料力学大二

材大二:应力与应变分析 题目 材大2-1结构内某点的空间应力状态如图1所示,试计算该点主应力及最大切应力,并按第四强度理论求出该点的相当应力。 图1大2-1 图2大2-2 材大2-2单元体应力状态如图2所示,图中应力单位为MPa。求该点的三个主应力和最大切应力。 材大2-3某单元体如图所示,试利用应力圆的几何关系求: (1) 指定截面上的应力; (2) 主应力的数值。 图2大2-2 图12-41习12-1 材大2-4(习12-1)求如图12-41所示单元体的主应力,并在单元体上标出其作用面的位置。 图12-42习12-2 、两点的应力状态如图12-42所示,试求各点的主应力和最大剪材大2-5(习12-2)A B 应力。 材大2-6(习12-3)已知应力状态如图12-43所示,试求主应力及其方向角,并确定最大剪应力值。

图12-43习12-3 图12-44习12-4 材大2-7(习12-4)如图12-44所示单元体,求: (1)指定斜截面上的应力; (2)主应力大小及方向,并将平面标在单元体图上。 材大2-8(习12-5)如图12-45所示结构中,11kN F =,20.5kN F =,e 1kN m M =?, 50mm d =,求A 点的主应力。 图12-45习12-5 图12-46习12-6 材大2-9(习12-6)某点的应力状态如图12-46所示,求该点的主应力及最大剪应力。 材大2-10(习12-7)如图12-47所示,已知单元体的泊松比0.25μ=,=200GPa E 。试求: (1)主应力; (2)最大剪应力; (3)1σ方向的应变max ε。 图12-47习12-7 图12-49习12-9 材大2-11(习12-9)某点应力状态如图12-49所示。试求该点的主应力及最大剪应力,并画出三向应力圆。 材大2-12(习12-10)直径为d 的实心圆轴,受e M 作用如图12-50所示。测得轴表面A 点与轴线成-45方向的线应变ε,试导出用e M d ε、、表示的剪切弹性模量G 的表达式。 图12-50习12-10 图12-51习12-11 材大2-13 (习12-11)如图12-51所示,直径D 的圆轴,两端受扭转力偶e M 的作用。今测得与轴线成45方向的线应变45ε。已知材料的弹性模量为E ,泊松比μ,求e M 的表达式。

第五版_材料力学试题及答案

2010—2011材料力学试题及答案A 一、单选题(每小题2分,共10小题,20分) 1、 工程构件要正常安全的工作,必须满足一定的条件。下列除( )项,其他各项是必须满足的条件。 A 、强度条件 B 、刚度条件 C 、稳定性条件 D 、硬度条件 2、内力和应力的关系是( ) A 、内力大于应力 B 、内力等于应力的代数和 C 、内力是矢量,应力是标量 D 、应力是分布内力的集度 3、根据圆轴扭转时的平面假设,可以认为圆轴扭转时横截面( )。 A 、形状尺寸不变,直径线仍为直线。 B 、形状尺寸改变,直径线仍为直线。 C 、形状尺寸不变,直径线不保持直线。 D 、形状尺寸改变,直径线不保持直线。 4、建立平面弯曲正应力公式z I My =σ,需要考虑的关系有( )。 A 、平衡关系,物理关系,变形几何关系; B 、变形几何关系,物理关系,静力关系; C 、变形几何关系,平衡关系,静力关系; D 、平衡关系, 物理关系,静力关系; 5、利用积分法求梁的变形,不需要用到下面那类条件( )来确定积分常数。 A 、平衡条件。 B 、边界条件。 C 、连续性条件。 D 、 光滑性条件。 6、图示交变应力的循环特征r 、平均应力m σ、应力幅度 a σ分别为( )。 A -10、20、10; B 30、10、20; C 31-、20、10; D 31-、10、20 。

7、一点的应力状态如下图所示,则其主应力1σ、2σ、3σ分别为()。 A 30MPa、100 MPa、50 MPa B 50 MPa、30MPa、-50MPa C 50 MPa、0、-50Mpa、 D -50 MPa、30MPa、50MPa 8、对于突加载的情形,系统的动荷系数为()。 A、2 B、3 C、4 D、 5 9、压杆临界力的大小,()。 A 与压杆所承受的轴向压力大小有关; B 与压杆的柔度大小有关; C 与压杆材料无关; D 与压杆的柔度大小无关。 10、利用图乘法计算弹性梁或者刚架的位移,要求结构满足三个条件。以下那个条件不是必须的() A、EI为常量 B、结构轴线必须为直线。 C、M图必须是直线。 D、M和M至少有一个是直线。 二、按要求作图(共12分) 1、做梁的剪力、弯矩图(10分)

材料力学试题及答案

一、回答下列各题(共4题,每题4分,共16分) 1、已知低碳钢拉伸试件,标距mm l 1000=,直径mm d 10=,拉断后标距的长度变为mm l 1251=,断口处的直 径为mm d 0.61 =,试计算其延伸率和断面收缩率。 答:延伸率%25%100100 100 125%100001=?-=?-= l l l δ 断面收缩率%64%100))(1(%100211=?-=?-= d d A A A δ 2 3 、梁弯曲剪应力的计算公式z z QS = τ,若要计算图示矩形截面A 点的剪应力,试计算z S 。 232 3 )84(41bh h h hb S z =+= 4。 二、绘制该梁的剪力、弯矩图。(15分) 矩形 圆形 矩形截面中间 挖掉圆形 圆形截面中间 挖掉正方形 4

三、图示木梁的右端由钢拉杆支承。已知梁的横截面为边长等于 的正方形,q=4OKN/m,弹性模量E 1=10GPa ;钢拉杆的横截面面积A 2=250mm 2,弹性模量E 2=210GPa 。试求拉杆的伸长l ?及梁中点沿铅垂方向的位移?。(14分) 解:杆受到的拉力kN q F N 402 2== m EA l F l N 00228.010 25010210310406 93=?????==?- 梁中点的挠度: m I E ql A E l F w l N c 00739.012 2 .0101038421040500114.0384521214 94 314122=? ?????+ =+=+?=?四、砖砌烟窗高m h 30=,底截面m m -的外径m d 31=,内径m d 22=,自重kN P 20001=,受 m kN q /1=的风力作用。试求:(1)烟窗底截面m m -的最大压应力;(2)若烟窗的基础埋深m h 40=, 基础及填土自重按kN P 10002=计算,土壤的许用压应力MPa 3.0][=σ,圆形基础的直径D 应为多大(20分) 注:计算风力时,可略去烟窗直径的变化,把它看成是等截面的。 F s M m kN q /20=kN 20m kN ?160A B C m 10m 2112kN 88kN 20kN 40kNm 160kNm

材料力学上机大作业(matlab编)

一、可实现课题 在如图所示的悬臂梁中,杆件为圆杆。杆长为L ,直径为D ,材料弹性模量为E 。输入集中力F 大小,作用点a ,弯矩M ,作用点b ,即可求得悬臂梁的挠度曲线图。 二、程序代码 clear all disp('请给定材料信息'); %输入材料信息 L=input('圆杆长度L(/M)='); D=input('圆杆直径D(/M)='); E=input('弹性模量E(/GPa)='); I=double(D^4*3.14/32); disp('请给定受力情况'); %输入受力情况 F=input('切向集中力大小F(/N)='); a=input('切向集中力作用位置(/M)='); M=input('弯矩大小M(/N*M)='); b=input('弯矩作用位置(/M)='); x1=0:0.01:a; %F 引入的挠度 vx1=(-F*x1.^2*3*a+F*x1.^3)*(1/(6*E*10^9*I)); x2=a:0.01:L; vx2=(-F*a.^2*3*x2+F*a.^3)*(1/(6*E*10^9*I)); v11=[vx1,vx2]; x11=[x1,x2]; x3=0:0.01:b; %M 引入的挠度 vx3=(-M*x3.^2)*(1/(2*E*10^9*I)); x4=b:0.01:L; vx4=(-M*b*x4+M*0.5*b.^2)*(1/(E*10^9*I)); x22=[x3,x4]; v22=[vx3,vx4]; v33=v22+v11; %叠加 plot(x11,v33),xlabel('x /M'),ylabel('v(x) /M') a b L F M

相关文档
最新文档